2017年高考数学考试常考易混知识点梳理.doc

合集下载

17年数学高考知识点

17年数学高考知识点

17年数学高考知识点2017年的数学高考,是每个学生都备受期待和紧张的一场考试。

这次考试的数学试题涵盖了多个知识点和能力要求,考察了学生的逻辑思维能力和解题技巧。

在这篇文章中,我们将讨论一些17年数学高考的重点知识点,帮助学生准备和复习这些内容。

一、函数与方程函数与方程是数学高考中最基础、最重要的一部分。

在17年的数学高考试题中,函数与方程的知识点主要包括函数的定义、性质与图像、一次函数、二次函数、指数函数、对数函数、幂函数、反函数、特殊函数方程等。

学生需要掌握这些知识点的概念和性质,能够根据函数的图像、表达式等来求解相关的问题。

二、几何与图形几何与图形是另一个重要的知识点。

17年数学高考中,几何与图形的内容主要包括平面几何、立体几何和解析几何。

学生需要掌握平行线、垂直线、等腰三角形、相似三角形、勾股定理、解三角形等基本概念和定理,能够灵活运用这些知识解决实际问题。

三、概率与统计概率与统计是考查学生分析和解决实际问题能力的重要内容。

在17年数学高考中,概率与统计的知识点主要包括样本调查、事件与概率、统计图表的分析和应用、抽样调查与总体参数的估计等。

学生需要熟悉概率的概念、性质和计算方法,能够读懂和分析统计图表,灵活运用统计方法解决实际问题。

四、数列与数学归纳法数列与数学归纳法是数学高考中的常见考点。

17年数学高考中,数列与数学归纳法的知识点主要包括等差数列、等比数列、递推数列、通项公式、递归公式、数列的极限、数学归纳法等。

学生需要熟练掌握这些知识点的概念和性质,能够根据数列的特点找出其通项公式或递推公式,并能够应用数学归纳法解决一些证明问题。

五、微积分微积分是高考中比较复杂的知识点之一。

17年数学高考中,微积分的知识点主要包括导数、微分、极值、最值、不等式证明等。

学生需要掌握导函数的概念和性质,能够求解函数的导数、极值和最值,能够应用导数解决实际问题。

六、线性规划与向量线性规划与向量是数学高考中的综合应用题。

2017年高考数学热点、难点知识汇总

2017年高考数学热点、难点知识汇总

2017年高考数学热点、难点知识汇总第一、立体几何 知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图). (二面角的取值范围[) 180,0∈θ)(直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) (向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)12方向相同12方向不相同[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立. 直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行) ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面) ③垂直于同一平面的两条直线平行.(√)5. ⑪垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑫射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.P O AaP αβM AB证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤ ⎝⎛∈2,0πθ) 7. ⑪最小角定理:21cos cos cos θθθ=(1θ为最小角,如图)⑫最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.五、 棱锥、棱柱. 1. 棱柱.⑪①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑫{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}.{直四棱柱}⋂{平行六面体}={直平行六面体}.⑬棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑭平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα. 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2c o s c o s c o s 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)图1θθ1θ2图2④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑪①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --. 则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法).⑫棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑬特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等) ii. 简证:AB ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令===,, l ab cB F E D得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅0=-⇒则0=⋅AD BC . iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形.3. 球:⑪球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. ⑫纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高)4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧AC D B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.六. 空间向量.1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. 注:①若a 与b 共线,b 与c 共线,则a 与c 共线.(×) [当0=b 时,不成立]②向量c b a ,,共面即它们所在直线共面.(×) [可能异面]③若∥,则存在小任一实数λ,使λ=.(×)[与=不成立]④若为非零向量,则0=⋅.(√)[这里用到)0(≠b b λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(≠a ,a ∥b 的充要条件是存在实数λ(具有唯一性),使b a λ=.O r OR(3)共面向量:若向量使之平行于平面α或在α内,则与α的关系是平行,记作∥α.