层次分析法

合集下载

层次分析法(AHP法)

层次分析法(AHP法)

一致性检验是层次分析法 中非常重要的步骤,可以 保证分析结果的可靠性
04
CATALOGUE
层次单排序
特征向量法
总结词
通过计算判断矩阵的特征向量来确定各因素权重的方法。
详细描述
特征向量法是层次分析法中确定权重的一种常用方法。它基于线性代数原理,通过计算判断矩阵的特 征值和特征向量,得到各因素的权重值。这种方法能够反映各因素之间的相对重要性,广泛应用于决 策分析和多目标优化等领域。
要点一
总结词
通过计算判断矩阵的最大特征值对应的特征向量来确定各 因素权重的方法。
要点二
详细描述
最大特征值法也是层次分析法中确定权重的一种常用方法 。它基于矩阵论原理,通过计算判断矩阵的最大特征值和 对应的特征向量,得到各因素的权重值。这种方法能够反 映各因素之间的相对重要性,并且在判断矩阵一致性检验 中具有重要作用。最大特征值法在多目标决策、系统评价 等领域有广泛的应用。
03
CATALOGUE
构造判断矩阵
标度定义
标度2
两个元素相比,前者比后者稍 重要
标度4
两个元素相比,前者比后者强 烈重要
标度1
两个元素相比,具有相同的重 要性
标度3
两个元素相比,前者比后者明 显重要
标度5
两个元素相比,前者比后者极 端重要
判断矩阵的构造
01
通过专家咨询、比较等方法,对每一层次各元素相对重要性给 出判断
02
将判断结果整理成矩阵形式
判断矩阵的元素aij表示第i个元素与第j个元素相对重要性的比值
03
判断矩阵的一致性检验
一致性检验是检验各元素 重要性判断是否具有逻辑 一致性
当CR<0.1时,认为判断 矩阵的一致性是可以接受 的;否则,需要对判断矩 阵进行调整

层次分析法

层次分析法

(一)层次分析法1、层次分析法的概念“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。

”12、层次分析法的主要步骤(1)构建层次分析的结构模型首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次.其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。

准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。

层次分析法的结构模型在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指1张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年标,C层次为方案层元素,也可称为二级指标。

(2)专家评分建立层次分析法判断矩阵为了建立指标权重评判标准和构造判断矩阵,Saaty提出相对重要性比例标度,即1~9 层次比例标度,相对重要性比例标度的含义如表2—3所示。

假设有n个元素C1、C2,。

,C n给定一个准则,利用上表所给的相对重要性比例标度方,对元素C i和C j做两两比较判断,获得相对重要度的值a ij,构成矩阵。

专家根据评判准则对各个因素的权重两两比较并进行了打分之后,经过整理,可以得到因素权重的判断矩阵A:矩阵 A 中的各元素a ij 表示行指标A i 对列指标A j 相对重要性的比例标度,则判断矩阵A 中指标两两比较的特点有a ij >0,a ij =1,a ij =1/a ji (i ,j=1,2,。

..。

..n )。

如果a ij <1,表示A j 比A i 重要; 如果a ij >1,表示A i 比A j 重要; 如果a ij =1,表示A j 与A i 同样重要.根据判断矩阵A 在选择上的一致性要求,理想情况下,a ik*a jk =a ij (代表相对重要性所具有的传递性原理,满足该性质的矩阵A 称为一致矩阵),虽然在构造判断矩阵A 时并不要求判断具有一致性,但判断偏离一致性过大也是不允许的。

层次分析法

层次分析法

层次分析法(AHP)AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。

它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。

这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。

AHP十分适用于具有定性的,或定性定量兼有的决策分析。

这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。

一、递阶层次结构的建立一般来说,可以将层次分为三种类型:(1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。

(2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。

(3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。

典型的递阶层次结构如下:一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到:(1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。

(2)整个结构不受层次限制。

(3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。

(4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。

二、构造比较判断矩阵设有m个目标(方案或元素),根据某一准则,将这m个目标两两进行比较,把第i个目标(i=1,2,…,m)对第j个目标的相对重要性记为a,(j=1,2,…,m),这样构造的m阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,ij简称判断矩阵,记作A=(a ij )m ×m 。

什么是层次分析法

什么是层次分析法

什么是层次分析法?层次分析法(AHP)是将决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

该方法是美国运筹学家匹茨堡大学教授萨蒂于本世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

这种方法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

尤其适合于对决策结果难于直接准确计量的场合。

层次分析法的步骤如下:(1)通过对系统的深刻认识,确定该系统的总目标,弄清规划决策所涉及的范围、所要采取的措施方案和政策、实现目标的准则、策略和各种约束条件等,广泛地收集信息。

