07.方差分析-单因素

合集下载

方差分析(单因素、多因素方差分析)

方差分析(单因素、多因素方差分析)

单因素方差分析1.基本理解方差分析:是一种利用实验获取数据并进行分析的统计方法,经常用于研究不同效应对指定实验的影响是否显著。

方差分析用于检验连续型随机变量在三及以上分类数据不同水平上的差异情况。

方差分析包括:单因素方差分析、多元素方差分析、多元方差分析、协方差分析、重复测量方差分析。

在问卷数据中:单因素方差分析使用较多。

单因素方差分析:用于检验单个因素取不同水平是某因变量的均值是否有显著的变化,也可进一步用于因变量均值的多重比较(检验某些水平下的实验结果具体区别于其他水平的显著差异)。

图1检验步骤2.单因素方差分析操作步骤操作步骤第一步:首先将数据导入spss中并进行赋值后,点击分析、比较平均值、单因素ANOVA检验。

图2单因素方差分析第一步操作步骤第二步:进入图中对话框后将需检验的变量放入因变量列表中,在因子中放入分类变量,点击事后比较勾选假定等方差(LSD),不假定等方差(塔姆黑泥T2)点击继续。

图3单因素方差分析事后比较勾选3.当因素方差分析结果后点击线性进入图中下方选项框、勾选描述、方差齐性检验点击继续、确定。

图4单因素方差分析选项勾选然后单因素方差分析的描述、方差齐性、假设检验就出来了。

图5单因素方差分析结果单因素方差分析事后两两比较结果。

图6事后比较结果4.结果整理将首先将描述统计的结果粘贴复制到Excel表格中进行整理,保留均值和标准差及前面的内容,后在后面加入ANOVA表中的F和p值,将整理好的两两比较结果粘贴到表格的最后,最后将整理好的结果粘贴到Word文档中进行整理。

可参考图中结果整理。

(注:一般在看结果时首先看ANOVA表的结果,看显著情况,显著(p<0.05)看方差齐性检验的结果,若方差齐性检验的结果方差齐(p>0.05),然后再看事后比较的结果,方差齐看LSD,方差不齐看塔姆黑泥的结果,同样差异的显著看事后比较每行对应的显著性(若p<0.05,代表比较的对象显著。

单因素试验方差分析(试验数据处理)

单因素试验方差分析(试验数据处理)

SST ( X ij X ) 2
j 1 i 1
r nj
r
nj
SSA ( X j X ) 2
j 1 i 1
n j ( X j X )2
j 1
s
SSA反映了在每个水平下的样本均值与样本总均 值的差异,它是由因子A 取不同水平引起的,所以, 称SA是因子A的效应(组间)平方和.
单因素试验——在一项试验中只有一个因素改变.
多因素试验——在一项试验中有多个因素在改变.
例1 下表列出了随机选取的、用于计算器的四种 类型的电路的响应时间(以毫秒计). 表1 电路的响应时间 类型Ⅰ 类型Ⅱ 类型Ⅲ 类型Ⅳ 19 20 16 18 22 21 15 22 20 33 18 19 18 27 26 试验指标:电路的响应时间 因素:电路类型 水平: 四种电路类型为因素的四个不同的水平 单因素试验 试验目的:考察电路类型这一因素对响应时间有无 显著的影响.(从哪些值来看是否有影响呢?)
F值 31.10
显著性
934.73
2
6
467.36
**
组内 总和
90.17
1024.89
15.03
8
不同的饲料对猪的体重有非常显著的影响。
三、单因素试验方差分析的简化计算
由于方差分析的计算量比较大,所以引入一种离 差平方和的简单算法:

Ti —Ai 水平时,ni个试验值之和 Qi —Ai 水平时,ni个试验值的平方和 T—n个试验值之和 Q—n个试验值的平方和
r
列平均X i Ti ni
(组内平均值)
X1
X2
...
r i 1
Xr
n n i 其中诸 ni 可以不一样,

单因素方差分析

单因素方差分析

当 H 0 不真时,
SE 2 而不管 H 0 是否为真, E n s
当 H 0 为真时:
S A ( s 1) F 不能过大 S E (n s)
当 H0
S A ( s 1) ~ F ( s 1, n s ) 为真时: F S E (n s)
(i 1,2,, s;
j 1,2,, ni )
i 为第 i 个总体的均值 , ij 为相应的试验误差。

1 s ni i ,称为总平均, n i 1
i i 称为水平 Ai 的效应。
从而模型可以写为:
yij i ij 2 ~ N ( 0 , ) ij ni i 0 i
因此,给定检验水平 时,拒绝域为:
F F ( s 1, n s )
表2 方差分析表
来源 因子 平方和 自由度 均方
2 i 2
F
S A ( s 1) S E (n s)
S A ni y ny
i 1
s
s 1
SA s1
SE n s
误差
总和
S E ST S A
2、方差分析的基本思想: 从所有观测值的总变差中分析出系统变差和随机误差, 通过比较二者的大小关系, 说明试验因素的不同水平对试验结果影响的大小。 即若两个变差差别不大, 各个水平差异不大; 若两个变差差别较大,则不同水平存在显著差异。
3、平方和的分解 记
1 y yij n i 1 j 1
由因素A的各个不同的水平引起的差异。
4、 S A 和 S E 的统计特性
1 y ij y i ni 1 j 1
ni

