七年级上册数学 平面图形的认识(一)专题练习(word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.

(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;

(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;

(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.

【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,

∴∠BDA=∠CEA=90°,

∵∠BAC=90°,

∴∠BAD+∠CAE=90°,

∵∠BAD+∠ABD=90°,

∴∠CAE=∠ABD,

在△ADB和△CEA中,

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE;

(2)解:结论DE=BD+CE成立;理由如下:

∵∠BDA=∠BAC=α,

∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,

∴∠CAE=∠ABD,

在△ADB和△CEA中,

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴DE=AE+AD=BD+CE;

(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,

∴∠CAE=∠ABD,

在△ABD和△CEA中,

∴△ABD≌△CEA(AAS),

∴S△ABD=S△CEA,

设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,

∴S△ABC= BC•h=12,S△ACF= CF•h,

∵BC=2CF,

∴S△ACF=6,

∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,

∴△ABD与△CEF的面积之和为6.

【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.

2.如图,已知:点不在同一条直线, .

(1)求证: .

(2)如图②,分别为的平分线所在直线,试探究与的数量关系;

(3)如图③,在(2)的前提下,且有,直线交于点,,

请直接写出 ________.

【答案】(1)证明:过点C作,则,

(2)解:过点Q作,则,

∵,

∵分别为的平分线所在直线∴

(3):1:2:2

【解析】【解答】解:(3)∵

∴ .

故答案为: .

【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出

,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.

3.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,∁….

例如:当α=30°时,OA1, OA2, OA3, OA4的位置如图2所示,其中OA3恰好落在ON 上,∠A3OA4=120°;

当α=20°时,OA1, OA2, OA3, OA4, OA3的位置如图3所示,

其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.

解决如下问题:

(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是________;

(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3, OA4并求出α的值;

(3)若α<36°,且∠A2OA4=20°,则对应的α值是________

(4)(选做题)当OA i所在的射线是∠A i OA k(i,j,k是正整数,且OA j与OA k不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.

【答案】(1)45°

(2)解:如图所示.

∵α<30°,

∴∠A0OA3<180°,4α<180°.

∵OA4平分∠A2OA3,

∴2(180°﹣6α)+ =4α,解得:

相关文档
最新文档