(2)建立一个多层次的递阶结构,按目标的不同、实现功能的差异,将系统分为几个等级层次。

例如:图16-7就是以递阶层次表示的国家富强的一般结构。

(3)确定以上递阶结构中相邻层次元素间相关程度。

通过构造两比较判断矩阵及矩阵运算的数学方法,确定对于上一层次的某个元素而言,本层次中与其相关元素的重要性排序--相对权值。

(4)计算各层元素对系统目标的合成权重,进行总排序,以确定递阶结构图中最底层各个元素的总目标中的重要程度。

(5)根据分析计算结果,考虑相应的决策。

层次分析法的整个过程体现了人的决策思维的基本特征,即分解、判断与综合,易学易用,而且定性与定量相结合,便于决策者之间彼此沟通,是一种十分有效的系统分析方法,广泛地应用在经济管理规划、能源开发利用与资源分析、城市产业规划、人才预测、交通运输、水资源分析利用等方面首先悼念下我的腾讯笔试,挂了。

研发的基础知识真是变态啊,得静心看书啊!!今天是我阿里数据分析师的面试,通知的时间时下午4点50到5点40。

层次分析法

层次分析法

层次分析法(重定向自AHP法)层次分析法(The analytic hierarchy process,简称AHP),也称层级分析法目录[隐藏]∙ 1 什么是层次分析法∙ 2 层次分析法的基本步骤∙ 3 层次分析法的优点∙ 4 建立层次结构模型∙ 5 构造成对比较矩阵∙ 6 作一致性检验∙7 层次总排序及决策∙8 层次分析法的用途举例∙9 层次分析法应用的程序∙10 应用层次分析法的注意事项∙11 层次分析法应用实例∙12 外部链接∙13 相关条目[编辑]什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。

它是一种定性和定量相结合的、系统化、层次化的分析方法。

由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。

它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。

不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。

其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件较好等等。

最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。

[编辑]层次分析法的基本步骤1、建立层次结构模型。

在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。

层次分析法

层次分析法

C1 1 3 5 C2 1 / 3 1 2 C3 1 / 5 1 / 2 1
C .I
特征向量
0.648 P2(2) 0.230 0.122
max m
m 1

3.005 3 0.0025 3 1
CI与RI的比率称为检验系数CR。当CR<0.1 时,认为矩阵具有令人满意的一致性。否则对于矩阵的 各项取值要重新判断,直到矩阵的检验系数CR< 0.1,其他判断矩阵都以此类推。
①第一层:对于总目标A,准则层各准则构造判断矩阵A(1),求解最大特征值及其 对应的特征向量,并进行一致性检验。
A B1
该方法自1982年被介绍到我国以来,以其定性 与定量相结合地处理各种决策因素的特点,以 及其系统灵活简洁的优点,迅速地在我国社会 经济各个领域内,如工程计划、资源分配、方 案排序、政策制定、冲突问题、性能评价、能 源系统分析、城市规划、经济管理、科研评价 等,得到了广泛的重视和应用。
层次分析法原理及应用实例
所以,判断矩阵A(1)满足一致性检验。
14
②第二层:对于各准则B1、B2、B3 、B4、B5 ,构造判断矩阵A1(2)、A2(2)、A3(2) 、 A4(2)、A5(2) ,分别求解最大特征值及其对应的特征向量,并进行一致性检验。 ●对于准则B1(通车能力):
(2) 1max 3
B1 C1 A1(2)
G
g 1(1)
(1) g2
总目标 ……
(1) gn 1
第1层子目标
g1( n )
(n) g2
……
( n) gn n
第n层子目标
C1
C2
……
Cs
方案层

层次分析法

层次分析法

《运筹学》
例1
大学毕业生就业选择问题 获得大学毕业学位的毕业生,在“双向选择” 时,用人单位与毕业生都有各自的选择标准和要求。 就毕业生来说选择单位的标准和要求是多方面的, 例如: ①能发挥自己才干作出较好贡献(即工作岗位适 合发挥自己的专长); ②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
允许不一致,但要确定不一致的允许范围
2010年6月
管理工程学院
《运筹学》
w1 考察完全一致的情况 w 1 W ( 1) w1 , w2 ,wn 可作为一个排序向量 w2 w A 成对比较 1 令aij wi / w j 满足 aij a jk aik , i, j, k 1,2,, n wn 的正互反阵A称一致阵。 w1
它是用一定标度把人的主观判断进行客观量化,是将决策有关的元素分解 成目标、准则、方案等层次,在此基础之上进行定性和定量分析的分析方法。
2010年6月
管理工程学院
《运筹学》
层次分析法的特点: 在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基 础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则
1 A (aij ) nn , aij 0, a ji aij
C2 C3 C4 C5
C3
C4 C5
1/ 2 4 3 3 1 2 1 7 5 5 A 1/ 4 1/ 7 1 1 / 2 1 / 3 1 / 3 1 / 5 2 1 1 3 1 1 1/ 3 1/ 5 要由A确定C1,… , Cn对O的权向量

