2014年秋季新版新人教版八年级数学上学期第十二章 全等三角形单元复习试卷7
人教版八年级上册数学 第十二章 全等三角形 单元检测题 (7)(有解析)
第十二章全等三角形单元检测题 (7)一、单选题1.如图,要测量河两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再作BF的垂线DE,且使A、C、E在同一条直线上,可得△ABC≌△EDC.用于判定两三角形全等的最佳依据是()A.ASA B.SAS C.SSS D.AAS2.如图,点O是△ABC的内心,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+12∠A;②EF不可能是△ABC的中位线;③设OD=m,AE+AF=n,则S△AEF=12mn;④以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切.其中正确结论的个数是()A.1个B.2个C.3个D.4个3.已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长为( ) A.12 B.17 C.17或19 D.194.下列条件中,不能判断△ABC和△DEF全等的是()A.AB=DE,∠C=∠F,∠B=∠E B.BC=DE,AC=DF,∠C=∠DC.AB=DE,∠B=∠E,AC=DF D.AB=EF,∠B=∠F,∠A=∠E5.如图所示,已知AD平分∠BAE,若∠BAD=62°,则∠CAE的度数是()A.56°B.55°C.58°D.62°6.如图所示,D,E,F分别为ΔABC三边中点,则与ΔDEF全等的三角形有 ( )A .1个B .2个C .3个D .4个 7.一个多边形的每一个内角都等于,则这个多边形的内角和是( ) A . B . C . D .8.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634AOC AOB S S +=+△△.其中正确的结论是( )A .①②③④B .①②③⑤C .①②④⑤D .①②③④⑤9.如图,小明书上的三角形被墨迹遮挡了一部分,但他很快想到办法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是( )A .AASB .ASAC .SSSD .SAS10.如图,在ABC ∆中,E 、D 分别为AB 、AC 边上的两点,且EB CD =,若平面内动点P 满足PEB PCD S S ∆∆=,则满足此条件的点P 有( )个.A .1B .2C .4D .无数11.如图,∠MON =90°,OB =2,点A 是直线OM 上的一个动点,连结AB ,作∠MAB 与∠ABN 的角平分线AF 与BF ,两角平分线所在的直线交于点F ,求点A 在运动过程中线段BF 的最小值为( )A .2B .2C .4D .312.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于6,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .PQ >6B .PQ ≥6C .PQ <6D .PQ ≤6二、填空题13.如图,已知OC 平分∠AOB ,CD//OB ,若OD=3cm ,则CD=___________cm .14.如图,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B 、D 作BF a ⊥于点F 、DE a ⊥ 于点E .若85DE BF ==,,则EF 的长为________.15.已知图中的两个三角形全等,则∠1等于____________.16.如图,要测量池塘AB 的宽度,在池塘外选取一点P ,连接AP 、BP 并各自延长,使PC=PA ,PD=PB ,连接CD ,测得CD 长为25m ,则池塘宽AB 为______m.17.如图,△ABC 中,BD 为内角平分线,CE 为外角平分线,若∠BDC =130°,∠E =50°,则∠BAC 的度数为__________18.如图,已知AB AC =,AD AE =,BAC DAE ∠=∠,22BAD ∠=︒,30ACE ∠=︒,则ADE ∠=__________.三、解答题19.如图,ABC 中,BD 平分ABC ∠,DE AB ⊥于点E ,DF BC ⊥于F ,ABC S 18=,AB 8=,BC 4=,求DE 长.20.如图,在四边形ABCD 中,∠B=∠D=90°,AE ,CF 分别平分∠BAD 及∠DCB ,则AE ∥FC 吗?为什么?21.(2015秋•东莞校级期中)如图,AB ∥CD ,AF ∥DE ,BE=CF ,求证:AB=CD .22.(14分)如图,△ABC中,点D是BC中点,连接AD并延长到点E,连接BE。
人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)
第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠E CF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
人教版初中数学八年级上册《第12章 全等三角形》单元测试卷(含答案解析
人教新版八年级上学期《第12章全等三角形》单元测试卷一.选择题(共29小题)1.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°2.如图,△ACB≌△A′CB′,∠BCB′=32°,则∠ACA′的度数为()A.30°B.32°C.35°D.45°3.已知两个三角形中的两边和一边上的对角分别对应相等,则这两个三角形的关系是()A.不全等B.轴对称C.不一定全等D.全等4.如图,小明书上的三角形被墨迹遮挡了一部分,但他很快想到办法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是()A.AAS B.ASA C.SSS D.SAS5.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=3,BD=5,则点D到BC的距离是()A.3B.4C.5D.66.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm7.下列A、B、C、D四组图形中,是全等图形的一组是()A.B.C.D.8.AD=AE,AB=AC,BE、CD交于F,则图中相等的角共有(除去∠DFE=∠BFC)()A.2对B.3对C.4对D.5对9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=18,DE=3,AB=8,则AC长是()A.3B.4C.6D.510.如图,已知AB=CB,若根据“SAS”判定△ABD≌△CBD,需要补充的一个条件是()A.∠A=∠C B.∠ADB=∠CDB C.∠ABD=∠CBD D.BD=BD 11.下列条件中,不能判定两个直角三角形全等的是()A.一个锐角和斜边对应相等B.两条直角边对应相等C.两个锐角对应相等D.斜边和一条直角边对应相等12.下列条件中:①两条直角边分别相等;②两个锐角分别相等;③斜边和一条直角边分别相等;④一条边和一个锐角分别相等;⑤斜边和一锐角分别相等;⑥两条边分别相等.其中能判断两个直角三角形全等的有()A.6个B.5个C.4个D.3个13.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC 与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A.60°B.75°C.90°D.120°14.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,BO=OC,CD⊥BC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,从而可通过测量CD的长度得知小河的宽度AB.在这个问题中,可作为证明△ABO≌△DCO的依据的是()A.SAS或SSS B.AAS或SSS C.ASA或AAS D.ASA或SAS 15.已知,如图在△ABC中,∠C=90°,AD平分∠BAC,CD=2cm,则点D到AB 的距离为()A.2cm B.3cm C.2.5cn D.3.5cm16.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处17.如图,BD平分∠ABC,BC⊥DE于点E,AB=7,DE=4,则S△ABD=()A.28B.21C.14D.718.如图,△ABC≌△DEF,BC∥EF,AC∥DF,则∠C的对应角是()A.∠F B.∠AGF C.∠AEF D.∠D19.如图,已知△ABC≌△DEF,∠A与∠D是对应角,AB与DE是对应边.若AC=2.2,CF=0.6,则CD的长是()A.2.2B.1.6C.1.2D.0.620.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别是D,E,AD,CE交于点H,已知EH=EB=3,AE=5,则CH的长是()A.1B.2C.D.21.如图,点E、F在线段AC上,AD=BC,DF=BE,要使△ADF≌△CBE,可添加的条件是()A.AD∥BC B.DF∥BE C.∠A=∠C D.AE=CF22.已知△ABC≌△DEF,∠A=35°,那么∠D的度数是()A.65°B.55°C.35°D.45°23.如图,已知△ABC≌△ADC,∠B+∠D=160°,则∠B的度数是()A.80°B.90°C.100°D.120°24.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④25.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等②三条边对应相等的两个三角形全等③有两边和它们的夹角对应相等的两个三角形全等④有两边和其中一边上的高对应相等的两个三角形全等正确的说法个数是()A.1个B.2个C.3个D.4个26.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS27.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去28.如图,在Rt△ABC中,∠A=90°,BD是△ABC的角平分线,若AC=10,CD=6,则点D到BC的距离是()A.10B.8C.6D.429.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,△ABD的面积等于18,则AB的长为()A.9B.12C.15D.18二.填空题(共21小题)30.如图,已知△ABC≌△DCB,若∠A=75°,∠ACB=45°,则∠ACD=度.31.