(4)①共面向量定理:如果两个向量,不共线,则向量与向量,共面的充要条件是存在实数对x 、y 使b y a x P +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x z y x 是PABC 四点共面的充要条件.(简证:→+==++--=z y z y z y )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....,,不共面...,那么对空间任一向量,存在一个唯一的有序实数组x 、y 、z ,使z y x ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1). 注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用MQ AM AQ +=3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标).①令=(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a ±±±=+))(,,(321R a a a ∈=λλλλλ332211b a b a b a ++=⋅ ∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a b a 222321a a a ++==(a a =⋅=)232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅⋅>=< ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量a 叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中DBα∈A ,则点B 到平面α||n ②利用法向量求二面角的平面角定理:设21,n 分别是二面角βα--l 中平面βα,的法向量,则21,n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n n 反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使CE CD AB μλ+=.(常设CE CD AB μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).ABII. 竞赛知识要点一、四面体.1. 对照平面几何中的三角形,我们不难得到立体几何中的四面体的类似性质:①四面体的六条棱的垂直平分面交于一点,这一点叫做此四面体的外接球的球心;②四面体的四个面组成六个二面角的角平分面交于一点,这一点叫做此四面体的内接球的球心; ③四面体的四个面的重心与相对顶点的连接交于一点,这一点叫做此四面体的重心,且重心将每条连线分为3︰1;④12个面角之和为720°,每个三面角中任两个之和大于另一个面角,且三个面角之和为180°.2. 直角四面体:有一个三面角的三个面角均为直角的四面体称为直角四面体,相当于平面几何的直角三角形. (在直角四面体中,记V 、l 、S 、R 、r 、h 分别表示其体积、六条棱长之和、表面积、外接球半径、内切球半径及侧面上的高),则有空间勾股定理:S 2△ABC +S 2△BCD +S 2△ABD =S 2△ACD.3. 等腰四面体:对棱都相等的四面体称为等腰四面体,好象平面几何中的等腰三角形.根据定义不难证明以长方体的一个顶点的三条面对角线的端点为顶点的四面体是等腰四面体,反之也可以将一个等腰四面体拼补成一个长方体.(在等腰四面体ABCD 中,记BC = AD =a ,AC = BD = b ,AB = CD = c ,体积为V ,外接球半径为R ,内接球半径为r ,高为h ),则有①等腰四面体的体积可表示为22231222222222c b a b a c a c b V -+⋅-+⋅-+=; ②等腰四面体的外接球半径可表示为22242c b a R ++=;③等腰四面体的四条顶点和对面重心的连线段的长相等,且可表示为22232c b a m ++=; ④h = 4r.二、空间正余弦定理.空间正弦定理:sin∠ABD/sin∠A -BC-D=sin∠ABC/sin∠A -BD-C=sin∠CBD/sin∠C -BA-DO A BCD空间余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBDcos∠A-BC-D立体几何知识要点一、知识提纲(一)空间的直线与平面⒈平面的基本性质⑪三个公理及公理三的三个推论和它们的用途.⑫斜二测画法.⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.⑪公理四(平行线的传递性).等角定理.⑫异面直线的判定:判定定理、反证法.⑬异面直线所成的角:定义(求法)、范围.⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质.⒋直线和平面垂直⑪直线和平面垂直:定义、判定定理.⑫三垂线定理及逆定理.5.平面和平面平行两个平面的位置关系、两个平面平行的判定与性质.6.平面和平面垂直互相垂直的平面及其判定定理、性质定理.(二)直线与平面的平行和垂直的证明思路(见附图)(三)夹角与距离7.直线和平面所成的角与二面角⑪平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平面所成的角、直线和平面所成的角.⑫二面角:①定义、范围、二面角的平面角、直二面角.②互相垂直的平面及其判定定理、性质定理.8.距离⑪点到平面的距离.⑫直线到与它平行平面的距离.⑬两个平行平面的距离:两个平行平面的公垂线、公垂线段.⑭异面直线的距离:异面直线的公垂线及其性质、公垂线段.(四)简单多面体与球9.棱柱与棱锥⑪多面体.⑫棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.⑬平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、正方体;平行六面体的性质、长方体的性质.⑭棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.⑮直棱柱和正棱锥的直观图的画法.10.多面体欧拉定理的发现⑪简单多面体的欧拉公式.⑫正多面体.11.球⑪球和它的性质:球体、球面、球的大圆、小圆、球面距离.⑫球的体积公式和表面积公式.二、常用结论、方法和公式1.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;2. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;cos cos cos 21θθθ=3.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ; 4.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;5.直线与平面所成的角斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。

