襄阳市南漳县2015年中考适应性考试数学试题及答案
湖北省襄阳市南漳县中考适应性考试数学考试卷(初三)中考模拟.doc
湖北省襄阳市南漳县中考适应性考试数学考试卷(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】-的相反数是( )A. 2B. -2C.D. -【答案】C【解析】试题解析:根据相反数的概念得:-的相反数是.故选C.【题文】中国的数学研究具有悠久的历史,《九章算术》是我国的一部古典数学名著,但对其成书的年代说法不一,一般认为在公元前后,距今约2 000年.将2 000用科学记数法表示为( )A. 2×103B. 2×104C. 20×103D. 0.2×103【答案】A【解析】试题解析:2000=2×103.故选A.【点睛】本题主要考查了科学记数法:熟记规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0是解题的关键.【题文】如图是一个圆锥和一个三棱柱组成的组合图形,观察其三视图,其俯视图是( )A. B. C. D.【答案】B【解析】试题解析:由题意得:俯视图与选项B中图形一致.故选B.【点睛】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.【题文】如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDB的度数等于( )评卷人得分A. 70°B. 100°C. 110°D. 120°【答案】C【解析】试题分析:∵DE∥AC,∠BDE=60°,∠C=50°,∴∠BDE=∠A=60°,∴∠BDC=∠A+∠C=60°+50°=110°.故选C.考点:1.三角形的外角性质;2.平行线的性质.【题文】为推行公立医院改革,某医院将某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得( )A. 168(1+x)2=128B. 168(1-x)2=128C. 168(1-2x)=128D. 168(1-x2)=128 【答案】B【解析】试题解析:设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程:168(1-x)2=128,故选B.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.【题文】在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A. 16个B. 15个C. 13个D. 12个【答案】D【解析】试题分析:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴,解得:x=12,故白球的个数为12个.故选D.考点:利用频率估计概率.【题文】如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )A. 25°B. 30°C. 50°D. 60°【答案】A【解析】试题解析:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠BAC=∠B=25°,∵OA=OB,∴∠OAB=∠B=25°.故选A.【题文】若关于x的一元二次方程(k-1)x2+4x+1=0有两个实数根,则k的取值范围是( )A. k<5B. k≤5且k≠1C. k<5且k≠1D. k>5【答案】B【解析】试题解析:由题意知,k≠1,△=b2-4ac=16-4(k-1)=20-4k≥0,解得:k≤5,则k的取值范围是k≤5且k≠1故选B.【题文】二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论:①ac<0;②方程ax2+bx+c=0的两根之和大于0;③y随x的增大而增大;④a-b+c<0. 其中正确的是( )A. ①②③B. ②③④C. ①③④D. ①②④【答案】D【解析】试题解析:∵抛物线的图象开口向下,与y轴的交点在x轴的上方,∴a<0,c>0,∴ac<0,∴①正确;∵抛物线的对称轴在y轴的右边,∴->0,∴<0,即方程ax2+bx+c=0的两根之和->0,∴②正确;在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小,∴③错误;把x=-1代入抛物线得:y=a-b+c<0,∴④正确;故选D.【题文】如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为( )A. 55°B. 50°C. 45°D. 35°【答案】A【解析】试题解析:延长PF交AB的延长线于点G.在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG(直角三角形斜边上的中线等于斜边的一半),∵PF=PG(中点定义),∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP-∠FEP=∠EPC-∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°-∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=(180°-70°)=55°,∴∠FPC=55°.故选A.【题文】因式分解:2a2-2=____.【答案】2(a+1)(a﹣1).【解析】试题分析:原式提取2,再利用平方差公式分解即可.解:原式=2(a2﹣1)=2(a+1)(a﹣1).故答案为:2(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.【题文】不等式组的解集是____.【答案】2<x≤ 8【解析】试题解析:解不等式①,得:x>2;解不等式②,得:x≤8故不等式组的解集为:2<x≤ 8【题文】数据1,2,x,-1,-2的平均数是0,则这组数据的方差是____.【答案】2【解析】试题解析:1+2+x-1-2=0,解得x=0,方差S2= [(1-0)2+(2-0)2+(0-0)2+(-1-0)2+(-2-0)2]=2.【题文】如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为______.【答案】10【解析】试题分析:根据题意可得:AB+BC+AC=8,根据平移可得AC=DF,AD=CF=1,则四边形ABFD的周长=AB+BC+DF+AD+CF=AB+BC+AC+AD+CF=8+1+1=10.考点:图象的平移.【题文】如图,AC,BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是____(只填写一个).【答案】答案不惟一,如OA=OD或OB=OC或∠OBC=∠OCB【解析】试题解析:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.【题文】如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为____.【答案】(-1,)或(-2,0).【解析】试题分析:∵△ABO中,AB⊥OB,OB=,AB=1,∴tan∠AOB=,∴∠AOB=30°.如图1,当△ABO绕点O顺时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣1,);如图2,当△ABO绕点O逆时针旋转150°后得到△A1B1O,则∠A1OC=150°﹣∠AOB﹣∠BOC=150°﹣30°﹣90°=30°,则易求A1(﹣2,0);综上所述,点A1的坐标为(﹣1,)或(﹣2,0);故答案为:(﹣1,)或(﹣2,0).考点:坐标与图形变化-旋转.【题文】先化简,再求值:(m-n)2-(m+n)(m-n),其中m=+1,n=.【答案】2n2-2mn,-2【解析】试题分析:原式第一项利用完全平方公式展开,第二项利用平方差公式展开,去括号合并得到最简结果,将m与n的值代入化简后的式子中计算,即可求出值.试题解析:原式=m2-2mn+n2-(m2-n2)=m2-2mn+n2-m2+n2=2n2-2mn把m=+1,n=代入,原式=2()2-2 (+1)=4-4-2=-2【题文】为弘扬中华优秀传统文化,今年2月20日举行了襄阳市首届中小学生经典诵读大赛决赛. 某中学为了选拔优秀学生参加,广泛开展校级“经典诵读”比赛活动,比赛成绩评定为A,B,C,D,E五个等级,该校七(1)班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)该校七(1)班共有名学生;扇形统计图中C等级所对应扇形的圆心角等于度;(2)补全条形统计图;(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,请用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.【答案】(1)50,144°;(2)补图见解析;(3)【解析】试题分析:(1)由A的人数和其所占的百分比即可求出总人数;C的人数可知,而总人数已求出,进而可求出其所对应扇形的圆心角的度数;(2)根据求出的数据即可补全条形统计图;(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.试题解析:(1)由题意可知总人数=4÷8%=50人;扇形统计图中C等级所对应扇形的圆心角=20÷50×100%×360°=144°;(2)补全条形统计图如图所示:(3)列表如为由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种.所以,恰好选到1名男生和1名女生的概率P==.【题文】如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过点D作DM⊥BE,垂足为M(不写作法,只保留作图痕迹);(2)若AB=2,求EM的长.【答案】(1)作图见解析;(2)【解析】试题分析:(1)按照过直线外一点作已知直线的垂线步骤来作图;(2)先证BD=DE,根据三线合一得出BM=EM即可求解.试题解析:(1)作图如下,(2) ∵△ABC是等边三角形,D是AC的中点∴BD平分∠ABC(三线合一)∴∠ABC=2∠DBE∵CE=CD=1∴∠CED=∠CDE又∵∠ACB=∠CED+∠CDE∴∠ACB=2∠E又∵∠ABC=∠ACB∴2∠DBC=2∠E∴∠DBC=∠E∴BD=DE又∵DM⊥BE∴BM=EM=.【题文】襄阳市某汽车厂生产某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A 地到B地用电行驶纯用电费用26元,已知每行驶1 km,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1 km纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【答案】(1)0.26元;(2)至少用电行驶74千米.【解析】试题分析:(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A 地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.试题解析: (1)设每行驶1km纯用电费用x元,则纯燃油费用为(x+0.5)元,由题意得解之,得x=0.26.经检验:x=0.26是原方程的根,且符合实际意义.答:每行驶1km纯用电费用0.26元(2)由(1)得A、B两地之间的距离为=100(千米).设至少用电行驶y千米,则由题意得 0.26x(0.26+0.5)(100-x)≤39解之,得x≥74.答:至少用电行驶74千米.【点睛】本题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的分式方程与不等式,注意分式方程在最后要检验.【题文】如图,在平面直角坐标系xoy中,一次函数y1=ax+b的图象分别与x,y轴交于点B,A,与反比例函数y2=的图象交于点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出当x<0且y1<y2时x的取值范围.【答案】(1) ,;(2) -2<x<0【解析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;(2)根据函数的图象和交点坐标即可求得.试题解析:(1),.,,.设直线的解析式为.将点的坐标分别代入,得解得直线的解析式为.,.轴于点.,.点的坐标为.设反比例函数的解析式为.将点的坐标代入,得,.该反比例函数的解析式为.(2)-2<x<0.【题文】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为F.(1)求证:DF为⊙O的切线;(2)若AE=4,∠CDF=22.5°,求阴影部分的面积.【答案】(1)证明见解析;(2)4π-8【解析】试题分析:(1)连接AD、OD,如图,先利用圆周角定理得到∠ADB=90°,则根据等腰三角形的性质得BD=CD,于是可判断OD为△ABC的中位线,所以OD∥AC,则DF⊥OD,然后根据切线的判定定理可得DF 是⊙O的切线;(2)利用S阴影=S扇形AOE-S△AOE进而求出答案.试题解析:(1)连接AD,OD.∵AB是直径,∴∠ADB=90°,∴AD⊥BC.∵AB=AC ,∴D是BC的中点.∵O是AB的中点,∴OD//AC.∴∠ODF+∠DFA=180°∵DF⊥AC,∴∠DFA=90°.∴∠ODF=90°. ∴OD⊥DF∴DF是⊙O的切线.(2)连接OE∵∠ADB=∠ADC=90°,∠DFC=∠DFA=90°,∴∠DAC=∠CDF=22.5°∵AB=AC,D是BC中点,∴∠BAC=2∠DAC=2×22.5°=45°.∵OA=OE,∴∠OEA=∠BAC=45°.∴∠AOE=90° .∵AE=4,∴OA=OE=4.S阴影=S扇形AOE-S△AOE=4π-8.【题文】某玩具专柜要经营一种新上市的儿童玩具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出专柜销售这种玩具,每天所得的销售利润W(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该玩具每天的销售利润最大;(3)专柜结合上述情况,设计了A、B两种营销方案:方案A:该玩具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件玩具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.【答案】(1)w=-10x2+700x-10000;(2)35元;(3)选择方案A,理由见解析【解析】试题分析:(1)根据利润=(销售单价-进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.试题解析:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)w=-10x2+700x-10000=-10(x-35)2+2250.所以,当x=35时,w有最大值2250.即销售单价为35元时,该文具每天的销售利润最大.(3)方案A:由题可得20<x≤30,因为a=-10<0,对称轴为x=35,抛物线开口向下,在对称轴左侧,w随x的增大而增大,所以,当x=30时,w取最大值为2000元.方案B:由题意得,解得:,在对称轴右侧,w随x的增大而减小,所以,当x=45时,w取最大值为1250元.因为2000元>1250元,所以选择方案A.【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=−时取得.【题文】如图,△ABC中,∠ACB=90°,tanA=,点D是边AC上一点,连接BD,并将△BCD沿BD折叠,使点C恰好落在边AB上的点E处,过点D作DF⊥BD,交AB于点F.(1)求证:∠ADF=∠EDF;(2)探究线段AD,AF,AB之间的数量关系,并说明理由;(3)若EF=1,求BC的长.【答案】(1)证明见解析;(2)AD2=AF·AB,理由见解析;(3)5+2.【解析】试题解析:(1)根据题意得∠ADF+∠BDC=∠EDF+∠BDE=90°,由折叠可知,∠BDE=∠BDC.所以∠ADF=∠EDF;(2)易证△ADF∽△ABD,得AF∶AD=AD∶AB=DF∶DB,得AD2=AF·AB;(3)设AE=x,DE=x,由勾股定理可得,AD=DE=x,可证△ADE∽△DFE,得BE=2x2,由(2)知AD2=AF·AB,即3x2=(x-1)×(x+2x2).解得x 的值,即可求BC的值试题解析:(1)∵DF⊥DB,∴∠BDF=90°.∴∠ADF+∠BDC=∠EDF+∠BDE=90°由折叠可知,∠BDE=∠BDC.∴∠ADF=∠EDF.(2)AD,AF,AB之间的数量关系为AD2=AF·AB,理由如下:由折叠可知,∠DEF=∠BFD=∠C=90°.∴∠EDF+∠DFE=∠ABD+∠DFE=90°.∴∠EDF=∠ABD.∴∠ADF=∠DBA.∵∠A=∠A,∴△ADF∽△ABD.∴AF∶AD=AD∶AB=DF∶DB.∴AD2=AF·AB.(3)在Rt△ADE中,tanA=DE∶AE=∶1,则可设AE=x,DE=x,由勾股定理可得,AD=DE=x.∵∠ABD=∠EDF,∠AED=∠DEF,∴△ADE∽△DFE. ∴DE∶EF=BE∶DE,即DE2=EF·EB.∴(x)2=1×BE,即BE=2x2。
湖北省襄阳市2015年数学中考真题试卷及参考答案
在同一平
A.
B.
C.
D.
12. 如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )
A . AF=AE B . △ABE≌△AGF C . EF= D . AF=EF
二 、 填 空 题 : 共 5小 题 , 每 小 题 3分 , 共 15分
13. 计算:2﹣1﹣ =________ .
三 、 简 答 题 : 共 9小 题 , 共 69分
18. 先化简,再求值:(
+ )÷
, 其中x=
, y= ﹣ .
19. 如图,已知反比例函数 的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).
(1)
求反比例函数和一次函数的解析式;
(2) 当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.