如图所示,在平面直角坐标系中,已知△ABC≌△FDE,若A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣2),D、E两点都在y轴上,则F点到y 轴的距离为.32.如图,△ABC≌△DEF,AB=15cm,AC=13cm,则DE=.33.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,一条线段PQ=AB=10,P、Q 两点分别在AC和过点A且垂直于AC的射线AX上运动,如果以A、P、Q为顶点的三角形与△ABC全等,则AP=.34.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt △AEC≌Rt△BFD的理由是.35.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,E是斜边AB上的动点,若CD=3cm,则DE长度的最小值是cm.36.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB,使∠AOB=∠1;④作直线AB,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有.(填序号即可)37.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=5cm,则线段DF的长度为cm.38.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是.39.如图,BD=CF,FD⊥BC于点D,DE⊥AB于点E,BE=CD,若∠AFD=140°,则∠EDF=.40.如图所示,在△FED中,AD=FC,∠A=∠F,如果用“SAS”证明△ABC≌△FED,只需添加条件即可.41.如图,△ABC≌△DEF,则∠E的度数为.42.如图,已知△EFG≌△NMH,若EF=2.1,则MN=.43.如图,∠C=∠D=90°,添加一个条件:(写出一个条件即可),可使Rt△ABC与Rt△ABD全等.44.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件.45.如图,在△ABC中,点D为BC的中点,△AEF的边EF过点C,且AE=EF,AB∥EF,AD平分∠BAE,CE=2,AB=9,则CF=.46.在△ABC中,∠ABC=90°,AB=14,点D是边AB上的中点,AE⊥AB,连接CD、CE,CD平分∠BCE,且CE=10AE,则四边形ADCE的面积为.47.如图,黄芳不小心把一块三角形的玻璃摔成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第块去配.48.把两根钢条AD,BC的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=8厘米,则槽宽为厘米.49.在△ABC中,AD是它的角平分线,已知AB:AC=5:3,S△ABC=16,则S△ADC=.50.如图所示,在Rt△ABC中,∠C=90°,AM是∠CAB的平分线,CM=1.5cm,若AB=8cm,则S=cm2.△AMB人教新版八年级上学期《第12章全等三角形》单元测试卷参考答案与试题解析一.选择题(共29小题)1.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°【分析】根据对称性可得∠1+∠3=90°,∠2=45°.【解答】解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°,故选:D.【点评】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.2.如图,△ACB≌△A′CB′,∠BCB′=32°,则∠ACA′的度数为()A.30°B.32°C.35°D.45°【分析】根据全等三角形对应角相等可得∠ACB=∠A′CB′,然后求出∠ACA=∠BCB'.【解答】解:∵△ACB≌△A'CB',∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠ACA′=∠BCB',∵∠BCB'=32°,∴∠ACA'的度数为32°.故选:B.【点评】本题考查了全等三角形对应角相等的性质,熟记性质并求出∠ACA'=∠BCB'是解题的关键.3.已知两个三角形中的两边和一边上的对角分别对应相等,则这两个三角形的关系是()A.不全等B.轴对称C.不一定全等D.全等【分析】根据全等三角形的判定解答即可.【解答】解:两个三角形中的两边和一边上的对角分别对应相等,其三角形不一定全等,故选:C.【点评】此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.4.如图,小明书上的三角形被墨迹遮挡了一部分,但他很快想到办法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是()A.AAS B.ASA C.SSS D.SAS【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【解答】解:由图可知,三角形两角及夹边可以作出,所以,依据是ASA.故选:B.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.5.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=3,BD=5,则点D到BC的距离是()A.3B.4C.5D.6【分析】作DH⊥BC于H,根据角平分线的性质解答.【解答】解:作DH⊥BC于H,∵BD平分∠ABC,∠A=90°,DH⊥BC,∴DH=AD=3,故选:A.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm【分析】根据直线、射线、线段的性质即可一一判断.【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.【点评】本题考查作图﹣尺规作图,解题的关键是熟练掌握基本概念,属于中考基础题.7.下列A、B、C、D四组图形中,是全等图形的一组是()A.B.C.D.【分析】认真观察图形,可以看出选项中只有C中的两个可以平移后重合,其它三个大小或形状不一致.【解答】解:由全等形的概念可知:A、B中的两个图形大小不同,D中的形状不同,C则完全相同,故选:C.【点评】本题考查的是全等形的识别,做题时要注意运用定义,注意观察题中图形,属于较容易的基础题.8.AD=AE,AB=AC,BE、CD交于F,则图中相等的角共有(除去∠DFE=∠BFC)()A.2对B.3对C.4对D.5对【分析】只要证明△ABE≌△ACD(SAS),即可解决问题;【解答】解:∵AB=AC,∠A=∠A,AE=AD,∴△ABE≌△ACD(SAS),∴∠B=∠C,∠AEB=∠ADC,∴∠BEC=∠BDC,∵∠DFB=∠EFC,∴共有4对角相等,故选:C.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.9.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=18,DE=3,AB=8,则AC长是()A.3B.4C.6D.5【分析】作DH⊥AC于H,根据角平分线的性质求出DH,根据三角形的面积公式计算.【解答】解:作DH⊥AC于H,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,∴DH=DE=3,由题意得,×8×3+×AC×3=18,解得,AC=4,故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如图,已知AB=CB,若根据“SAS”判定△ABD≌△CBD,需要补充的一个条件是()A.∠A=∠C B.∠ADB=∠CDB C.∠ABD=∠CBD D.BD=BD【分析】利用公共边BD以及AB=CB,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【解答】解:如图,∵在△ABD与△CBD中,AB=CB,BD=BD,∴添加∠ABD=∠CBD时,可以根据SAS判定△ABD≌△CBD,故选:C.【点评】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.11.下列条件中,不能判定两个直角三角形全等的是()A.一个锐角和斜边对应相等B.两条直角边对应相等C.两个锐角对应相等D.斜边和一条直角边对应相等【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:A、一个锐角和斜边对应相等,正确,符合AAS,B、两条直角边对应相等,正确,符合判定SAS;C、不正确,全等三角形的判定必须有边的参与;D、斜边和一条直角边对应相等,正确,符合判定HL.故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.下列条件中:①两条直角边分别相等;②两个锐角分别相等;③斜边和一条直角边分别相等;④一条边和一个锐角分别相等;⑤斜边和一锐角分别相等;⑥两条边分别相等.其中能判断两个直角三角形全等的有()A.6个B.5个C.4个D.3个【分析】画出两直角三角形,根据选项条件结合图形逐个判断即可.【解答】解:①两条直角边分别相等;正确;②两个锐角分别相等;错误;③斜边和一条直角边分别相等,正确;④一条边和一个锐角分别相等;错误;⑤斜边和一锐角分别相等;正确;⑥两条边分别相等,错误;其中能判断两个直角三角形全等的有3个.故选:D.【点评】本题考查了直角三角形全等的判定的应用,注意:直角三角形的全等的判定定理有SAS,ASA,AAS,SSS,HL.13.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC 与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A.60°B.75°C.90°D.120°【分析】先根据BC=EF,AC=DF判断出Rt△ABC≌Rt△DEF,再根据全等三角形的性质可知,∠1=∠4,再由直角三角形的两锐角互余即可解答.【解答】解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF(HL),∴∠1=∠4,∵∠3+∠4=90°,∴∠ACB+∠DEF=90°.故选:C.【点评】本题考查的是直角三角形全等的判定及性质,直角三角形的性质,属基础题目.14.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,BO=OC,CD⊥BC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,从而可通过测量CD的长度得知小河的宽度AB.