人工神经网络讲稿ch4
合集下载
人工神经网络-95页PPT文档资料
MATLAB名字由MATrix和 LABoratory 两词的前三个字 母组合而成。20世纪七十年代后期,时任美国新墨西 哥大学计算机科学系主任的Cleve Moler教授出于减轻 学生编程负担的动机,为学生设计了一组调用LINPACK 和EISPACK库程序的“通俗易用”的接口,此即用 FORTRAN编写的萌芽状态的MATLAB。
《医学信息分析与决策》课程组
10
一、神经网络简介
神经网络的基本功能
传统分类能力
ANN 分类能力
分类与识别功能
2019/11/29
• ①“初值:步长:终值” 产生一个行向量(行矩 阵)。当步长为1时可以省略。如:1:5;1:2:6
• ②特殊命令:linspace(x,x2,n): ones(n)
(3)用input指令输入单个参数 (4)用小型矩阵或用数据文件输入
2019/11/29
《医学信息分析与决策》课程组
28
二、MATLAB简介
25
二、MATLAB简介
数值与变量
①数值
②变量:
• 变量名、函数名是对大小写很敏感的,两个字符串 表示的变量,字母都相同,大小写不同,也视为不 同的变量;
• 第一个字母必须是英文字母; • 字符间不可留空格; • 最多只能有31个字符(只能用英文字母、数字和下
连字符) • 一行中“%”后的内容仅作注释用,对MATLAB的计
《医学信息分析与决策》课程组
11
一、神经网络简介
《医学信息分析与决策》课程组
10
一、神经网络简介
神经网络的基本功能
传统分类能力
ANN 分类能力
分类与识别功能
2019/11/29
• ①“初值:步长:终值” 产生一个行向量(行矩 阵)。当步长为1时可以省略。如:1:5;1:2:6
• ②特殊命令:linspace(x,x2,n): ones(n)
(3)用input指令输入单个参数 (4)用小型矩阵或用数据文件输入
2019/11/29
《医学信息分析与决策》课程组
28
二、MATLAB简介
25
二、MATLAB简介
数值与变量
①数值
②变量:
• 变量名、函数名是对大小写很敏感的,两个字符串 表示的变量,字母都相同,大小写不同,也视为不 同的变量;
• 第一个字母必须是英文字母; • 字符间不可留空格; • 最多只能有31个字符(只能用英文字母、数字和下
连字符) • 一行中“%”后的内容仅作注释用,对MATLAB的计
《医学信息分析与决策》课程组
11
一、神经网络简介
人工神经网络教学课件
2006年
Hinton等人提出了深度学习的概念,使得神经网络的层次和参数数量大大增加,提高了模型的表示能力和泛化能力。
1997年
Bengio等人提出了卷积神经网络(CNN),用于图像识别和处理。
感知机模型:由输入层、隐藏层和输出层组成,通过权重和激活函数实现非线性映射,完成分类或识别任务。
人工神经网络的基本结构
人工神经网络教学课件
目录
CONTENTS
人工神经网络简介人工神经网络的基本结构常见的人工神经网络模型人工神经网络的训练与优化人工神经网络的应用场景人工神经网络的未来展望
人工神经网络简介
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,由多个神经元相互连接而成,通过训练和学习来处理和识别数据。
适用于小样本数据集和高维数据集
支持向量机在小样本数据集和高维数据集上表现良好,因为它主要基于数据的内积运算,而不是计算输入空间中的距离。这使得它在文本分类、生物信息学等领域得到广泛应用。
核函数的选择对模型性能影响较大
支持向量机通过核函数将输入空间映射到高维特征空间,然后在这个空间中找到最优决策边界。不同的核函数会导致不同的决策边界,因此选择合适的核函数对模型性能至关重要。
总结词
自然语言处理是人工神经网络的另一个应用领域,通过训练神经网络理解和生成自然语言文本,实现文本分类、情感分析、机器翻译等功能。