参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
14. 15. 16. 17. 18. 19.
20.
21.
22. 23.
24. 25.
26.
A.
B.
C.
D.
3. 在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A.
B.
C.
D.
4. 如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列
信息,其中错误的是( )
A . 凌晨4时气温最低为﹣3℃ B . 14时气温最高为8℃ C . 从0时至14时,气温随时间增长而上升 D . 从14时至24时,气温随时
2015年湖北省襄阳市中考数学试卷
2015年湖北省襄阳市中考数学试卷一、选择题,共12小题,每小题3分,共36分1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为()A.3.7×106B.3.7×105C.37×104D.3.7×1043.(3分)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.4.(3分)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T 随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降5.(3分)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a66.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°7.(3分)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1 C.D.28.(3分)下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次9.(3分)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°10.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.911.(3分)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.12.(3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C 与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=2D.AF=EF二、填空题,共5小题,每小题3分,共15分13.(3分)计算:2﹣1﹣=.14.(3分)分式方程﹣=0的解是.15.(3分)若一组数据1,2,x,4的众数是1,则这组数据的方差为.16.(3分)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为.17.(3分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.三、简单题,共9小题,共69分18.(6分)先化简,再求值:(+)÷,其中x=,y=﹣.19.(6分)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.(6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图分数段(分手为x分)频数百分比60≤x<70820%70≤x<80a30%80≤x≤9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.21.(6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.23.(7分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A 按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.26.(12分)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t 秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.2015年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题,共12小题,每小题3分,共36分1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为()A.3.7×106B.3.7×105C.37×104D.3.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:370 000=3.7×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.【分析】根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上表示的方法,可得答案.【解答】解:由2(1﹣x)<4,得2﹣2x<4.解得x>﹣1,故选:A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T 随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降【分析】根据函数的图象对各选项进行逐一分析即可.【解答】解:A、∵由图象可知,在凌晨4点函数图象在最低点﹣3,∴凌晨4时气温最低为﹣3℃,故本选项正确;B、∵由图象可知,在14点函数图象在最高点8,∴14时气温最高为8℃,故本选项正确;C、∵由图象可知,从4时至14时,气温随时间增长而上升,不是从0点,故本选项错误;D、∵由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选:C.【点评】本题考查的是函数的图象,能根据函数图象在坐标系中的增减性判断出函数的增减性是解答此题的关键.5.(3分)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a6【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.【解答】解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.6.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°【分析】根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.【解答】解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.故选:D.【点评】本题考查了平行线的性质,关键是根据:两直线平行,内错角相等.也利用了三角形外角性质.7.(3分)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1 C.D.2【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE=CE=1.【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,∴BE=CE=2,∴∠B=∠DCE=30°,∵CE平分∠ACB,∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,∴∠A=180°﹣∠B﹣∠ACB=90°.在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,∴AE=CE=1.故选:B.【点评】本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A=90°是解答此题的关键.8.(3分)下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.0001的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选:B.【点评】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°【分析】利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.【解答】解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.10.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.9【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两层3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故选:A.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.(3分)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据二次函数图象开口向下得到a<0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【解答】解:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线x=﹣>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一、二、四象限,反比例函数y=图象在第一三象限,只有C选项图象符合.故选:C.【点评】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.12.(3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C 与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=2D.AF=EF【分析】设BE=x,表示出CE=8﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE 中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.【解答】解:设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,∴A正确;在Rt△ABE和Rt△AGF中,,∴△ABE≌△AGF(HL),∴B正确;过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=2,∴C正确;∵△AEF不是等边三角形,∴EF≠AF,故D错误;故选:D.【点评】本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.二、填空题,共5小题,每小题3分,共15分13.(3分)计算:2﹣1﹣=0.【分析】原式第一项利用负整数指数幂法则计算,第二项利用立方根定义计算即可得到结果.【解答】解:原式=﹣=0,故答案为:0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.(3分)分式方程﹣=0的解是x=15.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5﹣10=0,解得:x=15,经检验x=15是分式方程的解.故答案为:x=15.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(3分)若一组数据1,2,x,4的众数是1,则这组数据的方差为 1.5.【分析】根据众数的定义先求出x的值,再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解答】解:∵数据1,2,x,4的众数是1,∴x=1,∴平均数是(1+2+1+4)÷4=2,则这组数据的方差为[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=1.5;故答案为:1.5.【点评】本题考查了众数和方差:众数是一组数据中出现次数最多的数;一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].16.(3分)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为﹣π.【分析】连结PO交圆于C,根据切线的性质可得∠OAP=90°,根据含30°的直角三角形的性质可得OA=1,再求出△PAO与扇形AOC的面积,由S阴影=2×(S△PAO﹣S扇形AOC)则可求得结果.【解答】解:连结AO,连结PO交圆于C.∵PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,∴∠OAP=90°,OA=1,∴S阴影=2×(S△PAO﹣S扇形AOC)=2×(×1×﹣)=﹣π.故答案为:﹣π.【点评】此题考查了切线长定理,直角三角形的性质,扇形面积公式等知识.此题难度中等,注意数形结合思想的应用.17.(3分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.【分析】首先求出∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.【解答】解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=×70°=35°.故答案为:55°或35°.【点评】此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键.三、简单题,共9小题,共69分18.(6分)先化简,再求值:(+)÷,其中x=,y=﹣.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=•xy(x﹣y)=•xy(x﹣y)=3xy,当x=+,y=﹣时,原式=3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.【分析】(1)把A的坐标代入反比例函数的解析式,求出m的值,从而确定反比例函数的解析式,把B的坐标代入反比例函数解析式求出B的坐标,把A、B 的坐标代入一次函数的解析式,即可求出a,b的值,从而确定一次函数的解析式;(2)根据函数的图象即可得出一次函数的值小于反比例函数的值的x的取值范围.【解答】解:(1)∵反比例函数y=的图象过点A(1,4),∴4=,即m=4,∴反比例函数的解析式为:y=.∵反比例函数y=的图象过点B(n,﹣2),∴﹣2=,解得:n=﹣2∴B(﹣2,﹣2).∵一次函数y=ax+b(k≠0)的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得.∴一次函数的解析式为:y=2x+2;(2)由图象可知:当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【点评】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式及利用图象比较函数值的大小.解题的关键是:确定交点的坐标.20.(6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图分数段(分手为x分)频数百分比60≤x<70820%70≤x<80a30%80≤x≤9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.【分析】(1)首先根据第一小组的频数和频率求得总人数,然后减去其它小组的频数即可求得a值,根据总人数和第三小组的频数即可求得b值;(2)用周角乘以相应分数段所占的百分比即可求得圆心角的度数;(3)列表将所有等可能的结果列举出来利用概率公式求解即可.【解答】解:(1)∵60≤x<70小组的频数为8,占20%,∴8÷20%=40人,∴a=40﹣8﹣16﹣4=12,b=×100%=40%,故答案为:12,40;(2)∵70≤x<80小组所占的百分比为30%,∴70≤x<80对应扇形的圆心角的度数360°×30%=108°,故答案为:108°;(3)用A、B表示男生,用a、b表示女生,列表得:A B a bA AB Aa AbB BA Ba Bba aA aB abb bA bB ba∵共有12种等可能的结果,其中一男一女的有8种,∴P(一男一女)==.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和概率公式.21.(6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.【点评】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.22.(6分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.(1)过点A作AE⊥BC于点E,根据cosC=,求出∠C=45°,求出AE=CE=1,【分析】根据tanB=,求出BE的长即可;(2)根据AD是△ABC的中线,求出BD的长,得到DE的长,得到答案.【解答】解:过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【点评】本题考查的是解直角三角形的知识,正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.23.(7分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A 按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE 求解.【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CF;(2)解:∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=﹣1.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.24.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600(x≥45);(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,=8000元,∴当x=60时,P最大值即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,=﹣20×58+1600=440,∴当x=58时,y最小值即超市每天至少销售粽子440盒.【点评】本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒粽子所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.25.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.【分析】(1)首先连接OC,由PE是⊙O的切线,AE和过点C的切线互相垂直,可证得OC∥AE,又由OA=OC,易证得∠DAC=∠OAC,即可得AC平分∠BAD;(2)由AB是⊙O的直径,PE是切线,可证得∠PCB=∠PAC,即可证得△PCB∽△PAC,然后由相似三角形的对应边成比例与PB:PC=1:2,即可求得答案;(3)首先过点O作OH⊥AD于点H,则AH=AD=,四边形OCEH是矩形,即可得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的对应边成比例,求得OC的长,再由△PBC∽△PCA,证得AC=2BC,然后在Rt△ABC中,AC2+BC2=AB2,可得(2BC)2+BC2=52,即可求得BC的长,继而求得答案.【解答】(1)证明:连接OC,∵PE是⊙O的切线,∴OC⊥PE,∵AE⊥PE,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠BAD;(2)线段PB,AB之间的数量关系为:AB=3PB.理由:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵OB=OC,。
2015年湖北省襄阳市樊城区中考适应性数学试卷(解析版)
2015年湖北省襄阳市樊城区中考适应性数学试卷一、选择题:(每小题3分,共36分)1.(3分)数轴上A点表示的数的倒数是()A.2 B.﹣2 C.D.﹣2.(3分)为了解本班学生每天零花钱使用情况,张明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法错误的是()A.众数是3元B.平均数是2.5元C.极差是5元D.中位数是3元3.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x24.(3分)函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1 C.x≠1 D.x≥﹣2或x≠15.(3分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG6.(3分)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°7.(3分)顺次连接对角线互相垂直的四边形各边中点,所得到的四边形一定是()A.梯形B.菱形C.矩形D.正方形8.(3分)如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:29.(3分)如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足()A.B.R=3r C.R=2r D.10.(3分)关于x的一元二次方程(m﹣2)x2+4x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m>﹣2且m≠2 D.m≥﹣2且m≠211.(3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.12.(3分)如图,一个半径为1的圆形纸片在边长为a(a≥2)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.3﹣πD.不能求出具体值二、填空题:(每小题3分,共18分)13.(3分)如图,过反比例函数y=图象上三点A、B、C分别作直角三角形和矩形,图中S1+S2=5,则S3=.14.(3分)若关于x的方程+=2的解为正数,则m的取值范围是.15.(3分)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是.16.(3分)设α、β是方程2x2﹣6x+3=0的两个根,那么α+β﹣αβ的值为.17.(3分)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长等于cm.三、解答题(共66分)18.(5分)先化简,再求值:(+)•,其中x=tan60°.19.(5分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此区教育局对我区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生,并把图①补充完整;(2)图②中C级所占的圆心角的度数为;(3)从抽样调查的学生中,抽取一名学生学习态度达标(达标包括A级和B级)的概率是多少?20.(6分)如图所示,二次函数y1=﹣x2+nx+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C(0,3).(1)求二次函数解析式,并写出顶点坐标;(2)令直线BC的解析式为y2,分析并观察图象,直接写出当y1<y2时,x的取值范围.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(1)当旋转角为度时,CF=CB′;(2)在上述条件下,AB与A′B′垂直吗?请说明理由.22.(7分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?23.(7分)已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE 沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.24.(10分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.25.(10分)如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)试探究线段AD、AB、CP之间的等量关系,并加以证明;(3)若OC=3,=,sinE=.26.(12分)在正方形AOBC中,OB=OA=4,分别以OB,OA所在直线为x轴和y轴建立如图所示的平面直角坐标系,F是边BC上的一个动点,过F点的一次函数y=﹣x+k的图象与AC边交于点E.(1)在点F的运动过程中,∠EOF的取值范围是;(2)令五边形AOBFE的面积为S,求出S与k的函数关系式,当S取最大值时,求k的值;(3)在(2)的条件下,P为线段OB上一动点,作∠CBx的角平分线BM交一次图象于M,连接PM交BC于Q.则点M的坐标为①若∠APM=90°,求出P点的坐标;②在①的条件下,若P点不与O、B重合,连接AQ,探究正方形AOBC内有哪些三角形相似,直接写出结论.2015年湖北省襄阳市樊城区中考适应性数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分)1.(3分)数轴上A点表示的数的倒数是()A.2 B.﹣2 C.D.﹣【分析】根据乘积是1的两数互为倒数,即可解答.【解答】解:数轴上点A表示的数是﹣2,1÷(2)=﹣,故选:D.2.(3分)为了解本班学生每天零花钱使用情况,张明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法错误的是()A.众数是3元B.平均数是2.5元C.极差是5元D.中位数是3元【分析】根据众数的定义,极差的定义,算术平均数的求法,以及中位数的定义分别求解即可得到答案;【解答】解:A、每天花3元的人数最多,是5人,所以,众数是3元,故本选项错误;B、平均数=(0×1+1×3+3×5+4×4+5×2)=×44≈2.93元,故本选项正确;C、极差为5﹣0=5元,故本选项错误;D、按照从小到大的顺序排列,15个人中第8人的零花钱数是3元,所以,中位数是3元,故本选项错误.故选:B.3.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x2【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、幂的乘方,应底数不变,指数相乘,所以(x3)3=x9,故本选项错误;B、是同底数幂的乘法,应底数不变,指数相加,所以a6•a4=a10,故本选项错误;C、(﹣bc)4÷(﹣bc)2=(﹣bc)4﹣2=b2c2,正确;D、是同底数幂的除法,应底数不变,指数相减,所以a6÷a3=a3,故本选项错误;故选:C.4.(3分)函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1 C.x≠1 D.x≥﹣2或x≠1【分析】根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.【解答】解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.5.(3分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG【分析】由平面图形的折叠及正方体的展开图解题.注意找准红心“”标志所在的相邻面.【解答】解:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE.故选:A.6.(3分)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°【分析】此题的解法灵活,可以首先根据平行线的性质求得∠EFB,再根据三角形的外角性质求得∠E;也可以首先根据平行线的性质求得∠CFB,再根据对顶角相等求得∠AFE,最后再根据三角形的内角和定理即可求解.【解答】解:方法1:∵AB∥CD,∠C=115°,∴∠EFB=∠C=115°.又∠EFB=∠A+∠E,∠A=25°,∴∠E=∠EFB﹣∠A=115°﹣25°=90°;方法2:∵AB∥CD,∠C=115°,∴∠CFB=180°﹣115°=65°.∴∠AFE=∠CFB=65°.在△AEF中,∠E=180°﹣∠A﹣∠AEF=180°﹣25°﹣65°=90°.故选:C.7.(3分)顺次连接对角线互相垂直的四边形各边中点,所得到的四边形一定是()A.梯形B.菱形C.矩形D.正方形【分析】根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.【解答】解:如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).故选:C.8.(3分)如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:2【分析】由题可知:△ADE∽△ABC,相似比为AE:AC,由S△ADE :S四边形DBCE=1:8,得S△ADE:S△ABC=1:9,根据相似三角形面积的比等于相似比的平方.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE :S△ABC=AE2:AC2,∵S△ADE :S四边形DBCE=1:8,∴S△ADE :S△ABC=1:9,∴AE:AC=1:3.故选:B.9.(3分)如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足()A.B.R=3r C.R=2r D.【分析】首先连接OC,根据切线的性质得到OC⊥OB,再根据等腰三角形的性质可得到∠COB=60°,从而进一步求出∠B=30°,再利用直角三角形中30°角所对的边等于斜边的一半,可得到R与r的关系.【解答】解:连接OC,∵C为切点,∴OC⊥AB,∵OA=OB,∴∠COB=∠AOB=60°,∴∠B=30°,∴OC=OB,∴R=2r.故选:C.10.(3分)关于x的一元二次方程(m﹣2)x2+4x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m>﹣2且m≠2 D.m≥﹣2且m≠2【分析】根据题意得△>0且m﹣2≠0,从而直接解出答案.【解答】解:由题意得:△>0且m﹣2≠0,则△=16﹣4×(m﹣2)(﹣1)=4m+8>0,∴m>﹣2且m≠2,故选:C.11.(3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.12.(3分)如图,一个半径为1的圆形纸片在边长为a(a≥2)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.3﹣πD.不能求出具体值【分析】过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得AD=.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.【解答】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=1,AD=.∴S=O1D•AD=.由S四形形ADO1E=2S△ADO1=.△ADO1∵由题意,∠DO1E=120°,得S扇形O1DE=,∴圆形纸片不能接触到的部分的面积为3(﹣)=3﹣π.故选:C.二、填空题:(每小题3分,共18分)13.(3分)如图,过反比例函数y=图象上三点A、B、C分别作直角三角形和矩形,图中S1+S2=5,则S3=5.【分析】根据过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|即可得到结果.【解答】解:∵过反比例函数y=图象上三点A、B、C分别作直角三角形和矩形,∴S1=S2=,S3=|k|,∴S3=S1+S2=5,故答案为:5.14.(3分)若关于x的方程+=2的解为正数,则m的取值范围是m<6且m≠0.【分析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于m 的不等式,从而求得m的范围.【解答】解:∵关于x的方程+=2有解,∴x﹣2≠0,∴x≠2,去分母得:2﹣x﹣m=2(x﹣﹣2),即x=2﹣,根据题意得:2﹣>0且2﹣≠2,解得:m<6且m≠0.故答案是:m<6且m≠0.15.(3分)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是180°.【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=2πr,∴n=180.故答案为:180°.16.(3分)设α、β是方程2x2﹣6x+3=0的两个根,那么α+β﹣αβ的值为.【分析】根据根与系数的关系,可得出α+β和αβ的值,再代入α+β﹣αβ求值即可.【解答】解:∵α,β是方程2x2﹣6x+3=0的两个实数根,∴α+β=3,αβ=,又∵原式=(α+β)﹣αβ,∴原式=3﹣=.故答案为.17.(3分)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长等于2cm.【分析】连接A、C,则EF垂直平分AC,推出△OEC∽△BCA,根据勾股定理,可以求出AC的长度,根据相似比求出OE即可.【解答】解:连接AC,与EF交于O点,∵E点在AB上,F在CD上,因为A、C点重合,EF是折痕,∴AO=CO,EF⊥AC,∵AB=8,BC=4,∴AC=4,∵AE=CE,∴∠EAO=∠ECO,∴△OEC∽△BCA,∴OE:BC=OC:BA,∴OE=,∴EF=2OE=2.故答案为:2.三、解答题(共66分)18.(5分)先化简,再求值:(+)•,其中x=tan60°.【分析】原式括号中第二项变形后,利用同分母分式的减法法则计算,约分得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=•=,当x=tan60°=时,原式=.19.(5分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此区教育局对我区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生,并把图①补充完整;(2)图②中C级所占的圆心角的度数为54°;(3)从抽样调查的学生中,抽取一名学生学习态度达标(达标包括A级和B级)的概率是多少?【分析】(1)根据A级的人数是50人,所占的百分比是25%,根据百分比的意义即可求得总人数;利用总人数减去其它组的人数,即可求得C级的人数,进而补全图①;(2)C级所占的圆心角的度数用360度乘以对应的百分比即可求得;(3)将A级和B级所占百分比相加即可求解.【解答】解:(1)抽查的总人数是:50÷25%=200(人);C级的人数是:200﹣50﹣120=30(人).图①补充如下:(2)C级所占的圆心角的度数是:360×(1﹣25%﹣60%)=54°;(3)从抽样调查的学生中,抽取一名学生学习态度达标(达标包括A级和B级)的概率是:25%+60%=85%=.故答案为200;54°.20.(6分)如图所示,二次函数y1=﹣x2+nx+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C(0,3).(1)求二次函数解析式,并写出顶点坐标;(2)令直线BC的解析式为y2,分析并观察图象,直接写出当y1<y2时,x的取值范围.【分析】(1)把A点和C点坐标分别代入y1=﹣x2+nx+m中得到关于m、n的方程组,然后解方程组求出m和n的值即可得到二次函数解析式,再把解析式配成顶点式得到顶点坐标;(2)根据抛物线与x轴的交点问题求出B点坐标,然后观察函数图象,写出直线BC在抛物线上方所对应的自变量的范围即可.【解答】解:(1)把A(3,0),C(0,3)分别代入y1=﹣x2+nx+m得,解得,所以二次函数解析式为y1=﹣x2+2x+3;因为y1=﹣x2+2x+3=﹣(x﹣1)2+4,所以二次函数图象的顶点坐标为(1,4);(2)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(﹣1,0),所以当x<﹣1或x>0时,y1<y2.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(1)当旋转角为30度时,CF=CB′;(2)在上述条件下,AB与A′B′垂直吗?请说明理由.【分析】(1)由CF=CB′可知∠CFB′=∠CB′F=60°,从而可求得∠FCB′的度数,然后可求得∠A′CA=30°;(2)由∠A′CA=30°,可求得∠ECB=60°,然后可求得∠A′EO=∠BEC=60°,从而可求得∠A′OE=90°.【解答】解:(1)∵CF=CB′,∴∠CFB′=∠CB′F=60°.∴∠A′CA=90°﹣∠FCB′=90°﹣60°=30°.故旋转角为30°时,CF=CB′;故答案为:30°.(2)∵∠A′CA=30°,∴∠BCE=∠ACB﹣∠A′CA=90°﹣30°=60°.∴∠B=∠BCE=∠BEC=60°.∴∠A′EO=60°.∴∠A′EO+∠A′=60°+30°=90°.∴∠A′OE=90°.∴AB⊥A′B′.22.(7分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?【分析】根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量列出一元二次方程求解即可.【解答】解:设每件玩具上涨x元,则售价为(30+x)元,则根据题意,得(30+x﹣20)(230﹣10x)=2520.