在这个问题中,可作为证明△ABO≌△DCO的依据的是()A.SAS或SSS B.AAS或SSS C.ASA或AAS D.ASA或SAS 【分析】直接利用全等三角形的判定方法得出符合题意的答案.【解答】解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠OCD=90°,在△ABO和△DCO中,∴△ABO≌△DCO(ASA),则证明△ABO≌△DCO的依据的是ASA,也可以利用AAS得出.故选:C.【点评】此题主要考查了全等三角形的判定,正确掌握全等三角形的判定方法是解题关键.15.已知,如图在△ABC中,∠C=90°,AD平分∠BAC,CD=2cm,则点D到AB 的距离为()A.2cm B.3cm C.2.5cn D.3.5cm【分析】过D点作DE⊥AB于点E,根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=2cm,∴DE=2cm.故选:A.【点评】本题主要考查了角平分线的性质的应用,注意:角平分线上的点到角两边的距离相等.16.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.故选:A.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并是解题的关键,作出图形更形象直观.17.如图,BD平分∠ABC,BC⊥DE于点E,AB=7,DE=4,则S△ABD=()A.28B.21C.14D.7【分析】利用角平分线的性质定理即可解决问题;【解答】解:作DH⊥BA于H.∵BD平分∠ABC,BC⊥DE,DH⊥AB,∴DH=DE=4,=×7×4=14,∴S△ABD故选:C.【点评】本题考查角平分线的性质定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,△ABC≌△DEF,BC∥EF,AC∥DF,则∠C的对应角是()A.∠F B.∠AGF C.∠AEF D.∠D【分析】根据已知条件AC∥DF,BC∥EF,即可得到∠D=∠BAC,∠B=∠DEF,又因为△ABC≌△DEF,所以对应角相等,依此来解答即可.【解答】解:∵△ABC≌△DEF,∴△ABC与△DEF的对应角相等;∵AC∥DF,BC∥EF,∴∠D=∠BAC,∠B=∠DEF,∵∠C是△ABC的一个内角,∴∠C的对应角为∠F,故选:A.【点评】本题主要考查了全等三角形的性质,由全等的性质得出相等的边、角,根据平行线得到一对对应角相等,从而得到对应关系,找准对应关系式正确解题的关键.19.如图,已知△ABC≌△DEF,∠A与∠D是对应角,AB与DE是对应边.若AC=2.2,CF=0.6,则CD的长是()A.2.2B.1.6C.1.2D.0.6【分析】根据全等三角形的性质得AC=DF,则依据CF=0.6可得CD的长.【解答】解:△ABC≌△DEF,∠A与∠D是对应角,AB与DE是对应边,∴AC=DF=2.2,又∵CF=0.6,∴CD=DF﹣CF=2.2﹣0.6=1.6,故选:B.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.20.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别是D,E,AD,CE交于点H,已知EH=EB=3,AE=5,则CH的长是()A.1B.2C.D.【分析】由AD垂直于BC,CE垂直于AB,利用垂直的定义得到一对角为直角,再由一对对顶角相等,利用三角形的内角和定理得到一对角相等,再由一对直角相等,以及一对边相等,利用AAS得到三角形AEH与三角形EBC全等,由全等三角形的对应边相等得到AE=EC,由EC﹣EH,即AE﹣EH即可求出HC 的长.【解答】解:∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,,∴△HEA≌△BEC(AAS),∴AE=EC=5,则CH=EC﹣EH=AE﹣EH=5﹣3=2.故选:B.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.21.如图,点E、F在线段AC上,AD=BC,DF=BE,要使△ADF≌△CBE,可添加的条件是()A.AD∥BC B.DF∥BE C.∠A=∠C D.AE=CF【分析】根据全等三角形的判定方法即可解决问题;【解答】解:选项D正确.理由:∵AE=CF,∴AF=EC,在△ADF和△CBE中,,∴△ADF≌△CBE(SSS),故选:D.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考基础题.22.已知△ABC≌△DEF,∠A=35°,那么∠D的度数是()A.65°B.55°C.35°D.45°【分析】根据全等三角形的性质,得出∠D=∠A=35°即可.【解答】解:∵△ABC≌△DEF,∴∠A=∠D,∵∠A=35°,∴∠D=35°,故选:C.【点评】本题考查了全等三角形的性质,注意:全等三角形的对应角相等,对应边相等.23.如图,已知△ABC≌△ADC,∠B+∠D=160°,则∠B的度数是()A.80°B.90°C.100°D.120°【分析】根据全等三角形对应角相等求出∠B的度数.【解答】解:∵△ABC≌△ADC,∴∠B=∠D,∵∠B+∠D=160°,∴∠B=80°,故选:A.【点评】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母放在对应位置结合图形准确确定对应角是解题的关键.24.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④【分析】想办法证明△FAB≌△EAC(SAS),利用全等三角形的性质即可解决问题;【解答】解:∵∠EAF=∠BAC,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△FAB≌△EAC(SAS),故①正确,∴BF=EC,故②正确,∴∠ABF=∠ACE,∵∠BDF=∠ADC,∴∠BFD=∠DAC,∴∠BFD=∠EAF,故③正确,无法判断AB=BC,故④错误,故选:A.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.下列关于两个三角形全等的说法:①三个角对应相等的两个三角形全等②三条边对应相等的两个三角形全等③有两边和它们的夹角对应相等的两个三角形全等④有两边和其中一边上的高对应相等的两个三角形全等正确的说法个数是()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定方法一一判断即可;【解答】解:①三个角对应相等的两个三角形全等;错误;②三条边对应相等的两个三角形全等;正确;③有两边和它们的夹角对应相等的两个三角形全等;正确;④有两边和其中一边上的高对应相等的两个三角形全等;错误(一个锐角三角形,一个钝角三角形不全等)故选:B.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考基础题.26.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【点评】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.27.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去【分析】根据全等三角形的判定,已知两角和夹边,就可以确定一个三角形.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时要根据已知条件进行选择运用.28.如图,在Rt△ABC中,∠A=90°,BD是△ABC的角平分线,若AC=10,CD=6,则点D到BC的距离是()A.10B.8C.6D.4【分析】根据题意作辅助线,然后根据角平分线的性质得出DE=AD,根据已知可得AD=4,所以DE=4,即D点到BC的距离是4.【解答】解:过点D作DE⊥BC于点E,∵已知∠A=90°,BD是∠ABC的平分线,DE⊥BC,∴∠A=∠DEB=90°,根据角平分线的性质可得:DE=AD.∵AC=10,CD=6,∴DA=4.∴DE=4,即D点到BC的距离是4,故选:D.【点评】本题主要考查角平分线的性质,作出辅助线是解决本题的关键,难度适中.29.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,△ABD的面积等于18,则AB的长为()A.9B.12C.15D.18【分析】过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,继而利用三角形面积解答即可.【解答】解:如图,过D作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,∴DE=DC=3,∵△ABD的面积等于18,∴△ABD的面积=AB•DE=×AB×3=18.∴AB=12,故选:B.【点评】本题考查了角平分线的性质,能根据角平分线性质得出DE=CD是解此题的关键,注意:角平分线上的点到这个角两边的距离相等.二.填空题(共21小题)30.如图,已知△ABC≌△DCB,若∠A=75°,∠ACB=45°,则∠ACD=15度.【分析】根据三角形内角和定理求出∠ABC的度数,根据全等三角形的性质求出∠DCB的度数,计算即可.【解答】解:∵∠A=75°,∠ACB=45°,∴∠ABC=60°,∵△ABC≌△DCB,∴∠DCB=∠ABC=60°,∴∠ACD=∠DCB﹣∠ACB=15°,故答案为:15.【点评】本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.31.如图所示,在平面直角坐标系中,已知△ABC≌△FDE,若A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣2),D、E两点都在y轴上,则F点到y 轴的距离为3.【分析】作AH⊥BC于H,FP⊥DE于P,根据全等三角形的性质得到AC=DF,∠C=∠FDE,推出△ACH≌△DFP(AAS),根据全等三角形的性质得到AH=FP,根据A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣2),得到AH=3,即可得到结论.【解答】解:如图,作AH⊥BC于H,FP⊥DE于P,∵△ABC≌△FDE,∴AC=DF,∠C=∠FDE,在△ACH和△DFP中,,∴△ACH≌△DFP(AAS),∴AH=FP,∵A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣2),∴AH=3,∴FP=3,∴F点到y轴的距离为3,故答案为:3.【点评】本题考查了坐标与图象的性质的运用,垂直的性质的运用,全等三角形的判定及性质的运用,等腰三角形的性质的运用,解答时证明三角形全等是关键.32.