自然语言处理是利用人工神经网络对自然语言文本进行分析、理解和生成,广泛应用于搜索引擎、智能问答、新闻推荐等领域。通过训练神经网络理解和生成自然语言文本,可以实现文本分类、情感分析、机器翻译等功能,提高自然语言处理的准确性和效率。
人工神经网络具有自适应性、非线性、并行处理和鲁棒性等特点,能够处理复杂的模式识别和预测问题。
Hinton等人提出了深度学习的概念,使得神经网络的层次和参数数量大大增加,提高了模型的表示能力和泛化能力。
1997年
Bengio等人提出了卷积神经网络(CNN),用于图像识别和处理。
感知机模型:由输入层、隐藏层和输出层组成,通过权重和激活函数实现非线性映射,完成分类或识别任务。
人工神经网络的基本结构
人工神经网络教学课件
目录
CONTENTS
人工神经网络简介人工神经网络的基本结构常见的人工神经网络模型人工神经网络的训练与优化人工神经网络的应用场景人工神经网络的未来展望
人工神经网络简介
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,由多个神经元相互连接而成,通过训练和学习来处理和识别数据。
适用于小样本数据集和高维数据集
支持向量机在小样本数据集和高维数据集上表现良好,因为它主要基于数据的内积运算,而不是计算输入空间中的距离。这使得它在文本分类、生物信息学等领域得到广泛应用。
核函数的选择对模型性能影响较大
支持向量机通过核函数将输入空间映射到高维特征空间,然后在这个空间中找到最优决策边界。不同的核函数会导致不同的决策边界,因此选择合适的核函数对模型性能至关重要。
总结词
自然语言处理是人工神经网络的另一个应用领域,通过训练神经网络理解和生成自然语言文本,实现文本分类、情感分析、机器翻译等功能。
自然语言处理是利用人工神经网络对自然语言文本进行分析、理解和生成,广泛应用于搜索引擎、智能问答、新闻推荐等领域。通过训练神经网络理解和生成自然语言文本,可以实现文本分类、情感分析、机器翻译等功能,提高自然语言处理的准确性和效率。
人工神经网络具有自适应性、非线性、并行处理和鲁棒性等特点,能够处理复杂的模式识别和预测问题。
【精品推荐】人工神经网络 PPT课件报告讲义
y j w1 j x1 w2 j x2 wnj xn
(1)
通常理论值与实际值有一误差,网络学习则是指不断地把 与比较,并根据极小原则修改参数wpj,使误差平方和达最 小:
1 n min ( y ij oij ) 2 2 j1
(i=1,…,m)
(2)
• Delta学习规则:
wpj 表示递推一次的修改量,则有
从此用神经网络来识别语言和图象形成一个新的热潮.
【原创】定制代写 r/python/spss/matlab/WEKA/s as/sql/C++/stata/eviews 数据 挖 掘和统计分析可视化调研报告 等服务(附代码数据),咨询 邮箱: glttom@
有问题到淘宝找“大数据部落” 就可以了源自X ( x ,...,x )
i i 1
i T n
目标输出向量为(实际上的):
i i T Yi (y ,..., y ) 1 n
网络输出向量为 (理论上的)
i i T Oi (o1 ,...,on )
记 wpj 为从输入向量的第p(p=1,…,n) 个分量到输 出向量的第j(j=1,…,n)个分量的权重。
wpj wpj wpj
i i wpj ( yij oij ) xi p j xp
(3) 增 量 (4)
i j
称为学习的速率
y ij oij
2.多层前馈网络
(l)输入层不计在层数之内,它有n个神经元.设网络 共有L层;输出层为第L层;第 k层有 N k 个神经元. (2) 设 uk (i ) 表示第k层第i神经元所接收的信息 wk(i,j) 表示从第k-1层第j个元到第k层第i个元的权重,
第四章人工神经网络讲义
2019/2/15 7
4.1 概述——人工神经网络研究与发展