层次分析法

层次分析法

层次分析法1. 简介层次分析法(Analytic Hierarchy Process,AHP)是一种常用的定性与定量相结合的多标准决策分析方法。

它由美国学者托马斯·L·萨亨于1970年提出,被广泛应用于各种决策问题中。

2. 原理层次分析法的基本思想是将复杂的决策问题分解为一系列具有层次结构的子问题,然后通过对这些子问题的比较与权重评估,最终得出整体问题的决策结果。

2.1 层次结构在层次分析法中,决策问题被组织成一个层次结构。

层次结构通常包括三个层次:目标层、准则层和方案层。

•目标层:表示决策问题的最终目标,通常只有一个。

•准则层:用于评价方案的一组准则,通常包括两个或更多的准则。

•方案层:表示可选择的方案,每个方案都和准则层有关联。

每个层次下面还可以有更多的子层次,形成一个完整的层次结构。

2.2 权重评估层次分析法通过对准则层的权重评估,来确定各个准则的重要性。

权重评估通常采用两两比较的方式,即对准则层中的两个准则进行比较,判断它们的相对重要性。

对两个准则的比较通常使用1至9的九分比较法,其中1表示相同重要性,3表示轻微重要性差异,5表示中等重要性差异,7表示强烈重要性差异,9表示极端重要性差异。

通过两两比较得到的比较矩阵可以利用特征向量法计算权重向量,从而确定准则层的权重。

2.3 方案评估在确定了准则层的权重后,可以利用这些权重对方案进行评估和排序。

通常使用两两比较法将方案与准则进行比较,得到方案层的比较矩阵。

然后,利用准则层的权重和方案层的比较矩阵计算加权矩阵,最终得到方案层的权重。

3. 应用场景层次分析法在各个领域中都有广泛的应用,尤其适用于以下情况:•多准则决策问题:当决策问题涉及到多个准则时,层次分析法可以帮助决策者合理权衡各个准则的重要性,从而做出最佳决策。

•项目评估与选择:当需要评估和选择多个候选项目时,层次分析法可以通过对项目的多个准则进行比较和权重评估,为项目选择提供科学依据。

层次分析法

层次分析法

层次分析法层次分析法是一种应用广泛的决策分析方法,它通过构建层次结构和比较矩阵,来对不同因素进行排序和权重分配,帮助决策者做出合理的决策。

本文将介绍层次分析法的基本原理、应用领域以及一些实际案例。

一、层次分析法的基本原理层次分析法由美国运筹学家托马斯·L·塞蒂提出,它是一种定性和定量相结合的分析方法,能够综合考虑多个因素的重要性和相互关系。

它的基本原理如下:1. 层次结构:将决策问题分解成多个层次,从上至下逐级细化。

顶层是目标层,中间层是准则层,最底层是方案层。

2. 比较矩阵:在每个层次内,通过构建比较矩阵来判断各因素之间的重要性。

比较矩阵是一个n×n的正互反矩阵,其中n是该层次因素的个数。

通过对各因素进行两两比较,得出相对重要性的判断。

3. 加权优先向量:通过对比较矩阵进行特征向量的计算,可以得到各个因素的权重。

特征向量是对比较矩阵的主特征值对应的特征向量,也称为特征向量法。

4. 一致性检验:通过一致性指标和一致性比率的计算,判断构建的比较矩阵是否合理。

一致性指标表示了矩阵的内部一致性程度,一致性比率则是对一致性指标进行归一化,判断是否满足一致性。

5. 综合评价:通过计算得出的权重,进行乘积运算和累加运算,得到方案的综合评价值。

综合评价值越高,方案越优。

二、层次分析法的应用领域层次分析法在许多领域都有广泛的应用,包括经济学、管理学、环境科学、社会科学等。

下面是一些常见的应用领域:1. 投资决策:在投资决策中,可以将不同的投资方案作为方案层,通过比较各个方案的风险性、收益性等因素,来确定投资方向。

2. 供应链管理:在供应链管理中,可以将供应商的价格、质量、交货周期等因素作为准则层,通过比较不同供应商的重要性,来选择合适的供应商。

3. 项目评估:在项目评估中,可以将项目的成本、时限、风险等因素作为准则层,通过比较各个因素的重要性,来评估项目的可行性和优先级。

4. 人才选拔:在人才选拔中,可以将候选人的学历、工作经验、专业技能等因素作为准则层,通过比较各个因素的重要性,来确定最佳人选。

层次分析法(AHP)

层次分析法(AHP)

aij
n
aij
i 1
i,j 1,2,, n
2 ) 再按行相加得和
n
wi aij j 1
3)再规范化,得权重系数:
wi
wi
n
wi
i 1
方根法
这种方法的步骤是:
1) 按行元素求积,再求1/n次幂,得
n
wi
aij i,j 1,2,, n
j 1
2)规范化,即得权重系数
wi
wi
n
wi
用ANP进行决策的基本步骤
▪ (1) 构造ANP的典型结构: A:首先是构造控制层次.将决策目标界定,将决策准则界 定,这是问题的基本,各个准则决策目标的权重用AHP方法 得到. B:再则是构造网络层次.要归类确定每一个元素,分析其 网络结构和相互影响关系,分析元素之间的关系可用多种 方法进行. 一种是内部独立的递阶层次结构,即层次之间相 互独立;一种是内部独立,元素之间存在者循环的ANP 网络层次结构;另一种是内部依存,即元素内部存在循环 的ANP网络层次结果,这几种情况都是ANP的特例情况。 在实际决策问题中面临的基本都是元素间不存在内部独立, 既有内部依存,又有循环的ANP网络层次结构。
P4:建 图书馆
P5:引进 新设备
C1对p1 p2 p3 p4 p5的权重计算
c1 P1
p2
p3
p4
p5 w
p1 1
3
5
4
7 0.491
p2 1/3 1
3
2
5 o.232
p3 1/5 1/3 1
½
3 0.092
p4 ¼ ½
2
1
3 0.138
p5 1/7 1/5 1/3 1/3 1 0.046