如图,△ABC≌△DEF,AB=15cm,AC=13cm,则DE=15cm.【分析】利用全等三角形的性质即可判断;【解答】解:∵△ABC≌△DEF,∴AB=DE,∵AB=15cm,∴DE=15cm,故答案为15cm.【点评】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.33.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,一条线段PQ=AB=10,P、Q 两点分别在AC和过点A且垂直于AC的射线AX上运动,如果以A、P、Q为顶点的三角形与△ABC全等,则AP=6或8.【分析】理由全等三角形的性质即可判断;【解答】解:∵∠C=∠PAQ=90°,又∵以A、P、Q为顶点的三角形与△ABC全等,∴PA=BC或PA=AC,∵BC=6,AC=8,∴PA=6或8,故答案为6或8.【点评】本题考查全等三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.34.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt △AEC≌Rt△BFD的理由是AAS.【分析】根据垂直定义求出∠AEC=∠BFD=90°,根据平行线的性质得出∠A=∠B,根据全等三角形的判定定理AAS推出即可.【解答】解:∵CE⊥AB,DF⊥AB,∴∠AEC=∠BFD=90°.∵AC∥DB,∴∠A=∠B.在△AEC和△BFD中,∴Rt△AEC≌Rt△BFC(AAS),故答案为:AAS.【点评】本题考查了全等三角形的判定,平行线的性质,垂直定义的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等的判定定理除了具有以上定理外,还有HL 定理.35.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,E是斜边AB上的动点,若CD=3cm,则DE长度的最小值是3cm.【分析】过D点作DE⊥AB于点E,根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE,∵CD=3cm,∴DE=3cm,即DE长度的最小值是3cm.故答案为:3.【点评】本题主要考查了角平分线的性质的应用,注意:角平分线上的点到角两边的距离相等.36.下列语句是有关几何作图的叙述.①以O为圆心作弧;②延长射线AB到点C;③作∠AOB,使∠AOB=∠1;④作直线AB,使AB=a;⑤过三角形ABC的顶点C作它的对边AB的平行线.其中正确的有③⑤.(填序号即可)【分析】①根据确定圆的两个条件:圆心和半径判断即可;②根据射线的性质判断即可;③根据基本作图:作一个角等于已知角判断即可;④根据直线的性质判断即可;⑤根据平行公理判断即可.【解答】解:①以O为圆心作弧可以画出无数条弧,因为半径不固定,所以叙述错误;②射线AB是由A向B向无限延伸,所以叙述错误;③根据作一个角等于已知角的作法,可以作一个角∠AOB,使∠AOB等于已知∠1,所以叙述正确;④直线可以向两方无限延伸,所以叙述错误;⑤根据平行公理:过直线外一点有且只有一条直线与已知直线平行,可以过三角形ABC的顶点C作它的对边AB的平行线,所以叙述正确.所以正确的有③⑤.故答案为:③⑤.【点评】本题考查作图﹣尺规作图的定义,涉及到直线、射线及圆、角、平行线的知识,属于基础题,注意掌握射线只能反方向延长,直线不能延长,确定。
秋新人教版八年级上册第12章《全等三角形》全套同步练习及(含答案)共57页
12.1 全等三角形一、选择题1.已知图中的两个三角形全等,则∠α的度数是() A.72° B.60° C。
58° D50°3种角形.如图,△ABC≌△DEF.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为(第4题图第5题图第6题图第1题图第7题图8. 下列说法中不正确的是( )①全等三角形的对应边相等;②全等三角形的对应角相等; ③全等三角形的周长相等;④周长相等的两个三角形全等;⑤全等三角形二、填空题9.如图,△ABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,那么点D 的坐标是 _________ .10.如图,若△ABC≌△A 1B 1C 1,且∠A=110°,∠B=40°,则∠C 1= ______度.11.已知:如图,△OAD≌△OB C ,且∠O=70°,∠C=25°,则∠AEB= _度.12. 如图,已知AB=AC ,EB=EC ,AE 的延长线交BC 于D ,那么图中的全等三角形共有 _________ 对.13.如图,将一副七巧板拼成一只小动物,则∠AO B= _________ 度. 14. 如图,AC⊥BD 于O ,BO=OD ,图中共有全等三角形 _________ 对. 15. 如图,已知EF⊥AB,MN⊥AB,且AF=BN ,∠E=∠M,则图中全等三角形有 _________ 对,它们分别是 _________ .第9题图 第11题图第10题图 第12题图第13题图第15题图第14题图16.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37° 则∠E =_______. 17. 利用全等三角形测距离,其结论依据是 _________ .18.如图所示,△BDC′是将长方形纸牌ABCD 沿着BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形 _________ 对.三、解答题19.如图,其中含有三个正方形,图中有几种全等三角形?请分别写出来.20.将一张矩形的纸片ABCD 沿EF 折叠,使点D 与点B 重合(如图),请你观察图形,有全等三角形吗?请说明理由.21.如图,△ABO≌△ACO,请在图形中找出其他的全等三角形,并用全等符号表示.22.如图所示是一个等边三角形,按下列要求分割图形(1)用1条线段把图①分割成2个全等三角形图形第18题图(2)用3条线段把图②分割成3个全等三角形图形(3)用3条线段把图③分割成4个全等三角形图形23.你能把长方形分割成八个全等三角形吗?请设计三种不同的方法(画示意图)12.1 全等三角形一、选择题1. D2. B3. B4. A5. B6. D7. A8. B二、填空题9.(4,﹣1)或(﹣1,3)或(﹣1,﹣1)10.30度11.120度12. 3对13. 135度14. 3对15.3对,△APF≌△BQN,△AMN≌△BEF,.△EPC≌△MQC16. 37或53 17.全等三角形的对应边相等18. 4对APN理由:由四ABC=∠=故21.△A.:人教版八年级上册12.1《全等三角形》同步练习含答案一、填空题1.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI______全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI______全等.(填“一定”或“不一定”或“一定不”)2.如图1,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=______.3.△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.4.如图2,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“______”.5.如图3,AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB.你补充的条件是______.6.如图4,AC,BD相交于点O,AC=BD,AB=CD,写出图中两对相等的角______.7.如图5,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.8.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:______.9.如图6,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则的面积为______.二、选择题1.如图7,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.B.C.△APE≌△APF D.2.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③3.如图8, AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等5.如图9,,,下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40°D.∠C=30°6.已知:如图10,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形()A.5对B.4对C.3对D.2对7.将一张长方形纸片按如图11所示的方式折叠,为折痕,则的度数为()A.60°B.75°C.90°D.95°8.根据下列已知条件,能惟一画出△ABC的是()A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6三、解答题1.请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50mm,OQ上截取OB=70mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC的长.(结果精确到1mm,不要求写画法).2.已知:如图12,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,.求证:(1);(2).3.如图13,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取;②在BC上取;③量出DE的长a米,FG的长b米.如果,则说明∠B和∠C是相等的.他的这种做法合理吗?为什么?4.填空,完成下列证明过程.如图14,中,∠B=∠C,D,E,F分别在,,上,且,求证:.证明:∵∠DEC=∠B+∠BDE(),又∵∠DEF=∠B(已知),∴∠______=∠______(等式性质).在△EBD与△FCE中,∠______=∠______(已证),______=______(已知),∠B=∠C(已知),∴( ).∴ED=EF( ).5.如图15,O为码头,A,B两个灯塔与码头的距离相等,OA,OB为海岸线,一轮船从码头开出,计划沿∠A OB的平分线航行,航行途中,测得轮船与灯塔A,B的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.6.