1986年Rumelhart等人在多层神经网络模型的基础上,提出了 多层神经网络模型的反向传播学习算法(BP算法),解决了多层 前向神经网络的学习问题,证明了多层神经网络具有很强的学 习能力,它可以完成许多学习任务,解决许多实际问题。 近十几年来,许多具备不同信息处理能力的神经网络已被提出 来并应用于许多信息处理领域,如模式识别、自动控制、信号 处理、决策辅助、人工智能等方面。 神经计算机的研究也为神经网络的理论研究提供了许多有利条 件,各种神经网络模拟软件包、神经网络芯片及电子神经计算 机的出现,体现了神经网络领域的各项研究均取得长足进展。 同时,相应的神经网络学术会议和神经网络学术刊物的大量出 现,给神经网络的研究者们提供了许多讨论交流的机会。
第 四 章
人工神经网络
2019/2/15
1
4.1 概述
2019/2/15
2
4.1 概述——人工神经网络研究与发展
人工神经网络(简称神经网络)是利用物理器件来模拟生物神经网 络的某些结构和功能。 40年代初,美国Mc Culloch和Pitts从信息处理的角度,研究神 经细胞行为的数学模型表达,并提出了二值神经元模型。
2019/2/15 9
4.1 概述—人脑信息处理机制
生物神经系统,包括中枢神经系统和大脑,均是由各类神经元 组成。 其独立性是指每一个神经元均有自己的核和自己的分界线或原 生质膜。 生物神经元之间的相互连接从而让信息传递的部位被称为突触 (Synapse) 。突触按其传递信息的不同机制,可分为化学突触和 电突触。其中化学突触占大多数,其神经冲动传递借助于化学 递质的作用。 生物神经元的结构大致描述如下图所示。
2019/2/15 8
4.1 概述——人工神经网络研究与发展
1986年Rumelhart等人在多层神经网络模型的基础上,提出了 多层神经网络模型的反向传播学习算法(BP算法),解决了多层 前向神经网络的学习问题,证明了多层神经网络具有很强的学 习能力,它可以完成许多学习任务,解决许多实际问题。 近十几年来,许多具备不同信息处理能力的神经网络已被提出 来并应用于许多信息处理领域,如模式识别、自动控制、信号 处理、决策辅助、人工智能等方面。 神经计算机的研究也为神经网络的理论研究提供了许多有利条 件,各种神经网络模拟软件包、神经网络芯片及电子神经计算 机的出现,体现了神经网络领域的各项研究均取得长足进展。 同时,相应的神经网络学术会议和神经网络学术刊物的大量出 现,给神经网络的研究者们提供了许多讨论交流的机会。
第 四 章
人工神经网络
2019/2/15
1
4.1 概述
2019/2/15
2
4.1 概述——人工神经网络研究与发展
人工神经网络(简称神经网络)是利用物理器件来模拟生物神经网 络的某些结构和功能。 40年代初,美国Mc Culloch和Pitts从信息处理的角度,研究神 经细胞行为的数学模型表达,并提出了二值神经元模型。
2019/2/15 9
4.1 概述—人脑信息处理机制
生物神经系统,包括中枢神经系统和大脑,均是由各类神经元 组成。 其独立性是指每一个神经元均有自己的核和自己的分界线或原 生质膜。 生物神经元之间的相互连接从而让信息传递的部位被称为突触 (Synapse) 。突触按其传递信息的不同机制,可分为化学突触和 电突触。其中化学突触占大多数,其神经冲动传递借助于化学 递质的作用。 生物神经元的结构大致描述如下图所示。
2019/2/15 8
人工神经网络电子讲稿
• 1949年,心理学家D. O. Hebb提出神经元之 间突触联系是可变的假说——Hebb学习律。
2020/6/30
21
1.3.2 第一高潮期(1950~1968)
• 以 Marvin Minsky , Frank Rosenblatt , Bernard Widrow等为代表人物,代表作是 单级感知器(Perceptron)。
人工神经网络
Artificial Neural Networks
2020/6/30
1
课程目的和基本要求
• 作为人工神经网络的入门课程,用于将学 生引入人工神经网络及其应用的研究领域。
• 介绍人工神经网络及其基本网络模型,使 学生
–了解智能系统描述的基本模型
–掌握人工神经网络的基本概念、单层网、多层 网、循环网等各种基本网络模型的结构、特点、 典型训练算法、运行方式、典型问题
通用模型和算法。