层次分析法

层次分析法

层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

1简介2定义3优缺点▪优点▪缺点4基本步骤5注意事项6应用实例简介编辑层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

尤其适合于对决策结果难于直接准确计量的场合。

在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升购物层次分析模型学志愿的问题等等。

在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。

比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游的景色、景点的居住条件和饮食状况以及交通状况等等。

这些因素是相互制约、相互影响的。

我们将这样的复杂系统称为一个决策系统。

这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。

层次分析法是解决这类问题的行之有效的方法。

层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析以及最终的决策提供定量的依据。

定义编辑所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

层次分析法

层次分析法

层次分析法简介层次分析法(Analytic Hierarchy Process,AHP)这是一种定性和定量相结合的、系统的、层次化的分析方法。

这种方法的特点就是在对复杂决策问题的本质、影响因素及其内在关系等进行深入研究的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

是对难以完全定量的复杂系统做出决策的模型和方法。

层次分析法的原理:层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。

层次分析法的步骤,运用层次分析法构造系统模型时,大体可以分为以下四个步骤:(1)建立层次结构模型:将决策的目标、考虑的因素(决策准则)和决策对象按他们之间的相互关系分成最高层、中间层和最低层,绘制层次结构图。

最高层(目标层):决策的目的、要解决的问题;中间层(准则层或指标层):考虑的因素、决策的准则;最低层(方案层):决策时的备选方案;(2)构造判断(成对比较)矩阵;表指标之间比较量化值规定因素i比因素j量化值同等重要 1.00稍微重要 3.00较强重要 5.00强烈重要7.00极端重要9.00稍微不重要0.33较强不重要0.20强烈不重要0.14极端不重要0.11两相邻判断的中间值2、4、6、8(3)层次单排序及其一致性检验;(4)层次总排序及其一致性检验;举例:某市中心有一座商场,由于街道狭窄,人员车流量过大,经常造成交通堵塞。

市政府决定解决这个问题,经过有关专家会商研究,制订三个可行方案:a1:在商场附近修建一座环形天桥;a2:在商场附近修建地下人行通道;a3:搬迁商场决策的总目标是改善市中心交通环境,根据当地具体条件和情况,专家组织拟定五个目标作为对可行方案的评价准则:C1:通车能力;C2:方便群众;C3:基建费用不宜过高;C4:交通安全;C5:市容美观。

层次分析法

层次分析法
2)构造成对比较阵
用成对比较法和1~9尺度,构造各层对上一层每一因素的 成对比较阵。
3)计算权向量并作一致性检验
对每一成对比较阵计算最大特征根和特征向量,作一致性 检验,若通过,则特征向量为权向量。
4)计算组合权向量(作组合一致性检验*)
组合权向量可作为决策的定量依据。
一.层次分析法的基本步骤(1)
• 通过相互比较确定各准则对目标的权重,及各方 案对每一准则的权重。
• 将上述两组权重进行综合,确定各方案对目标的 权重。
层次分析法将定性分析与定量分析结合起来 完成以上步骤,给出决策问题的定量结果。
层次分析法的基本步骤
1)建立层次分析结构模型
深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),上层受下层影响,而层内 各因素基本上相对独立。
层次分析法的基本步骤(2)
成对比较阵 和权向量
设要比较各准则C1,C2,… , C5对目标
O的重要性
C :C a
i
j
ij
A (aij )nn , aij
0,
a ji
1 a
ij
选 择
1 1/ 2 4 3 3
2
1
7
5
5
A~成对比较阵
旅 A 1/ 4 1/ 7
游 地
1/ 3
1/ 5
1/ 3 1/ 5
1 2
1/ 2 1
1/ 3
1
A是正互反阵
3 1 1
要由A确定C1,… , Cn对O的权向量
O(选择旅游地)
1 1/2
2
1
A 1/4 1/7
1/3
1/5
1/ 3 1/ 5
4 3 3

层次分析法

层次分析法

层次分析法层次分析法(AHP)为一种决策思维,是把复杂问题分解为各个因素,将这些因素按照支配关系组成有序递进层次结构,通过两两比较的方式确定层次中诸要素的相对重要性的方法。

AHP结合定量于定性的分析将人的主观判断用数量形式处理。

层次分析法的原理及基本步骤:层次分析法其基本思想,是根据问题的性质和要达到的目标,将问题按层次分析成各个组成因素,再按支配关系分组成有序的递阶层次结构。

对同一层次内的因素,通过两两比较的方式确定诸因素之间的相对重要性权重。

下一层次的因素的重要性,既要考虑本层次,又要考虑到上一层次的权重因子逐层计算,直至最后一层一般是要比较的各个方案权重大小。

基本步骤:运用进行决策时,大体上应分为四个步骤进行:(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序。

