人工神经网络及其应用实例解读
《人工神经网络》课件
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成
神经网络的实际应用举例
神经网络的实际应用举例神经网络是模拟人类神经系统机制的计算模型。
它可以从大量数据中自主学习,分析和识别复杂的模式,被应用到许多领域,包括计算机视觉、语音识别、自然语言处理等。
下面介绍神经网络在实际应用中的几个典型案例:一、机器翻译机器翻译是指将一种语言的文本转换成另一种语言的文本。
以Google Translate为例,通过神经网络,将大量的双语数据进行学习和模型的训练,实现了高质量的机器翻译。
神经网络通过提取出源语言文本中的特征,转换成语义空间的向量,在目标语言中寻找最相似的向量,并根据这些向量生成目标语句。
同时,还可以实现实时的语音翻译功能。
二、人脸识别人脸识别技术在安全监控、智能家居等领域广泛使用。
以人脸识别门禁为例,首先通过摄像头捕捉到人脸图像,然后提取特征,将人脸图像转换成向量。
接着,将向量输入神经网络,通过模型识别出人脸的身份信息,最后与数据库中保存的人脸信息进行比对,从而判断身份是否匹配。
三、自动驾驶自动驾驶技术是当前人工智能技术最具代表性的一个领域。
以谷歌无人驾驶汽车为例,通过激光雷达、相机、雷达和GPS等传感器收集周围环境信息,并通过神经网络进行深度学习,实现对环境信息的感知和处理。
然后,结合交通规则和路况等条件,进行行驶决策,开展自主驾驶。
四、医疗影像分析医疗影像分析需要对大量医学图像进行处理和分析,如CT、MRI等。
因此,对于快速准确地分析疾病信息非常重要。
以肺癌识别为例,通过神经网络可以对肺部影像进行分割和预处理,提取肺结节的特征,进而诊断是否为恶性肿瘤。
综上,神经网络的实际应用非常广泛,除了上面所提到的应用领域外,还可以应用在音视频处理、推荐系统等领域,为我们带来越来越多的便捷和效率。
神经网络的深度学习应用案例分析
神经网络的深度学习应用案例分析近年来,随着人工智能技术的飞速发展,神经网络的深度学习成为了研究的热点之一。
深度学习通过模拟人脑的神经网络结构,通过大量数据的训练来提高机器的学习能力。
在各个领域中,神经网络的深度学习都取得了一系列令人瞩目的成果。
本文将从医疗、金融和图像识别三个方面,分别介绍神经网络的深度学习在实际应用中的案例分析。
1. 医疗领域在医疗领域,神经网络的深度学习被广泛应用于疾病的诊断和预测。
例如,在肺癌的早期诊断中,研究人员使用深度学习算法对大量的CT影像进行训练,建立了一个肺癌诊断模型。
该模型能够准确地识别患者是否患有肺癌,提高了早期发现的准确率,为患者提供了更好的治疗机会。
此外,在医学影像分析方面,神经网络的深度学习也发挥了重要作用。
研究人员使用深度学习算法对MRI和CT等医学影像进行分析,能够准确地检测出肿瘤、血管等病变,并提供详细的定量分析结果。
这种技术的应用,不仅提高了医生的诊断准确性,还为患者提供了更加精准和个性化的治疗方案。
2. 金融领域在金融领域,神经网络的深度学习被广泛应用于风险评估和投资决策。
例如,在信用评估方面,研究人员使用深度学习算法对大量的借贷数据进行训练,建立了一个信用评估模型。
该模型能够准确地预测借款人的还款能力,帮助金融机构降低风险,提高贷款的准确性。
此外,在股票市场的预测方面,神经网络的深度学习也发挥了重要作用。
研究人员使用深度学习算法对历史股票数据进行分析,建立了一个股票预测模型。
该模型能够准确地预测股票的涨跌趋势,帮助投资者做出更加明智的投资决策。
3. 图像识别领域在图像识别领域,神经网络的深度学习被广泛应用于人脸识别、物体检测和图像分类等任务。
例如,在人脸识别方面,研究人员使用深度学习算法对大量的人脸图像进行训练,建立了一个人脸识别模型。
该模型能够准确地识别出人脸的特征,提高了人脸识别的准确率,广泛应用于安防领域和人脸支付等场景。
此外,在物体检测和图像分类方面,神经网络的深度学习也取得了重要突破。
《人工神经网络》课件
拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。
人工神经网络及其应用[PPT课件]
➢人工神经网络是从微观构造与功能上对人脑神经系 统的模拟而建立起来的一类模型,具有模拟人的局部 形象思维的能力。其特点主要是具有非线性、学习能 力和自适应性,是模拟人的智能的一条重要途径。
Ep (t)
dp yp (t) 2
1 2 [d p
yp (t)]2
1 2
e2p
(t)
J (t)
〔4〕δ规那么:
1 2
[dp
p
yp (t)]2
1 2
e2 p p
(t)
用于权值调整的自适应学习算法为
将代入上式可得j(t 1 )j(t) /E p uj( ( pt t) )2j(t)e p (t)u jp
wij uiuj
❖这一规那么与〞条件反射“学说一致,并已得到神经细胞 学说的证实。α是表示学习速率的比例常数。
2.4 神经网络的互联模式