单因素试验的方差分析

单因素试验的方差分析

其中
r n i
2r
2
S S A X iX n i ii
i 1j 1
i 1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
其中
1 r ni
ni1 j1
ij,
ni
i ij
j1
r ni
2 r ni
2
由P106定理5.1可推得:
S S 2 T~2 n 1 ,S S 2 A ~2 r 1 ,S S 2 E ~2 n r
将 分别SS记2T 作, SS2A
,
SSE
2
的自d由fT度,dfA,dfE
则 FSSA dfA~Fr1,nr
SSE dfE
(,称记作均S S 方A 和d f)A M S A ,S S Ed fE M S E
j1
i1
同一水平 下观测值 之和
所以观测 值之和
例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。
饲料
增重
A
51
40
43
48
B
23
ቤተ መጻሕፍቲ ባይዱ25
26
C
23
28
解:T1 51404348182, T2 232526 74, T3 232851
F0.012,610.92
1 5 .0 3
总和 1024.89 8
不同的饲料对猪的体重的影响极有统计意义。
例2的上机实现步骤
输入原始数 据列,并存 到A,B,C 列;
各水平数据放同一列
各水平数据 放在不同列

单因素试验的方差分析

单因素试验的方差分析

=
2 2
=
2 s
2
;
(3)从每个总体中抽取的样本相互独立.
那么,要从已知数据中推断 s 个总体是否具有显著 的差异,就要比较各个总体的均值是否相等.设第 j 个总
体的均值为 j ,则要检验的假设为
H0 : 1 2 s , H1 : 1, 2 , , s不全相等.
(8-1)
单 因 素 A 具 有 s 个 水 平 A1, A2 , , As , 在 每 个 水 平
推进器 B
A1
B1
58.2 52.6
B2
56.2 41.2
B3
65.3 60.8
燃料 A
49.1 54.1 51.6 A2 42.8 50.5 48.4
60.1 70.9 39.2 A3 58.3 73.2 40.7
75.8 58.2 48.7 A4 71.5 51.0 41.4
这里的试验指标是射程,推进器和燃料是因素, 它们分别有 3 个、 4 个水平.这是一个双因素试验.试 验的目的在于考察在各种因素的各个水平下射程有 无显著的差异,即考察推进器和燃料这两个因素对射 程是否有显著的影响.
H1 : 1,2 ,
,
不全为0.
s
1.3 偏差平方和及其分解
定义 8.2 方和,其中
s nj
称 ST (Xij X )2 为样本的总偏差平 j 1 i1
称为样本的总均值.
1 s nj
X n j1 i1 X ij
s nj
定义 8.3 称 SE =
( Xij X .j )2 为样本的误差平方
差. SA 体现了各水平 Aj 的样本均值 X j 与总均值 X 之间
的差异,反映了样本之间的不同,它是由因素 A 的不同水 平效应的差异以及随机误差引起的.

方差分析

方差分析
2
其中 i , 2 未知,并假定不同水平 Ai 下的样本之间相互独立。 为了便于讨论,引入下述记号:
1 r ni i ,称为理论总平均; n i 1 i i (i 1, 2, , r ) ,称为在水平 Ai 下的效应。
又因为 Xij ~N( i , 2 ),所以 Xij- i ~N(0, ),
2
记 Xij- i = ij ,则 ij ~ N (0, )
2

X ij i ij i ij 。
如果所考虑的因素 A 对试验没有显著影响,则试验的全部结果 Xij 应来自同一正态总体 N( , 2 )。因此,从假设检验的角度看, 单因素方差分析的任务就是检验 r 个总体 N( i , 2 )(i=1,2,…,r) 的均值是否相等,即检验假设: H 0 : 1 2 r , H 1 : 1 , 2 , , r 不全相等。 或 H 0 : 1 2 r 0 。 如果 H0 成立,那么可以认为 r 个总体间无差异,而样本观察值 xij(j=1,2,…,ni,i=1,2,…,r)可视为来自同一正态总体 N( , 2 ),各个 xij 的差异是由于随机因素引起的;若 H0 不成立, 那么 xij 间的差异除了随机波动引起差异之外,还应包含由于因素 A 水平改变所产生的差异。因此,首先要把这两种差异区分开,然后 再进行比较讨论。 (1.4)
上述 Se 的各项 ( X ij X i )2 表示在水平 Ai 下,样本观察值与样本均 值的差异,这是由随机误差引起的,通常称为误差平方和。 而 SA 的各项 ni ( X i X )2 表示在水平 Ai 下的样本均值与数据总平均 的差异,这是由于水平 Ai 以及随机误差引起的,通常称为因素 A 的效 应平方和。这样,初步达到了分辨两类误差的目的。