下面分别说明这四个步骤的实现方法(1)层次结构的建立首先要把问题条理化、层次化,构造出一个层次分析的结构模型。

在这个结构模型下,复杂问题被分解成人们称之为元素的组成部分。

这些元素又按照其属性分成若千组,形成不同层次。

同一层次的元素作为准则对下一层次的某些元素起支配作用,同时它又受上一层次元素的支配。

这些层次大体上可以分为三类:1、最高层这一层次中只有一个元素,一般它是分析问题的预定目标或者理想结果,因此也称目标层。

2、中间层这一层次包括了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需要考虑的准则、子准则,因此也称为准则层3、最低层表示为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或者方案层。

上述各个层次之间的支配关系不一定是完全的,即可以存在这样的元素,它并不支持下一层次的所有元素而仅仅支持其中部分元素。

这种自上而下的支配关系所形成的层次结构,我们称为递阶层次结构递阶层次结构中的层次数与问题的复杂程度及需分析的详尽程度有关,一般它可以不受限制。

层次分析法

层次分析法

图2 AHP层次结构示意图
表1 1-9 标度及其含义
(4)层次单排序及其一致性检验。
A.层次单排序就是求某一层次上各指标对其上层指标 相对重要性的权重。一般计算方法采用方根法, 设判断 矩阵为B=[bij], 阶数为n,bij为矩阵中第i行第j列元素, 具 体计算步骤如下:
选择1-9比率标度法是基于下述的一些事实和科学依据
(2)应用前提
在应用层次分析法时,必须满足以下几个前提: 各层的要素必须是已知的,并且条理结构清晰,能够 按层次区分排列; 同一层中的各要素的关系是平等的,而各要素间相互 独立,不存在显著的相关性; 最底层的指标可以被量化,并能够通过一定的方法测 量; 需要明确各层次间要素的影响关系。
将问题所包含的因素划分为不同层次,如目标 层、准则层和方案层等等,用框图形式说明各层次 的递阶结构与因素的从属关系。某个层次包含的因 素一般以9 个以下因素为宜。
(3)构造判断矩阵
判断矩阵元素的值反映了评估人员对各因素相 对重要性(或优劣)的经验认识,一般采用经典1-9 及其倒数的标度法。如下表所示。
n i i 1 i
max
表2 各阶矩阵一致性指标
平均随机一致性指标RI,对于1-9 阶判断矩阵,如表2 所示。当随机一致性比率 时,认为层次单排序 的结果具有良好的一致性,否则需要重新检查调整判 断矩阵的元素取值。
(5)层次总排序
利用同一层次中所有层次单排序的结果值,就可 以计算针对上一层次,本层次所有因素重要性的权值, 这就是层次总排序。层次总排序需要从高到低逐层顺 A1 , A2 , 其层 , Am , 序进行。若上一层次A包含m个因素 a1 , a2 , , a m, 次总排序权值分别为 下一层次 B包含n个 Aj Bn , 因素 B1, B2 , ,他们对于因素 的层次单排序权值分别 Aj Bkj 0 B层次 b1 j , b2 j , (当 , bnj , 为 与 Bk 无联系时, )此时 总排序权值由下表给出。

层次分析法

层次分析法

层次分析法(AHP )评价模型1.层次分析法简介层次分析法简称AHP (The analytic hierarchy process),由美国的运筹学家T.L.Saaty 提出。

层次分析法要求明确项目的总目标,将其分解为各层子目标、准则层、指标层甚 至指标,构建一种递阶层次结构;构造两两判断矩阵,求解判断矩阵的特征向量,得到 每层的元素相对于上一层次的权重;采用加权的方法确定方案层各指标对总F1标的权 重,反映不同指标的相对重要性。

层次分析法通过制定标准,对难以量化的定性指标标 准化数学运算处理,转化为可以量化的数据,是一个定性和定量结合的方法。

2.层次分析法的一般步骤(1)确定评价目标和范围,构造递阶层次结构。

(2) 构造两两比较矩阵(判断矩阵)对于同一层次的各因素关于上一层中对应准则(目标)的重要性进行两两比较,构造出两两比较的判断矩阵。

用标度法表示比较结果。

如表所示:判断矩阵标注及其含义注:ij C ={2,4,6,8,1/2,1/4,1/6,1/8}表示重要性等级介于 ij C ={l,3,5,7,9,l/3,l/5,l/7,l/9}。

根据此表可以得到对于同一层次指标的判断矩阵mm A ,mm ij m a a a a A )(},...,,{21==A 的性质如下: ①0>ij a ②ijij a a 1=③1==ij a j i 时, (3)由比较矩阵计算被比较因素对上一层对应准则的相对权重(归一化特征向量),并进行判断矩阵的一致性检验。

(4)计算指标层对总目标的组合权重和组合一致性检验,得出各指标对总目标的影响权重。

3.一致性检验由于指标采用的两两比较,有可能出现甲的重要性大于乙、乙的重要性大于两、丙 的重要性却大于甲的情况,因此,确定计算相对权重后要进行組阵一致性判断,矩阵一 致性指标记为CI1max --=n nCI λRICI CR =RI 是平均随机一致性指标,判断矩阵的阶数不同,RI 的取值也不同,RI 的取值见表平均随机一致性指标的取值当时,判断矩阵通过一致性检验,得到的权重具有可信性。