2017年高考数学易错易混考点大集合_知识点总结

2017年高考数学易错易混考点大集合_知识点总结

2017年高考数学易错易混考点大集合_知识点总结2017年高考即将到来,高考生们进入了紧张的复习阶段。

一些数学不好的同学们开始了忙乱切无效的复习。

今儿小编就来和这类高考生好好说说,2017年高考数学易错易混考点有哪些?本文主要为高考生讲解高考数学易错易混考点,易错易混点将会从导数、组合数学、立体几何、平面向量、三角函数、不等式、数列以及集合这些数学常见知识点开始说明。

导数篇:导数(Derivative)是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

点击阅读导数易错易混考点组合数学篇:排列组合是组合学最基本的概念。

所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。

组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。

排列组合与古典概率论关系密切。

点击阅读排列、组合和概率易错易混考点立体几何篇:数学上,立体几何是3维欧氏空间的几何的传统名称—-因为实际上这大致上就是我们生活的空间。

一般作为平面几何的后续课程。

立体测绘处理不同形体的体积的测量问题:圆柱,圆锥,锥台,球,棱柱,楔,瓶盖等等。

毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。

尤得塞斯建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。

点击阅读立体几何易错易混考点平面向量篇:平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。

平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。

点击阅读平面向量易错易混考点解析几何篇:又称为坐标几何或卡氏几何,早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。

2017年高考数学最易失分知识点总结_知识点总结

2017年高考数学最易失分知识点总结_知识点总结

2017年高考数学最易失分知识点总结_知识点总结01.遗忘空集致误由于空集是任何非空集合的真子集,因此B=?时也满足B?A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

02.忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

03.混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。

04.充分条件、必要条件颠倒致误对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的必要条件;如果B?A 成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。

05.“或”“且”“非”理解不准致误命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∨q真?p 真且q真,命题p∨q假?p假或q假(概括为一假即假);绨p真?p假,绨p假?p真(概括为一真一假)。

求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。

06.函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。

对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

07.判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。

2017年高考数学真题考点汇总

2017年高考数学真题考点汇总

文科数学考点:1.集合的交集,一元一次不等式。

2.统计量,方差3.复数运算,纯虚数概念。

4.几何概型,割补法求面积5.过双曲线焦点的直线,且与x轴垂直的模型6.线面平行7.简单的线性规划,目标函数为线性,且没有参数8.已知函数解析式,判断函数图形(奇偶,特殊值,单调性)9.由函数解析式判断函数性质,复合函数的单调性与对称性。