方差分析单因素方差分析

方差分析单因素方差分析

方差分析单因素方差分析一、前言方差分析是一种多个空间变量分析之间差异的统计方法。

其中比较重要的是单因素方差分析。

单因素方差分析是比较不同组别的平均值和差异性的方法,它将观察结果按组别分开,然后比较他们之间的差异性。

在单因素方差分析中,我们可以查看哪种组别或样本分布有更高的均值和方差,进而得出结论。

本文旨在详细介绍单因素方差分析的各种概念,方法和实施步骤,为读者提供一个全面且易于理解的学习单因素方差分析的指南。

二、方差分析的基本概念1. 可独立测量的变量,称为因素或因子。

2. 可以独立测量或操作的变量,称为自变量或因数。

3. 结果或响应,也称为因变量。

4. 为了减少误差,我们通常在每个组中进行多次测量,并计算均值和标准偏差等统计属性的度量。

5. 零假设(Null Hypothesis)通常假定我们需要比较的组别或样本之间没有差异性。

6. 方差分析的假设是:各组的均值是相等的。

三、单因素方差分析方法1. 获取数据,并将它们按组别分配。

2. 计算每组的均值,标准偏差和方差。

3. 计算总体均值和方差。

4. 确定方差比和统计检验。

5. 计算p值,通过标准来检验null hypothesis,并得出结论。

四、样例分析我们选择以下的数据作为例子。

在这个例子里,我们有四个房子的价格来对类比市场进行比较。

1 2 3 4House 1 $200,000 $210,000 $220,000 $231,000House 2 $230,000 $218,000 $240,000 $236,000House 3 $220,000 $215,000 $216,000 $210,000House 4 $205,000 $190,000 $195,000 $200,0001. 计算每组的均值,标准偏差和方差。

各组均值:Group 1:$213,250Group 2:$207,250Group 3:$215,250Group 4:$219,250各组标准偏差:Group 1:$14,176.88Group 2:$13,794.83Group 3:$3,280.20Group 4:$5,684.04各组方差:Group 1:$201,333,333Group 2:$190,000,000Group 3:$10,750,000Group 4:$32,200,0002. 计算总体均值和方差。

单因素试验的方差分析

单因素试验的方差分析
概率学与数理统计
单因素试验的方差分析
在方差分析中,我们将要考察的指标称为试验指标,影响 试验指标的条件称为因素(或因子),常用A、B、C, …来表示. 因 素可分为两类,一类是人们可以控制的;一类是人们不能控 制的。 例如,原料成分、反应温度、溶液浓度等是可以控制 的,而测量误差、气象条件等一般难以控制。 以下我们所说 的因素都是可控因素,因素所处的状态称为该因素的水平。 如果在一项试验中只有一个因素在改变,这样的试验称为单 因素试验,如果多于一个因素在改变,就称为多因素试验.
一、单因素试验方差分析的统计模型
例9.1 为求适应某地区的高产水稻的品种( 因素或因子) , 现选了 五个不同品种( 水平)的种子进行试验, 每一品种在四块试验田上进 行试种。假设这 20块土地的面积与其他条件基本相同, 观测到各块 土地上的产量( 单位: 千克) 见表9–1。
在这个问题目中, 要考察的指标是水稻的产量, 影响产量的因
分析的统计模型 .
方差分析的任务是对于模型(9. 1 ) , 检验 s 个总体 N ( 1 , 2) , …, N
( s , 2)的均值是否相等, 即检验假设
H0 : 1 2 s H1 : 1 , 2 , s , 不全相等。
(9.2)
为将问题( 9. 2 ) 写成便于讨论的形式, 采用记号
s nj
ST
(xij x)2
j1 i1
(9.3)
这里
x
1 n
s j 1
nj i1
xij ,
ST能反应全部试验数据之间的差异,又称
为总变差 Aj下的样本均值
x
j
1 n
nj i1
xij
(9.4)
注意到
(xij x )2 (xij x j x j x )2 =(xij x j )2 (x j x )2 2(xij x j )(x j x )

方差分析公式单因素方差分析多因素方差分析的计算公式

方差分析公式单因素方差分析多因素方差分析的计算公式

方差分析公式单因素方差分析多因素方差分析的计算公式方差分析公式计算单因素和多因素方差分析的方法是统计学中常用的数据分析技术。

方差分析可以用来比较两个或多个组之间的均值是否存在显著差异。

在本文中,将介绍单因素方差分析和多因素方差分析的计算公式和步骤。

一、单因素方差分析的计算公式单因素方差分析适用于只有一个自变量(因素)的情况下比较多个组的均值是否存在差异。

在进行单因素方差分析时,需要计算以下几个统计量。

1. 总平方和(SST):总平方和表示各组数据与整体均值之间的偏差总和。

其计算公式如下:SST = Σ(xi - x)²其中,xi为每个观察值,x为所有观察值的均值。

2. 组内平方和(SSW):组内平方和表示各组数据与各组均值之间的偏差总和。

其计算公式如下:SSW = Σ(xi - x i)²其中,xi为每个观察值,x i为各组观察值的均值。

3. 组间平方和(SSB):组间平方和表示各组均值与整体均值之间的偏差总和。

其计算公式如下:SSB = Σ(ni * (x i - x)²)其中,ni为每个组的观察次数,x i为各组观察值的均值,x为所有观察值的均值。

4. 平均平方和(MSW和MSB):平均平方和表示各组之间的平均差异程度。

其计算公式如下:MSW = SSW / (n - k)MSB = SSB / (k - 1)其中,n为总观察次数,k为组的个数。

5. F统计量:F统计量用于检验组间均值是否存在显著差异。

其计算公式如下:F = MSB / MSW二、多因素方差分析的计算公式多因素方差分析适用于两个或更多个自变量(因素)的情况下比较多个组的均值是否存在差异,并确定各因素之间的交互影响。

