高中数学:三角函数的诱导公式 (91)
高中数学诱导公式
最全高中数学诱导公式常用的诱导公式有以下几组:1公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα,cos(-α)=cosαtan(-α)=-tanα,cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα,cos(π-α)=-cosαtan(π-α)=-tanα,cot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα,cos(2π-α)=cosαtan(2π-α)=-tanα,cot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π/2-α)=cosα,cos(π/2-α)=sinαtan(π/2-α)=cotα,cot(π/2-α)=tanα,sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα,sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,tan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高中数学诱导公式大全
高中数学诱导公式大全常用的诱导公式有以下几组:;公式一:;设α为任意角,终边相同的角的同一三角函数的值相等;sin(2kπ+α)=sinα(k∈Z);cos(2kπ+α)=cosα(k∈Z);tan(2kπ+α)=tanα(k∈Z);cot(2kπ+α)=cotα(k∈Z);公式二:;设α为任意角,π+α的三角函数值与α的三角函数值;sin(π+α)=-sinα;cos(π+α常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
高中数学诱导公式大全
常用的诱导公式有以下几组:;公式一:;设α为任意角,终边相同的角的同一三角函数的值相等;sin(2kπ+α)=sinα(k∈Z);cos(2kπ+α)=cosα(k∈Z);tan(2kπ+α)=tanα(k∈Z);cot(2kπ+α)=cotα(k∈Z);公式二:;设α为任意角,π+α的三角函数值与α的三角函数值;sin(π+α)=-sinα;cos(π+α常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαc ot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
最新三角函数-高中数学诱导公式大全
常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀规律总结上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
高中数学诱导公式大全
高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
高中数学诱导公式全集
高中数学诱导公式全集常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α=sinα(k∈Zcos(2kπ+α=cosα(k∈Ztan(2kπ+α=tanα(k∈Zcot(2kπ+α=cotα(k∈Z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α=-sinαcos(π+α=-cosαtan(π+α=tanαcot(π+α=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α=-sinαcos(-α=cosαtan(-α=-tanαcot(-α=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α=sinαcos(π-α=-cosαtan(π-α=-tanαcot(π-α=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α=-sinαcos(2π-α=cosαtan(2π-α=-tanαcot(2π-α=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α=cosαcos(π/2+α=-sinαtan(π/2+α=-cotαcot(π/2+α=-tanαsin(π/2-α=cosαcos(π/2-α=sinαtan(π/2-α=cotαcot(π/2-α=tanαsin(3π/2+α=-cosαcos(3π/2+α=sinαtan(3π/2+α=-cotαcot(3π/2+α=-tanαsin(3π/2-α=-cosαcos(3π/2-α=-sinαtan(3π/2-α=cotαcot(3π/2-α=tanα(以上k∈Z注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变然后在前面加上把α看成锐角时原函数值的符号。
高中三角函数公式及诱导公式大全
高中三角函数公式及诱导公式大全一、基本概念在高中数学学习中,三角函数是一个非常重要的概念。
三角函数包括正弦函数、余弦函数、正切函数等,它们是描述角度与边长关系的函数。
二、基本的三角函数公式1. 正弦函数(Sine)正弦函数表示为$$\\sin\\theta$$,其中$$\\theta$$为角度。
正弦函数的公式为:$$\\sin\\theta = \\frac {对边}{斜边} = \\frac {BC}{AC}$$2. 余弦函数(Cosine)余弦函数表示为$$\\cos\\theta$$。
余弦函数的公式为:$$\\cos\\theta = \\frac{邻边}{斜边} = \\frac{AB}{AC}$$3. 正切函数(Tangent)正切函数表示为$$\\tan\\theta$$。
正切函数的公式为:$$\\tan\\theta = \\frac{对边}{邻边} = \\frac{BC}{AB}$$三、三角函数的诱导公式1. 正弦函数的诱导公式对于一个角的三角函数,我们可以通过一些关系式得到其诱导公式。
正弦函数的诱导公式如下:$$\\sin(-\\theta) = -\\sin\\theta$$$$\\sin(\\pi - \\theta) = \\sin\\theta$$$$\\sin(\\pi + \\theta) = -\\sin\\theta$$2. 余弦函数的诱导公式余弦函数的诱导公式如下:$$\\cos(-\\theta) = \\cos\\theta$$$$\\cos(\\pi - \\theta) = -\\cos\\theta$$$$\\cos(\\pi + \\theta) = -\\cos\\theta$$3. 正切函数的诱导公式正切函数的诱导公式如下:$$\\tan(-\\theta) = -\\tan\\theta$$$$\\tan(\\pi - \\theta) = -\\tan\\theta$$$$\\tan(\\pi + \\theta) = \\tan\\theta$$四、三角函数公式的应用三角函数的公式在实际问题中有着广泛的应用,比如在三角测量、工程计算等领域中常常会用到。
(完整版)高中数学诱导公式大全
高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sin α(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cos αtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cos αcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀规律总结上面这些诱导公式可以概括为:对于π/2*k ±α(k ∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。