根据连接方式的不同,神经网络的神经元之间的连接有如 下几种形式。
1〕前向网络
前向网络构造如以下图。神经元分层排列,分别组成输入 层、中间层〔也称为隐含层,可以由假设干层组成〕和输 出层。每一层的神经元只承受来自前一层神经元的输入, 后面的层对前面的层没有信号反响。输入模式经过各层次 的顺序传播,最后在输出层上得到输出。感知器网络和BP 网络均属于前向网络。
1〕有监视学习:对于监视学习,网络训练往往要基于一定数 量的训练样本。训练样本通常由输入矢量和目标矢量组成。在 学习和训练过程中,网络根据实际输出与期望输出的比较,进 展连接权值和域值的调节。通过将期望输出成为导师信号,它 是评价学习的标准。最典型的有监视学习算法是BP算法,即误 差反向传播算法。
人工神经网络入门(1)——单层人工神经网络应用示例
⼈⼯神经⽹络⼊门(1)——单层⼈⼯神经⽹络应⽤⽰例范例程序下载:如果您有疑问,可以先参考如果您未找到满意的答案,可以在下⾯留⾔:)1 介绍还记得在2年前刚刚接触RoboCup的时候,从学长⼝中听说了ANN(⼈⼯神经⽹络),这个东西可神奇了,他能通过学会从⽽对⼀些问题进⾏⾜够好处理。
就像咱们⼈⼀样,可以通过学习,了解新的知识。
但是2年了,⼀直想学习ANN,但是⼀直没有成功。
原因很多,其中主要的原因是咱们国内的教程中关于这个技术的介绍过于理论化,以⾄于我们基础差和⾃学者望⽽却步。
现在,我希望通过⼀个简单的⽰例,让⼤家先有⼀个感性的认识,然后再了解⼀些相应的理论,从⽽达到更好的学习效果。
2 范例程序的使⽤和说明本程序⽰例2个简单的运算:1 AND运算:就是咱们常⽤的求和运算,如:1 AND 0 = 12 OR运算:就是咱们常⽤的求并运算,如:1 OR 0 = 1启动程序后,你将会看到如下的界⾯:点击“开始训练AND”按钮后,程序就开始训练 AND 运算,并在训练结束后提⽰咱们。
同时界⾯变成如下:你只需要点击“0 0”按钮,就会在“计算结果”下⾯显⽰经过训练以后的ANN计算出来的结果。
如下所⽰:“计算结果”显⽰为“1.74E-10”,说明 0 AND 0 = 0.这个结果就是我们想要的。
训练成功其他的按钮使⽤⽅法类似:)3 计算过程咱们可以参考⼀下AND计算的总体运⾏过程://初始化训练集合TrainSet[] sets = new TrainSet[]{new TrainSet(0, 0, 0), new TrainSet(0, 1, 0),new TrainSet(1, 0, 0), new TrainSet(1, 1, 1)};//构造单层神经⽹络 2 个输⼊节点 1个输出节点NeuralNetwork nn = new NeuralNetwork(2, 1);slnn = new SingleLayerNeuralNetworks(nn, sets);//训练slnn.Train();MessageBox.Show("AND运算训练结束");this.button2.Enabled = true;this.button3.Enabled = true;this.button4.Enabled = true;this.button1.Enabled = true;this.Text = "AND运算";OK,通过上⾯的代码可以看出,咱们的神经⽹络有2个输⼊节点,⽤于输⼊AND运算的2个参数。
人工神经网络在哪些领域中得到广泛应用?
人工神经网络在哪些领域中得到广泛应用?一、医疗健康领域人工神经网络在医疗健康领域中的应用,早已成为一个备受瞩目的话题。
目前,人工神经网络已经成功应用于医学图像诊断、疾病预测和药物开发等多个方面。
1. 医学图像诊断通过使用深度学习算法,人工神经网络可以对医学图像进行自动分析和识别。
例如,在肿瘤检测方面,人工神经网络可以通过训练大量的肿瘤图像,自动识别出患者是否存在肿瘤,并提供相应的诊断建议,从而帮助医生提高诊断准确性。
2. 疾病预测人工神经网络可以通过学习大量的病例数据,预测患者未来可能发生的疾病。
例如,在心脏病预测方面,人工神经网络可以根据患者的年龄、性别、血压、血脂等指标,预测患者是否患有心脏病的风险,并提供相应的预防建议。
3. 药物开发人工神经网络可以通过分析药物分子的结构和特性,预测药物的疗效和潜在副作用。
例如,在药物筛选方面,人工神经网络可以通过学习已知药物和疾病之间的关系,预测新的药物对特定疾病的治疗效果,从而加快药物研发的速度和效率。
二、智能交通领域人工神经网络在智能交通领域中的应用,正在推动城市交通系统的智能化和高效化发展。
通过利用人工神经网络技术,可以实现交通流量预测、交通信号优化和智能驾驶等多个领域的创新。
1. 交通流量预测通过分析历史交通数据,人工神经网络可以预测未来交通流量的变化趋势。
例如,在城市交通规划方面,人工神经网络可以通过学习大量的历史交通数据,预测未来某一时间段某一路段的交通流量,从而帮助交通部门优化道路资源的配置。