在进行多因素方差分析时,需要计算以下几个统计量。

1. 总平方和(SST):总平方和的计算方式与单因素方差分析相同。

2. 组内平方和(SSW):组内平方和的计算方式与单因素方差分析相同。

单因素方差分析

单因素方差分析

单因素方差分析(一)单因素方差分析概念理解步骤是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。

这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。

例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。

这些问题都可以通过单因素方差分析得到答案。

单因素方差分析的第一步是明确观测变量和控制变量。

例如,上述问题中的观测变量分别是农作物产量、妇女生育率、工资收入;控制变量分别为施肥量、地区、学历。

单因素方差分析的第二步是剖析观测变量的方差。

方差分析认为:观测变量值得变动会受控制变量和随机变量两方面的影响。

据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SS T=SS A+SS E。

单因素方差分析的第三步是通过比较观测变量总离差平方和各部分所占的比例,推断控制变量是否给观测变量带来了显著影响。

(二)单因素方差分析原理总结容易理解:在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。

(三)单因素方差分析基本步骤• 1、提出原假设:H0——无差异;H1——有显著差异• 2、选择检验统计量:方差分析采用的检验统计量是F统计量,即F值检验。

• 3、计算检验统计量的观测值和概率P值:该步骤的目的就是计算检验统计量的观测值和相应的概率P值。

• 4、给定显著性水平,并作出决策(四)单因素方差分析的进一步分析在完成上述单因素方差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他几个重要分析,主要包括方差齐性检验、多重比较检验。

生物统计第7章 单因素方差分析

生物统计第7章 单因素方差分析
2020/6/19
7.2 固定效应模型
7.2.1 线性统计模型
在固定效应模型中,αi是处理平均数与总体 平均数的离差,是个常量,故:∑αi=0(i=1,
2,…n),要检验a个处理效应的相等性,就 要判断各αi是否都等于0。若各αi都等于0,则
各处理效应之间无差异。因此,零假设为:H0: α1=α2= … =αa =0 备择假设为:HA: αi≠0(至少有一个i)
2020/6/19
7.3.3 不等重复时平方和的计算
• 上述情况,无论是固定效应模型,还是随机效 应模型,各处理的观测次数都是相同的。若不 同处理观测次数不同,以上的方差分析方法仍 然适用,但在计算平方和时,公式要作改动。
• 检验程序及结果分析同上述讨论。
2020/6/19
7.4 多重比较(multiple comparison)
2020/6/19
7.1 方差分析的基本原理
7.1.1 方差分析的一般概念
方 差 分 析 ( analysis of variance , ANOV)是一类特定情况下的统计假设检验, 平均数差异显著性检验----成组数据 t检验的一 种引伸。t检验可以判断两组数据平均数间的差 异显著性,而方差分析则可以同时判断多组数 据平均数之间的差异显著性。当然,在多组数 据的平均数之间做比较时,可以在平均数的所 有对之间做t检验。但这样做会提高犯Ⅰ型错误 的概率,因而是不可取的。
2020/6/19
7.2.3 均方期望与统计量F
2020/6/19
7.2.4 平方和的简易计算方法
• 实际应用时,总的平 方和与处理平方和一 般按右式计算:
• 式中的被减数C通常被称 为校正项(correction) :
• 误差平方由右式算出 : • 用SAS软件更简便

数据分析第七篇:方差分析(单因素方差分析)

数据分析第七篇:方差分析(单因素方差分析)

数据分析第七篇:⽅差分析(单因素⽅差分析)在试验中,把考察的指标称为试验指标,影响试验指标的条件称为因素。

因素可分为两类,⼀类是⼈为可控的测量数据,⽐如温度、⾝⾼等;⼀类是不可控的随机因素,例如,测量误差,⽓象条件等。

因素所处的状态称为因素的⽔平。

如果在试验过程中,只有⼀个因素在改变,称为单因素试验。

⽅差分析(Analysis of Variance,简称ANOVA)主要⽤于验证两组样本,或者两组以上的样本均值是否有显著性差异(是否⼀致)。

举个例⼦,有三台机器⽤来⽣产规格相同的铝合⾦薄板,试验的指标是铝合⾦薄板的厚度,机器是因素,不同的三台机器是因素的三个⽔平。

试验的⽬的是为了考察每台机器所⽣产的薄板的厚度是否有显著的差异,即考察机器这⼀因素对薄板厚度有⽆显著的影响,如果厚度有显著差异,就表明机器对厚度的影响是显著的。

⼀,单因素⽅差分析对多个总体均值进⾏检验,需要⽤到⽅差分析⽅法,例如,某⼯⼚有A、B、C三台轧制板材的设备,如果想知道这三台设备轧制板材的厚度是否⼀致,就可以转化为检验来⾃三个总体的均值是否相同的问题。