整理方程,得x2﹣13x+22=0.解得:x1=11,x2=2,当x=11时,30+x=41>40,∴x=11 不合题意,舍去.∴x=2,∴每件玩具售价为:30+2=32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.23.(7分)已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE 沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.【分析】(1)根据平移的性质,可得:BE=FC,再证明Rt△ABE≌Rt△CDG可得:BE=DG;(2)要使四边形ABFG是菱形,须使AB=BF;根据条件找到满足AB=BF的AB与BC满足的数量关系即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD.∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.∴CG⊥AD.∴∠AEB=∠CGD=90°.∵AE=CG,∴Rt△ABE≌Rt△CDG(HL).∴BE=DG;(2)解:当BC=AB时,四边形ABFG是菱形.证明:∵AB∥GF,AG∥BF,∴四边形ABFG是平行四边形.∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∵BC=AB∴BE=CF∴EF=AB∴AB=BF∴四边形ABFG是菱形,24.(10分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.25.(10分)如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)试探究线段AD、AB、CP之间的等量关系,并加以证明;(3)若OC=3,=,sinE=.【分析】(1)要证PB是⊙O的切线,只要连接OA,再证∠PBO=90°即可;(2)由∠OBP=∠BCO=90°,根据射影定理得到△OCB∽△PBC,得到,由于OC=AD,BC=AB,于是得到结果;(3)证明△ADE∽△POE,得到,设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,可求出sin∠E的值.【解答】(1)证明:连接OA∵PA为⊙O的切线,∴∠PAO=90°,∵OA=OB,OP⊥AB于C,∴BC=CA,PB=PA,在△PBO和△PAO中,∴△PBO≌△PAO,∴∠PBO=∠PAO=90°∴PB为⊙O的切线(2)∵∠OBP=∠BCO=90°,∴△OCB∽△PBC,∴,∴BC2=OC•PC,∵OC=AD,BC=AB,∴=AD•PC,∴AB2=2AD•PC;(3)解:∵BD是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP,∴△ADE∽△POE,∴=,由AD∥OC得AD=2OC,∵BC=2OC,设OC=3,则BC=6,AD=6.∵∠OBC+∠PBC=90°,∠BOC+∠OBC=90°,∴∠BOC=∠PBC,∵∠OCB=∠BCP,∴△PBC∽△BOC,∴PC=2BC=12,OP=15.∴===,可设EA=2m,EP=5m,则PA=3m.∵PA=PB,∴PB=3m,sinE==.26.(12分)在正方形AOBC中,OB=OA=4,分别以OB,OA所在直线为x轴和y轴建立如图所示的平面直角坐标系,F是边BC上的一个动点,过F点的一次函数y=﹣x+k的图象与AC边交于点E.(1)在点F的运动过程中,∠EOF的取值范围是0°≤∠EOF≤90°;(2)令五边形AOBFE的面积为S,求出S与k的函数关系式,当S取最大值时,求k的值;(3)在(2)的条件下,P为线段OB上一动点,作∠CBx的角平分线BM交一次图象于M,连接PM交BC于Q.则点M的坐标为(6,2)①若∠APM=90°,求出P点的坐标;②在①的条件下,若P点不与O、B重合,连接AQ,探究正方形AOBC内有哪些三角形相似,直接写出结论.【分析】(1)易知直线y=﹣x+k与x轴成45°角,从而有∠CEF=∠CFE=45°,则有CE=CF.先考虑点F运动到点C、点B对应的∠EOF的值,就可求出∠EOF的取值范围;、S,然后根据S与k的函数关系式,(2)用k的代数式依次表示BF、CF、S△CEF就可求出S取最大值时k的值;(3)如图2①,过点M作MH⊥BD于H.易证MB=MD,∠BMD=90°,根据等腰三角形的性质及直角三角形斜边上的中线等于斜边的一半可得BH=HD=MH=BD=2,求出OH,即可得到点M的坐标.①如图2①,易证△AOP ∽△PHM,根据相似三角形的性质即可求出OP,即可得到点P的坐标;②如图2②,易证△AOP∽△PBQ,则有=.由PB=OP=2可得=.再由∠AOP=∠APQ=90°可得△AOP∽△APQ.【解答】解:(1)如图1,易知直线y=﹣x+k与x轴成45°角,从而有∠CEF=∠CFE=45°,则有CE=CF.当点F运动到点C时,∠EOF=0°;当点F运动到点B时,∠EOF=90°.故答案为0°≤∠EOF≤90°;(2)如图1,当x=4时,y=﹣4+k,则点F(4,﹣4+k),∴BF=﹣4+k,CF=4﹣(﹣4+k)=8﹣k,=CE•CF=CF2=(8﹣k)2,∴S△ECF∴S=16﹣(8﹣k)2,∴当k=8时,S取到最大值;(3)如图2①,过点M作MH⊥BD于H.∵BM平分∠CBD,∴∠MBD=∠CBD=45°,∴∠MBD=∠MDB=∠BCD=45°,∴BD=BC=4,MB=MD,∠BMD=90°,∵MH⊥BD,∴BH=HD=MH=BD=2,∴OH=4+2=6,∴点M的坐标为(6,2).故答案为(6,2);①如图2①,∵∠APM=90°,∠AOP=90°,∴∠APO+∠HPM=180°﹣90°=90°,∠APO+∠OAP=90°,∴∠OAP=∠HPM.又∵∠AOP=∠PHM=90°,∴△AOP∽△PHM,∴=,∴=,解得OP=2或OP=4,∴点P的坐标为(2,0)或(4,0);②如图2②,在正方形AOBC内,△AOP∽△PBQ∽△APQ.理由:∵P点不与O、B重合,∴OP=2,PB=4﹣2=2.由①得∠OAP=∠BPQ.又∵∠AOP=∠PBQ=90°,∴△AOP∽△PBQ,∴=.∵PB=OP=2,∴=.∵∠AOP=∠APQ=90°,∴△AOP∽△APQ,∴△AOP∽△PBQ∽△APQ.。
2015年南漳县中考适应性考试
2015年南漳县中考适应性考试理科综合试题(本试卷共10面,满分130分,考试时间120分钟)注意事项:1、答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置。
2、答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
3、考试结束后,请将本试题卷和答题卡一并上交。
一、单项选择题:下列各小题均有四个选项,其中只有一个选项符合题意,请将其序号在答题卡上涂黑作答。
(1—6题为物理部分,每小题2分,共12分;7—16题为化学部分,每小题1分,共10分;17—22题为生物部分,每小题1分,共6分)1. 为了解自己的身体情况,健康的小明做了一些测量,其中记录错误的是A.质量50kgB.身高160mC.体温37℃D.1min心跳75次2. 汽车在高速公路行驶,往往要被限制最大行驶速度,如果用物理学的思维来解读,其目的是A.限制摩擦力B.限制势能C.限制动能D.限制惯性3. 下列关于功、内能和热量的描述中正确的是A.如果物体的温度不变,则其内能一定不变B.内能少的物体也可能将能量传给内能多的物体C.温度高的物体含有的热量比温度低的物体多D.物体的内能越多,具有的功就越多4. 下列实例中,属于用热传递的方法改变物体内能的是A.流星在空中高速下落,发出光和热B.铁片在室外被太阳晒热C.两手相互摩擦,使手心发热D.锯木头时,锯条变得烫手5. 如图1所示,电源电压保持不变,开关S闭合后,当滑动变阻器的滑片P向左移动时,电流表和电压表示数的变化情况是A.电流表示数变小,电压表示数变大B.电流表示数变小,电压表示数不变C.电流表示数变大,电压表示数变大D.电流表示数变小,电压表示数变小图16. 下列用电器中,利用电流热效应工作的是A.电冰箱B.电饭锅C.电风扇D.洗衣机可能用到的相对原子质量:Ca-40 H-1 O-16 K-39 C-12 Cl-35.57. 生活中常见的下列变化,属于化学变化的是A.黄金制成金项链B.水果榨汁C.木料制成家具D.米酿成醋8. 由于气候变暖,南极冰川以前所未有的速度融化。
2015数学试题(正题)答案
2015年襄阳市初中毕业生学业水平考试数学试题参考答案及评分标准评分说明1.若有与参考答案不同的解法而解答过程准确者,参照评分标准分步给分;2.学生在答题过程中省略某些非关键性步骤,不扣分;学生在答题过程中省略了关键性步骤,后面解答准确者,只扣省略关键性步骤分,不影响后面得分.一、选择题(本大题共12个小题,每小题3分,共36分)二、填空题(本大题共5个小题,每小题3分,共15分)13. 0 14. x =15 15. 32 16. 3-π317. 55°或35°三、解答题(本大题共9个小题,共69分)18. (本小题满分6分)解: 原式=(5x +3y x 2-y 2 -2x x 2-y 2)÷1x 2y -xy 2=5x +3y -2x x 2-y2×(x 2y -xy 2) …………………2分=3(x +y )(x +y )(x -y )×xy (x -y ) ………………………………………………………..3分 =3xy. …………………………………………………………………......……4分 把x =3+2,y =3-2代入,得原式=3(3+2)(3-2)=3. ……………………………………………………..6分 19. (本小题满分6分)解:(1)∵反比例函数y =mx 的图象过点A(1,4),∴m =4.∴反比例函数解析式为y =4x. ………………………………….....………….................1分∵反比例函数y =4x 过点B(n ,-2),∴4n=-2. ∴ n =-2.∴B 点坐标为(-2,-2). ……………………………………………………............…2分 ∵直线y =ax +b 经过点A(1,4)和点B(-2,-2),∴4,2 2.a b a b .... ……………………………………….......………….................…3分解这个方程组,得2,2.a b ∴y =2x +2. ...…………….........…….................…4分(2)x <-2或0<x <1 . ………………………………………….......…….............…6分20. (本小题满分6分)(分)第20题图(1)12,40;(每空1分) . …………....…2分补全统计图见右图. ……………....…3分 (2)108°; ……………....…......……...…4分(3)23. ……………………....…......…..…6分21. (本小题满分6分)解:设矩形猪舍垂直于住房墙的一边长为xm ,则矩形猪舍的另一边长为(26-2x )m . ... 1分依题意,得 x (26-2x )=80. ……………………………………………………....…3分 化简,得 x 2-13x +40=0.解这个方程,得 x 1=5,x 2=8. ………………………………………………..........…5分 当x =5时,26-2x =16>12(舍去);当x =8时,26-2x =10<12.答: 所建矩形猪舍的长为10m ,宽为8m. …………………………………….........…6分22. (本小题满分6分)解:(1)过点A 作AE ⊥BC 于点E. ………1分∵cos C =22,∴∠C =45°.在Rt △ACE 中,CE =AC·cos C =1.∴AE =CE =1. …………………………….....…2分在Rt △ABE 中,∵tan B =13,∴ AE BE =13.∴BE =3AE =3. ∴BC =BE +CE =3+1=4. ……………………………….........3分(2)∵AD 是△ABC 的中线,∴CD =12BC =2.∴DE =CD -CE =2-1=1. ……………………...........…………………….…...….4分 ∵AE ⊥BC ,∴∠ADC =45°. ……………………………....................…….…....…5分∴sin ∠ADC =22. …………………………………………………………...…....6分23.(本小题满分7分)(1)证明:由旋转可知,∠EAF =∠BAC ,AF =AC ,AE =AB.∴∠EAF +∠BAF =∠BAC +∠BAF ,即∠BAE =∠CAF. ......………………...1分又∵AB =AC ,∴AE =AF. .........….………2分 ∴△ABE ≌△ACF. ∴BE =CF. ........………….3分(2)∵四边形ACDE 是菱形,AB =AC =1,∴AC ∥DE ,DE =AE =AB =1. ….......…....…4分又∵∠BAC =45°, ∴∠AEB =∠ABE =∠BAC =45°. ....….……...5分 ∵∠AEB +∠BAE +∠ABE =180°, ∴∠BAE =90°. …………………………....6分 ∴BE =AB 2+AE 2=12+12= 2. ∴BD =BE -DE =2-1. …………………......7分24.(本小题满分10分)45°F ED CB A第23题图E AB C D 第22题图解:(1)y =700-20(x -45)=-20x +1600. …………………………………........…2分 (2)P =(x -40)(-20x +1600)=-20x 2+2400x -64000 …………….…….......…….4分=-20(x -60)2+8000. ………………………………..………......................…5分 ∵x ≥45,a =-20<0,∴当x =60时,P 最大值=8000(元).即当每盒售价定为60元时,每天销售的利润最大,最大利润为8000元. ….......6分 (3)由题意,得-20(x -60)2+8000=6000. 解这个方程,得 x 1=50, x 2=70. .....7分 ∵抛物线P =-20(x -60)2+8000的开口向下,∴当50≤x ≤70时,每天销售粽子的利润不低于6000元. ……………...............8分 又∵x ≤58,∴50≤x ≤58.∵在y =-20x +1600中,k =-20<0,∴y 随x 的增大而减小. ……..............…9分 ∴当x =58时,y 最小值=-20×58+1600=440. …………………………...............10分 即超市每天至少销售粽子440盒. 25.(本小题满分10分) (1)证明: 连接OC.∵PE 与⊙O 相切,∴OC ⊥PE. ∴∠OCP =90°. …1分 ∵AE ⊥PE ,∴∠AEP =90°=∠OCP. ∴OC ∥AE. ∴∠CAD =∠OCA. …………………………………2分∵OA =OC ,∴∠OCA =∠OAC. ∴∠CAD =∠OAC.∴AC 平分∠BAD. …………………………………3分(2)PB ,AB 之间的数量关系为 AB =3PB. 理由如下: ∵AB 为⊙O 的直径,∴∠ACB =90°. ∴∠BAC +∠ABC =90°.∵OB =OC ,∴∠OCB =∠ABC. ∵∠PCB +∠OCB =90°,∴∠PCB =∠PAC. ……………………………………4分 ∵∠P =∠P , ∴△PCA ∽△PBC. ∴PC PB =PAPC. ∴PC 2=PB·PA. ……………………………………………….........…5分 ∵PB ∶PC =1∶2,∴ PC =2PB. ∴PA =4PB. ∴AB =3PB. …...................….6分(3)解: 过点O 作OH ⊥AD 于点H ,则AH =12AD =32,四边形OCEH 是矩形.∴OC =HE. ∴AE =32+OC. …………………………………………..……………..7分∵OC ∥AE ,∴△PCO ∽△PEA. ∴OC AE =POPA . ………………………….…………8分∵AB =3PB ,AB =2OB ,∴OB =32PB.∴OC 32+OC =PB +OB PB +AB =PB +32PBPB +3PB . ∴OC =52. ∴AB =5. ……………………..……9分 ∵△PBC ∽△PCA ,∴PB PC =BC AC =12. ∴AC =2BC.在Rt △ABC 中,AC 2+BC 2=AB 2,∴(2BC)2+BC 2=52. ∴BC = 5. ∴AC =2 5.∴S △ABC =12AC ·BC =5. 即△ABC 的面积为5. ………………………………...10分26. (本小题满分12分)解:(1)过点E 作EG ⊥x 轴于点G.∵四边形OABC 是边长为2的正方形,D 是OA 的中点,A第25题图∴OA =OC =2,OD =1,∠AOC =∠DGE =90°. ∵∠CDE =90°,∴∠ODC +∠GDE =90°. 又∵∠ODC +∠OCD =90°,∴∠OCD =∠GDE.∵DC =DE, ∴△ODC ≌△GED. ……………………………………........………....1分 ∴EG =OD =1,DG =OC =2.∴点E 的坐标为(3,1). …………………………………………………………........…2分 又∵抛物线的对称轴为直线AB ,即直线x =2,∴可设抛物线的解析式为y =a (x -2)2+k . …………………………………......……3分由题意,得42,1.a k a k 解这个方程组,得1,32.3a k ∴抛物线的解析式为y =13 (x -2)2+23. ……………………….……………….......…5分(2)①若△DFP ∽△COD ,则∠PDF =∠DCO.∴PD ∥OC. ………………………………………………………….. .….... .…........6分 ∴∠PDO =∠OCP =∠AOC =90°. ∴四边形PDOC 为矩形.∴PC =OD =1. ∴t =1. ………………………………………......….…............….7分②若△PFD ∽△COD ,则∠DPF =∠DCO ,PD CD =DFOD.∴∠PCF =90°-∠DCO =90°-∠DPF =∠PDF. ∴PC =PD. ∴DF =12CD.∵CD 2=OD 2+OC 2=22+12=5,∴CD = 5. ∴DF =125. …….......…...............8分∵PD CD =DF OD ,∴PC =PD =52×5=52. ∴t =52. …………………….................…...9分 所以,当t 等于1或 52时,以点P ,F ,D 为顶点的三角形与△COD 相似.(3)存在. 满足条件的点有三组,坐标分别为:M 1(2,1),N 1(4,2) ; …………………………………………………...…............10分 M 2(2,3),N 2(0,2) ; ………………………………………….............…............11分M 3(2,13),N 3(2,23)....….............12分。