层次分析法

层次分析法

1.层次分析法层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

层次分析法是在20世纪70年代初,由美国著名的运筹学专家萨蒂教授提出的,萨蒂教授在进行"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题研究时,提出了一种层次权重分析的方法。

层次分析法简单来说,就是将需要解决的问题,归为一个系统。

并且将整个要解决的问题进行目标分解,从而形成多个层次指标通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

在进行层次分析法使用的过程中,需要根据问题按照总目标—子目标—评价准备的层次进行分解,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,最终权重最大的就是此问题的最优解决方案。

同时分析法的基本原理就是将问题进行系统化处理,汇总成一个总的目标,并且根据问题的不同以及因素的不同,再将问题进行分解,按照问题之间的关系形成一个彼此相连接的层次,在进行问题解决时逐层分析最终将问题分解到最低层,从而找出最优解。

层次分析法的应用比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。

因此层次分析法多被应用于社会、经济及管理领域的各种问题,因为这些领域的问题多是由许多相互关联,相互制约的因素所构成的在进行分析解决事很难有明确的判断,而通过层次分析法研究者可以将复杂的系统进行层次分解,使得问题更加的简洁从而帮助研究者找出解决问题的方法。

在安全科学和环境科学领域,层次分析法也被经常使用。

在安全生产科学方面,层次分析法常被应用于煤矿的安全研究、危化品评价、油库安全评价、城市灾害应急能力研究以及交通安全评价等。

在环境保护研究中的应用主要包括:水安全评价、水质指标和环境保护措施研究、生态环境质量评价指标体系研究以及水生野生动物保护区污染源确定等。

层次分析法

层次分析法

(一)层次分析法简介层次分析法其实是主观赋权法的一种,主观赋权法是由评价者对评价指标进行主观上的赋权,主要是通过评价者的对评价指标进行打分,从而获得定量化的数据,常用的还有德尔菲法。

通过主观赋权法对评价指标权重系数进行确定,能够反映评价者的经验知识以及主观意向,是较为常用的指标赋权方法。

但是想要获取较为准确的评价结果,必须要做大量的工作,务必对大量的评价者进行咨询,然后其评价结果也相对主观。

相对而言,客观赋权法的影响因素主要来源于客观环境。

常见的客观赋权法有因子分析法、主成分分析法、嫡值法等。

虽然客观赋权法能够克服主观一些不利的影响因素,所获得的结果也有较强的数学理论基础,但是其并不能完全符合权重的基本性质,没有对指标本身的重要性进行考虑。

为此,本文为了能够更加全面的对数据进行分析,同时采用主观赋权法和客观赋权法进行比较研究,主要采用层次分析法和主成分因子分析法。

“层次分析法(analytic hierarchy process,AHP)是美国运筹学家T.L.Satty教授于20世纪70年代初期提出的一种简便、灵活而又实用的定性与定量分析相结合的多准则决策方法[31]”。

其主要是指将与决策有关的所有影响因素分为目标层、准则层、方案层等层次,并以此基础进行定性和定量分析的一种方法。

其将复杂的问题用有序递阶层次结构表示,并且根据指标的优劣进行对比排序,然后进行指标相对重要性的两两比较,给出与其相对应的比例标度,构造上层某个指标对下层相对应指标的判断矩阵,以确定相关指标对上层指标的相对重要序列。

此外,还要对其一致性进行检验,才能进行目标下的因素单排序,最后将各子目标下因素的排序逐层汇总后,通过计算获得总目标下因素的总排序,从而得出不同要素或评价对象的优劣权重值,为决策和评价提供依据[32]。

(二)模糊综合评价法“模糊综合评价方法是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,从多个因素对被评价事物隶属等级状况进行综合性评级的一种方法[33]”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

层次分析法层次分析法(简称AHP)是美国运筹学家T.L.SattY于20世纪70]年代提出的,适用于结构较复杂,决策准则多且不易量化的决策问题.它将决策问题的有关元素分解成目标、准则、方案等层次,把人的思维过程层次化、数量化,应用数学原理为分析决策、预报或控制提供定量的依据.该方法的特点是在对复杂决策问题深入分析之后,建立一种层次结构模型,然后利用较少的定量信息,把决策的思维过程数字化,从而为求解多目标、多准则或无结构特征的复杂决策问题,提供一种简便的决策方法.由于这种方法思路简单清晰,能紧密地和决策者的判断和推理相联系,并将决策者的经验判断及其推理过程给予量化描述,从而使决策者在大多情况下,可直接使用层次分析法进行决策,大大提高了决策的有效性、可靠性及可行性,使得这种方法近年来在国内外得到了广泛的应用.层次分析法的基本步骤如下:1 建立层次结构模型在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的因素从属于上一层的因素或对上一层因素有影响,同时又支配下一层的因素或受到下层因素的影响.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常为准则层或指标层.当准则过多时(譬如多于9个)应进一步分解出子准则层.2构造成对比较阵从层次结构模型的第2层开始,对于从属于(或影响及)上一层每个因素的同一层的因素,用成对比较阵和1-9比较尺度构造成对比较阵,直到最下层.3计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应的特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,则需重新构造成对比较阵.4计算组合权向量并做组合一致性检验若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造一致性比率较大的成对比较阵.从上面介绍的层次分析法的基本步骤看,建立层次结构模型是关键的一步.构造成对比较阵是整个工作的数量依据,应当由经验和知识丰富、判断力强的专家给出,还不妨采用群体判断的方式.一建立层次结构模型首先将问题涉及的因素分为三类(三层):第一层为目标层,表示解决问题的目的;第二层为准则层,表示衡量实现目标的标准,如可以是实现目标的各种措施、方案、政策等.第三层为方案层,是指解决问题的方案、措施.例1(购物模型)某一顾客在购买空调时,看好了A、B、C、D四种空调,举棋不定。