10.程序框图,容易11.解三角形。

边角互化,正弦定理,余弦定理。

12.解析几何中,顶点三角形问题。

二、填空题13.向量的坐标运算。

14.利用导数的几何意义,求切线方程。

15.已知正切,求余弦16.三棱锥内接球模型,把握确定球心,使球心到每个点距离都相等。

三、17数列,等比数列已知等式,解方程,确定首项和公比。

计算等比数列的特定前n项,判断三个数字,是否为等差数列。

18.(1)四棱锥模型,证明,面面垂直。

(2)已知四棱锥的体积,求表面积,重视平面中的面积计算。

19.(1)随机抽样中,。

相关系数的公式应用于计算。

(2)正态分布,合理过程进行,评价与判断。

提出数据,重新计算均值和方差。

20.(1)点差法,确定直线的斜率。

(2)直线与抛物线联立方程,寻找等式,确定直线的截距。

21.已知函数解析式,确定函数的单调性。

指数与对数的互相化简符合函数。

22.椭圆的参数方程。

简单的直线参数方程,确定直线与椭圆的交点。

利用椭圆的参数性质,已知,距离的最大值,确定直线的参数的值。

2017数学高考知识点

2017数学高考知识点

2017数学高考知识点数学,作为一门基础学科,是学生们在高考中必须要面对的科目之一。

了解并掌握2017年的数学高考知识点对于备战高考至关重要。

本文将从代数、几何、概率与统计四个方面介绍2017年数学高考的知识点。

代数1. 一次函数和二次函数:了解一次函数和二次函数的性质、图像以及相关的应用题。

其中一次函数的一般式、斜率、截距等是重点,而二次函数的基本形式、顶点坐标、对称轴以及判别式、因式分解等是考点。

2. 指数和对数:熟悉指数和对数的定义、性质,并能够解决与其相关的方程与不等式。

特别是要掌握指数函数的图像和对数函数的性质。

3. 三角函数:掌握正弦函数、余弦函数和正切函数的定义、性质,并能够灵活运用它们解决各种问题。

需要注意的是,特殊角的计算和三角方程的解法是考点。

几何1. 三角形:了解三角形内角和外角的性质,掌握三角形的周长、面积和海伦公式的应用。

此外,需要熟悉解三角形的特殊问题,如利用正弦定理、余弦定理和正切定理解决三角形的相关问题。

2. 圆:了解圆的性质及相关的定理,如弦长定理、弧长定理、切线定理等。

同时,要熟悉解决与圆相关的问题,如切线和弦的性质、切线与圆的位置关系等。

3. 空间几何体:掌握正方体、长方体、圆柱、圆锥和球的表面积和体积的计算方法,以及相关的应用题。

概率与统计1. 随机事件和概率:了解随机事件和概率的基本概念,能够计算简单事件的概率,并解决基本的排列组合问题。

2. 统计图表:熟悉直方图、折线图、饼图和统计表的构造和分析方法,能够根据图表进行数据的读取和分析。

3. 抽样与统计推断:理解抽样的概念和方法,能够进行样本调查和统计推断,并解决与之相关的问题。

以上便是2017年数学高考的主要知识点,在备考过程中,我们应该注重对这些知识点的掌握。

通过不断的练习和巩固,相信我们一定能够在高考中取得优异的成绩。

加油!。

2017高考数学必背知识点介绍_知识点总结

2017高考数学必背知识点介绍_知识点总结

2017高考数学必背知识点介绍_知识点总结
高考数学题是多又杂的,那么那么多知识点你记得住吗?下文高考数学必背知识点,希望考生们都能掌握。

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

高考数学必背知识点整理的很及时吧,在高考的最后复习中,大家一定不要慌,做好最后的复习~。

17高考数学总复习知识点大全

17高考数学总复习知识点大全

17年高考数学总复习知识点大全高三在我们的关注中如约而至,征战高考的号角已经吹响,时间不容置疑地把我们推到命运的分水岭。

小编为大家搜集了高考数学总复习知识点,一起来看看吧。

考数学解答题部分主要考查七大主干知识:第一,函数与导数。

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计。

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。

是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。

以不变应万变。

对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。

考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。

训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。

精心整理,仅供学习参考。

高考数学易混淆知识点有哪些_0

高考数学易混淆知识点有哪些_0

2017高考数学易混淆知识点有哪些2017高考数学易混淆知识点有哪些掌握正确有效的解题方法和解题技巧,不仅可以帮助同学们培养好的数学素养,也是提升学生数学解题效率的关键。