2. 交通信号优化人工神经网络可以通过学习交通流量数据和信号控制策略,优化交通信号的配时方案。
例如,在城市交通拥堵缓解方面,人工神经网络可以根据实时的交通流量信息,自动调整交通信号的配时,从而提高交通效率和减少交通拥堵。
3. 智能驾驶人工神经网络在智能驾驶中的应用,可以帮助汽车实现自主驾驶和智能化的交通系统。
通过学习大量的驾驶数据,人工神经网络可以模拟人类的驾驶行为,并做出智能决策。
人工神经网络概述及在分类中的应用举例
人工神经网络概述及其在分类中的应用举例人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。
为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。
人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。
神经网络在2个方面与人脑相似:(1) 人工神经网络获取的知识是从外界环境中学习得来的。
(2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。
他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。
神经网络理论是巨量信息并行处理和大规模并行计算的基础。
一人工神经网络的基本特征1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。
这特别适于实时控制和动态控制。
各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。
2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。
只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。
因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。
3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。
作为神经元间连接键的突触,既是信号转换站,又是信息存储器。
每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。
信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。
4、具有联想存储功能:人的大脑是具有联想功能的。
比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。
用人工神经网络的反馈网络就可以实现这种联想。
神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。
神经网络模型及其应用实例
神经网络模型及其应用实例近年来,随着计算机技术的不断发展,神经网络模型越来越受到广泛的关注和应用。
神经网络模型是一种人工智能技术,利用与人类神经元类似的计算机算法来模拟人脑神经系统的工作原理,实现对海量数据的处理和识别。
本文将介绍神经网络模型的基本原理和应用实例。
一、神经网络模型的基本原理从形态上来看,神经网络模型类似于一个由许多个小模块构成的网络,每个小模块可以看做是一个神经元,神经元之间通过权值连接起来,形成了复杂的网络结构。
在这个网络中,每个神经元会受到周围神经元的输入,通过计算神经元的激活函数,输出自己的结果。
神经网络模型的训练过程,主要通过调整权值来实现。
训练数据集被输入到神经网络中,神经网络输出的结果与样本集中的实际结果进行比较,通过反向调整权值来使得网络输出更加接近实际结果。
这个过程需要不断重新调整权值,直到网络输出的结果与实际结果达到一定的精度和稳定性。
神经网络模型的基本原理实际上更加复杂,其中包括一系列的算法和公式计算,这里就不再一一赘述。
下面将介绍神经网络模型的一些应用实例。
二、语音识别语音识别技术是一项非常复杂的任务,需要考虑到语音信号的干扰、噪声等诸多因素。
神经网络模型基于其自适应学习和模式识别的特点,成为了最受欢迎的语音识别技术之一。
神经网络模型可以从大量的语音数据中,自动提取数学特征,用于语音识别和语音分析。
神经网络模型准确率较高,目前已广泛应用于语音识别、智能家居、智能客服等多个领域。
三、图像识别图像识别技术是神经网络模型的另一个重要应用领域。
神经网络模型在处理图像数据时,可以提取出图像中不同部分之间的关联规律和特征。
与传统的基于规则的图像识别方法相比,神经网络模型具有更强的自适应性,可以从更多维度、更全面的角度对图像进行分析和处理,提高图像识别的准确度和效率。
图像识别技术已经广泛应用于自动驾驶、人脸识别、医学影像分析等领域。
四、自然语言处理自然语言处理是神经网络模型的又一个重要应用领域。
BP神经网络详解与实例