他的目的是从中选出一个最成心的商品来,他主要考虑五种因素:价格、耗电量、售后服务、噪音、款式.把上面的因素分为三层(类),可得到如下的层次结构模型(图1).例2 (旅游模型)某人假期要外出旅游,想在A、B、C三个旅游胜地选一处.考虑标准主要有:景色、费用、居住条件、饮食、交通条件.把上述因素分为三层,得到此问题的层次结构模型(图2).二、构造成对比较矩阵这一步是要比较同一层因素对上一层因素的影响,从而确定它们在上层因素中占的权重.设有n 个因素12(,,,)n x x x 对上一层目标有影响,直接确定它们对目标的影响程度(比例)不太容易,所以每次取两个因素i x 与j x 比较,用ij a 表示i x 和j x 对上层目标的影响比.用矩阵()ij m nA a ⨯=表示全部比较结果,A 称为成对比较矩阵.ija 应有的特点为:0ija>,1ji ija a =,易知1iia=.我们把具有上述特点的n 阶矩阵称为正互反矩阵. 例如在旅游模型中,设景色、费用、居住条件、饮食、交通条件五个因素分别为1x ,2x ,3x ,4x ,5x ,某人根据自己的情况,对五个因素成对进行比较(共做了2554102C⨯==次对比),比较它们对选择旅游地的重要程度,得到成对比较矩阵(正互反矩阵)1143322175511111472311211351131135A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1) 其中212a =表示费用2x 与景色1x 对选择旅游地的目标的重要性之比是2:1,143a =表示景色与饮食对选择旅游地的重要性之比是3:1.在例2中,方案层各因素对准则层中五个因素分别比较能得出五个成对比较矩阵,由于方案层只有三个方案,所以我们得到的这五个成对比较矩阵都是三阶矩阵.按照T.L.Saaty 方法,在构造成对比较矩阵ij a 的取值时,引用数字1,2,,9及其倒数1,12,,19去作尺度,它们代表的意义如表1所示.表1三、计算权向量和一致性检验定义 1 如果一个正互反阵A 满足ij jk ik a a a =(,,1,2,,)i j k n =,则称A 为一致矩阵,简称一致阵. 若A 为n 阶一致阵,则它有下列性质:(1) 秩一定为1,它的唯一非零特征根为n .(2) 任意列(行)向量都是对应于特征根n 的特征向量.由于成对比较矩阵是我们对复杂事物采取两两比较得到的矩阵,不可能做到判断具有完全的一致性,难免有误差,所以成对比较阵通常不是一致阵,我们需要对成对比较矩阵进行一致性检验.设A 为n 阶成对比较矩阵,前面已经给出n 阶一致阵有最大特征根n ,n 阶正互反阵A 的最大特征根maxn λ≥,而当maxn λ=时A 是一致阵.maxλ比n 大的越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用max n λ-数值的大小来衡量A 的不一致程度,Saaty 将max 1nCI n λ-=- (2)定义为一致性指标.当max n λ=时,0CI =,A 为完全一致;CI 越大成对比较矩阵的一致性越差,A 的不一致程度越严重.为了确定A 的不一致程度的容许范围,需要找出衡量A 的一致性指标CI 的标准,Saaty 又引入随机一致性指标RI ,随机一致性指标RI 的数值如表2所示.表2表中1,2n =时0RI =,是因为1,2阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CI CR RI=< (3)时,认为A 的不一致程度在容许的范围之内,可用其特征向量最为权向量.否则要重新进行成对比较,对A 加以调整.对A 利用(2)式、(3)式和表2进行检验称为一致性检验.例3 检验成对比较矩阵(1)的一致性,并算出其权向量.解1143322175511111472311211351131135A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦首先算出A 的最大特征根max 5.073λ=,一致性指标5.07350.01851CI -==-由5n =在随机一致性检验RI的数值表中查得1.12RI =.一致性比率0.0180.0160.11.12CI CR RI ===<即通过了一致性检验.计算出max 5.073λ=的特征向量,并标准化(0.263,0.475,0.055,0.099,0.110)T α=α可作为权向量.四、计算组合权向量并做组合一致性检验 下面以例2旅游模型为例,说明如何计算组合权向量及一致性检验.由例3得到第二层对第一层的权向量,(0.263,0.475,0.055,0.099,0.110)T α=.用同样的方法分别构造第三层对第二层的每个准则的成对比较矩阵,不妨设它们为1125112211152B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,2111381313831B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,311311311133B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,413411131114B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,511141114441B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦其中1B 、2B 、3B 、4B 、5B 表示三种旅游方案A 、B 、C 分别对标准层五个因素:景色、费用、居住条件、饮食、交通条件的成对比较矩阵.例如,1B 表示三种对景色的优越程度的比较,3B 中23b 表示方案B 对C 的居住条件的程度.分别算出1B 、2B 、3B 、4B 、5B 的权向量(标准化的特征向量)k α、最大特征根k λ、一致性指标kCI 和一致性比率k CR ,结果列在表3中(其中1,2,,5k =).