高中数学诱导公式大全
高中数学诱导公式大全常用的诱导公式有以下几组:;公式一:;设α为任意角,终边相同的角的同一三角函数的值相等;sin(2kπ+α)=sinα(k∈Z);cos(2kπ+α)=cosα(k∈Z);tan(2kπ+α)=tanα(k∈Z);cot(2kπ+α)=cotα(k∈Z);公式二:;设α为任意角,π+α的三角函数值与α的三角函数值;sin(π+α)=-sinα;cos(π+α常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
三角函数-高中数学诱导公式大全
三角函数-高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法六角形记忆法:构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。
由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^ 2(α)tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。
高中数学诱导公式全集
一、高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
三角函数 高中数学诱导公式大全
时常使用的诱导公式有以下几组:之阳早格格创做公式一:设α为任性角,末边相共的角的共一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任性角,π+α的三角函数值与α的三角函数值之间的闭系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任性角α与-α的三角函数值之间的闭系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二战公式三不妨得到π-α与α的三角函数值之间的闭系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一战公式三不妨得到2π-α与α的三角函数值之间的闭系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的闭系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:正在干题时,将a瞅成钝角去干会比较佳干.诱导公式影象心诀顺序归纳上头那些诱导公式不妨综合为:对付于π/2*k ±α(k∈Z)的三角函数值,①当k是奇数时,得到α的共名函数值,即函数名没有改变;②当k是奇数时,得到α相映的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变奇没有变)而后正在前里加上把α瞅成钝角时本函数值的标记.(标记瞅象限)比圆:sin(2π-α)=sin(4·π/2-α),k=4为奇数,所以与sinα.当α是钝角时,2π-α∈(270°,360°),sin(2π-α)<0,标记为“-”.所以sin(2π-α)=-sinα上述的影象心诀是:奇变奇没有变,标记瞅象限.公式左边的标记为把α视为钝角时,角k·360°+α(k∈Z),-α、180°±α,360°-α地圆象限的本三角函数值的标记可影象火仄诱导名没有变;标记瞅象限.百般三角函数正在四个象限的标记怎么样推断,也不妨记开心诀“一齐正;二正弦(余割);三二切;四余弦(正割)”.那十二字心诀的意义便是道:第一象限内所有一个角的四种三角函数值皆是“+”;第二象限内惟有正弦是“+”,其余局部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内惟有余弦是“+”,其余局部是“-”.上述影象心诀,一齐正,二正弦,三内切,四余弦另有一种依照函数典型分象规定正背:函数典型第一象限第二象限第三象限第四象限正弦 ...........+............+............—............—........余弦 ...........+............—............—............+........正切 ...........+............—............+............—........余切 ...........+............—............+............—........共角三角函数基础闭系共角三角函数的基础闭系式倒数闭系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的闭系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα仄圆闭系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)共角三角函数闭系六角形影象法六角形影象法:构制以"上弦、中切、下割;左正、左余、中间1"的正六边形为模型.(1)倒数闭系:对付角线上二个函数互为倒数;(2)商数闭系:六边形任性一顶面上的函数值等于与它相邻的二个顶面上函数值的乘积.(主假如二条实线二端的三角函数值的乘积).由此,可得商数闭系式.(3)仄圆闭系:正在戴有阳影线的三角形中,上头二个顶面上的三角函数值的仄圆战等于底下顶面上的三角函数值的仄圆.二角战好公式二角战与好的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式二倍角的正弦、余弦战正切公式(降幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦战正切公式(落幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(果为cos^2(α)+sin^2(α)=1)再把*分式上下共除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))而后用α/2代替α即可.共理可推导余弦的万能公式.正切的万能公式可通过正弦比余弦得到.三倍角公式三倍角的正弦、余弦战正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-c osαsin^2(α) -2sin^2(α)cosα)上下共除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcos α+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2co sαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式奇像影象★影象要领:谐音、奇像正弦三倍角:3元减4元3角(短债了(被减成背数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减3元(减完之后另有“余”)☆☆注意函数名,即正弦的三倍角皆用正弦表示,余弦的三倍角皆用余弦表示.