(Artificial Neural Netwroks -----ANN)
-----HZAU 数模基地
引言
❖ 利用机器模仿人类的智能是长期以来人们认识自 然、改造自然和认识自身的理想。
❖ 研究ANN目的: ❖ (1)探索和模拟人的感觉、思维和行为的规律,
设计具有人类智能的计算机系统。 ❖ (2)探讨人脑的智能活动,用物化了的智能来
二、神经元与神经网络
❖ 大脑可视作为1000多亿神经元组成的神经网络
• 图3 神经元的解剖图
❖ 神经元的信息传递和处理是一种电化学活 动.树突由于电化学作用接受外界的刺激;通 过胞体内的活动体现为轴突电位,当轴突电位 达到一定的值则形成神经脉冲或动作电位;再 通过轴突末梢传递给其它的神经元.从控制论 的观点来看;这一过程可以看作一个多输入单 输出非线性系统的动态过程
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp
隐含层LB V
… a1
… ah
an 输入层LA
a1k
a
k h
a
k n
基本BP网络的拓扑结构
ANN类型与功能
一般而言, ANN与经典计算方法相比并非优越, 只有当常规 方法解决不了或效果不佳时ANN方法才能显示出其优越性。尤 其对问题的机理不甚了解或不能用数学模型表示的系统,如故障 诊断、特征提取和预测等问题,ANN往往是最有利的工具。另 一方面, ANN对处理大量原始数据而不能用规则或公式描述的 问题, 表现出极大的灵活性和自适应性。
i 1
(p=1,…,P)
人工神经网络原理及仿真实例课程设计
人工神经网络原理及仿真实例课程设计一、引言人工神经网络是作为人类学习和复制神经系统功能的一种模型而被发明的。
它是由大量的处理单元相互连接而组成的计算模型,每个单元都可以接受输入和产生输出。
人工神经网络广泛应用于语音识别、图像识别、控制系统、自然语言处理等领域。
因此,对于计算机科学和人工智能领域的学习者来说,深入研究神经网络理论和实践非常重要。
本文旨在介绍人工神经网络的原理和设计过程,并提供一个基于MATLAB软件的仿真实例,帮助学习者深入了解神经网络的应用。
二、人工神经网络的原理1. 神经元模型神经元是神经网络的基本单元。
其模型通常由三个部分组成:输入部分、激励函数和输出部分。
在输入部分,神经元接收到来自其他神经元的信号,并将其加权后传递到下一层。
激励函数则用于计算加权后的信号是否达到神经元的阈值。
如果达到阈值,则该神经元会产生输出信号,否则则不产生。
2. 前馈神经网络模型前馈神经网络是一种基本的网络结构,其模型是一个多层前向结构,网络的每个神经元都与前一层的所有神经元相连,其输出被下一层的神经元作为输入。
3. 反馈神经网络模型反馈神经网络具有递归结构,其模型可以形成一个环路。
由于它们具有记忆功能,可以用于时间序列分析和控制问题中。
4. 感知器感知器是一种最简单的神经网络结构,主要由一个输出层和一个或多个输入层组成。
在感知器中,输入层的神经元接收外部信号并将它们转发到输出层的神经元,输出层产生此神经元的输出值。
5. 递归神经网络模型递归神经网络的输出层的输出值可以通过对前面时间步骤的结果进行回溯和反馈改进。
这使得递归神经网络在面对时间序列数据集时表现出更好的性能。
三、基于MATLAB的人工神经网络仿真实例1. 数据准备我们使用一个鸢尾花数据集进行实验。
首先,需要从网上下载数据集(下载链接不提供),并将其存储为.csv文件。
2. 数据预处理使用MATLAB工具箱对数据进行预处理,将每一列数据归一化到[0,1]的范围内。
神经网络的实际应用举例
神经网络的实际应用举例神经网络是人工智能领域内的一个重要分支,它模拟了人脑的神经网络系统,能够通过学习实现对未知数据的处理和预测。
由于其优秀的性能,神经网络在多个领域内都得到了广泛的应用。
一、图像识别和分类神经网络在图像识别和分类领域内得到了广泛的应用。
利用卷积神经网络(Convolutional Neural Network, CNN)可以对图像进行预处理,加速操作速度,提高识别准确率。
例如,Facebook就利用CNN对用户上传的图片进行人脸识别和标记,以便进行搜索和分类。
二、自然语言处理自然语言处理(Natural Language Processing, NLP)是人工智能领域中的一个非常热门的分支,神经网络在其中也发挥了重要作用。
例如,利用递归神经网络(Recurrent Neural Network, RNN)可以对文字序列进行自然语言处理,用于自动翻译、自动摘要、情感分析等多个方面。
三、金融风险预测通过神经网络算法,可以对大数据进行处理和分析,实现金融风险预测的任务。
例如,银行可以利用神经网络对信用评估、欺诈检测、贷款拖欠等风险进行监测和预测,以提高风险控制的效率。
四、医学诊断神经网络在医学领域也得到了广泛的应用。
例如,利用深度学习网络可以对医学影像数据进行预处理和分析,对各种疾病进行快速、准确的诊断并提供治疗方案。