以上⾯所说轧制板材为例,检验A、B、C三台设备轧制的板材厚度是否⼀致,可以建⽴如下假设:H0: µ1=µ2=…=µr;H1: µ1,µ2,…,µr不全相等。

三个总体均值是否相等⽆从知道,但是可以通过样本均值是否有显著差异来检验总体均值是否相等。

因为,如果H0为真时,则可以期望样本均值很接近,如果样本均值很接近,则推断总体均值相等的证据很充分,就可以接受H0。

否则,当样本均值相距较远,就认为总体均值相等的证据不充分,从⽽拒绝H0,接受H1。

样本均值之间距离的所谓远近是相对的,是通过假定的共同⽅差的两个点估计值⽐较得出的。

第⼀个点估计是组内⽅差,⽤各个样本⽅差估计得到的,只与每个样本内部的⽅差有关,反映各个⽔平内部随机性的变动。

单因素方差分析

单因素方差分析

2. 3.
一、方差分析的内容
4. 试验
这里只涉及一个因素,因此称为单因素四水
平的试验
5. 总体
个总体 6. 样本数据 上面的数据可以看作是从这四个总体中抽取 的样本数据
因素的每一个水平可以看作是一个总体 比如A1、A2、A3、 A4四种颜色可以看作是四
二、方差分析的基本思想
(一)比较两类误差,以检验均值是否相等 (二)比较的基础是方差比
该饮料在五家超市的销售情况 超市
1 2 3 4 5
无色
26.5 28.7 25.1 29.1 27.2
粉色
31.2 28.3 30.8 27.9 29.6
橘黄色
27.9 25.1 28.5 24.2 26.5
绿色
30.8 29.6 32.4 31.7 32.8
一、方差分析的内容
(二)几个基本概念
1. 因素或因子 所要检验的对象称为因子 要分析饮料的颜色对销售量是否有影响,颜色是要检 验的因素或因子 水平 因素的具体表现称为水平 A1、A2、A3、 A4四种颜色就是因素的水平 观察值 在每个因素水平下得到的样本值 每种颜色饮料的销售量就是观察值
什么时候起最好的影响作用。
方差分析是鉴别各因素效应的一种有效统计 方法,它是通过实验观察某一种或多种因素 的变化对实验结果是否带来显著影响,从而 选取最优方案的一种统计方法。
在科学实验和生产实践中,影响一件事
物的因素往往很多,每一个因素的改变 都有可能影响产品产量和质量特征。有 的影响大些,有的影响小些。为了使生 产过程稳定,保证优质高产,就有必要 找出对产品质量有显著影响的那些因素 及因素所处等级。方差分析就是处理这
(三)如果系统(处理)误差显著地不同于随机误差, 则均值就是不相等的;反之,均值就是相等的 (四)误差是由各部分的误差占总误差的比例来测 度的

第七章方差分析第一节单因素)

第七章方差分析第一节单因素)

一、各处理重复数相等的方差分析
【例1】 某水产研究所为了比较四种不同 配合饲料对鱼的饲喂效果, 配合饲料对鱼的饲喂效果,选取了条件基 本相同的鱼20尾,随机分成四组, 随机分成四组,投喂不 同饲料, 同饲料,经一个月试验以后, 经一个月试验以后,各组鱼的增 重结果列于下表。 重结果列于下表。
上一张 下一张 主 页
型。在这个模型中表示为总平均数μ、处理效 应αi、试验误差εij之和。尽管各总体的均数可 以不等或相等,σ2则必须是相等的。 所以,单因素试验的数学模型可归纳为: 效应的可加性(additivity)、分布的正态性 (normality)、方差的同质性 (homogeneity)。这也是进行其它类型方差分
F=MSt/MSe =46.5×20/38.84×4=5.99**
3.统计推断: 统计推断: F0.05(4,20) =2.87,F0.01(4,20) =4.43,F> F0.01(4,20),P<0.01,表明品种间差异极显著。 表明品种间差异极显著。
上一张 下一张 主 页
退 出
SS MS e = e = df e =
t
t
1 = n

T

e
= SS
ni ≠ n
Ti2 − C ni
j
总自由度的剖分
总自由度
dfT = kn −1 = N −1
处理自由度 dft = k −1 误差自由度 dfe = dfT − dft = kn − k = N − K
MSt = SSt / df t MSe = SS e / df e MSt F= MS e
析的前提或基本假定。
xij = µ + α i + ε ij = µ + ( µi − µ ) + ( xij − µi )

方差分析单因素方差分析3篇

方差分析单因素方差分析3篇

方差分析单因素方差分析第一篇:方差分析基础知识什么是方差分析?方差分析(ANOVA)是一种常用的数据分析方法,用于确定多个组或处理之间差异的检验方法。

方差分析的目的是比较各组之间的均值是否有显著差异,从而确定某种变量是否能够对观测结果产生统计显著影响。

方差分析的原理方差分析的基本原理是将总差异拆分为各个来源的差异,比较相对大小,进而确定各组均值之间是否存在显著差异。

方差分析原理中的总差异由于组内差异和组间差异组成,在计算统计检验时,需要根据样本数据计算出相应的方差分量。

方差分析的应用范围方差分析适用于多组数据的比较分析,通常用于以下场景:1. 不同处理方式对结果的影响是否显著;2. 产品的性能比较;3. 不同采样机构采样结果的差异性比较;4. 不同肥料对植物生长的影响比较等。

在研究中,方差分析也被广泛应用于实验设计和因子分析中,通过分析方差来确定影响观察结果的因素,以减少实验的时间和成本。

第二篇:单因素方差分析的步骤单因素方差分析是指数据来自同一总体下的不同组或处理之间的差异,其中只有一个因素起到决定性作用的方差分析。

对于一般的数据处理,单因素方差分析一般包括以下步骤。

1. 设定假设并确定显著性水平假设总体均值相等,等价于各组均值相等。

如果拒绝了该假设,则表明不同组之间均值存在显著差异。

同时,还需要确定显著性水平,通常为α=0.05或α=0.01。

2. 构建方差分析表构建方差分析表,并计算相关的方差分量,包括组内偏差平方和、组间偏差平方和、总偏差平方和和平均平方值。

3. 计算F值通过总偏差平方和、组内偏差平方和,以及各组样本容量计算F值。

4. 进行假设检验通过比较计算出的F值与参考F分布表中的临界值,以判断不同组之间差异是否显著。

5. 发现组之间差异的原因如果不同组之间均值存在显著差异,则需要通过多重比较或方差分析的分解来确定差异来源,以便进一步研究各组之间差异的原因。

第三篇:常用的单因素方差分析方法1. 单因素方差分析(One-way ANOVA)单因素方差分析是一种常见的数据分析方法,通常用于比较三个或三个以上组之间的差异。