【2015中考真题】湖北省襄阳市中考数学试题及解析
2015年湖北省襄阳市中考数学试卷一、选择题,共12小题,每小题3分,共36分1.(3分)(2015•大连)﹣2的绝对值是()A.2B.﹣2 C.D.2.(3分)(2015•湖北)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用A.3.7×106B.3.7×105C.37×104D.3.7×1043.(3分)(2015•湖北)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.4.(3分)(2015•湖北)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降5.(3分)(2015•湖北)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a66.(3分)(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°7.(3分)(2015•湖北)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE 平分∠ACB.若BE=2,则AE的长为()A .B .1 C . D .2 8.(3分)(2015•湖北)下列说法中正确的是( ) A . “任意画出一个等边三角形,它是轴对称图形”是随机事件B . “任意画出一个平行四边形,它是中心对称图形”是必然事件C . “概率为0.0001的事件”是不可能事件D . 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 9.(3分)(2015•湖北)点O 是△ABC 的外心,若∠BOC=80°,则∠BAC 的度数为( ) A . 40° B . 100° C . 40°或140° D . 40°或100° 10.(3分)(2015•湖北)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( )A . 4B . 5C . 6D . 911.(3分)(2015•湖北)二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的图象可能是( )A .B .C .D .12.(3分)(2015•湖北)如图,矩形纸片ABCD 中,AB=4,BC=8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( )A . A F=AEB . △ABE ≌△AGFC . E F=2D .A F=EF二、填空题,共5小题,每小题3分,共15分 13.(3分)(2015•湖北)计算:2﹣1﹣= .14.(3分)(2015•湖北)分式方程﹣=0的解是 .15.(3分)(2015•湖北)若一组数据1,2,x,4的众数是1,则这组数据的方差为.16.(3分)(2015•湖北)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为.17.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.三、简单题,共9小题,共69分18.(6分)(2015•湖北)先化简,再求值:(+)÷,其中x=,y=﹣.19.(6分)(2015•湖北)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.(6分)(2015•湖北)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分数段(分手为x分)频数百分比60≤x<70 8 20%70≤x<80 a 30%80≤x≤90 16 b%90≤x<100 4 10%(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.21.(6分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.23.(7分)(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.(10分)(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(2015•湖北)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.26.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA 的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.2015年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题,共12小题,每小题3分,共36分2.(3分)(2015•湖北)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用C4.(3分)(2015•湖北)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降考点:函数的图象.分析:根据函数的图象对各选项进行逐一分析即可.解答:解:A、∵由图象可知,在凌晨4点函数图象在最低点﹣3,∴凌晨4时气温最低为﹣3℃,故本选项正确;B、∵由图象可知,在14点函数图象在最高点8,∴14时气温最高为8℃,故本选项正确;C、∵由图象可知,从4时至14时,气温随时间增长而上上升,不是从0点,故本选项错误;D、∵由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选C.点评:本题考查的是函数的图象,能根据函数图象在坐标系中的增减性判断出函数的增减性是解答此题的关键.5.(3分)(2015•湖北)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.6.(3分)(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°考点:平行线的性质.分析:根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.解:如图,7.(3分)(2015•湖北)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE 平分∠ACB.若BE=2,则AE的长为()边的一半得出AE=CE=1.∴AE=CE=1.B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.0001的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.点评:本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)(2015•湖北)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°考点:三角形的外接圆与外心;圆周角定理.专题:分类讨论.分析:利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.解答:解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.点评:此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.10.(3分)(2015•湖北)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4B.5C.6D.9考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两层3列,故可得出该几何体的小正方体的个数.解答:解:综合三视图,我们可得出,这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故选A.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.(3分)(2015•湖北)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()C D∵对称轴为直线x=﹣>0,图象在第一三象限,12.(3分)(2015•湖北)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A 重合,则下列结论错误的是()F=2EF=2,二、填空题,共5小题,每小题3分,共15分13.(3分)(2015•湖北)计算:2﹣1﹣=0.分析:原式第一项利用负整数指数幂法则计算,第二项利用立方根定义计算即可得到结果.解答:解:原式=﹣14.(3分)(2015•湖北)分式方程﹣=0的解是15.解答:解:去分母得:x ﹣5﹣10=0, 解得:x=15,经检验x=15是分式方程的解. 故答案为:15. 点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 15.(3分)(2015•湖北)若一组数据1,2,x ,4的众数是1,则这组数据的方差为 1.5 .考点:方差;众数. 分析: 根据众数的定义先求出x 的值,再根据方差的计算公式S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]进行计算即可.解答:解:∵数据1,2,x ,4的众数是1, ∴x=1,∴平均数是(1+2+1+4)÷4=2,则这组数据的方差为[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=1.5;故答案为:1.5. 点评:本题考查了众数和方差:众数是一组数据中出现次数最多的数;一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]. 16.(3分)(2015•湖北)如图,P 为⊙O 外一点,PA ,PB 是⊙O 的切线,A ,B 为切点,PA=,∠P=60°,则图中阴影部分的面积为﹣π .考点: 扇形面积的计算;切线的性质. 分析: 连结PO 交圆于C ,根据切线的性质可得∠OAP=90°,根据含30°的直角三角形的性质可得OA=1,再求出△PAO 与扇形AOC 的面积,由S 阴影=2×(S △PAO ﹣S 扇形AOC )则可求得结果. 解答:解:连结AO ,连结PO 交圆于C . ∵PA ,PB 是⊙O 的切线,A ,B 为切点,PA=,∠P=60°, ∴∠OAP=90°,OA=1,∴S 阴影=2×(S △PAO ﹣S 扇形AOC )=2×(×1×﹣)=﹣π.故答案为:﹣π.17.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.的度数.ABD==55∴∠A=∠ABD=∠BDE=70°=35°.三、简单题,共9小题,共69分18.(6分)(2015•湖北)先化简,再求值:(+)÷,其中x=,y=﹣.••+﹣19.(6分)(2015•湖北)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.(2)根据函数的图象即可得出一次函数的值小于反比例函数的值的x的取值范围.解答:解:(1)∵反比例函数y=的图象过点A(1,4),,即∴反比例函数的解析式为:y=.y=∴﹣2=,.20.(6分)(2015•湖北)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数90≤x<100 4 10%请根据图表提供的信息,解答下列问题:(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.考点:列表法与树状图法;频数(率)分布表;频数(率)分布直方图.分析:(1)首先根据第一小组的频数和频率求得总人数,然后减去其它小组的频数即可求得a值,根据总人数和第三小组的频数即可求得b值;(2)用周角乘以相应分数段所占的百分比即可求得圆心角的度数;(3)列表将所有等可能的结果列举出来利用概率公式求解即可.解答:解:(1)∵60≤x<70小组的频数为8,占20%,∴8÷20%=40人,∴a=40﹣8﹣16﹣4=12,b%=×100%=40%,故答案为:12,40;(2)∵70≤x<80小组所占的百分比为30%,∴70≤x<80对应扇形的圆心角的度数360°×30%=108°,故答案为:108°;(3)用A、B表示男生,用a、b表示女生,列表得:A B a bA AB A a A bB B A Ba B ba aA aB abb bA bB ba∵共有12种等可能的结果,其中一男一女的有8种,∴P(一男一女)==.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和概率公式.21.(6分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.,求出∠据tanB=,求出BE的长即可;(2)根据AD是△ABC的中线,求出BD的长,得到DE的长,得到答案.cosC=在Rt△ABE中,tanB=,即=,BC=2ADC=23.(7分)(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.AC=BE=AC=﹣24.(10分)(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(2015•湖北)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.:圆的综合题.AD=,四边形得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的对应边成比∴,2AD= +OCPB,,,,∴S△ABC=AC•BC=5.26.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA 的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.=,根据等腰三角形的判定与性质,可得DF于CD的关系,根据相似三角形的中,抛物线的解析式为y=(x﹣2)2+;,=∴DF=CD.22222,∵=,PC=PD=×=,,综上所述:t=1或t=时,以点P,F,D为顶点的三角形与△COD相似;))。
2014-2015湖北襄阳中考数学试题(含答案)
2015年襄阳市初中毕业生学业水平考试数 学 试 题一、选择题(本大题共12个小题,每小题3分,共36分) 1.的绝对值是( ▲ ).A .2B .C .12D .2.中国人口众多,地大物博,仅领水面积就约为370 000km 2,将“370 000”这个数用科学记数法表示为( ▲ ). A .3.7×106 B .3.7×105 C .37×104 D .3.7×104 3.在数轴上表示不等式2(1-x )<4的解集,正确的是( ▲ ).A .B .C .D .4.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T 随时间t 变化而变 化的关系,观察图象得到下列信息,其中错误的是( ▲ ). A .凌晨4时气温最低为-3°C B .14时气温最高为8°CC .从0时至14时,气温随时间增长而上升D .从14时至24时,气温随时间增长而下降5.下列运算中正确的是( ▲ ). A .a 3-a 2=a B .a 3·a 4=a 12 C .a 6÷a 2=a 3 D .(-a 2)3=-a 6 6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°,那么∠1的度数为( ▲ ). A .60° B .50° C .40° D .30° 7.如图,在△ABC 中,∠B =30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB ,若BE =2,则AE 的长为( ▲ ). A .3 B .1 C .2 D .28.下列说法中正确的是( ▲ ).A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 9.点O 是△ABC 的外心,若∠BOC =80°,则∠BAC 的度数为( ▲ ). A .40°B .100°C .40°或140°D .40°或100°10.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( ▲ ).A .4B .5C .6D .9第10题图 主视图俯视图左视图第7题图第6题图 0T /°C t /时24144-38第4题图11.二次函数y =ax 2+bx +c 的图象在平面直角坐标系中的位置如图所示,则一次函数y =ax +b 与反比例函数在同一平面直角坐标系中的图象可能是( ▲ ).12.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( ▲ ). A .AF =AE B .△ABE ≌△AGF C .EF =2 5 D .AF =EF二、填空题(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的相应位置上. 13.计算: ▲ .14.分式方程的解是 ▲ .15.若一组数据1,2,x ,4的众数是1,则这组数据的方差为 ▲ .16.如图,P 为⊙O 外一点,P A ,PB 是⊙O 的切线,A ,B 为切点,P A =3,∠P =60°,则图中阴影部分的面积为 ▲ .17.在□ ABCD 中,AD =BD ,BE 是AD 边上的高,∠EBD =20°,则∠A 的度数为 ▲ .三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 18.(本小题满分6分)先化简,再求值:,其中x =3+2,y =3- 2.第16题图GF E DCB A第12题图xyO第11题图OyxxyOA . B. C. D.xx x xx19.(本小题满分6分)如图,已知反比例函数的图象与一次函数y =ax +b 的图象相交于点A (1,4)和点B (n ,-2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x 的取值范围.20.(本小题满分6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布分数段(分数为x 分)频数 百分比 60≤x <70 8 20% 70≤x <80 a 30% 80≤x <90 16 b % 90≤x <100410%请根据图表提供的信息,解答下列问题:(1)表中的a = ▲ ,b = ▲ ;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x <80对应扇形的圆心角的度数是 ▲ ;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学. 学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 ▲ .第19题图yA (1,4)OxB (n ,-2)第20题图21.(本小题满分6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门. 所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?22.(本小题满分6分)如图,AD 是△ABC 的中线,,,AC= 2. 求:(1)BC 的长;(2)sin ∠ADC 的值.23.(本小题满分7分)如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D . (1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.45°FED CBA第21题图1m住房墙24.(本小题满分10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元. 根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元. 如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(本小题满分10分)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB∶PC=1∶2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.第25题图26.(本小题满分12分)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点 E在第一象限,且DE⊥DC,DE=DC. 以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB以每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F. 当t为何值时,以点P,F,D为顶点的三角形与△COD 相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.第26题图11 /11。