如图16,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设的度数为x,∠的度数为,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.参考答案一、1.一定,一定不2.50°3.40°4.HL 5.略(答案不惟一)6.略(答案不惟一) 7.5 8.正确9.8二、1.D 2.C 3.D 4.C 5.C 6.A 7.C 8.C三、1.略.2.证明:(1)在和△CDE中,∴△ABF≌△CDE(HL).∴.(2)由(1)知∠ACD=∠CAB,∴AB∥CD.3.合理.因为他这样做相当于是利用“SSS”证明了△BED≌△CGF,所以可得∠B=∠C.4.三角形的一个外角等于与它不相邻两个内角的和,BDE,CEF,BDE,CEF,BD,CE,ASA,全等三角形对应边相等.5.此时轮船没有偏离航线.画图及说理略.6.(1)△EAD ≌△,其中∠EAD=∠,;(2);(3)规律为:∠1+∠2=2∠A .12.2三角形全等的判定12.2 第1课时 边边边(SSS )一、选择题1.如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可以判定( )A .ABD ACD △≌△B .ABE ACE △≌△C .BDE CDE △≌△D .以上答案都不对2.如图,在ABC △和DCB △中,AB DC =,AC 与BD 相交于点E ,若不再添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件是( ) A.AC=BD B.AC=BC C.BE=CE D.AE=DE3.如图,已知AB=AC ,BD=DC ,那么下列结论中不正确的是() A .△ABD ≌△ACD B .∠ADB=90° C .∠BAD 是∠B 的一半D .AD 平分∠BAC4. 如图,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )A.120°B.125°C.127°D.104°AEDC 第1题图第2题图 第3题图5. 如图,线段AD 与BC 交于点O ,且AC=BD ,AD=BC , 则下面的结论中不正确的是( )A.△ABC ≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D 6. 如图,AB=CD,BC=DA ,E 、F 是AC 上的两点,且AE=CF,DE=BF,,那么图中全等三角形共有( )对A .4对B .3对C .2对D .1对7. 如图 ,AB=CD ,BC=AD ,则下列结论不一定正确的是( ).A.AB ∥DCB. ∠B =∠DC. ∠A =∠CD. AB=BC8. 如果△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1,若这两个三角形全等,则x 等于( ) A .73B .3C .4D .5二、填空题9.工人师傅常用角尺平分一个任意角。
人教版数学八年级上册单元测试第十二章全等三角形(含答案)
第5题 第十二章《全等三角形》单元测试卷一.选择题(5小题,每小题3分,共15分)1、如图,已知∠1=∠2,欲取得△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是( )A 、∠ADB=∠ADCB 、∠B=∠C C 、DB=DCD 、AB=AC 2、使两个直角三角形全等的条件是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条边对应相等 3、如图,∠AOP=∠BOP=15°,PC310 cm16 cm1二、如图:AD=EB , BF=DG , BF ∥DG ,点A 、B 、C 、D 、E 在同一直线上。
求证: AF=EG 。
13、如图所示,AE 是∠BAC 的角平分线,EB ⊥AB 于B ,EC ⊥AC 于C ,D 是AE 上一点,求证:BD=CD 。
第3题第4题 CDBA21EGFE(图6)DC BA.3421DCBA14、如图,BD=CD,BF⊥AC于F,CE⊥AB于E。
求证:点D在∠BAC的角平分线上。
1五、如图,∠AOP=∠BOP,AD⊥OB于D,BC⊥OA于C,AD与BC交于点P。
求证:AP=BP。
四.解答题(4小题,每小题7分,共28分)cm,AB=20cm,1六、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是282AC=8cm,求DE的长。
AEFB C17、如图,AE是∠BAC的平分线,AB=AC。
⑴若点D是AE上任意一点,则△ABD≌△ACD;⑵若点D是AE反向延长线上一点,结论还成立吗?试说明你的猜想。
1八、如图,AB=AC,∠BAC=900,BD⊥AE于D,CE⊥AE于E,且BD>CE,求证:BD=EC+ED.1九、已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(而且再也不添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.五.解答题(3小题,每小题9分,共27分)DAB COBACDE20、如图,已知AC ∥BD 、EA 、EB 别离平分∠CAB 和△DBA ,CD 过点E ,则AB 与AC+BD•相等吗?请说明理由.2一、如图14,画一个两条直角边相等的Rt △ABC ,并过斜边BC 上一点D 作射线AD ,再别离过B 、C 作射线AD 的垂线BE 和CF ,垂足别离为E 、F ,量出BE 、CF 、EF 的长,•改变D 的位置,再重复上面的操作,你是不是发觉BE 、CF 、EF 的长度之间有某种关系?能说清其中的奥妙吗?2二、如图,已知∠MON 的边OM 上有两点A 、B ,边ON 上有两点C 、D ,且AB =CD ,P 为∠MON 的平分线上一点.问:(1)△ABP 与△PCD 是不是全等?请说明理由. (2)△ABP 与△PCD 的面积是不是相等?请说明理由.4题图PMCBAD CA EF图14DCABE。
人教版八年级数学上册试题 第12章 全等三角形单元测试(含答案)
第12章全等三角形单元测试一.选择题(共12小题,满分48分,每小题4分)1.下列各组两个图形属于全等图形的是( )A.B.C.D.2.下列说法中正确的是( )A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去5.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10B.7C.5D.47.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是( )A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF8.(4分)下列各组条件,不能判定△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,AC=DFC.AB=DE,AC=DF,∠B=∠E D.AB=DE,AC=DF,∠B=∠E=90°9.如图,在△ABC中,AB=4,AC=7,延长中线AD至E,使DE=AD,连结CE,则△CDE的周长可能是( )A.9B.10C.11D.1210.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=( )A.90°B.120°C.135°D.150°11.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )A.1B.6C.3D.1212.如图,方格中△ABC的三个顶点分别在正方形的顶点(格点上),这样的三角形叫格点三角形,图中可以画出与△ABC全等的格点三角形共有( )个.(不含△ABC)A.28B.29C.30D二.填空题(共4小题,满分16分,每小题4分)13.已知:△ABC≌△DEF,若∠ABC=65°,则∠DEF= .14.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 .15.(4分)沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C走到D的过程中,通过隔离带的空隙P,刚好浏览完对面人行道宣传墙上的一条标语,具体信息如下:如图,AB∥PM ∥CD,相邻两平行线间的距离相等,AC,BD相交于P,PD⊥CD垂足为D.已知CD=16米.请根据上述信息求标语AB的长度 .16.(4分)如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为 ;第n个三角形中以A n为顶点的底角的度数为 .三.解答题(共8小题,满分86分)17.(8分)如图,点B,F,C,E在一条直线上,BD=CF,AB=EF,AC=ED.求证:△ABC≌△EFD.18.(8分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.19.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.20.(10分)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.21.(12分)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.22.(12分)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件 ,使①中的结论仍然成立,并说明理由;(2)如图3,若线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.23.(12分)在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.(1)如图1,当点D是BC边上的中点时,S△ABD:S△ACD= ;(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n 的代数式表示);(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S=6,那么S△ABC= .△BDE24.(14分)如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.答案一.选择题B .C .D .C .A .C .D .C .D .C.C .D .二.填空题13.65°.14.5.15.16米.16.17.5°,70°2n −1.三.解答题17.证明:∵BD =CF ,∴BD +DC =CF +DC .∴BC =FD .在△ABC 和△EFD 中,{AB =EFAC =ED BC =FD,∴△ABC ≌△EFD (SSS ).18.