★其余的影象要领:正弦三倍角:山无司令(谐音为三无四坐) 三指的是"3倍"sinα,无指的是减号,四指的是"4倍",坐指的是sinα坐圆余弦三倍角:司令无山与上共理战好化积公式三角函数的战好化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]积化战好公式三角函数的积化战好公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]战好化积公式推导附推导:最先,咱们知讲sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb咱们把二式相加便得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2共理,若把二式相减,便得到cosa*sinb=(sin(a+b)-sin(a-b))/2共样的,咱们还知讲cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把二式相加,咱们便不妨得到cos(a+b)+cos(a-b)=2cosa*cosb所以咱们便得到,cosa*cosb=(cos(a+b)+cos(a-b))/2共理,二式相减咱们便得到sina*sinb=-(cos(a+b)-cos(a-b))/2那样,咱们便得到了积化战好的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2有了积化战好的四个公式以去,咱们只需一个变形,便不妨得到战好化积的四个公式.咱们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示便不妨得到战好化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)。
三角函数 高中数学诱导公式大全
常常使用的诱导公式有以下几组:之青柳念文创作公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:操纵公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:操纵公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a当作锐角来做会比较好做.诱导公式记忆口诀规律总结上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α当作锐角时原函数值的符号.(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα.当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”.所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限.公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限.各种三角函数在四个象限的符号如何断定,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种依照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦 ...........+............+............—......... ...—........余弦 ...........+............—............—........ ....+........正切 ...........+............—............+......... ...—........余切 ...........+............—............+......... ...—........同角三角函数基本关系同角三角函数的基本关系式倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法六角形记忆法:构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模子.(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积.(主要是两条虚线两头的三角函数值的乘积).由此,可得商数关系式.(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方.两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式si nα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α) )......*,(因为cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可.同理可推导余弦的万能公式.正切的万能公式可通过正弦比余弦得到.三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin( 2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆★记忆方法:谐音、联想正弦三倍角:3元减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减 3元(减完之后还有“余”)☆☆注意函数名,即正弦的三倍角都用正弦暗示,余弦的三倍角都用余弦暗示.★别的的记忆方法:正弦三倍角:山无司令 (谐音为三无四立) 三指的是"3倍"sinα,无指的是减号,四指的是"4倍",立指的是sinα立方余弦三倍角:司令无山与上同理和差化积公式三角函数的和差化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]积化和差公式三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们便可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2有了积化和差的四个公式以后,我们只需一个变形,便可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那末a=(x+y)/2,b=(x-y)/2把a,b分别用x,y暗示便可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)。
三角函数 高中数学诱导公式大全
经常使用的引诱公式有以下几组:之杨若古兰创作公式一:设α为任意角,终边不异的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)留意:在做题时,将a看成锐角来做会比较好做.引诱公式记忆口诀规律总结上面这些引诱公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α响应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号.(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα.当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”.所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限.公式右侧的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平引诱名不变;符号看象限.各种三角函数在四个象限的符号如何判断,也能够记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只要正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只不足弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种按照函数类型分象限制正负:函数类型第一象限第二象限第三象限第四象限正弦...........