2015年中考适应性考试数学试题及答案
2015年中考适应性考试数学试题(本试卷共4页,满分120分.考试时间120分钟.)★祝 考 试 顺 利★注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B 铅笔或0.5毫米黑色签字笔. 4.考试结束后,请将本试题卷与答题卡一并上交.一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.0.5的倒数为( ▲ ). A. 2- B. 2 C. 21-D. 212.中华人民共和国的陆地面积为9600000km 2,9600000这个数用科学记数法表示为( ▲ ). A .9.6510⨯ B .96510⨯ C .9.6610⨯ D .96610⨯ 3.下列运算正确的是( ▲ ).A .a 3+a 4=a 7B .a 8÷a 2=a 4C .(2a 4)3=8a 7D .2a 3•a 4=2a 74.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为( ▲ ).A .53° B . 55° C . 57° D .60° 5.不等式组211841x x x x -≥+⎧⎨+≤-⎩的解集是( ▲ ).A .x ≥3B .x ≥2C .2≤x ≤3D .空集6.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,情况如下:锻炼时间(小时) 56 7 8 人数2652则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是( ▲ ).A .6,7 B . 7,8 C . 7,6 D . 6,6 7.如图所示的图形,是由7个完全相同的小正方体组成的立体图形,则下面 四个平面图形中,不是这个立体图形的三视图的是( ▲ ).8.如果△ABC 的两边长分别为3和5,那么连结△ABC 三边中点D 、E 、F 所得的△DEF 的周长可能是( ▲ ).A. 3 B .4 C .5 D .69.如图,正方形ABCD 的边长为8,点M 在边DC 上,且DM=2,点N 是 边AC 上一动点,则线段DN+MN 的最小值为( ▲ ). A .8 B .28 C .172 D .1010.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是( ▲ ). A .100元 B .90元 C .810元 D .819元11.将抛物线y=(x ﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ▲ ) A .y=2)2(-x B .y=2x C .y=2x +6 D .y=2)2(-x +612.如图,以等边三角形ABC 的BC 边为直径画半圆,分别交 AB 、AC 于点E 、D ,DF 是圆的切线,过点F 作BC 的垂线交BC 于点G .若AF 的长为2,则FG 的长为( ▲ )A .4B . 6C .33D .32二、填空题:(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的对应位置的横线上.13.计算:6)273482(÷-的结果是 ▲ . 14.分式方程:13321++=+x x x x 的解是 ▲ . 15.假定鸟卵孵化后,雏鸟为雄鸟与为雌鸟的概率相同.如果两枚卵全部成功孵化,则两只雏鸟都为雄鸟的概率是 ▲ .16.如图,在半径AC 为2,圆心角为90º的扇形内,以BC 为 直径作半圆,交弦AB 于点D ,连接CD ,则图中阴影部分的面积 是 ▲ .17.如图,在矩形ABCD 中,AB=4,BC=6,若点P 在AD 边上, 连接BP 、PC ,△BPC 是以PB 为腰的等腰三角形,则PB 的长 为 ▲ .三、解答题:(本大题共9个小题,共69分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本小题满分5分)先化简,再求值:)133(12319322x x x x x x ---++-÷--,其中13+=x . 19. (本小题满分6分)已知:如图,反比例函数y =xk的图象与一次函数y =x +b 的图象交于点A (1,4)、点B (﹣4,n ).(1)求一次函数和反比例函数的解析式; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的 自变量x 的取值范围.20.(本小题满分7分)为实现伟大中国梦,某校开展“赞美祖国和人民”征文活动,校学生会对全校各年级各班一周内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图. (1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数;(2)求该校各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的班级中,八、九年级各有两个班,学校准备从这四个班中选出两个班参加教育局召开的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不是同一年级的概率.21.(本小题满分6分)怎样用一条长40cm 的绳子围成一个面积为96cm 2的矩形?能围成一个面积为102cm 2的矩形吗?如果能,说明围法;如果不能,说明理由.22.(本小题满分6分)如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,cosC=22,sinB=,AD=1. (1)求BC 的长; (2)求tan ∠DAE 的值.23.(本小题满分7分)如图,已知△ABC 是等腰三角形,顶角∠BAC=α(α<60°),D 是BC 边上的一点,连接AD ,线段AD 绕点A 顺时针旋转α角到AE , 过点E 作BC 的平行线,交AB 于点F ,连接DE ,BE ,DF . (1)求证:BE=CD ;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.24.(本小题满分10分)某商家销售具有地方特色的一种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x元/件的关系如下表:销售单价x(元/件)…55 60 70 75 …一周的销售量y(件)…450 400 300 250 …(1)试求出y与x的之间的函数关系式;(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)商家决定将一周的销售商品的利润全部寄往灾区,在商家购进该商品的货款不超过10000元情况下,请求出该商家最大捐款数额是多少元?25.(本小题满分10分)已知:如图,⊙ O的直径AB垂直于弦CD于点M,过点C的切线与直径AB的延长线相交于点P,连结PD.(1)求证:PD是⊙O的切线.(2)探究线段PD、PB、PA之间的数量关系,并加以证明;(3)若PD=4,tan∠CDB=,求直径AB的长.26.(本小题满分12分)如图,在平面直角坐标系中,点A、B的坐标分别为A(﹣3,0),B(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP、CO为邻边构造PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M、N分别在第一、四象限,当点M、N中有一点落在四边形ADEC的边上时,求出满足条件的t值.2015年中考适应性考试数学试题参考答案与评分标准评分说明:1.若有与参考答案不同的解法而解答过程正确者,请参照评分标准分步给分;2.学生在答题过程中省略某些非关键性步骤,可不扣分;学生在答题过程中省略了关键性步骤,后面解答正确者,可只扣省略关键性步骤分,不影响后面得分.一、选择题(共12个小题,每小题3分,共3 6分) B C D C A D B D D A B C二、填空题(共5个小题,每小题3分,共15分)13.22-14. 23-=x 15. 41 16. 1-π 17. 5或6 三、解答题:(本大题共9个题,共6 9分)18.解:原式=13)1(33)1()1)(1()3(32-+---+⋅-+-x x x x x x x ………………………………………2分 =131)1(3---+x x x x =13-x . ………………………………………3分 ∴当13+=x 时,原式=3331133==-+.……………………………5分19.解:(1)把点A (1,4)的坐标分别代入反比例函数y =xk,一次函数y =x +b 中, 得k =1×4,1+b ═4.解得k =4,b =3.………………………………………1分 ∴反比例函数的解析式是y =x4,一次函数解析式是y =x +3.……………2分 (2)当x =﹣4时,y =﹣1,即n=-1.∴B (﹣4,﹣1).当y =0时,x +3=0.x =﹣3.一次函数y =x +3与x 轴交点C 的坐标为(﹣3,0).3分 ∴S △AOB =S △AOC +S △BOC ==. ………………………………4分(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.……6分 20.解:(1)3÷25%=12(个),×360°=30°.故投稿篇数为2所对应的扇形的圆心角的度数为30°.……………………………………………………2分 (2)12﹣1﹣2﹣3﹣4=2(个),(2+3×2+5×2+6×3+9×4)÷12=72÷12=6(篇).…3分将该条形统计图补充完整为: …………………4分 (3)画树状图如下:…………………5分总共12种情况,两班不在同一年级的有8种情况 ,…………………6分 所以所选两个班不是同一年级的概率为:8÷12=. …………………7分21.解:设所围矩形的长为x cm ,则所围矩形的宽为(20-x )cm ,(1)依题意,得 96)20(=-x x . ………………………………1分化简,得 096202=+-x x .解,得 81=x ,122=x . ………………………………2分 当8=x 时,20-x =12;当12=x 时,20-x =8.所以,当所围矩形的长为12cm ,宽为8cm 时,它的面积为96cm 2.…3分 (2)依题意,得 102)20(=-x x . ………………………………4分化简,得 0102202=+-x x .∵△=84084001024)20(422-=-=⨯--=-ac b <0,…………5分 ∴方程无实数根.所以用一条长40cm 的绳子不能围成一个面积为102cm 2的矩形.……6分 22.解:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°.∵cosC=22,∴∠C=45°. ………………………………………………1分 在△ADC 中,∵∠ADC=90°,AD=1,∠C=45°,∴DC=AD=1.………2分 在△ADB 中,∵∠ADB=90°,sinB=ABAD=,AD=1,∴AB==3.3分∴BD=22AD AB -=2.∴BC=BD+DC=2+1. ………………4分(2)∵AE 是BC 边上的中线,∴CE=BC=+.…………………………5分 ∴DE=CE ﹣CD=﹣.∴tan ∠DAE=ADDE=﹣.…………………6分23.证明:(1)∵△ABC 是等腰三角形,顶角∠BAC=α(α<60°),∴AB=AC . ……1分∵线段AD 绕点A 顺时针旋转α角到AE ,∴AD=AE ,∠BAE=∠CAD .2分∴△ACD ≌△ABE (SAS ).∴BE=CD .…………………………………3分(2)∵AD ⊥BC ,∴BD=CD ,∠BAD=∠CAD .∴BE=BD=CD ,∴∠BAE=∠BAD .4分在△ABD 和△ABE 中,⎪⎩⎪⎨⎧=∠=∠=.,AB AB BAD BAE AD AE ,∴△ABD ≌△ABE (SAS ).∴∠EBF=∠DBF . …………………………………5分 ∵EF ∥BC ,∴∠DBF=∠EFB .∴∠EBF=∠EFB .…………………………………6分 ∴EB=EF .∴BD=BE=EF=FD .∴四边形BDFE 为菱形.…………………………7分24.解:(1)设b kx y +=,由题意,得 ⎩⎨⎧=+=+.40060,45055b k b k ………………………………1分解,得⎩⎨⎧=-=1000,10b k .则函数关系式为y=﹣10x +1000.……………………3分(2)由题意,得S=(x ﹣40)y=(x ﹣40)(﹣10x +1000)=﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000.………………5分∵﹣10<0,∴函数图象开口向下,对称轴为x =70. ∴当40≤x ≤70时,销售利润随着销售单价的增大而增大.……………………7分 (3)∵购进该商品的货款不超过10000元,∴y 的最大值为4010000=250(件). 由(1)知y 随x 的增大而减小,∴x 的最小值为:x =75.………………………8分 由(2)知 当x ≥70时,S 随x 的增大而减小,∴当x =75时,销售利润最大.…9分 此时S=8750,即该商家最大捐款数额是8750元.…………………………………10分 25.(1)证明:连接OD ,OC .∵PC 是⊙O 的切线,∴∠PCO=90°. ∵AB ⊥CD ,AB 是直径, ∴弧BD=弧BC .∴∠DOP=∠COP .…………1分在△DOP 和△COP 中,⎪⎩⎪⎨⎧=∠=∠=.,OP OP COP DOP CO DO ,∴△DOP ≌△COP (SAS ).……………………2分 ∴∠PDO=∠PCO=90°.∵D 在⊙O 上,∴PD 是⊙O 的切线.…………3分(2)PD 2=PB •PA . 证明:∵AB 是⊙O 的直径,∴∠ADB=90°.∵∠PDO=90°,∴∠ADO=∠PDB=90°﹣∠BDO . ……………………4分 ∵OA=OD ,∴∠A=∠ADO .∴∠A=∠PDB . ……………………5分∵∠BPD=∠DPA ,∴△PDB ∽△PAD .∴PDPA PB PD =.∴PD 2=PA •PB .…6分 (3)解:∵DC ⊥AB ,∴∠ADB=∠DMB=90°.∴∠A+∠DBM=90°,∠BDC+∠DBM=90°.∴∠A=∠BDC .…………………7分∵tan ∠BDC=,∴tanA=ADBD =21. …………………………………………8分 ∵△PDB ∽△PAD ,∴21===AD BD PA PD PD PB . ………………………………9分 ∵PD=4,∴PB=2,PA=8.∴AB=8﹣2=6.……………………………………10分26.解:(1)∵OB=6 ,C 是OB 的中点,∴BC=OB=3.∴2t=3.即t=23. ………1分 ∴OE=+3=29.∴E (29,0).………2分 (2)如图,连接CD 交OP 于点G ,∵PCOD ,∴CG=DG ,OG=PG .………3分 ∵AO=PO ,∴AG=EG .∴四边形ADEC 是平行四边形.…4分 (3)(Ⅰ)当点C 在BO 上时,如图,第一种情况:当点M 在CE 边上时,∵MF ∥OC ,∴△EMF ∽△ECO .∴EO EF CO MF =.即tt +=-32262.∴t=1.…6分 第二种情况:当点N 在DE 边上时, ∵NF ∥PD ,∴△EFN ∽△EPD .∴EP EF PD FN =.∴32261=-t .∴t=49.…8分 (Ⅱ)当点C 在BO 的延长线上时,如图,第一种情况:当点M 在DE 边上时, ∵MF ∥PD ,∴△EMF ∽△EDP .∴EP EF DP MF = .即 32622=-t .∴t=29.…10分 第二种情况:当点N 在CE 边上时, ∵NF ∥OC ,∴△EFN ∽△EOC .∴EO EF OC FN = .即tt +=-32621.∴t=5.…12分 综上所述:满足条件的t 值为t=1或t=49或t=29或t=5.。
自-2015年中考数学适应性测试试题及参考答案