证明:∵FC ∥AB ,∴∠A =∠FCE ,∠ADE =∠F ,在△ADE 与△CFE 中:∵{∠A =∠FCE∠ADE =∠F DE =EF,∴△ADE ≌△CFE (AAS ).19.证明:∵D 是BC 的中点,∴BD =CD ,∵DE ⊥AB ,DF ⊥AC ,∴△BED 和△CFD 都是直角三角形,在△BED 和△CFD 中,{BD =CD BE =CF ,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).20.(1)证明:∵AD平分∠BAC,∠C=90°,DE⊥AB于E,∴DE=DC.在Rt△CDF与Rt△EDB中,{DF=DBDC=DE,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB.(2)解:设CF=x,则AE=12﹣x,∵AD平分∠BAC,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,{AD=ADCD=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,即8+x=12﹣x,解得x=2,即CF=2.21.(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中{DM=DMEM=CM∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.22.解:(1)∵∠BEC=∠CFA=α=90°,∴∠BCE+∠CBE=180°﹣∠BEC=90°.又∵∠BCA=∠BCE+∠ACF=90°,∴∠CBE=∠ACF.在△BCE和△CAF中,{∠BEC=∠CFA,∠CBE=∠ACF,BC=AC.∴△BCE≌△CAF(AAS).∴BE=CF.(2)α+∠BCA=180°,理由如下:∵∠BEC=∠CFA=α,∴∠BEF=180°﹣∠BEC=180°﹣α.又∵∠BEF=∠EBC+∠BCE,∴∠EBC+∠BCE=180°﹣α.又∵α+∠BCA=180°,∴∠BCA=180°﹣α.∴∠BCA=∠BCE+∠ACF=180°﹣α.∴∠EBC=∠FCA.在△BCE和△CAF中,{∠CBE=∠ACF,∠BEC=∠CFA,BC=CA.∴△BCE≌△CAF(AAS).∴BE=CF.(3)EF=BE+AF,理由如下:∵∠BCA=α,∴∠BCE+∠ACF=180°﹣∠BCA=180°﹣α.又∵∠BEC=α,∴∠EBC+∠BCE=180°﹣∠BEC=180°﹣α.∴∠EBC=∠FCA.在△BEC和△CFA中,{∠EBC=∠FCA,∠BEC=∠FCA,BC=CA.∴△BEC≌△CFA(AAS).∴BE=CF,EC=FA.∴EF=EC+CF=FA+BE,即EF=BE+AF.23.解:(1)过A作AE⊥BC于E,∵点D是BC边上的中点,∴BD=DC,∴S ABD:S△ACD=(12×BD×AE):(12×CD×AE)=1:1,故答案为:1:1;(2)过D作DE⊥AB于E,DF⊥AC于F,∵AD为∠BAC的角平分线,∴DE=DF,∵AB=m,AC=n,∴S ABD:S△ACD=(12×AB×DE):(12×AC×DF)=m:n;(3)∵AD=DE,∴由(1)知:S△ABD:S△EBD=1:1,∵S△BDE=6,∴S△ABD=6,∵AC=2,AB=4,AD平分∠CAB,∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,∴S△ACD=3,∴S△ABC=3+6=9,故答案为:9.24.解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,则PC=(10﹣2t)cm;故答案为:(10﹣2t);(2)当△ABP≌△DCP时,则BP=CP=5,故2t=5,解得:t=2.5;(3)①如图1,当△ABP≌△QCP,则BA=CQ,PB=PC,∵PB=PC,BC=5,∴BP=PC=122t=5,解得:t=2.5,BA=CQ=6,v×2.5=6,解得:v=2.4(cm/秒).②如图2,当△ABP≌△PCQ,则BP=CQ,AB=PC.∵AB=6,∴PC=6,∴BP=10﹣6=4,2t=4,解得:t=2,CQ=BP=4,v×2=4,解得:v=2;综上所述:当v=2.4cm/秒或2cm/秒时△ABP与△PQC全等.。
人教新版 八年级(上)数学 第12章 全等三角形 单元测试卷 (解析版)
第12章全等三角形单元测试卷一、选择题(共10小题).1.(2分)在三角形的内部,到三边距离相等的点是三角形的三条()A.中线的交点B.角平分线的交点C.高的交点D.以上都不对2.(2分)如图,若△ABC与△DEF全等,且BC=DF,则下列结论正确的是()A.∠D=66°B.EF=5cm C.∠E=60°D.DE=5cm 3.(2分)如图,已知△ABC≌△BAD,A与B,C与D分别是对应顶点,若AB=3cm,BC=2cm,AC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.不能确定4.(2分)根据下列已知条件,能唯一画出△ABC的是()A.AB=3cm,BC=4cm,AC=8cmB.AB=4cm,BC=3cm,∠A=30°C.∠A=60°,∠B=45°,AB=40cmD.∠C=90°,AB=6cm5.(2分)下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两个直角三角形的面积相等6.(2分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=()A.60°B.55°C.50°D.无法计算7.(2分)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c8.(2分)如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于()A.585°B.540°C.270°D.315°9.(2分)如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个B.3个C.4个D.5个10.(2分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 二、填空题(每小题3分,共30分)11.(3分)如图所示,AD⊥BC,D为BC的中点,若∠B=52°,则∠DAC=.12.(3分)如图,AD=AB,∠C=∠E,∠CDE=60°,则∠ABE=.13.(3分)如图,点D,C,A在同一条直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE的度数为.14.(3分)如图,△ABC和△EBD都是等腰三角形,且∠ABC=∠EBD=100°,当点D 在AC边上时,∠BAE=度.15.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE=cm.16.(3分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=.17.(3分)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.18.(3分)如图,AB⊥BC、DC⊥BC,垂足分别为B、C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP=时,形成的Rt△ABP与Rt△PCD全等.19.(3分)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.则∠APN=.20.(3分)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=.三、解答题(共50分)21.(4分)如图,在直线MN上求作一点P,点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程.22.(6分)如图,在△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,E、F为垂足,DE=DF,求证:∠B=∠C.23.(8分)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.24.(8分)已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点,求证:△ACE≌△BCD.25.(6分)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.26.(8分)如图,已知M是∠AOB内一点,MD⊥OB于点D,MC⊥OA于点C,且MD =MC作射线OM,在OM上任取一点P,连接PC,PD.找出图中所有相等的线段(MD =MC除外),并加以证明.27.(10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D.BE⊥MN于点E.(1)当直线MN绕点C旋转到如图所示位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到与线段AB相交(交点不是AB中点)时,画出相应的图形,探求线段DE,AD与BE之间的等量关系,并写出其关系式.四、附加题(共10分)28.有位同学发现了“角平分线”的另一种尺规作法,其方法为:(1)如图所示,以O为圆心,任意长为半径画弧交OM、ON于点A、B;(2)以O为圆心,不等于(1)中的半径长为半径画弧交OM、ON于点C、D;(3)连接AD、BC相交于点E;(4)作射线OE,则OE为∠MON的平分线.你认为他这种作法对吗?试说明理由.参考答案一、选择题(每小题2分,共20分)1.(2分)在三角形的内部,到三边距离相等的点是三角形的三条()A.中线的交点B.角平分线的交点C.高的交点D.以上都不对解:在三角形内部到三边距离相等的点是三个内角平分线的交点,故选:B.2.(2分)如图,若△ABC与△DEF全等,且BC=DF,则下列结论正确的是()A.∠D=66°B.EF=5cm C.∠E=60°D.DE=5cm解:∵△ABC与△DEF全等,∠B=∠F,且BC=DF,∴EF=AB=5cm,故选:B.3.(2分)如图,已知△ABC≌△BAD,A与B,C与D分别是对应顶点,若AB=3cm,BC=2cm,AC=4cm,则AD的长为()A.2cm B.3cm C.4cm D.不能确定解:∵△ABC≌△BAD,∴AD=BC=2cm,故选:A.4.(2分)根据下列已知条件,能唯一画出△ABC的是()A.AB=3cm,BC=4cm,AC=8cmB.AB=4cm,BC=3cm,∠A=30°C.∠A=60°,∠B=45°,AB=40cmD.