此外,神经网络还能够对大规模生物数据进行处理和分析,例如对基因序列进行分类和预测。
五、交通指挥交通指挥也是神经网络的另一个实际应用领域。
通过车辆地理位置信息和道路交通情况的数据,利用深度学习网络实时进行交通状况的预测和调度,能够有效地减少拥堵和减少车辆等待时间。
以上就是神经网络在实际应用方面的一些典型案例。
可以看出,该技术在信息处理、机器学习、医疗等众多领域内都有着广泛的应用前景,所以未来也必将和其他技术共同推动人工智能领域的发展。
基于人工神经网络的预测模型在肝脏多发性瘤术后生存分析中的应用
基于人工神经网络的预测模型在肝脏多发性瘤术后生存分析中的应用肝脏多发性瘤是一种常见的恶性肿瘤,发病率呈现逐年上升的趋势,对于这一疾病的治疗及预测其生存情况一直是临床研究的热点之一。
近年来,人工神经网络技术的发展在肝脏多发性瘤预测模型中得到了广泛的应用,其作为一种强大的机器学习工具,能够处理大量的数据并生成高精度的预测结果,具有很好的应用前景。
那么,人工神经网络技术是如何实现这种高精度的预测的呢?一、人工神经网络技术的基本原理人工神经网络是一种通过模拟人脑神经元之间相互联接的方式而构建的网络结构,通过使用数学方法来模拟大脑神经系统的工作原理,从而实现具有学习能力的信息处理系统。
在人工神经网络中,神经元节点之间通过各种不同的连接方式来建立联系,从而进行信息的处理与传递,不同的神经元节点之间的连接的权值是通过网络训练得到的。
二、基于人工神经网络的预测模型在临床中的应用人工神经网络技术在肝脏多发性瘤术后生存分析中能够实现很高的准确率,从而为肝脏多发性瘤患者的治疗提供有力的帮助。
比如,将人工神经网络技术应用在肝脏多发性瘤术后生存预测模型的开发中,可以通过输入多个指标(如年龄、性别、癌灶大小、组织学分级等)来建立模型并进行训练,这样就能够根据输入的指标对患者的生存状况进行预测。
值得注意的是,为了使得模型的预测结果能够更加准确,一般需要增加模型的复杂度,使用更多的神经元和更多的层数,从而提高模型的拟合能力。
但同时,这样也会使得模型更加容易出现过拟合现象,这时候需要在训练过程中使用评估和控制方法,以确保模型的泛化能力和稳定性。
三、结语各种机器学习算法在肝脏多发性瘤术后生存分析中的应用各有特点,但相对于其他算法,人工神经网络技术具有较强的处理能力,能更加准确地刻画肝脏多发性瘤患者的临床特征,以便于临床医生进行更加精准的诊疗方案。
当然,人工神经网络技术在实际应用中也有许多限制,就像其他机器学习算法一样,它并不能取代人类医生的诊疗,而只能为医生做出进一步的参考和建议。
人工神经网络的工作原理及其应用研究
人工神经网络的工作原理及其应用研究人工神经网络被认为是计算机科学和人工智能领域中最受关注和研究的领域之一,它的应用范围非常广泛。
在现实生活中,我们可以看到人工神经网络的应用,例如手写识别、语音识别、图像分析、自然语言处理等等。
本文将会详细介绍人工神经网络的工作原理及其应用研究。
一、人工神经网络的定义人工神经网络是由神经元和它们之间的连接组成的计算模型,它可以模拟生物神经元的形式和功能,模拟人类大脑神经网络。
它通过学习经验并对其进行分析和组织,可以实现从复杂数据中提取规律和特点,进而实现分类、识别、预测等功能。
二、人工神经网络的工作原理人工神经网络是建立在数学和生物学的基础上的。
它的工作原理可以分为三个主要步骤,即信号的传递、加权计算和激励函数处理。
在人工神经网络的第一步中,它接收来自外部环境的输入信号,并将其传递到神经元。
在第二步中,神经元会对输入信号进行加权计算,将其与预设的阈值相比较,然后输出。
在第三步中,神经元的输出信号将会经过激励函数的处理,从而输出最终的结果。
三、人工神经网络的应用研究人工神经网络的应用范围非常广泛。
以下是它在不同领域中的一些应用:1、手写识别人工神经网络可以通过学习大量的手写字符,实现手写字符的识别和分类。
这种应用被广泛地应用于银行、邮局等行业。
2、语音识别语音识别也是人工神经网络的一个重要应用领域。
它可以通过训练一个神经网络来识别不同语音的声音,例如对话声音、病人的呼吸声等等。
3、图像分析人工神经网络也可以用于图像分析领域。
例如,可以通过训练一个神经网络来识别一张图片中的物体,并对其进行分类和识别。
4、自然语言处理自然语言处理是人工神经网络的一个非常重要的应用领域。
它可以帮助人们识别和理解不同语言中的意思和语法。
例如,可以通过训练一个神经网络来自动翻译一种语言到另一种语言。
四、总结人工神经网络通过模拟生物神经元的工作原理,实现了从复杂数据中提取规律和特点的功能。
它的应用范围广泛,可以用于手写识别、语音识别、图像分析、自然语言处理等领域。
人工神经网络的研究和应用
人工神经网络的研究和应用随着科技的不断发展,我们进入了一个智能化的时代,人工神经网络成为了人们讨论的重点。
人工神经网络是一种仿生学的技术手段,它能够模拟人类大脑的神经网络结构,实现像人类一样学习、决策和预测的功能。
本文将探讨人工神经网络的研究和应用。