单因素方差分析

单因素方差分析

单因素方差分析单因素方差分析,也称单因子方差分析或单变量方差分析,是一种统计方法,用于比较两个或多个组间的均值是否存在显著差异。

在此文章中,我们将介绍单因素方差分析的基本概念、假设检验以及分析步骤等内容。

一、基本概念单因素方差分析是通过比较不同组的均值差异来进行统计推断的方法。

在该分析中,有一个自变量(也称为因素)和一个因变量。

自变量是分类变量,将数据分为不同的组别;因变量是连续变量,表示我们希望比较的具体测量结果。

二、假设检验在进行单因素方差分析时,我们需要先建立假设,并进行假设检验。

常用的假设为:- 零假设(H0):不同组间的均值没有显著差异;- 备择假设(H1):不同组间的均值存在显著差异。

三、分析步骤进行单因素方差分析的一般步骤如下:1. 收集数据:收集各组的观测值数据。

2. 计算总体均值:计算每组数据的均值,并计算总体均值。

3. 计算组内平方和(SSw):计算每组数据与其组内均值之差的平方和。

4. 计算组间平方和(SSb):计算每组均值与总体均值之差的平方和。

5. 计算均方:分别计算组内均方(MSw)和组间均方(MSb),即将组内平方和与组内自由度相除,将组间平方和与组间自由度相除。

6. 计算F值:计算F值,即组间均方除以组内均方。

7. 假设检验:根据给定的显著性水平,查找F分布表以比较计算得到的F值与临界值的大小关系。

8. 结果解释:根据假设检验的结果,判断不同组间的均值是否存在显著差异。

四、例子和应用单因素方差分析可以用于各种研究领域,如教育、医学、社会科学等。

以教育领域为例,我们可以通过单因素方差分析来比较不同教学方法对学生成绩的影响。

在进行该分析时,我们可以将学生分为两组,一组采用传统教学方法,另一组采用现代教学方法。

然后,我们收集每组学生的考试成绩,并对数据进行单因素方差分析。

通过比较组间的均值差异,我们可以判断不同教学方法对学生成绩是否存在显著影响。

五、总结单因素方差分析是比较不同组间均值差异的常用统计方法。

SPSS基础学习方差分析—单因素分析

SPSS基础学习方差分析—单因素分析

SPSS基础学习⽅差分析—单因素分析为什么要进⾏⽅差分析?单样本、两样本t检验其最终⽬的都是分析两组数据间是否存在显著性差异,但如果要分析多组数据间是否存在显著性差异就很困难,因此⽤⽅差分析解决这个问题;举例:t检验可以分析⼀个班男⼥的⼊学成绩差异;⽽⽅差分析可以分析⼀个班来⾃各省市地区同学的⼊学成绩。

在⽅差分析中,涉及到控制变量和随机变量以及观测变量;举例:施肥量是否会给农作物产量带来显著影响;这⾥,控制变量:施肥量,观测变量:农作物产量,随机变量:天⽓、温度……单因素分析⽬的:分析单⼀控制因素影响下的多组样本的均值是否存在显著性差异。

适⽤条件:正态性,每个⽔平下的因变量应服从正态分布;同⽅差性,各组之间的具有相同的⽅差;独⽴性,各组之间是相互独⽴的。

案例分析:案例描述:在某⼀公司下,分析⼴告形式对销售额的影响。

(数据来源:《统计分析与SPSS的应⽤》(第五版)薛薇第六章)题⽬分析:在题⽬中,⼴告形式不⾄两种,没办法⽤两独⽴样本t检验分析形式和销售额之间的显著性差异,同时,只有⼀个控制因素,所以采⽤⽅差分析中的单因素分析。

提出原假设:⼴告形式和销售额之间不存在显著性差异。

界⾯操作步骤:分析—⽐较均值—单因素ANOVA关键步骤截图:分清楚因变量列表和因⼦;因⼦:控制变量,因变量列表:观测变量结果分析:单因素⽅差分析销售额平⽅和df均⽅F显著性组间5866.08331955.36113.483.000组内20303.222140145.023总数26169.306143分析:平⽅和:组间离差平⽅和(SSA)是由控制变量的不同⽔平造成的变差,组内离差平⽅和(SSE)是由随机变量的不同⽔平造成的变差;df:组间⾃由度,在本题中根据⼴告形式的不同分为四组,所以⾃由度为k-1=4-1=3;组内⾃由度n-k=144-k=140;均⽅:即为⽅差;F=SSA/(k-1)÷(SSE/(n-k))=组间⽅差/组内⽅差,F值显著性⼤于1,说明控制变量对观测变量的影响⽐随机变量⼤,反之有效;P-值=0.00<0.05,所以拒绝原假设,认为不同的⼴告形式和地区对销售额的平均值产⽣了显著影响,不同的⼴告形式、地区对销售额的影响效应不全为0。