∠C=90°,AB=6cm解:A、AB=3cm,BC=4cm,AC=8cm;不满足三角形三边关系,本选项不符合题意;B、AB=4cm,BC=3cm,∠A=30°;边边角三角形不能唯一确定.本选项不符合题意;C、∠A=60°,∠B=45°,AB=40cm;角边角三角形唯一确定.本选项符合题意;D、∠C=90°,AB=6cm;一边一角三角形不能唯一确定.本选项不符合题意;故选:C.5.(2分)下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两个直角三角形的面积相等解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确;如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS可判断两三角形全等,故选项B正确;如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL可判断两三角形全等,故选项C正确;如果两个直角三角形的面积相等,那么无法判定两个直角三角形全等,故D错误;故选:D.6.(2分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=()A.60°B.55°C.50°D.无法计算解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△BAD和△CAE中∴△BAD≌△CAE,∵∠2=30°,∴∠ABD=∠2=30°,∵,∠1=25°,∴∠3=∠ABD+∠1=55°,故选:B.7.(2分)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.8.(2分)如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于()A.585°B.540°C.270°D.315°解:仔细观察图形,我们可以发现:∵AB=AZ,BC=ZV,∠B=∠Z,∴△ABC≌△AZV(SAS),∴∠1=∠AVZ,∴∠1+∠7=180°,同理可得:∠2+∠6=180°,∠3+∠5=180°,∠4=45°,所以说图示的7个角的度数和为∠1+∠7+∠2+∠6+∠3+∠5+∠4=180°+180°+180°+45°=585°.故选:A.9.(2分)如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个B.3个C.4个D.5个解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE﹣∠BAC=∠CAF﹣∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.10.(2分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.二、填空题(每小题3分,共30分)11.(3分)如图所示,AD⊥BC,D为BC的中点,若∠B=52°,则∠DAC=38°.解:∵D为BC的中点,∴BD=CD,∵AD⊥BC,∠B=52°,∴∠ADB=∠ADC=90°,∠BAD=38°,在△ADB和△ADC中,,∴△ABD≌△ACD(SAS),∴∠DAC=∠BAD=38°,故答案为:38°.12.(3分)如图,AD=AB,∠C=∠E,∠CDE=60°,则∠ABE=120°.解:∵在△ADC和△ABE中,,∴△ADC≌△ABE(AAS),∴∠ADC=∠ABE,∵∠CDE=60°,∴∠ADC=120°,∴∠ABE=120°,故答案为120°.13.(3分)如图,点D,C,A在同一条直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,若△EDC≌△ABC,则∠BCE的度数为20°.解:∵∠A:∠ABC:∠ACB=3:5:10,∴∠ACB=180°×=100°,∵△EDC≌△ABC,∴∠ECD=∠ACB=100°,∴∠ECA=180°﹣∠ECD=180°﹣100°=80°,∠BCE=∠ACB﹣∠ECA=100°﹣80°=20°,故答案为:20°14.(3分)如图,△ABC和△EBD都是等腰三角形,且∠ABC=∠EBD=100°,当点D 在AC边上时,∠BAE=40度.解:∵∠ABC=∠ABD+∠DBC,∠EBD=∠EBA+∠ABD,∠ABC=∠EBD,∴∠DBC=∠EBA,∵△ABC和△EBD都是等腰三角形,∴BE=BD,AB=CB,在△EAB和△DCB中,∴△EAB≌△DCB(SAS),∴∠BAE=∠BCD,∵∠ABC=100°,AB=CB,∴∠BAE=∠BCD==40°,故答案为:40.15.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE= 1.5cm.解:∵BE⊥CE,AD⊥CE∴∠E=∠ADC=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠BCE+∠DCA=90°∴∠BAC=∠DAE在△ACD和△CBE中,,∴△ACD≌△CBE∴BE=CD=0.5(cm),EC=AD=2(cm)DE=CE﹣CD=1.5(cm),故答案为1.516.(3分)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=135°.解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°,故答案为:135°.17.(3分)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有3对全等三角形.解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.18.(3分)如图,AB⊥BC、DC⊥BC,垂足分别为B、C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP=2时,形成的Rt△ABP与Rt△PCD全等.解:当BP=2时,Rt△ABP≌Rt△PCD,∵BC=8,BP=2,∴PC=6,∵AB⊥BC、DC⊥BC,∴∠B=∠C=90°,在△ABP和△PCD中,∴△ABP≌△PCD(SAS),故答案为:2.19.(3分)如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.则∠APN=108°.解:∵五边形ABCDE为正五边形,∴AB=BC,∠ABM=∠C,在△ABM和△BCN中,,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠BAM+∠ABP=∠APN,∴∠CBN+∠ABP=∠APN=∠ABC==108°,∴∠APN的度数为108°,故答案为108°20.(3分)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.三、解答题(共50分)21.(4分)如图,在直线MN上求作一点P,点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程.解:如图,点P即为所求.22.(6分)如图,在△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,E、F为垂足,DE=DF,求证:∠B=∠C.【解答】证明:∵点D是BC的中点,∴DB=DC,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL).∴∠B=∠C.23.(8分)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.【解答】证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDF是直角三角形,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,∴AD是∠BAC的平分线.24.(8分)已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点,求证:△ACE≌△BCD.【解答】证明:∵△ABC和△ECD都是等腰直角三角形,∴EC=DC,AC=CB,∵∠ACB=∠DCE=90°,∴∠ACB﹣∠3=∠ECD﹣∠3,即:∠1=∠2,在△ACE和△BCD中,∴△ACE≌△BCD(SAS).25.(6分)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.26.(8分)如图,已知M是∠AOB内一点,MD⊥OB于点D,MC⊥OA于点C,且MD =MC作射线OM,在OM上任取一点P,连接PC,PD.找出图中所有相等的线段(MD =MC除外),并加以证明.解:∵M是∠AOB内一点,MD⊥OB于点D,MC⊥OA于点C,且MD=MC,∴∠BOM=∠AOM,在Rt△DOM与Rt△COM中,∴Rt△DOM≌Rt△COM(HL),∴OD=OC,在△DOP与△COP中,∴△DOP≌△COP(SAS),∴PC=PD.27.(10分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D.BE⊥MN于点E.(1)当直线MN绕点C旋转到如图所示位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到与线段AB相交(交点不是AB中点)时,画出相应的图形,探求线段DE,AD与BE之间的等量关系,并写出其关系式.【解答】(1)证明:如图1,∵AD⊥MN于点D.BE⊥MN于点E,∴∠ADC=90°,∠CEB=90°,∵∠ACB=90°,∴∠ACD=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴DE=CE+CD=AD+BE;(2)如图2,DE=AD﹣BE;如图3,DE=BE﹣AD.四、附加题(共10分)28.有位同学发现了“角平分线”的另一种尺规作法,其方法为:(1)如图所示,以O为圆心,任意长为半径画弧交OM、ON于点A、B;(2)以O为圆心,不等于(1)中的半径长为半径画弧交OM、ON于点C、D;(3)连接AD、BC相交于点E;(4)作射线OE,则OE为∠MON的平分线.你认为他这种作法对吗?试说明理由.解:正确,理由:由题意可得;AO=BO,CO=DO,在△OBC和△OAD中,∴△OBC≌△OAD(SAS),∴∠OCB=∠ODA,∠OAD=∠OBC,∴∠CAE=∠DBE,在△CAE和△DBE中,∴△CAE≌△DBE(ASA),∴CE=ED,在△OOE和△DOE中,∴△COE≌△DOE(SSS),∴∠CAE=∠DOE,即OE为∠MON的平分线.。
人教版八年级数学上册试题 第12章 全等三角形 单元测试卷 (含解析)