襄州区2015年中考数学适应性测试试题及参考答案一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只 有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.-5的绝对值是 ( )A. 51 B. 5 C .51- D. -52.下列各图中,不是中心对称图形的是 ( )3.下列计算正确的是( ) A.()623a a-=- B .222)(b a b a -=- C .235325a a a += D.336a a a =÷4.分解因式2m ma -的结果是( )A.(1)(1)m a a +- B.2(1)m a + C .2(1)m a - D .(1)(1)a a -+ 5.如图,能判定EC ∥AB 的条件是( )A.∠B=∠ACE B .∠A=∠ECD C.∠B=∠ACB D .∠A=∠ACE6.已知m 10x=,n 10y=,则2310x y+等于( )A.n 3m 2+ B.22n m + C.mn 6 D .32n m7.如图,已知△A BC 中,∠C=090,若沿图中虚线剪去∠C,则 ∠1+∠2等于 ( ) A.90° B.135° C.270° D.315°8.已知一元二次方程2x 2+mx-7=0的一个根为x=1,则另一根为( )A.1 B .2 C.-3.5 D .-59.在函数31-=x y 中,自变量x 的取值范围是( ) A.x ≠3 B .x ≠0 C.x >3 D .x ≠-310.已知抛一枚均匀硬币正面朝上的概率为21,下列说法错误..的是( ) A .连续抛一枚均匀硬币2次,必有1次正面朝上. B.连续抛一枚均匀硬币10次,都可能正面朝上.C .大量反复抛一枚均匀硬币,平均100次出现正面朝上50次.D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的.11.如图,线段A B两个端点的坐标分别为A(6,6)、B(8,2),以原点O 为位似中心,在第 一象限内将线段AB 缩小为原来的21后得到线段C D,则端点C 的坐标为( ) A .(3,3) B.(4,3) C.(3,1) D .(4,1)12.如图,P 为⊙O 的直径B A延长线上的一点,PC 与⊙O 相切,切点为C ,点D是⊙O上一点,连接P D.已知PC =P D=B C.下列结论:(1)P D与⊙O 相切;(2)四边形PCBD 是菱形;(3)PO =CD ;(4)弧AC =弧A D.其中正确的个数为( )A.1个 B. 2个 C.3个D .4个二、填空题(本大题共5个小题,每小题3分,共15分)请把每小题的答案填在答题卡的相应位置上.13.计算:)3223)(3223(-+=__________________.14.央视报道,中国人每年在餐桌上浪费的粮食价值高达2000亿元,被倒掉的食物相当于 2多人一年的口粮,把200000000用科学计数法表示为___________________.15.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:C 30O60O游船)那么这些运动员跳高成绩的众数是( )A .4 B.1.75 C.1.70 D.1.6516.一艘观光游船从港口A以北偏东60°的方向出港观光,航行60海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测 得事故船在它的北偏东30°方向,马上以40海里每小时的速度前往救援,海警船到达事 故船C 处所需的时间大约为________小时(用根号表示). 17. 在Rt △ABC 中,∠A =90°,有一个锐角为60°,B C=6.若P 在线段C A的延长线上, 且∠AB P=30°,则CP的长为_______.43和6三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并将解答过程写在答题卡上每小题对应的答题区域内. 18.已知15-=x ,求代数式652-+x x 的值.19.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.20.如图,直径为5的⊙A中,弦BC,ED 所对的圆心角分别是∠BA C,∠EA D.已知DE =3,∠BAC+∠EAD =180°,求点A 到BC 的距离. 21.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,双曲线1y =xm与直线2y =b x +- 交于A,D 两点,直线2y =b x +-交x轴于点C ,交y 轴于 点B ,点B 的坐标为(0,3),3==∆∆D O C AO B s s .(1)求m 和b 的值;(2)求21y y >时x 的取值范围.22.下图是某校未制作完整的三个年级假期义工(不计报酬,为他人提供服务的人)的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有假期义工_______名; (2)将两幅统计图补充完整;(3)要求从七年级、九年级义工中各推荐一名队长候选人,八年级义工中推荐两名队长候选人,再从四名候选人中先后选出两人任队长,用列表法或树形图,求出两名队长都是八年级义工的概率是多少?成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 223.如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点,连结DE并延长交射线AB 于点F,连结BE .(1) 求证:∠AFD=∠EBC ;(2) 若∠DAB =90°,当∆BE F为等腰三角形时,求∠EFB 的度数.24.响应政府“节能”号召,我市华强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯.已知这种节能灯的出厂价为每个10元.某商场试销发现:销售单价定为15元/个,每月销售量为350个;每涨价1元,每月少卖10个.(1)求出每月销售量y (个)与销售单价x (元)之间的函数关系,并写出自变量的取值范围;(2)设该商场每月销售这种节能灯获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)如果物价部门规定,这种节能灯的销售单价不得高于25元.商场根据公司生产调拨计划得知,每月商场最多可销售这种节能灯300个,在这种情况下,商场每月销售这种节能灯最多可获得多少利润?25.如图,AB 为⊙O 的直径,C ,E 为⊙O上的两 点,AC 平分∠EAB,CD ⊥AE 于D.(1) 求证:CD 为⊙O 的切线;(2) 过点C 作C F⊥AB 于F,如图2,判断CF 和AF ,DE 之间的数量关系,并证明之; (3) 若A D-OA =1.5,AC=33,求图中阴影部分的面积.26.如图,矩形OABC 的顶点O,A,C 都在坐标轴上,点B 的坐标为(8,3),M是B C边的中点.(1)求出点M的坐标和△CO M的周长;(2)若点P 是矩形OABC 的对称轴M N上的一点,使以O ,M,C ,P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标;(3)若P 是OA 边上一个动点,它以每秒1个单位长度的速度从A 点出发,沿AO 方 向向点O匀速运动,设运动时间为t 秒.是否存在在某一时刻t ,使以P ,O,M 为顶点的三角形与△C OM 相似? 若存在,求出此时t 的值;若不存在,请说明 理由.A B C D E FABC D E F(备用图)襄州区2015年中考数学适应性测试试题参考答案评分说明:1.若与参考答案有不用的解法而解答过程正确者,请参照本评分标准分步给分。
2015年中考适应性考试数学试题附答案
2015年中考适应性考试数学试题(本试题共4页,满分120分,考试时间120分钟)★祝 考 试 顺 利★ 注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B 铅笔或0.5毫米黑色签字笔。
4.考试结束后,请将本试题卷与答题卡一并上交。
一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.在2-,1-,0,2这四个数中,最小的数是:A .2- B. 1- C. 0 D. 22.下列运算正确的是:A.2x ·63x x =B.x x x =÷56C.642)(x x =-D.532x x x =+ 3.如图所示,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是:A .同位角相等,两直线平行B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,内错角相等4.“六·一”儿童节前夕,某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是:A .⎩⎨⎧=+=+33602436,120y x y xB .⎩⎨⎧=+=+33603624,120y x y x C .⎩⎨⎧=+=+3360,1202436y x y x D .⎩⎨⎧=+=+3360,1203624y x y x5.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是:A.正方体B.圆柱C.圆椎D.球6.要得到抛物线1)4(22--=x y ,可以将抛物线22x y =:A .向左平移4个单位长度,再向上平移1个单位长度B .向左平移4个单位长度,再向下平移1个单位长度C .向右平移4个单位长度,再向上平移1个单位长度D .向右平移4个单位长度,再向下平移1个单位长度7.关于x 的一元二次方程032=+-m x x 有两个不相等的实数根,则实数m 的取值范围为:A .m ≥49 B. m <49 C.m 49= D.m <49- 8. 为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4那么这10户居民月用电量(单位:千瓦时),关于这组数据下列说法错误的是:A.中位数是55B.众数是60 C .方差是29 D.平均数是549.如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O ,给出下列四个条件:①∠EBO=∠DCO ;②BE=CD ;③OB=OC ;④OE=OD.从上述四个条件中,选取两个条件,不能判定△ABC 是等腰三角形的是:A .①②B .①③C .③④D .②③10.函数m mx y +-=2与xm y =(x ≠0)在同一坐标系中的图象大致可能是:11.如图,在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,如果要在AB 上找一点E ,使△ADE 与△ABC 相似,则AE 的长为:A.38B. 23C.3D. 38或23 12.如图,在半径为6cm 的⊙O 中,点A 是劣弧的中点,点D 是优弧上一点,且∠D =30°,下列四个结论:①OA ⊥BC ;②BC=36cm ;③sin ∠AOB=23;④四边形ABOC 是菱形. 其中正确结论的序号是:A.①③B.①②③④C. ②③④D.①③④二、填空题:(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的对应位置的横线上.13.分式方程xx 325=+的解为 . 14. 某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如图1,图2的两幅不完整的统计图,已知该校有1200名学生,估计全校最喜爱艺体类图书的学生约有 人.15.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处.已知折痕AE=55cm,且tan ∠EFC=43,则矩形ABCD 的周长为 .16. 如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是 .17.在△ABC 中,∠BAC=90°,∠C=30°,BC=6,P 为直线AC 上的一点(不与A 、C 重合),满足∠APB=60°,则CP= .三、解答题:(本大题共9个小题,共69分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本题满分6分) 先化简,再求值:144)131(2+++÷+--x x x x x ,其中x 是方程05221=---x x 的解. 19.(本题满分6分)有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?20.(本题满分6分)如图,已知函数b x y +-=21的图象与x 轴,y 轴分别交于点A ,B ,与函数x y =的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P (a ,0)(其中a >2),过点P 作x 轴的垂线,分别交b x y +-=21和x y =的图象于点C ,D. (1)求点A 的坐标;(2)若OB=CD ,求a 的值.21.(本题满分6分)码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,平均卸货速度v (单位:吨/天)与卸货天数t 之间有怎样的函数关系?(2)由于遇到紧急情况,要求船上的货物不超过5天卸载完毕,那么平均每天至少要卸载多少吨?22.(本题满分6分)某船以每小时 36海里的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B ,测得该岛在北偏东 30°方向上,已知该岛周围16海里内有暗礁.(1)试说明点B 是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由.23.(本题满分7分)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE.(1)求证:CE=CF ;(2)△CDF 可看成图中哪个三角形通过旋转变换得到的?写出旋转过程;(3)若点G 在AD 上,且∠GCE=45°,试判断线段GE ,BE ,GD 之间的数量关系,并说明理由.24.(本题满分10分)某地区发生了特大旱情,为抗旱保丰收,该地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度(1)分别求1y 和2y 的函数解析式;(2)有一农户投资10万元购买Ⅰ型、Ⅱ型两种设备,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.25.(本题满分10分)如图,在△ABC 中,AB=AC ,D 是BC 的中点.AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O过A ,E 两点,交AB 于点F.已知BC=216,AD=4.(1)求证:BC 是⊙O 的切线;(2)求⊙O 的半径;(3)求co s ∠BEF 的值.26.(本题满分12分)如图,在平面直角坐标系中,已知点A (-1,0)和点B (4,0),点C 在y 轴正半轴上,且∠ACB =90°,将△COB 绕点C 旋转180°得到△CDE ,连结AE .(1)求证:CE 平分∠AED ;(2)若抛物线c bx x y ++-=221过点E 和点C , 求此抛物线解析式;(3)点P 是(2)中抛物线上一点,且以A 、C 、E 、P 为顶点的四边形是平行四边形,求点P 的坐标.2015年适应性考试数学期末测试题答案一.选择题二.填空题13.3=x 14.160 15.36 16. 1-π 17.34或32三.解答题 18.解:原式142+-=x x ·22)2(12+-=++x x x x . (3分) 解方程05221=---x x ,得31=x , (5分) 代入原式75231231-=+-=. (6分) 19. 解:设两把不同的锁分别为1A ,2A ,则它们对应能打开的钥匙分别为1a ,2a ,第三把钥匙为3a . (1分)现将随机取一把钥匙开任意一把锁的情况列表如下:(3分)从表中看出,共有6种等可能情况,其中只有(1A ,1a ),(2A ,2a )可打开锁.(4分)故一次打开锁的概率是P=31. (6分) 20.解:(1)∵点M 在函数x y =的图象上,且点M 的横坐标为2, ∴点M 的坐标为(2,2). (1分)把点M (2,2)代入b x y +-=21,得21=+-b ,解得3=b , ∴一次函数的解析式为321+-=x y . (2分) 把0=y 代入321+-=x y 得0321=+-x ,解得6=x , ∴点A 的坐标为(6,0). (3分)(2)把0=x 代入321+-=x y ,得3=y , ∴点B 的坐标为(0,3).∵CD=OB ,∴CD=3. ∵PC ⊥x 轴,∴点C 的坐标为(a ,321+-a ),点D 的坐标为(a ,a ), ∴3)321(=+--a a ,∴4=a . (6分) 21.解:(1)设轮船上的货物总量为k 吨,根据已知条件得240830=⨯=k , (1分)所以v 关于t 的函数关系式为 tv 240=. (2分) (2)把5=t 代入t v 240=,得 485240==v (吨)(4分) 从结果可以看出,如果全部货物恰好用5天卸载完,那么平均每天卸载48吨.对于函数tv 240=,当t >0时,t 越小,v 越大,这样若货物不超过5天卸载完,则平均每天至少要卸载48吨.(6分)22. (1)如图 ,过点B 作BD ∥AE ,交AC 于点D.∵AB=36×0.5=18(海里),∠ADB=60°,∠DBC=30°,∴∠ACB=30°,又∵∠CAB=30°,∴BC=AB.(2分)∴BC=AB=18>16. ∴点B 在暗礁区域外.(3分)(2)如图,过点C 作CH ⊥AB ,垂足为点H .由(1)得BC=AB=18(海里)在Rt △CBH 中,∠CBH=60°,∴CH=392318=⨯<16.(5分) ∴船继续向东航行有触礁的危险.(6分)23.(1)证明:在正方形ABCD 中,∵BC=CD ,∠B=∠CDF ,BE=DF ,∴△CBE ≌△CDF (SAS ). (1分)∴CE=CF. (2分)(2)△CDF 可以看成是△CBE 绕点C 顺时针旋转90°得到的. (3分)(3)解:GE=BE+GD. (4分)理由:由(1)得△CBE ≌△CDF ,∴∠BCE=∠DCF ,CE=CF.∵∠GCE=45°,∴∠BCE+DCG=45°.∴∠GCF=∠DCF+∠DCG=45°.(5分)在△ECG 与△FCG 中,∵CE=CF ,∠GCE=∠GCF ,GC=GC ,∴△ECG ≌△FCG (SAS ). (6分)∴GE=GF. ∴GE=DF+GD=BE+GD. (7分)24. 解:(1)由题意得①25=k ,52=k ,∴x y 521=. (1分) ② ⎩⎨⎧=+=+,2.3416,4.224b a b a ∴51-=a ,58=b ,∴x x y 585122+-=.(3分) (2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资)10(t -万元,共获补贴Q 万元. ∴t t y 524)10(521-=-=,t t y 585122+-=, (5分) ∴4565158515242221++-=+--=+=t t t t t y y Q (7分) 529)3(512+--=t . (8分) ∵51-<0,∴Q 有最大值,即当3=t 时,529=最大Q , (9分) ∴710=-t (万元). 即投资7万元购Ⅰ型设备,投资3万元投资Ⅱ设备,共获得最大补贴5.8万元.(10分)25. 解:(1)连接OE. ∵AB=AC ,D 是BC 的中点. ∴∴AD ⊥BC. (1分)∵OA=OE ,∴∠OEA=∠OAE.又∵∠OAE=∠DAE. ∴∠OEA=∠DAE.(2分)∴O E ∥AD. ∴∠OED=∠ADC=90°.∴BC 是⊙O 的切线.(3分)(2)∵BC=216,AD=4,∴BD=28,AB=12.(4分)∵O E ∥AD. ∴△BE O ∽△BDA. ∴AB OB AD OE =.(5分) 设⊙O 的半径为r ,则12124r r -=,即r =3.(6分) (3)∵∠FAE=∠DAE ,∠AEF=∠ADE=90°,∴Rt △AFE ∽Rt △AED.(7分)∴ADAE AE AF =. ∴24462=⨯=⋅=AD AF AE .∴AE=62.(8分)∵∠BEF+∠AED=90°,∠AED+∠EAD=90°∴∠BEF=∠EAD.(9分)∴cos ∠BEF=cos ∠EAD=AE AD =36.(10分) 26.解:(1)由题意得:BC =EC ,∠ABC =∠DEC . (1分)∵AC ⊥BE ,∴AB =AE ,∴∠AEB =∠ABC . (2分)∴∠AEB =∠DEC . 即CE 平分∠AED . (3分)(2)∵∠ACB =90°,CO ⊥AB ,∴△AOC ∽△COB .(4分) ∴OBOC OC OA =. ∴OB OA OC ⋅=2=4,∴OC =2.∴点C 坐标为(0,2),点E 坐标为(-4,4). (6分)由⎪⎩⎪⎨⎧=+-⨯-=.441621,2c b c 得25-=b ,2=c . (7分) ∴所求抛物线解析式为225212+--=x x y . (8分)(3)若以AC 、CE 为邻边,则点E 可以看成点C 向左平移4个单位,再向上平移2个单位,将点A 向左平移4个单位,再向上平移2个单位得点P (-5,2).当x =-5时,()225252521=+-⨯-⨯-=y ,∴点P 在抛物线上. ∴点P (-5,2)即为所求; (10分)若以EC 、EA 为邻边,同理可得点P (3,-2),经验证此点不在抛物线上,故舍去; (11分)若以AC 、AE 为邻边,同理可得点P (-3,6),经验证此点不在抛物线上,故舍去; ∴点P 的坐标为(-5,2). (12分)。