方差分析

方差分析

方差分析一、单因素试验的方差分析:在科学试验、生产实践和社会生活中,影响一个事件的因素往往很多。

例如,在工业生产中,产品的质量往往受到原材料、设备、技术及员工素质等因素的影响;又如,在工作中,影响个人收入的因素也是多方面的,除了学历、专业、工作时间、性别等方面外,还受到个人能力、经历及机遇等偶然因素的影响. 虽然在这众多因素中,每一个因素的改变都可能影响最终的结果,但有些因素影响较大,有些因素影响较小. 故在实际问题中,就有必要找出对事件最终结果有显著影响的那些因素. 方差分析就是根据试验的结果进行分析,通过建立数学模型,鉴别各个因素影响效应的一种有效方法.在上一章,我们讨论了具有相同方差的两个正态总体的均值是否有显著差异的检验问题。

在这一章里,将讨论具有相同方差的k (k >2)个正态总体的均值是否有显著性差异的检验问题。

初看起来,这个问题似乎不难解决。

只要运用上一章介绍的T-检验法,将每一对正态总体都检验一次就可以了,然而这样做是不能达到预期目的的。

因为这样做不但非常繁琐,而且往往会导致错误的结论。

例如有5个方差相同的正态C=10对正态总体逐对进总体,要检验它们的均值是否有显著差异,就必须对25行检验,若要求的显著性水平为0.05,那么,每对“μi =μj成立(i≠j)”这个结论是正确的概率为0.95,但是“五个正态总体的均值都相等”这个结论正确的概率却是( 0.95 )10 = 0.5987因此,得到错误结论的概率是1-0.5987=0.4013,这就是说,犯第一类错误的概率将达到40.13.%,这是无法接受的。

如果总体的个数更多,那么犯第一类错误的概率也将更大。

即使只有3个总体,得到错误结论的概率也将达到14.3% 。

从以上的分析,迫使我们寻求另外的方法,将所有的总体一起加以考虑。

而方差分析正是检验同方差的若干正态总体均值是否相等的一种统计方法。

方差分析的方法广泛地运用在工农业生产、科学研究和经营管理中。

单因素方差分析方法.

单因素方差分析方法.

单因素方差分析方法首先在单因素试验结果的基础上,求出总方差V 、组内方差vw、组间方差vB。

总方差 v=()2ijx x -∑组内方差 v w =()2ij x x i-∑ 组间方差 v B=b ()2ix x -∑从公式可以看出,总方差衡量的是所有观测值xij对总均值x 的偏离程度,反映了抽样随机误差的大小,组内方差衡量的是所有观测值xij对组均值x 的偏离程度,而组间方差则衡量的是组均值x i对总均值x 的偏离程度,反映系统的误差。

在此基础上,还可以得到组间均方差和组内均方差: 组间均方差2Bs ∧=1B-a v组内均方差 2ws∧=aab vw-在方差相等的假定下,要检验n 个总体的均值是否相等,须首先给定原假设和备择假设。

原假设 H 0:均值相等即μ1=μ2=…=μn备择假设H 1:均值不完全不相等则可以应用F 统计量进行方差检验:F=)()(b ab a vv w--1B =22∧∧ss WB该统计量服从分子自由度a-1,分母自由度为ab-a 的F 分布。

给定显著性水平a ,如果根据样本计算出的F 统计量的值小于等于临界值)(a ab 1a F --,α,则说明原假设H 0不成立,总体均值不完全相等,差异并非仅由随机因素引起。

下面通过举例说明如何在Excel 中实现单因素方差分析。

例1:单因素方差分析某化肥生产商需要检验三种新产品的效果,在同一地区选取3块同样大小的农田进行试验,甲农田中使用甲化肥,在乙农田使用乙化肥,在丙地使用丙化肥,得到6次试验的结果如表2所示,试在0.05的显著性水平下分析甲乙丙化肥的肥效是否存在差异。

表2 三块农田的产量要检验三种化肥的肥效是否存在显著差异,等同于检验三者产量的均值是否相等:给定原假设H 0:三者产量均值相等;备择假设H 1:三者的产量均不相等,对于影响产量的因素仅化肥种类一项,因此可以采用单因素方差分析进行多总体样本均值检验。

⑴新建工作表“例1”,分别单击B3:D8单元格,输入表2的产量数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

处理内有重复:每个试验处理内部,有两个以上观 测单位
饲料 1 2 3 4
57 13 13 18
增重(Kg) 37 54 42 39 41 33 15 13 29 24 38 22
60 19 20 13
试验单元:是试验中施加处理的对象
试验单元:可以独立地接受某一处理的试验材料 在动物试验中,一头动物可以 构成一个试验单元, 有时一组动物也可构成一个试验单元。
SST=SSA+SSE
SS : T: A: e:
sum of square total among levels error
各项平方和计算方法
SS
T


i j
(X X X
X ) ij
2 2 ij

i j
(X
2 ij
2X
2
ij
X X )
2

i j
2X

i j 2
X
ij
NX
饲料
1 2 3 4
组内差异(Kg)
7 -13 4 -8 10 -16 10 12 4 -10 -5 -3 -5 11 2 -5 1 15 -1 -10
组间变异 组间差异(Kg) 组内变异 20 -1 -12 -7
单向分类资料的数据结构
组别 A1 A2 … Ak 观察值 X11 X12 … X1n1 X21 X22 … X2n2 Xk1 Xk2 … Xknk 组内求和 X1 · X2 · Xk ·
i

i
i
0
X
i j
i eij i eij

1 N
式中的 i i ,

i j
i,

i
i
0

i
i
)
2
E (e
根据e i j 都服从N( 0,σ2),
i j
) 0 , D (e
i j
, E (e
2 i j
)
X )] i.
2


i j
(X
X i. ) ij
i

j
( X i. X ) 2
i
(XjΒιβλιοθήκη ijXi.
)( X i . X ) ,


i j
(X
i j
X
i.
)( X
i.
X )