+............+............—............—........余弦...........+............—............—............+........正切...........+............—............+............—........余切...........+............—............+............—........同角三角函数基本关系同角三角函数的基本关系式倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法六角形记忆法:构造以"上弦、中切、下割;左正、右余、两头1"的正六边形为模型.(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积.(主如果两条虚线两端的三角函数值的乘积).由此,可得商数关系式.(3)平方关系:在带有暗影线的三角形中,上面两个顶点上的三角函数值的平方和等于上面顶点上的三角函数值的平方.两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)全能公式si nα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]全能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(由于cos^2(α)+sin^2(α)=1)再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可.同理可推导余弦的全能公式.正切的全能公式可通过正弦比余弦得到.三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2 sin^2(α)cosα)上下同除以cos^3(α),得:tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos^2(α)+(1-2sin^2(α))sinα=2sinα-2sin^3(α)+sinα-2sin^3(α)=3sinα-4sin^3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos^2(α)-1)cosα-2cosαsin^2(α)=2cos^3(α)-cosα+(2cosα-2cos^3(α))=4cos^3(α)-3cosα即sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα三倍角公式联想记忆★记忆方法:谐音、联想正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减3元(减完以后还有“余”)☆☆留意函数名,即正弦的三倍角都用正弦暗示,余弦的三倍角都用余弦暗示.★另外的记忆方法:正弦三倍角:山无司令(谐音为三无四立) 三指的是"3倍"sinα,无指的是减号,四指的是"4倍",立指的是sinα立方余弦三倍角:司令无山与上同理和差化积公式三角函数的和差化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]积化和差公式三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]cosα·cosβ=0.5[cos(α+β)+cos(α-β)]sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]和差化积公式推导附推导:首先,我们晓得sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b))/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2同样的,我们还晓得cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2如许,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b))/2cosa*sinb=(sin(a+b)-sin(a-b))/2cosa*cosb=(cos(a+b)+cos(a-b))/2sina*sinb=-(cos(a+b)-cos(a-b))/2有了积化和差的四个公式当前,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y暗示就可以得到和差化积的四个公式:sinx+siny=2sin((x+y)/2)*cos((x-y)/2)sinx-siny=2cos((x+y)/2)*sin((x-y)/2)cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)。
三角函数-高中数学诱导公式大全
常用的诱导公式有以下几组:公式一:设a为任意角,终边相同的角的同一三角函数的值相等:sin(2k n +a )=sin a (k €Z)C0S(2k n +a)=COS a (k € Z)tan(2k n +a )=tan a (k €Z)C0t(2k n +a)=COt a (k €Z)公式二:设a为任意角,n +a的三角函数值与a的三角函数值之间的关系:sin( n + a )=-sin acos( n + a )=-COS atan( n + a )=tan aCOt( n + a )=COt a公式三:任意角a与-a的三角函数值之间的关系:sin(- a )=-sin aCOs(- a )=COs atan(- a )=-tan aCOt(- a )=-COt a公式四:利用公式二和公式三可以得到n - a与a的三角函数值之间的关系: sin( n - a )=sin aCOs( n - a )=-COs atan( n - a )=-ta n aCOt( n-a )=-COt a公式五:利用公式一和公式三可以得到2n - a与a的三角函数值之间的关系sin(2 n-a )=-sin aCOS(2n-a )=COs atan(2 n-a )=-tan aCOt(2 n -a )=-COta公式八:n /2 ±a久及3 n/2 ±a与a的三角函数值之间的关系:sin( n /2+ a )=COs aCOs( n /2+ a )=-sin a tan( n /2+ a )=-COt a COt( n /2+ a )=-ta n asin( n /2- a )=COs acos( n /2- a )=sin atan( n /2- a )=cot acot( n /2- a )=ta n asin(3 n /2+ a )=-COS acos(3 n /2+ a )=Sin atan(3 n /2+ a )=-cot acot(3 n /2+ a )=-tan asin(3 n /2- a )=-cos acos(3 n /2- a )=-sin atan(3 n /2- a )=cot acot(3 n /2- a )=tan a(以上k € Z)注意:在做题时,将a看成锐角来做会比较好做。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 1.3 三角函数的诱导公式 第一课时 诱导公式二、三、四课时分层训练‖层级一‖|学业水平达标|1.已知sin (π-α)=13,则sin(α-2 019π)的值为( )A .223 B .