• 4)进一步对生物神经系统进行研究,不断地丰富 对人脑的认识。
2020/6/30
27
第2章 人工神经网络基础
2.1 生物神经网 2.2 人工神经元 2.3 人工神经网络的拓扑特性 2.4 存储与映射 2.5 人工神经网络的训练
2020/6/30
28
1、构成
2.1 生物神经网
枝蔓(Dendrite)
20
1.3 历史回顾
• 1.3.1 萌芽期(20世纪40年代)
• 人工神经网络的研究最早可以追溯到人类 开始研究自己的智能的时期,到1949年止。
• 1943年,心理学家McCulloch和数学家Pitts 建立起了著名的阈值加权和模型,简称为 M-P 模 型 。 发 表 于 数 学 生 物 物 理 学 会 刊 《Bulletin of Methematical Biophysics》
2020/6/30
21
1.3.2 第一高潮期(1950~1968)
• 以 Marvin Minsky , Frank Rosenblatt , Bernard Widrow等为代表人物,代表作是 单级感知器(Perceptron)。
人工神经网络
Artificial Neural Networks
2020/6/30
1
课程目的和基本要求
• 作为人工神经网络的入门课程,用于将学 生引入人工神经网络及其应用的研究领域。
• 介绍人工神经网络及其基本网络模型,使 学生
–了解智能系统描述的基本模型
–掌握人工神经网络的基本概念、单层网、多层 网、循环网等各种基本网络模型的结构、特点、 典型训练算法、运行方式、典型问题
通用模型和算法。
• 4)进一步对生物神经系统进行研究,不断地丰富 对人脑的认识。
2020/6/30
27
第2章 人工神经网络基础
2.1 生物神经网 2.2 人工神经元 2.3 人工神经网络的拓扑特性 2.4 存储与映射 2.5 人工神经网络的训练
2020/6/30
28
1、构成
2.1 生物神经网
枝蔓(Dendrite)
20
1.3 历史回顾
• 1.3.1 萌芽期(20世纪40年代)
• 人工神经网络的研究最早可以追溯到人类 开始研究自己的智能的时期,到1949年止。
• 1943年,心理学家McCulloch和数学家Pitts 建立起了著名的阈值加权和模型,简称为 M-P 模 型 。 发 表 于 数 学 生 物 物 理 学 会 刊 《Bulletin of Methematical Biophysics》
《人工神经网络讲》课件
应用场景
常用于模式分类、预测等静态数据处理任务。
循环神经网络
定义
循环神经网络是一种能够处理序列数据的神经网络,通过记忆单 元实现信息的循环传递。
特点
循环神经网络能够捕捉序列数据中的长期依赖关系,但训练过程 中容易陷入梯度消失或梯度爆炸问题。
应用场景
广泛应用于自然语言处理、语音识别、机器翻译等领域。
03
智能控制
强化学习与神经网络的结合在智能控制领域具有广泛的应用前景,例如
机器人控制、自动驾驶等。通过训练神经网络代理在模拟环境中进行学
习,可以实现高效、安全的智能控制。
深度学习与人工神经网络的结合
深度生成模型
生成模型如变分自编码器(VAE)和生成对抗网络(GAN)可以学习从噪声生成数据的分布,并生成全新的数据样本 。通过结合深度学习和神经网络,可以创建更强大、更灵活的生成模型,用于图像生成、文本生成等领域。
深度神经网络
1 2 3
定义
深度神经网络是指神经网络中包含多个隐藏层的 结构,能够提取更抽象的特征表示。
特点
深度神经网络具有强大的特征学习和分类能力, 但需要大量的训练数据和计算资源,且容易过拟 合。
应用场景
广泛应用于图像识别、语音识别、自然语言处理 等领域。
自组织映射网络
定义
自组织映射网络是一种无监督学 习的神经网络,通过自组织的方 式对输入数据进行降维或聚类。
人工神经网络讲
BIG DATA EMPOWERS TO CREATE A NEW
ERA
• 人工神经网络简介 • 常见的人工神经网络模型 • 人工神经网络的训练方法 • 人工神经网络的应用场景 • 人工神经网络的未来展望
目录