下面有途整理了《2017高考数学易混淆知识点有哪些》,抓紧收藏哦!1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道否命题与命题的否定形式的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号&cup;和或;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.实系数一元二次方程有实数解转化时,你是否注意到:当时,方程有解不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:一正;二定;三等.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用根轴法解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是定义域为前提,函数的单调性为基础,分类讨论是关键,注意解完之后要写上:综上,原不等式的解集是.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意同号可倒即a>b>0,a<0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在已知,求的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

17高考数学最易失分知识点大汇总

17高考数学最易失分知识点大汇总

17年高考数学最易失分知识点大汇总数学是全部科学的基础,现为大家汇总了高考数学最易失分知识点,希望可以解决童鞋们在复习中所遇到的相关问题。

忽视会集元素的三性致误会集中的元素拥有确立性、无序性、互异性,会集元素的三性中互异性对解题的影响最大,特别是带有字母参数的会集,实质上就隐含着对字母参数的一些要求。

混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不一样的看法,命题p 的否定能否定命题所作的判断,而“否命题”是对“若p ,则q ”形式的命题而言,既要否定条件也要否定结论。

充分条件、必需条件颠倒致误关于两个条件 A,B,假如 A? B 成立,则 A 是 B 的充分条件, B 是 A 的必需条件 ;假如 B? A 成立,则 A 是 B 的必需条件, B 是 A 的充分条件 ;假如 A? B,则 A,B 互为充分必需条件。

解题时最简单犯错的就是颠倒了充分性与必需性,因此在解决这种问题时必定要根据充分条件和必需条件的看法作出正确的判断。

函数的单调区间理解禁止致误在研究函数问题时要不时辰刻想到“函数的图像”,学会从函数图像上去解析问题、找寻解决问题的方法。

关于函数的几个不一样的单调递加 (减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递加 (减)区间即可。

判断函数奇偶性忽视定义域致误判断函数的奇偶性,第一要考虑函数的定义域,一个函数具备奇偶性的必需条件是这个函数的定义域关于原点对称,假如不具备这个条件,函数必定是非奇非偶函数。

三角函数的单调性判断致误关于函数 y=Asin(ωx+φ)的单调性,ω当>0时,因为内层函数u= ωx+φ是单调递加的,因此该函数的单调性和y=sinx的单调性相同,故可完整依据函数y=sinx的单调区间解决;但当ω数学最易失分知识点就为大家分享到这里,相信大家必定可以经过本文减少自己的犯错频率,获得优异的成绩。

精心整理,仅供学习参照。

2017高考数学必背知识点介绍

2017高考数学必背知识点介绍

2017 高考数学必背知识点介绍
高考数学题是多又杂的,那么那么多知识点你记得住吗 ?下文高考
数学必背知识点,希望考生们都能掌握。

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主若是考函数和导数,这是我们整个高中阶段里最中心的板块,
在这个板块里,要点观察两个方面:第一个函数的性质,包含函数的
单调性、奇偶性 ;第二是函数的解答题,要点观察的是二次函数和高
次函数,分函数和它的一些分布问题,但是这个分布要点还包含两个
解析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

要点观察三个方面:一个是划减与求值,第一,要点掌握公式,
要点掌握五组基本公式。

第二,是三角函数的图像和性质,这里要点
掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三
角形。

难度比较小。

第三:数列。

数列这个板块,要点考两个方面:一个通项;一个是乞降。

第四:空间向量和立体几何。

在里面要点观察两个方面:一个是证明;一个是计算。

高考数学必背知识点整理的很及时吧,在高考的最后复习中,大
家必定不要慌,做好最后的复习 ~
精心整理,仅供学习参照。

最新整理高三数学2017 高三数学复习知识点.docx

最新整理高三数学2017 高三数学复习知识点.docx

最新整理高三数学2017 高三数学复习知识点2017 高三数学复习知识点数学在科学发展和现代生活生产中的应用非常广泛,以下是为大家整理的高三年级数学复习知识点,希望可以解决您所遇到的相关问题,加油,一直陪伴您。