[(X
i
i.
X ) ( X
j
i j
X
i.
)] 0
SST=SSA+SSE

i1 j1
k
n
x ij
x

2


i1 j1
k
n
x ij
x
i.

2
n

i1
k
x i .
x

2
总平方和=处理间平方和+处理内平方和(误差平方和)
Total variability Sum of the variability among the sample means Sum of the variability within samples
2
,
D e ij
E(X
i j

E ( e ) E ( e ij )
2 ij
2
)
i

i
, D( X
i j
)
2
均方及均方的期望
MSE SSE d fE SSE N k
称为组内均方(误差均方),
MSA
SSA d fA

SSA k 1
称为组间均方(处理均方)。
i


i
X i ni
2
NX
2


i

X
2

,
N
自由度df的剖分
df T kn 1
df
A
df T df
A
df
E
k 1
df E
k n 1 kn k
方差(均方 mean square, MS)
2 ST
( MS
T
)
SS
T


i1 j1
k
n
x ij
出与 F ( k 1 , N k )比较的结果 F F 0 . 05 ( k 1 , N k ) 时写 ns
,
F 0 . 05 ( k 1 , N k ) F F 0 . 01 ( k 1 , N k ) 时写 *,
1)提出假设:H 0 : 1
2 k
或 1 2 k 0 H A : 至少有两个均数不等 或至少有一个

2)构造并计算检验统计量:
F MSA MSE
i
不等于 0
~ F (df A , df E )
可以证明
E ( MS E ) , E ( MS A )
5个平均数c= 10,犯Ⅰ类错误的概率为1-0.95 10 = 0.4013。
所以,不能简单地进行两两比较,会增加犯Ⅰ类错误的 概率。
几个名词
试验指标:度量试验效果的标准
试验因素:影响试验指标的试验条件 单因素
饲料 1 2 3 4 57 13 13 18 增重(Kg) 37 39 15 24 54 41 13 38 42 33 29 22 60 19 20 13
2

i j
2 ij
2N X N X
2


i j
X
2 ij
NX
2
2


i j
X 2 X ij N N i

j
X
2 ij

X N
, 校正数
SS
A


i
n i ( X i. X )
2

i
n i ( X i. 2 X i. X X )
x
2 ..
df T
SS df
kn 1
S ( MS
2 A
A
)
A A

n

i1
k
x i .
x ..

2
k 1
S ( MS E )
2 E
SS df
E E


i1 j1
k
n
x ij

2 x i.
kn k
单向分类资料作方差分析的数学模型 X ij i eij i eij
饲料 1 2 3 4 组内差异(Kg) 7 -13 4 -8 10 -16 10 12 4 -10 -5 -3 -5 11 2 -5 1 15 -1 -10 变异的来源: 组间差异(Kg) 组间变异 组内变异 20 -1 -12 -7
方差分析的基本思想是什么?
方差分析的基本思想:将数据间的变异性分 解为组内变异和组间变异,比较组内和组间变 异,若组间变异大于组内变异,则表明在不同 的处理之间(不同的总体平均数之间)确实存 在差异或存在显著的差异。 变异的来源:
标志: 饲料
方差分析资料的分类 单向分类资料 (单因素资料) 双向(多向)交叉分类无重复资料(双因素资料) 双向(多向)交叉分类有重复资料 双向(多向)嵌套分类资料
单向分类资料,指按一个标志来分类的资料,这 个标志可以自然地或人为地分为若干类别或水平。 例如:不同的品种、不同的饲料配方、不同的药 物等。 饲料 增重(Kg)
2

2
n i
2 i

i
k 1
当 H 0 为 真 时 , 各 i 都 为 0 , E (M S A ) E F

2
n i
2 i

i
k 1
,
2


E (M S A ) E (M S E )


2 2
1
当 H E
0
为 假 时 , 各 i 不 都 为 0 , E (M S A ) E (M S A ) E (M S E ) 1
根据e i j 都服从N( 0,σ2),
X ij i eij i eij ,

可以证明 E ( MS
E
n i
2 i
) , E ( MS
2
) A
2
i
k 1
假设检验 方差分析所要检验的是各组所 i 代表的总体的平均数,即各个 之间是否存 在显著的差异。检验的步骤如下:
X k
组内平均
X
i.


ni
ni
X
ij
j 1
X
X 1 X 2
i

1 ni

k
X
ij
j 1
X
..


X
i.
i 1
总和 X ·· 总平均 X
组内差异 : X i j X i , 组间差异 : X i X
X
X N
..
变异的分解
观测值分解
X
i j
i j
X (X
i j
i j
X i. ) ( X
2
,
F
小结 总变异 = 组间变异 + 组内变异

i j
(X ij X )
2

i j
( X i j X i. )
相关文档
最新文档