表3旅游问题第三层的计算结果k CI 均小于0.1,均通过一致性检验.我们把各方案对目标的权向量,称为组合权向量,记作(3)α.我们在例3中已求出第二层对第一层(即五个标准对目标选择旅游地)的权向量,记为(2)α.(2)(0.263,0.475,0.055,0.099,0.110)T α=所以方案A 、B 、C 在目标中的组合权重应该为α与(2)α对应向量的两两乘积之和,如A 在目标中的组合权重应该为0.5950.2630.0820.4750.4290.0550.6330.0990.1660.1100.300⨯+⨯+⨯+⨯+⨯=同样可计算出B 、C 在目标中的组合权重为0.246和0.456,于是得组合权向量(3)(0.300,0.246,0.456)Tα=这个结果解释为方案C 在旅游地选择中占得权重为45.6%,远远大于A 、B ,所以应选择方案C . 一般地,对于三层决策问题,设第一层只有一个目标,第二、三层分别有n 、m 个因素,且第二层对第一层的权向量为(2)(2)(2)(2)12(,,,)T n αααα=第三层对第二层的权向量分别为(3)(3)(3)(3)12(,,,)Tkk k kn αααα=,1,2,,k n =令(3)(3)1{,,}n ααΩ=,则第三层(方案层)对第一层(目标层)的组合权向量为(3)(2)αα=Ω组合权向量也要进行一致性检验,组合一致性检验是逐层进行的.若决策是三层的,且第二、三层分别有n 、m 个因素,则可设第二层一致性指标为(2)1CI ,,(2)n CI ,随机一致性指标为(2)1RI,,(2)n RI ,定义(2)(2)(2)(2)1[,,]n CI CI CI α= (2)(2)(2)(2)1[,,]n RI RI RI α=则第二层对第一层的组合一致性比率为(2)(2)(2)CI CR CR RI=+同样可定义第三层对第一层的组合一致性比率(3)(3)(2)(3)CI CRCRRI=+ 当(3)0.1CR<时,认为组合权向量通过一致性检验.再看旅游问题,可以算出(3)0.00176CI=,(3)0.58RI =,(2)0.016CR =,于是得到(3)0.001760.0160.0190.10.58CR=+=<组合向量通过一致性检验,说明上面求的组合向量(3)(0.300,0.246,0.456)Tα=可作为最终的决策依据.例4 学生综合素质评定先给出若干准则,再构造层次结构模型. 用V 表示综合素质.用1C 、2C 、3C 、4C 、5C 分别表示学习成绩、人际关系、艺术素养、身体素质、 心理素质.用1P 、2P 、3P 分别表示三位同学.现在给出三位同学的各项素质得分,见表4.表4先用成对比较法比较准则层5个因素对目标层的影响,得到成对比较矩阵.12322131112212221333313111221311122A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦再用成对比较法比较方案层3个因素对准则层额影响,得到成对比较阵,不妨设1125112211152B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,2111381313831B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,311311311133B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,413411131114B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ , 511141114441B ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦这里矩阵k B (1,2,,5k =)中的元素()k ijb 是方案(学生)Pi 与Pj 对于准则k C 的优越性的比较尺度.对于A 可以算出max 5λ=,归一化的特征向量(0.35294,0.17647,0.11765,0.17647,0.17647)T w =0CI =,0CR =由第三层的成对比较矩阵k B 计算出权向量(3)k w ,最大特征根max λ和一致性指标k CI ,结果列入表5.表5不难看出,由于,所以上面的k CI 均可通过一致性检验.以综合素质V 为目标的计算结果见表6:表6P的综合成绩在综合素质所由上表可以看出同学1P的综合素质最高.占的权重最大,所以1五、正互反阵最大特征根和特征向量的实用算法——和法步骤如下:(1) 将A 的每一列向量归一化得1ijij nkjk a w a==∑.(2) 对1ijij niji a w a==∑按行求和得1ni ij j w w ==∑.(3) 将iw 归一化1ii nii w w w ==∑,12(,,,)T n w w w w =即为近似特征向量.(4) 计算1()1n ii iAw n w λ===∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.因为当A 为一致阵时它的每一列向量都是特征向量,所以若A 的不一致性不严重,则取A 的列向量(归一化后)的平均值作为近似特征向量时合理的.用上述方法计算一个例子.1260.60.6150.5451140.30.3080.36420.10.0770.09111164 1.7600.5870.9720.3240.2680.089A w ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦列向量归一化按行求和归一化1.7690.9740.268Aw ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1 1.7690.9740.268() 3.00930.5870.3240.089λ=++= 精确计算给出(0.588,0.322,0.090)Tw =,3.010λ=.二者相比,相差甚微.。

相关文档
最新文档