CONTENTS
常用于模式分类、预测等静态数据处理任务。
循环神经网络
定义
循环神经网络是一种能够处理序列数据的神经网络,通过记忆单 元实现信息的循环传递。
特点
循环神经网络能够捕捉序列数据中的长期依赖关系,但训练过程 中容易陷入梯度消失或梯度爆炸问题。
应用场景
广泛应用于自然语言处理、语音识别、机器翻译等领域。
03
智能控制
强化学习与神经网络的结合在智能控制领域具有广泛的应用前景,例如
机器人控制、自动驾驶等。通过训练神经网络代理在模拟环境中进行学
习,可以实现高效、安全的智能控制。
深度学习与人工神经网络的结合
深度生成模型
生成模型如变分自编码器(VAE)和生成对抗网络(GAN)可以学习从噪声生成数据的分布,并生成全新的数据样本 。通过结合深度学习和神经网络,可以创建更强大、更灵活的生成模型,用于图像生成、文本生成等领域。
深度神经网络
1 2 3
定义
深度神经网络是指神经网络中包含多个隐藏层的 结构,能够提取更抽象的特征表示。
特点
深度神经网络具有强大的特征学习和分类能力, 但需要大量的训练数据和计算资源,且容易过拟 合。
应用场景
广泛应用于图像识别、语音识别、自然语言处理 等领域。
自组织映射网络
定义
自组织映射网络是一种无监督学 习的神经网络,通过自组织的方 式对输入数据进行降维或聚类。
人工神经网络讲
BIG DATA EMPOWERS TO CREATE A NEW
ERA
• 人工神经网络简介 • 常见的人工神经网络模型 • 人工神经网络的训练方法 • 人工神经网络的应用场景 • 人工神经网络的未来展望
目录
CONTENTS
人工神经网络课件
人工神经网络课件
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、样本顺序影响结果的原因:“分别”、“依 次”
4 、 用 (X1,Y1) , ( X2,Y2 ) , … , ( Xs,Ys ) 的 “总效果”修改W(1) ,W(2) ,…,W(L)。
∆w =∑∆ w 12.03.2021
(k) ij
(k)
p
精品ij课件
17
算法4-2 消除样本顺序影响的BP算法
12.03.2021
精品课件
10
2、隐藏层权的调整
vhp ANh
δpk-1
ANp
δ1k wp1
wpq
δqk
wpm δmk
…
ANq …
第k-2层
12.03.2021
第k-1层
精品课件
第k层
11
2、隐藏层权的调整
δpk-1的值和δ1k,δ2k,…,δmk 有关 不妨认为δpk-1 通过权wp1对δ1k做出贡献, 通过权wp2对δ2k做出贡献, ……
Ep1 m 2 j1
ypjopj 2
(4) 网络关于整个样本集的误差测度:
E Ep
12.03.2021
精p品课件
9
4.2.3 误差传播分析
1、输出层权的调整
ANp
ANq
wpq
第L-1层
∆wpq
第L层
wpq= wpq+∆wpq
∆wpq=αδqop
=αfn′ (netq)(yq-oq)op
=αoq(1-oq) (yq-oq)op
第4章 BP网络
• 主要内容:
– BP网络的构成 – 隐藏层权的调整分析 – Delta规则理论推导 – 算法的收敛速度及其改进讨论 – BP网络中的几个重要问题
• 重点:BP算法 • 难点:Delta规则的理论推导
12.03.2021
精品课件
1
4.1 概述
1、BP算法的出现
非循环多级网络的训练算法 UCSD PDP 小 组 的 Rumelhart 、 Hinton 和 Williams1986年独立地给出了BP算法清楚而简单的描 述 1982年,Paker就完成了相似的工作 1974年,Werbos已提出了该方法
通过权wpm对δmk做出贡献。
δpk-1= fk-1′(netp) (wp1δ1k+ wp2δ2k+…+ wpmδm k)
12.03.2021
精品课件
12
2、隐藏层权的调整
vhp=vhp+∆vhp
∆vhp=αδpk-1ohk-2
=αfk-1
′(netp)(
wpmδmk)ohk-2