一、人工神经网络的基本原理人工神经网络是由许多个“神经元”组成的,每个神经元接受多个输入信号,经过运算后输出一个结果。
简单的神经元通常由加权求和运算和一个阈值函数组成,它将输入信号与其对应的权重相乘并求和,再将结果输入到激活函数中,最后输出一个结果。
在人工神经网络中,我们将多组神经元组织成多层网络,每一层由若干个神经元组成。
每个神经元的输出将作为下一层神经元的输入,最终的输出结果将由输出层神经元组成。
二、人工神经网络的分类人工神经网络可以分为多种类型,如前馈神经网络、反馈神经网络、卷积神经网络等。
其中前馈神经网络是最为常见的一种,它没有反馈回路,信息只能从输入层到输出层流动。
反馈神经网络则允许信息沿着回路反向传播,这样神经网络就可以学习时间上的相关性,例如预测时间序列数据。
卷积神经网络是一种专门用来处理图像和视频数据的神经网络。
它通过卷积核对图像进行卷积运算,提取出图像中的特征,并经过多层池化操作后进行分类或识别。
三、人工神经网络的应用人工神经网络在各个领域都有广泛的应用,例如:1. 语音识别语言识别是人工智能领域的一个重要应用方向,人工神经网络在语音识别上也有广泛的应用。
通过学习音频输入和其对应的文字标注,神经网络可以准确地识别不同人的发音,并将其转化为文字。
2. 图像识别人工神经网络可以对图像进行分类、识别和分割等操作,例如在自动驾驶汽车、医疗图像识别、安防监控等领域中都有广泛的应用。
3. 自然语言处理自然语言处理技术是人工智能领域的另一个研究热点,它涉及到文字自动翻译、情感分析、问答系统等多个方向。
人工神经网络可以通过学习大量的语言数据,对自然语言信息进行自动处理和解析。
人工神经网络的发展及其应用
人工神经网络的发展及其应用随着科技的不断发展,人工神经网络成为一种越来越被广泛应用于各个领域的技术。
人工神经网络是一种基于生物神经网络原理的计算模型,其应用领域如机器学习、计算机视觉、自然语言处理、语音识别、控制系统等方面均有广泛应用。
一、人工神经网络的发展历史人工神经网络最早来源于1940年代末期的哈佛大学神经学家Warren McCulloch与Walter Pitts提出的“神经元模型”,其设计初衷是为了实现人类神经元结构与信息处理的模拟。
随后的几十年里,人工神经网络模型得到了不断改进和发展。
例如,1950年Rossenblatt博士提出了“感知器模型”,1980年代Hopfield等学者提出了“反馈神经网络模型”等。
20世纪80年代到90年代,人工神经网络进入了快速发展阶段。
1992年,Yann LeCun等人提出了用于图像识别的反向传播神经网络,实现了在MNIST数据集上的手写数字识别,开始了卷积神经网络(CNN)的时代。
20世纪90年代后期,支持向量机和其他新兴技术使得“智能”系统的应用迅猛发展。
二、人工神经网络的工作原理人工神经网络的工作原理仿照人类大脑神经元的工作原理,由神经元、突触和神经网络三个组成部分组成。
神经元是神经网络的基本单位,每个神经元接收到其他神经元传来的信息,并通过一个激活函数处理这些信息,以确定继续向下传递的信息是否被激活。
突触是连接不同神经元之间的通道。
人工神经网络的目的是通过训练模型对输入数据进行分类、预测、识别等操作。
训练模型的过程一般可分为前馈和反向传播两个过程。
前馈指将输入信号在神经网络中传递至输出端的过程,反向传播则是通过误差反向传递回神经网络中的每个神经元,并根据误差进行权重调整的过程。
三、人工神经网络在各领域中的应用1.机器学习人工神经网络是最为常见的机器学习算法之一。
在机器学习中,人工神经网络常被用于进行物体识别、分类和预测,这些任务包括模式识别、语音识别、手写文字识别等。
BP人工神经网络的基本原理模型与实例
w14
0.2+(0.9) (-0.0087)(1)=0.192
w15
-0.3+(0.9) (-0.0065)(1)=-0.306
w24
0.4+(0.9) (-0.0087)(0)=0.4
w25
0.1+(0.9) (-0.0065)(0)=0.1
w34
-0.5+(0.9) (-0.0087)(1)=-0.508
8.1人工神经网络旳基本概念
人工神经网络在本质上是由许多小旳非线性函数构成 旳大旳非线性函数,反应旳是输入变量到输出变量间旳复 杂映射关系。先给出单个人工神经网络旳一般模型描述:
8.1人工神经网络旳基本概念
先来看一种单一输入旳神经元模型 输入变量:x1 连接权重:w1 激活函数:f (·)
x1 w1
w1x1 f (·)
8.1人工神经网络旳基本概念
8.1人工神经网络旳基本概念
单极sigmoid函数
8.1人工神经网络旳基本概念
双曲函数
8.1人工神经网络旳基本概念
增长激活阈值后旳神经元模型 输入变量:x1 连接权重:w1 激活函数:f (·)
x1 w1
w1x1-θ f (·)
-1
小练习:请你算一算,当初始输入、权重和激活阈值为如下数值时,该神 经元旳净输入和输出分别是多少?