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三:数列数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年高考数学考试常考易混知识点梳理
高考数学一直是很多考生头疼的科目,考生难以取得数学高分是因为掌握的知识点不够透彻,为了帮助大家掌握好数学知识点,下面为大家带来2017年高考数学考试常考易混知识点梳理,希望大家用心记住这些知识点。

集合与简单逻辑
1、易错点遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,B,B,三种情况,在解题中如果思维不够缜密就有可能忽视了B这种情况,导致解题结果错误。

尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

2、易错点忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。

在解题时也可以先确定字母参数的范围后,再具体解决问题。

3、易错点四种命题的结构不明致误
错因分析:如果原命题是若A则B,则这个命题的逆命题是若B则A,否命题是若┐A则┐B,逆否命题是若┐B则┐A。

这里面有两组等价的命题,即原命题和它的逆否命题等价,否命题
与逆命题等价。

在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。

如对a,b都是偶数的否定应该是a,b不都是偶数,而不应该是a,b都是奇数。

4、易错点充分必要条件颠倒致误
错因分析:对于两个条件A,B,如果A=B成立,则A是B的充分条件,B是A的必要条件;如果B=A成立,则A是B的必要条件,B 是A的充分条件;如果A=B,则A,B互为充分必要条件。

解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

5、易错点逻辑联结词理解不准致误
错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:
pq真=p真或q真,
pq假=p假且q假(概括为一真即真);
pq真=p真且q真,
pq假=p假或q假(概括为一假即假);
┐p真=p假,┐p假=p真(概括为一真一假)。

函数与导数
6、易错点求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:
(1)分母不为0;
(2)偶次被开放式非负;
(3)真数大于0;
(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。

对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

7、易错点带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:
一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;
二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。

研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

8、易错点求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

9、易错点抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。

解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。

抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

10、易错点函数零点定理使用不当致误
错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我
们一般称之为函数的零点定理。

函数的零点有变号零点和不变号零点,对于不变号零点,函数的零点定理是无能为力的,在解决函数的零点时要注意这个问题。

11、易错点混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。

因此求解曲线的切线问题时,首先要区分是什么类型的切线。

12、易错点混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。

研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

13、易错点导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。

出现这些错误的原因是对导数与极值关系不清。

可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此
提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。

数列
14、易错点用错基本公式致误
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。

在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。

15、易错点an,Sn关系不清致误
错因分析:在数列问题中,数列的通项an与其前n项和Sn之间存在关系:
这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其分段的特点。

当题目中给出了数列{an}的an与Sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出Sn,知道了Sn可以求出an,解题时要注意体会这种转换的相互性。

16、易错点对等差、等比数列的性质理解错误
错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。

一般地,有结论若数列{an}的前N项和Sn=an2+bn+c(a,b,cR),则数列{an}为等差数列的充要条件是c=0;在等差数列中,Sm,S2m-Sm,S3m-S2m(mN*)是等差数列。

解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。

在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。

17、易错点数列中的最值错误
错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。

但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,能够取到最值求解出错。

在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定。

18易错点错位相减求和时项数处理不当致误
错因分析:错位相减求和法的适用环境是:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。

基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,得到的和式要分三个部分:
(1)原来数列的第一项;
(2)一个等比数列的前(n-1)项的和;
(3)原来数列的第n项乘以公比后在作差时出现的。

在用错位相减法求数列的和时一定要注意处理好这三个部分,否则就会出错。

2017年高考数学考试常考易混知识点梳理是为大家精心总结的,希望大家能够在复习数学知识点的时候多下功夫,这样就能在高考数学考试中取得满意的成绩。

相关文档
最新文档