=αopk-1(1-opk-1)( wpmδmk)ohk-2
W(3)
W(L)
o1
x2
o2
…… xn
输入层
12.03.2021
…
…
隐藏层
精品课件
…
……
om
输出层
5
网络的拓扑结构
1. BP网的结构 2. 输入向量、输出向量的维数、网络隐藏层
的层数和各个隐藏层神经元的个数的决定 3. 实验:增加隐藏层的层数和隐藏层神经元
个数不一定总能够提高网络精度和表达能 力 4. BP网一般都选用二级网络
– 逐出O一k地和根误据差样测本度集E1中,的对样W本(1)(X,k,WYk()2计) ,算…出,实W际(L输)各 做一次调整,重复这个循环,直到∑Ep<ε。
– 用输出层的误差调整输出层权矩阵,并用此误差 估计输出层的直接前导层的误差,再用输出层前 导层误差估计更前一层的误差。如此获得所有其 它各层的误差估计,并用这些估计实现对权矩阵 的修改。形成将输出端表现出的误差沿着与输入 信号相反的方向逐级向输入端传递的过程
vhp ANh
δpk-1
ANp
第k-2层
第k-1层
wp1δ1k+
wp1δ1k+ δ1k
wp1
wpm
δqk
wpq δmk
wp2δ2k+…+
wp2δ2k+…+
…
ANq … 第k层
12.03.2021
精品课件
13
4.2.4 基本的BP算法
• 样本集:S={(X1,Y1),(X2,Y2),…,(Xs,Ys)} • 基本思想 :
4.2.5 k=L-1;
4.2.6 while k≠0 do 4.2.6.1 根据相应式子调整W(k);
4.2.6.2 k=k-1
4.3 E=E/2.0
12.03.2021
精品课件
16
4.3 算法的改进
1、BP网络接受样本的顺序对训练结果有较大 影响。它更“偏爱”较后出现的样本
2、给集中的样本安排一个适当的顺序,是非常 困难的。
12.03.2021
精品课件
3
输出函数分析
o 1
o
1
1 enet
f ′(net)
net
0.25
(0,0.5)
0 (0,0)
o
0.5
1
– 应该将net的值尽量控制在收敛比较快的范围 内
– 可以用其它的函数作为激活函数,只要该函数
是处处可导的
12.03.2021
精品课件
4网络的拓扑结构x1 NhomakorabeaW(1)
W(2)
(2)计算相应的实际输出Op: Op=Fl(…(F2(F1(XpW(1))W(2))…)W(L))
12.03.2021
精品课件
8
4.2.2 训练过程概述
2、向后传播阶段——误差传播阶段:
(1)计算实际输出Op与相应的理想输出Yp 的差;
(2)按极小化误差的方式调整权矩阵。
(3)网络关于第p个样本的误差测度:
2、弱点:训练速度非常慢、局部极小点的逃离问题、 算法不一定收敛
3、优点:广泛的适应性和有效性。
12.03.2021
精品课件
2
4.2 基本BP算法
• 4.2.1 网络的构成
神经元的网络输入: neti=x1w1i+x2w2i+…+xnwni
神经元的输出: of(ne)t11enet
f(n)e t(1e 1 n)e2(t e n)e too2o(1o)
12.03.2021
精品课件
14
算法4-1 基本BP算法
1 for k=1 to L do 1.1 初始化W(k);
2 初始化精度控制参数ε; 3 E=ε+1; 4 while E>ε do
4.1 E=0;
12.03.2021
精品课件
15
算法4-1 基本BP算法
4.2 对S中的每一个样本(Xp,Yp): 4.2.1 计算出Xp对应的实际输出Op; 4.2.2 计算出Ep; 4.2.3 E=E+Ep; 4.2.4 根据相应式子调整W(L);
12.03.2021
精品课件
6
网络的拓扑结构
x1
V
W
o1
x2
o2
…… xn
输入层
12.03.2021
…
…
隐藏层
精品课件
om 输出层
7
4.2.2 训练过程概述
样本:(输入向量,理想输出向量)
权初始化:“小随机数”与饱和状态;“不 同”保证网络可以学。
1、向前传播阶段:
(1)从样本集中取一个样本(Xp,Yp),将Xp 输入网络;