2.反向传播 反向传播时,把误差信号按原来正向传播旳通路反向
传回,并对每个隐层旳各个神经元旳权系数进行修改,以 望误差信号趋向最小。
8.2 误差反向传播(BP)神经网 络
8.2 误差反向传播(BP)神经网 络
x1 x2
x3
单元 j 6
1 w14
Err4=
人工智能基础 第四章 人工神经网络与深度学习
YOURcompany
案例导读
目录
案例导读
案例四:计算机视觉与医疗领域
深度学习在计算机视觉领域(CV)的成就是令人惊喜的! CV 主要研究图像和视频理解,处理目标分类、检测和分割等任 务,这些在判断病人射线照片中是否包含恶性肿瘤时非常有用。 卷积神经网络(CNN) 用来处理具备空间不变性的数据,也因 此成为该领域的重要技术。
深度学习方法在大量诊断任务上取代了医生级别的准确率, 包括识别黑痣和黑色素瘤,从眼底图像和光学相干断层扫描 (OCT) 图像中检测糖尿病性视网膜病变、判断心血管风险,提供 转诊建议,以及从乳房 X 光片中检测乳腺病变、使用核磁共振 成像进行脊柱分析。甚至有研究证明单个深度学习模型在多个医 疗模态中都很有效 (如放射科和眼科)。
4.4 深度学习
4.1 神经网络的 发展概括
4.2 神经元
4.3 人工神经网 络
案例导读
案例一:苹果解密:如何在手机上用深度神经网络进行人脸识别
苹果首次将深度学习应用于人脸识别是在 iOS 10 上,并且 苹果首次公开发布人脸检测API,这个API也用在“照片”等苹 果的App中,开发者现在可以在 App 中将该技术与其他很多计 算机视觉算法进行整合。
存储的集成
4.3人工神经网络
具有联想存储功能 具有自组织自学习能力 软件硬件的实现
4.3人工神经网络
典型的人工神经网络模型 --反向传播(BP)神经网络
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的若干基本特征,但并非其逼真的描写。
人工神经网络可概括定义为:由大量简单元件广泛互连而成的复杂网络系统。
所谓简单元件,即人工神经元,是指它可用电子元件、光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。
下图是 3 中常用的元件类型:线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。
21.510.5-0.5-1-1.5-2-6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。
离散型非线性元件: y = ⎨2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6-4-2246⎧1, x ≥ 0 ⎩-1, x < 0,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。
2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6-4-2246每一神经元有许多输入、输出键,各神经元之间以连接键(又称突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型:兴奋型连接、抑制型连接、无连接。
这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神经网络具有所需要的特定功能,即学习、训练或自组织过程。
一个简单的人工神经网络结构图如下所示:上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与输出层之间即为隐层。
输入层节点上的神经元接收外部环境的输入模式,并由它传递给相连隐层上的各个神经元。
隐层是神经元网络的内部处理层,这些神经元在网络内部构成中间层,不直接与外部输入、输出打交道。
人工神经网络所具有的模式变换能力主要体现在隐层的神经元上。
输出层用于产生神经网络的输出模式。
多层神经网络结构中有代表性的有前向网络(BP网络)模型、多层侧抑制神经网络模型和带有反馈的多层神经网络模型等。
本文主要探讨前向网络模型。
多层前向神经网络不具有侧抑制和反馈的连接方式,即不具有本层之间或指向前一层的连接弧,只有指向下一层的连接弧。
代表是BP神经网络:输入模式由输入层进入网络,经中间各隐层的顺序变换,最后由输出层产生一个输出模式,如下图所示:输入层隐层输出层多层前向神经网络由隐层神经元的非线性处理衍生它的能力,这个任务的关键在于将神经元的加权输入非线性转换成一个输出的非线性激励函数。
下图给出了一个接收n个输入x1, x2 , , x n的神经元:b1x1 w1w2 ∑ σ yx2w nx ny = σ (∑ w j j + b )神经元的输出由下式给出:nx j =1这里输入的加权和(括号内部分)由一个非线性函数传递, b 表示与偏差输入相关的权值, w j 表示与第 j 个输入相关的权值。
使用最广泛的函数是 S 形函数,其曲线家族包括对数函数和双曲正切函数,这些都可用来对人口动态系统、经济学系统等建模。
另外所用的其他函数有高斯函数、正弦函数、反正切函数,在此不一一展开介绍,本文主要使用的激励函数是对数函数,函数表达式为:y = L (u ) =函数曲线如下图所示:10.80.60.40.21 1 + e -u-0.2 -10-8-6-4-2246810对于有限输入量,对数函数输出范围为 y ∈ (0,1)。
在输入为 u = 0 时,输出值为中间值 y = 0.5。
输出在 u = 0 附近随着输入的增加以相对快的= t -1 + e∂ε ∂u e -u∂ε ∂u e -u∆w = -β ⋅ = β ⋅ E ⋅ ⋅ x∆b = -β ⋅ = β ⋅ E ⋅速率增加并非常慢地到达上限。
对于 u < 0 ,输出起初减少得很快,然后随着下限的接近将会变慢。
训练神经元的规则有很多种,这里首先介绍利用 delta 规则的学习,神经元选择为一个单输入单输出的简单情形,数学描述如下:u = wx + b , y =1 1 + e -u该神经元具有一个输入 x ,权重为 w ,偏差输入为 b ,目标输出为 t ,预报输出为 y 。