湖北省襄阳市南漳县2015年中考数学适应性模拟试题(含答案)
三棱柱 圆柱 长方体 圆锥A. B. C. D. 图1 E DC B A EODCBA图2湖北省襄阳市南漳县2015年中考数学适应性考试试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1. 答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定的位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3. 非选择题(主观题)用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B 铅笔或0.5毫米黑色签字笔。
4. 考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12个小题,每小题3分,共36分. 在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.-3的倒数为【 】A.-3B.-13C.3D.-132.如图1,AB ∥CD ,∠BED =70°, BC 平分∠ABE ,则∠C 的度数为【 】 A.105° B.70° C.35° D.17.5°3.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于 2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为【 】A.2.5³10-5B.2.5³10-6C.2.5³10-7D.2.5³10-84.下列交通标志中,既是中心对称图形,又是轴对称图形的是【 】5.不等式组⎩⎨⎧2x -4<0x +1≥0的解集在数轴上表示正确的是【 】6.下列几何体中,主视图是矩形,俯视图是圆的几何体是【 】7.如图2,□ABCD 中,对角线AC,BD 交于点O ,点E 是BC 的中点.若OE=3cm ,则AB 的长为【】A.12cmB.9cmC.6cmD.3cm 8.某市某一周最大风力情况如下表所示:A. B. C. D .A. B. C. D.图4FEPCB AE DA图3 图5 P E D CB 图6乒乓球跳绳40%25%图7则该市这周最大风力的众数和中位数分别是【 】A.5,5B.5,5.5C.1,1.5D.1,29.将直线y =2x 向右平移1个单位后所得图象对应的函数解析式为【 】 A.y =2x +1 B.y =2x +2 C.y =2x -1 D.y =2x -210.一元二次方程-x 2+2x =-1的两个实数根为α,β,则α+β与α²β的值分别为【 】 A.2,-1 B.-2,-1 C.2,1 D.-2,1 11.如图3,在△ABC 中,BC 边的垂直平分线DE 交边BC 于点D ,交边AB 于点E.若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为【 】 A.18 B.12 C.6 D.412.如图4,在R t △ABC 中,∠BAC=90°,AB =AC ,直角∠EPF 的顶点P 是BC 的中点,将∠EPF 绕顶点P 旋转,两边PE ,PF 分别交AB ,AC 于点E ,F.下列四个结论:①AE=CF ;②△PEF 是等腰直角三角形;③EF =AP ;④S 四边形AEPF =12S △ABC .在∠EPF旋转过程中,上述四个结论始终正确的有【 】A.①②③B.②③④C.①③④D.①②④二、填空题:本大题共5个小题,每小题3分,共15分.把答案填在答题卡的相应位置上. 13.如图5,数轴上A ,B 两点所表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数是 .14.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有20个红球,且摸出白球的概率是15,则估计袋子中大概有球的个数 .15.如图6,点A ,B ,D 在同一直线上,△ABC 和△BDE 都是等边三角形,连接AE ,CD相交于点P ,则∠CPE 的度数为 度.16.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100-x )件,则将每件的销售价定为 元时,可获得最大利润.17.矩形ABCD 的∠A 的平分线AE 分BC 成两部分的比为1∶3,若矩形ABCD 的面积为36,则其周长为 . 三、解答题:本大题共9小题,共69分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 18.(本小题满分6分)先化简,再计算:1-a 2a 2+a ÷(a -2a -1a ),其中a 是一元二次方程x 2-2x -2=0的正数根.19.(本小题满分6分)某中学为了更好地开展阳光体育运动,号召学生参加跳绳、乒乓球、羽毛球、篮球四项运动.九(1)班积极响应学校号召,要求全班学生根据自己的爱好只参加其中一项.九(1)班班主任将本班学生参加四项活动情况进行统计,绘制了两幅统计图的一部分(如图7),请你结合图中的信息,解答下列问题:(1)九(1)班共有 名学生参加四项活动; (2)将两个统计图补充完整;图11图9图8G F ED C B A图10(3)学校准备从该班参加篮球运动的6名 学生中随机选2名,组成校篮球队. 若 参加篮球运动的6名学生中,有4名男生2名女生,则学校选取的2 名学生中,恰好男女生各一名的概率是多少?. 20.(本小题满分6分) 如图8,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,CD =43,AP ∶PB =3∶(1)求⊙O 的半径;(2)求图中阴影部分的面积.21.(本小题满分6分)某服装专卖店老板预测一种春季女装能畅销市场,就用8000元购进一批这种女装,面市后果然供不应求,老板又用17600元购进了第二批同样女装,所购数量是第一批购进数量的2倍,但单价贵了8元.老板销售这种女装时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,老板共盈利多少元? 22.(本小题满分6分)如图9,直线y 1=12x +1分别交x 轴,y 轴于点A,C ,点P 是直线AC 与双曲线y 2=kx (x >0)在第一象限内的交点,PB ⊥x 轴于点B ,△PAB 的面积为4.(1)求双曲线的解析式;(2)根据图象直接写出y 1<y 2的x 的取值范围.23.(本小题满分7分)如图10,△ABC 中,∠BAC =45°,AD ⊥BC,BD =1,CD =3,将△ABD 沿AB 折叠得到△ABE ,将△ACD 沿AC 折叠得到△ACF ,延长EB 和FC 交于点G. (1)判定四边形AEGF 的形状,并证明你的结论; (2)求△ABC 的面积.24.(本小题满分10分) 已知甲、乙两仓库共库存优质大米280吨,且甲仓库库存量比乙仓库库存量多40吨.现计划将这批优质大米运往A ,B 两地销售,其中A 地需要150吨,B 地需要130吨.从甲仓库运一吨到A ,B 两地的费用分别是50元和40元;从乙仓库运一吨到A ,B 两地的费用分别是30元和60元.设从甲仓库运往A 地x 吨优质大米,运这批优质大米的总费用为y 元. (1)求甲、乙仓库各有优质大米多少吨? (2)求出y 与x 之间的函数关系式?(3)请你设计出运这批优质大米的总费用最少的方案,并求出最小费用. 25.(本小题满分10分)如图11,△ABC 内接于⊙O ,点F 是直径 BD 的延长线上一点,且CF =CB. (1)若∠A =60°. ①求∠CBF 的度数;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三棱柱 圆柱 长方体 圆锥A. B. C. D. 图1 E DC B A O DA2015年南漳县中考适应性考试数 学 试 题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1. 答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定的位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3. 非选择题(主观题)用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B 铅笔或0.5毫米黑色签字笔。
4. 考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12个小题,每小题3分,共36分. 在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.-3的倒数为【 】A.-3B.-13C.3D.-132.如图1,AB ∥CD ,∠BED =70°, BC 平分∠ABE ,则∠C 的度数为【 】 A.105° B.70° C.35° D.17.5°3.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于 2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为【 】A.2.5³10-5B.2.5³10-6C.2.5³10-7D.2.5³10-84.下列交通标志中,既是中心对称图形,又是轴对称图形的是【 】5.不等式组⎩⎨⎧2x -4<0x +1≥0的解集在数轴上表示正确的是【 】6.下列几何体中,主视图是矩形,俯视图是圆的几何体是【 】7.如图2,□ABCD 中,对角线AC,BD 交于点O ,点E 是BC 的中点.若OE =3cm ,则AB 的长为【 】 姓名 考试号A. B. C. D .-12002-1-120-120A. B. C. D.图4FEPCB AE DCB A图3 C BA 0图5 P E D CB A 图6人数1816跳绳A.12cm B.9cm C.6cm D.3cm 8.某市某一周最大风力情况如下表所示:最大风力(级) 45 6 7 天数2311则该市这周最大风力的众数和中位数分别是【 】A.5,5B.5,5.5C.1,1.5D.1,29.将直线y =2x 向右平移1个单位后所得图象对应的函数解析式为【 】 A.y =2x +1 B.y =2x +2 C.y =2x -1 D.y =2x -210.一元二次方程-x 2+2x =-1的两个实数根为α,β,则α+β与α²β的值分别为【 】 A.2,-1 B.-2,-1 C.2,1 D.-2,1 11.如图3,在△ABC 中,BC 边的垂直平分线DE 交边BC 于点D ,交边AB 于点E.若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为【 】 A.18 B.12 C.6 D.412.如图4,在R t △ABC 中,∠BAC=90°,AB =AC ,直角∠EPF 的顶点P 是BC 的中点,将∠EPF 绕顶点P 旋转,两边PE ,PF 分别交AB ,AC 于点E ,F.下列四个结论:①AE=CF ;②△PEF 是等腰直角三角形;③EF =AP ;④S 四边形AEPF =12S △ABC .在∠EPF旋转过程中,上述四个结论始终正确的有【 】A.①②③B.②③④C.①③④D.①②④二、填空题:本大题共5个小题,每小题3分,共15分.把答案填在答题卡的相应位置上.13.如图5,数轴上A ,B 两点所表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数是 .14.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有20个红球,且摸出白球的概率是15,则估计袋子中大概有球的个数 .15.如图6,点A ,B ,D 在同一直线上,△ABC 和△BDE 都是等边三角形,连接AE ,CD相交于点P ,则∠CPE 的度数为 度.16.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100-x )件,则将每件的销售价定为 元时,可获得最大利润.17.矩形ABCD 的∠A 的平分线AE 分BC 成两部分的比为1∶3,若矩形ABCD 的面积为36,则其周长为 . 三、解答题:本大题共9小题,共69分,解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本小题满分6分)先化简,再计算:1-a 2a 2+a÷(a -2a -1a ),其中a 是一元二次方程x 2-2x -2=0的正数根.19.(本小题满分6分)某中学为了更好地开展阳光体育运动,号召学生参加跳绳、乒乓球、羽毛球、篮球四项运动.九(1)班积极响应学校号召,要求全班学生根据自己的爱好只参加其中一项.九(1)班班主任将本班学生参加四项活动情况进行统计,绘制了两幅统计图的一部分(如图7),请你结合图中的信息,解答下列问题:FE DCP OC BAyx图9PODC BA图8G F ED C B A图10(1)九(1)班共有 名学生参加四项活动; (2)将两个统计图补充完整;(3)学校准备从该班参加篮球运动的6名 学生中随机选2名,组成校篮球队. 若 参加篮球运动的6名学生中,有4名男生2名女生,则学校选取的2 名学生中,恰好男女生各一名的概率是多少?. 20.(本小题满分6分) 如图8,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,CD =43,AP ∶PB =3∶1. (1)求⊙O 的半径;(2)求图中阴影部分的面积.21.(本小题满分6分) 某服装专卖店老板预测一种春季女装能畅销市场,就用8000元购进一批这种女装,面市后果然供不应求,老板又用17600元购进了第二批同样女装,所购数量是第一批购进数量的2倍,但单价贵了8元.老板销售这种女装时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,老板共盈利多少元? 22.(本小题满分6分)如图9,直线y 1=12x +1分别交x 轴,y 轴于点A,C ,点P 是直线AC 与双曲线y 2=kx (x >0)在第一象限内的交点,PB ⊥x 轴于点B ,△PAB 的面积为4.(1)求双曲线的解析式;(2)根据图象直接写出y 1<y 2的x 的取值范围.23.(本小题满分7分)如图10,△ABC 中,∠BAC =45°,AD ⊥BC,BD =1,CD =3,将△ABD 沿AB 折叠得到△ABE ,将△ACD 沿AC 折叠得到△ACF ,延长EB 和FC 交于点G. (1)判定四边形AEGF 的形状,并证明你的结论; (2)求△ABC 的面积.24.(本小题满分10分) 已知甲、乙两仓库共库存优质大米280吨,且甲仓库库存量比乙仓库库存量多40吨.现计划将这批优质大米运往A ,B 两地销售,其中A 地需要150吨,B 地需要130吨.从甲仓库运一吨到A ,B 两地的费用分别是50元和40元;从乙仓库运一吨到A ,B 两地的费用分别是30元和60元.设从甲仓库运往A 地x 吨优质大米,运这批优质大米的总费用为y 元. (1)求甲、乙仓库各有优质大米多少吨? (2)求出y 与x 之间的函数关系式?(3)请你设计出运这批优质大米的总费用最少的方案,并求出最小费用. 25.(本小题满分10分)如图11,△ABC 内接于⊙O ,点F 是直径 BD 的延长线上一点,且CF =CB.M y xF ECPBAO 图12(1)若∠A =60°. ①求∠CBF 的度数;②判断直线CF 与⊙O 的位置关系,并证明;(2)若AB =32,BC =10,tan ∠ACB =13,求线段DF 的长.26.(本小题满分12分)如图12,已知直线y 1=12x +b 和抛物线y 2=-54x 2+ax +b 都经过点B(0,1)和点C ,过点C 作CM⊥x 轴于点M ,且CM =52.(1)求出抛物线的解析式;(2)动点P 从点O 出发,以每秒1个单位长度的速度,沿OM 向点M 运动,过点P 作PE ⊥x 轴分别交抛物线和直线于点E ,F.当点P 运动多少秒时,四边形EFMC 为菱形?(3)在(2)的条件下,在直线AC 上确定一点Q ,使得以点E ,F ,Q 为顶点的三角形与△AMC 相似,并求出点Q 的坐标.人数项目篮球羽毛球跳绳181614121086420乒乓球乒乓球篮球15%20%25%40%跳绳羽毛球2015年南漳县中考适应性考试数学参考答案一、1~12.BCBDAB CADACD 二、13. -2-3;14. 25; 15.120°; 16.65;17. 30或14 3三、18.化简得原式=11-a,解一元二次方程得x =1±3,由题意可知 ,将a =1+3代入得原式的值为-33; 19. (1)40;(2)如图;(3)815. 20. (1)4,(2)163π-43;21.4200;22. (1) y 2=4x,(2)0<x <2;23. (1)四边形AEGF 是正方形,证明略;(2)12,提示,可设正方形的边长为x ,在Rt △BGC 中,由勾股定理可求得x =2+7或2-2(会去),于是可求△ABC 的面积为4+27. 24. (1)甲仓库有优质大米160吨,乙仓库有优质大米120吨; (2)y =40x +9100(3)由题意可知30≤x ≤150,在y =40x +9100中,k =40>0,y 随x 的减小而减小,所以,当x =30时,y 最小=10300,即从甲仓库运往A ,B 两地各30吨和130吨,从乙仓库运往A ,B 两地各120吨和0吨,运这批优质大米的总费用最少为10300元. 25. (1)①30°;②相切,证明略;(2)DF =102. 26. (1)∵直线y =12x +b 和抛物线y =-54x 2+ax +b 都经过点B(0,1)∴b =1, ∵CM =52∴把y =52代入y =12x +1得x =3,把C(3,52)代入y =-54x 2+ax +1得,a =174.∴y =-54x 2+174x +1.(2)1秒时四边形EFMC 是菱形.提示:当EF =MC 时四边形EFMC 是平行四边形,由此求出t =1或2,再由t =1或2分别求出MF 的长,由此判定出当t =1时四边形EFMC 是菱形,当t =2时四边形EFMC 不是菱形.(3)点Q 的坐标是(2,2)或(6,4).。