-223 C .13D .-13解析:选D 由sin (π-α)=13得sin α=13, sin(α-2 019π)=sin(α-π)=-sin α=-13.故选D.2.若cos (2π-α)=53且α∈⎝ ⎛⎭⎪⎫-π2,0,则sin (π-α)=( )A .-53 B .-23 C .-13D .±23解析:选B 由条件知cos α=53,又sin (π-α)=sin α=-1-cos 2α=-23.故选B. 3.已知sin ⎝ ⎛⎭⎪⎫α-π4=32,则sin ⎝ ⎛⎭⎪⎫5π4-α的值为( ) A .12 B .-12 C .32D .-32解析:选C sin ⎝ ⎛⎭⎪⎫5π4-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫α-π4=sin ⎝⎛⎭⎪⎫α-π4=32.故选C . 4.设cos(-80°)=m ,那么tan 100°=( ) A .1-m 2m B .-1-m 2m C .m1-m 2D .-m1-m 2解析:选B cos(-80°)=cos80°=m ,又tan 100°=-tan 80°=-sin 80°cos80°=-1-m 2m .故选B. 5.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ=( )A .1B .-1C .3D .-3解析:选D 原式可化为sin θ+cos θsin θ-cos θ=12,上下同除以cos θ得tan θ+1tan θ-1=12,求得tan θ=-3,故选D.6.cos (-585°)sin 495°+sin (-570°)的值等于 . 解析:原式=cos (360°+225°)sin (360°+135°)-sin (360°+210°)=cos (180°+45°)sin (180°-45°)-sin (180°+30°) =-2222+12=2-2.★答案★:2-27.若cos (π-x )=32,x ∈(-π,π),则x 的值为 . 解析:∵cos (π-x )=32,∴cos x =-32. ∵x ∈(-π,π),∴x =±5π6.★答案★:±5π68.2+2sin (2π-θ)-cos 2(π+θ)可化简为 . 解析:2+2sin (2π-θ)-cos 2(π+θ) =2+2sin (-θ)-cos 2θ=1-2sin θ+sin 2θ=|1-sin θ|=1-sin θ. ★答案★:1-sin θ9.已知cos α=13,且-π2<α<0,求cos (-α-π)·sin (2π+α)cos (-α)·cos (π+α)的值.解:∵-π2<α<0, ∴sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫132=-223. 原式=-cos α·sin αcos α·(-cos α)=sin αcos α=-223×3=-2 2.10.化简下列各式: (1)cos (π-α)·sin (2π+α)sin (-π+α)·cos (-π-α); (2)cos190°·sin (-210°)cos (-350°)·tan (-585°). 解:(1)原式=-cos α·sin α-sin (π-α)·cos (π+α)=-cos α·sin αsin α·cos α=-1. (2)原式=cos (180°+10°)·[-sin (180°+30°)]cos (360°-10°)·[-tan (360°+225°)]=-cos10°·sin 30°cos10°·[-tan (180°+45°)]=-12-tan 45°=12.‖层级二‖|应试能力达标|1.sin 2150°+sin 2135°+2sin 210°+cos 2225°的值是( )A .14B .34C .114D .94解析:选A 原式=sin 230°+sin 245°+2sin(180°+30°)+cos 2(180°+45°)=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫222+(-2sin 30°)+⎝ ⎛⎭⎪⎫-222=14+24-1+24=14.故选A . 2.化简1+2sin (π-2)·cos (π-2)的结果为( ) A .sin 2+cos2 B .cos2-sin 2 C .sin 2-cos2 D .±(cos2-sin 2)解析:选C1+2sin (π-2)·cos (π-2)=1-2sin 2·cos2=(sin 2-cos2)2 =|sin 2-cos2|. ∵2弧度在第二象限, ∴sin 2>0>cos2,∴原式=sin 2-cos2.故选C .3.已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )A .12 B .-12 C .32D .-32解析:选C ∵sin ⎝ ⎛⎭⎪⎫π4+α=32,∴sin ⎝ ⎛⎭⎪⎫3π4-α= sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4+α=32.故选C . 4.若α∈⎝ ⎛⎭⎪⎫π2,32π,tan(α-7π)=-34,则sin α+cos α的值为( )A .±15 B .-15 C .15D .-75解析:选B ∵tan(α-7π)=tan(α-π)=tan α,∴tan α=-34,∴sin αcos α=-34, ∵cos 2α+sin 2α=1,α∈⎝ ⎛⎭⎪⎫π2,32π,∴cos α=-45,sin α=35,∴sin α+cos α=-15.故选B. 5.cos 2600°= .解析:cos 2600°=|cos120°|=|-cos60°| =⎪⎪⎪⎪⎪⎪-12=12. ★答案★:126.化简:cos (α-π)sin 2(α+3π)tan (α-2π)cos 3(-α-π)= .解析:原式=cos (π-α)sin 2(π+α)-tan (2π-α)cos 3(π+α)=(-cos α)(-sin α)2tan α(-cos α)3=tan α.★答案★:tan α7.设f (x )=a sin (πx +α)+b cos (πx +β)+7,α,β,a ,b 均为实数,若f (2 018)=6,则f (2 019)= .解析:∵f (2 018)=a sin (2 018π+α)+b cos (2 018π+β)+7=a sin α+b cos β+7, ∴a sin α+b cos β+7=6,即a sin α+b cos β=-1,∴f (2 019)=a sin (2 019π+α)+b cos (2 019π+β)+7=a sin [2 018π+(π+α)]+b cos [2 018π+(π+β)]+7=a sin (π+α)+b cos (π+β)+7=-a sin α-b cos β+7=-(a sin α+b cos β)+7=-(-1)+7=8.★答案★:88.(2019·南关区校级月考)已知sin α=-31010,且π<α<3π2,求下列各式的值:(1)tan α; (2)(sin α+cos α)2+sin (α+3π)+cos (π+α)sin (-α)-cos (π+α).解:(1)已知sin α=-31010,且π<α<3π2,∴cosα=-1-sin2α=-10 10,∴tan α=sin αcosα=3.(2)(sin α+cosα)2+sin(α+3π)+cos(π+α) sin(-α)-cos(π+α)=sin2α+cos2α+2sin αcosα1+-sin α-cosα-sin α+cosα=sin2α+cos2α+2sin αcosαsin2α+cos2α+-sin α-cosα-sin α+cosα=tan2α+1+2tan αtan2α+1+-tan α-1-tan α+1=185.。