则预报误差为:E = t - y = t -1 11 + e -u 1 + e - wx -b为消除当误差在整个输入模式上求和时引起的误差符号问题,在delta 规则里使用的误差指示是平方误差,定义为:1 12 21 - wx -b)2根据 delta 规则,最优权值(使平方误差最小)可以在训练过程中从初始权值出发,沿负梯度方向下降得到。
将平方误差对 w , b (神经元的可调整参数)进行微分,得:∂ε ∂u= -E ⋅ e -u (1 + e -u )2∂ε ∂w ∂ε ∂b = ⋅ = - E ⋅ ⋅ x ∂u ∂w (1 + e -u )2 = ⋅ = - E ⋅∂u ∂b (1 + e -u )2根据 delta 原则,权值改变应与误差梯度的负值成比例,引入学习率 β ,每次迭代中的权值改变可表示为:∂ε e -u∂w (1 + e -u )2 ∂ε∂b e -u (1 + e -u )2wij ji+ β ⋅ E ⋅= w学习率 β 决定了沿梯度方向的移动速度,以确定新的权值。
大的β 值会加快权值的改变,小的 β 值则减缓了权值的改变。
第 i 次迭代后的新权值可表示为:w i +1 = w i + β ⋅ E ⋅e -u (1 + e -u )2 ⋅ xb i +1 = b i + β ⋅ E ⋅e -u(1 + e -u )2如果将偏差输入 b 视为输入 x 的一部分,令 x 0 = 1, w 0 = b ,可以得到对于多输入神经元的权值修正式:+1e -u(1 + e -u )2⋅ x j , j = 0,1, 2, , n总之,利用 delta 规则的有监督的学习可以按如下方法来实现:一个输入模式( x 0 , x 1, x 2 , , x n )通过连接被传递,它的初始权值被设置为任意值。
对加权的输入求和,产生输出 y ,然后 y 与给定的目标输出 t 做比较决定此模式的平方误差 ε 。
输入和目标输出不断地被提出,在每一次迭代或每一个训练时间后利用 delta 规则进行权值调整直到得到可能的最小平方误差。
delta 规则在每一步中通过导数寻找在误差平面中某个特定点局部区域的斜率,它总是应用这个斜率从而试图减小局部误差,因此,delta 规则不能区分误差空间中的全局最小点和局部最小点,它本身不能克服单层神经网络的局限,无法直接应用到多层神经网络(易陷入局部最小点),但它的一般形式是多层神经网络中的学习算法——反传算法的核心。
在多层前向神经网络的训练过程中,误差导数或关于权值的误差, u i = ∑ a ji j , i = 1, 2, z = v , v = ∑ b i i y表面的斜率对权值的调整是至关重要的,在网络训练期间,所有的输出神经元和隐含神经元权值必须同时调整,因此,有必要找出关于所有权值的误差导数。
由于网络层数增多,平方误差 ε 与权值的连接没有之前单个神经元时那么直接,故可以使用链式规则的概念来找到导数。
下面对一个含有一层隐含神经元的 BP 网络进行讨论,网络结构如下图所示:x 0 = 11a 0ma 01∑σy 1b 1y 0 = 1x 11b 0x 21∑1zb ma n 1y mx n1a nm∑σ各个神经元的输入输出关系为:y i =11 + e -u in j =0x, m mi =0设目标输出为 t ,则平方误差 ε 定义为:= ⋅ y i , i = 0,1, 2, = ⋅ b i , i = 1, 2, ∂ε∂ε∂∂ε∂ε ∂u i ∂ε∂u i ∂a ji ∂u i= -(t - z ) ⋅ b i ⋅ ⋅ x j , i = 1, 2,1 2使用链式法则,分别列出平方误差 ε 对所有网络参数的导数:∂ε ∂v= -(t - z )∂ε∂b i ∂ε∂v, m∂ε∂y i∂ε∂v, m= ⋅ = ⋅∂u i ∂y i ∂u i ∂y i (1+ e -u i )2 , i = 1, 2,, m∂ε ∂a ji= ⋅ = ⋅ x j , i = 1, 2, , m , j = 0,1, 2,, n在实际的编程过程中,我们需要的是 ∂ε∂b i和∂ε ∂a ji,所以如果有需要,也可以直接采用以下整理之后的形式:∂ε∂b i= -(t - z ) ⋅ y i , i = 0,1, 2, , m∂ε ∂a jie -u i(1 + e -u i )2, m , j = 0,1, 2,, n研究表明,两层网络在其隐层中使用 S 形激励函数,在输出层中使用线性传输函数,就几乎可以以任意精度逼近任意感兴趣的函数,只要隐层中有足够的单元可用。
问题 1:试使用 BP 神经网络去逼近正弦函数的正半周,如下:t = sin(x ), x ∈[0,π ]由于输入量 x 仅有一维,故 BP 神经网络结构可以设计为:, u i = ∑ a ji j , i = 1, 2z = v , v = ∑ b i i y= -(t - z ) ⋅ b i ⋅ ⋅ x j , i = 1, 2, j = 0,1b i i b k - β ⋅= = b i + β ⋅ (t - z ) ⋅ y i , i = 0,1, 2= a -β ⋅ = a ji + β ⋅ (t - z ) ⋅ b i ⋅ ⋅ x j , i = 1, 2, j = 0,1 ∂a j i (1 +各个神经元的输入输出关系为:y i =1 1 + e -u i1 j =0x 2i =0根据之前的推导,平方误差 ε 对所有网络参数的导数为:∂ε∂b i= -(t - z ) ⋅ y i , i = 0,1, 2∂ε ∂a jie -u i(1 + e -u i )2网络参数修正方程为:k +1∂ε ∂b ikak +1 jijik∂ε k为加快寻找最优权值的速度,可以使用动量法。
之前的方法中,收敛到最优权值的速度取决于学习率的大小,但是过大的学习率会导致来回震荡,不能稳定到最优权值点。
动量法的引入,使得较大的学习率也可以具有较好的稳定性,即提供了在学习期间到达最优权值时的稳定性。
这种方法基本上是将过去权值变化的平均值附加到每一次权值变化的新权值增量,从而使网络权值的变化更平滑。
数学表示如下:∆w k +1 = μ ⋅ ∆w k + (1- μ ) ⋅ β ⋅ (- ∂ε∂w)式中, μ是一个在0和1之间的动量参数, ∆w k是在前一个训练时间里的权值变化。