第12章《全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.老师布置了一份家庭作业:用三根小木棍首尾相连拼出一个三角形,三根小木棍的长度分别为5、9、10.5,并且只能对10.5的小木棍进行裁切(裁切后,参与拼图的小木棍的长度为整数),则同学们最多能拼出不同的三角形的个数为( )A .4B .5C .6D .72.如图,点B ,F ,C ,E 在同一条直线上,点A ,D 在直线BE 的两侧,AB ∥DE ,BF =CE ,添加一个适当的条件后,仍不能使得△ABC ≌△DEF ( )A .AC =DFB .AC ∥DF C .∠A =∠D D .AB =DE3.如图,的两条中线AD 、BE 交于点F ,若四边形CDFE 的面积为17,则的面积是( )A .54B .51C .42D .414.已知中,是边上的高,平分.若,,,则的度数等于( )A.B .C .D .5.如图,在四边形中,平分,,,,则面积的最大值为( )cm cm cm cm ABC ABC ABC CD AB CE ACB ∠A m ∠=︒B n ∠=︒m n ≠DCE ∠12m ︒12n ︒()12m n ︒-︒12m n ︒-︒ABDC AD BAC ∠AD DC ⊥2AC AB -=8BC =BDCA .B .C .D .6.如图,,,则下列结论错误的是( )A .≌B .≌C .D .7.如图,在正方形中,对角线相交于点O .E 、F 分别为上一点,且,连接.若,则的度数为( )A .B .C .D .8.如图,在△ABC 中,AB=BC ,,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠59.如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,∠EAF=∠BAD ,若DF =1,BE =5,则线段EF 的长为( )6834BE CD =B D ∠=∠∆BEF DCF∆ABC ∆ADE ∆AB AD =DF AC=ABCD AC BD 、AC BD 、OE OF =AF BE EF ,,25AFE ∠=︒CBE ∠55︒65︒45︒70︒90ABC ∠=︒12A .3B .4C .5D .610.如图,∠DAC 与∠ACE 的平分线相交于点P ,且PC =AB +AC ,若,则∠B 的度数是( )A .100°B .105°C .110°D .120°二、填空题(本大题共8小题,每小题4分,共32分)11.已知三角形的两边的长分别为2cm 和8cm ,设第三边中线的长为cm ,则的取值范围是12.如图,在中,的平分线与的外角平分线交于点.(1)当与满足 的关系时,;(2)当时, .13.我们把两个不全等但面积相等的三角形叫做一对偏等积三角形.已知与是一对面积都等于的偏等积三角形,且,,那么的长等于 (结果用含和的代数式表示).14.如图,在中,,以为斜边作,,E 为上一点,连接、,且满足,若,,则 的长为.60PAD ∠=︒x x ABC ABC ∠ACB ∠P A ∠ABC ∠PC AB ∥72A ∠=︒P ∠=ABC DEF S AB AC DE DF ===BC a =EF a S ABC AB AC =AB Rt ADB 90ADB ∠=︒BD AE CE 2BAC DAE ∠=∠17CE =10BE =DE15.如图,和都为等腰直角三角形,,五边形面积为,求 .16.如图,已知等边△ABC ,AB=6,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DF 交BC 于点P ,作DE ⊥BC 与点E ,则EP 的长是 .17.如图,等腰中,,,为内一点,且,,则 .18.如图,在,中,,,,C ,D ,E 三点在同一直线上,连接,以下四个结论ABC AED △90ABC AED ∠=∠=︒ABCDE S 2BE S =ABC AB AC =70BAC ∠=︒O ABC 5OCB ∠=︒25ABO ∠=︒OAC ∠=ABC ADE V 90BAC DAE ∠=∠=︒AB AC =AD AE =BD BE ,①;②; ③; ④.其中结论正确的是 .(把正确结论的序号填在横线上).三、解答题(本大题共6小题,共58分)19.(8分)已知:,求作一个,使,且.20.(8分)如图,在Rt ∆ABC 中,∠BAC =90°,∠ABC =60°,AD ,CE 分别平分∠BAC ,∠ACB .(1) 求∠AOE 得度数; (2) 求证:AC=AE +CD .BD CE =90ACE DBC ∠+∠=︒BD CE ⊥180BAE DAC ∠+∠=︒ABC BCD △BCD ABC S S =V V AD AB =21.(10分)在四边形中,,,是上一点,是延长线上一点,且.(1)试说明:;(2)在图中,若,,在上且,试猜想、、之间的数量关系并证明所归纳结论;(3)若,,G 在上,满足什么条件时,(2)中结论仍然成立?(只写结果不要证明).22.(10分)已知线段直线于点,点在直线上,分别以,为边作等边和△ADE ,直线交直线于点.(1)当点F 在线段上时,如图1,试说明:(ⅰ).ABDC DC DB =180C ABD ∠+∠=︒E AC F AB CE BF =DE DF =60CAB ∠=︒120CDB ∠=︒G AB 60EDG ∠=︒CE EG BG CAB α∠=180CDB α∠=︒-AB EDG ∠AB ⊥l B D l AB AD ABC CE l F BD BD CE =(ⅱ).(2)当点F 在线段延长线上时,如图2,请写出线段,,之间的关系,并说明理由.23.(10分)在中,,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E .(1)如图1,当,点A 、B 在直线m 的同侧时,求证:;(2)如图2,当,点A 、B 在直线m 的异侧时,请问(1)中有关于线段、和三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确结论,并说明理由;(3)如图3,当,,点A 、B 在直线m 的同侧时,一动点M 以每秒的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒的速度从B点出发DF CE CF =-BD DF CE CF ABC 90ACB ∠=︒AC CB =DE AD BE =+AC CB =DE AD BE 16cm AC =30cm CB =2cm 3cm沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作于P ,于Q .设运动时间为t 秒,当t 为何值时,与全等?24.(12分)在等边的顶点,处各有一只蜗牛,它们同时出发,分别以相同的速度由向和由向爬行,经过分钟后,它们分别爬行到,处,请问:MP m ⊥NQ m ⊥MPC NQC ABC A C A B C A t D E(1)如图1,爬行过程中,和的数量关系是________;(2)如图2,当蜗牛们分别爬行到线段,的延长线上的,处时,若的延长线与交于点,其他条件不变,蜗牛爬行过程中的大小将会保持不变,请你证明:;(3)如图3,如果将原题中“由向爬行”改为“沿着线段的延长线爬行,连接交于”,其他条件不变,求证:.CD BE AB CA D E EB CD Q CQE ∠60CQE ∠=︒C A BC DE AC F DF EF =答案:一、单选题1.C【分析】根据三角形的三边关系列出不等式组求解即可.【详解】解:设从10.5的小木棍上裁剪的线段长度为x ,则,即,∴整数x 的值为5、6 、7 、8、9、10,∴同学们最多能做出6个不同的三角形木架.故选:C .2.A【分析】根据AB ∥DE 证得∠B =∠E ,又已知BF =CE 证得BC =EF ,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.【详解】∵AB ∥DE ,∴∠B =∠E ,∵BF =CE ,∴BF +FC =CE +FC ,∴BC =EF ,若添加AC =DF ,则不能判定△ABC ≌△DEF ,故选项A 符合题意;若添加AC ∥DF ,则∠ACB =∠DFE ,可以判断△ABC ≌△DEF (ASA ),故选项B 不符合题意;若添加∠A =∠D ,可以判断△ABC ≌△DEF (AAS ),故选项C 不符合题意;若添加AB =DE ,可以判断△ABC ≌△DEF (SAS ),故选项D 不符合题意;故选:A .3.B【分析】连接CF ,依据中线的性质,推理可得 ,进而得出 ,据此可得结论.cm cm 9595x -<<+414x <<cm cm cm cm cm cm BCF BAF ACF S S S == 3ABC BAF S S =【详解】解:如图所示,连接CF ,∵△ABC 的两条中线AD 、BE 交于点F ,∴,∴,∵BE 是△ABC 的中线,FE 是△ACF 的中线,∴,,∴,同理可得,,∴,∴,故选:B .4.D【分析】题目由于在三角形中未确定大小,所以需要进行分类讨论:(1),作出符合题意的相应图形,由图可得:,根据角平分线的性质得:,在中,,故可得;(2)时,由图可得:,,在中,,故可得;综上可得:.【详解】解:(1)如图1所示:时,图1BCE ABD S S = 17ABF CDFE S S == 四边形BCE ABE S S = FCE FAE S S = 17BCF BAF S S == 17ACF BAF S S == 17BCF BAF ACF S S S === 331751ABC BAF S S ==⨯= A B ∠∠、A B ∠<∠DCE BCE BCD ∠=∠-∠()18022m n ACB BCE ︒-︒+︒∠∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()12DCE n m ∠=︒-︒A B ∠>∠DCE ACE ACD ∠=∠-∠()18022m n ACB ACE ︒-︒+︒∠∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒()12DCE m n ∠=︒-︒12DCE m n ∠=︒-︒A B ∠<∠∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,∴;(2)如图2所示:时,图2∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()()()18019022m n DCE BCE BCD n n m ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒A B ∠>∠CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒∴;综合(1)(2)两种情况可得:.故选:D .5.D【分析】本题考查了全等三角形的判定和性质,垂线段最短,分别延长与交于点,作交延长线于点,可证明,得到,求面积最大值转化成求线段的最大值即可,解题的关键是作出辅助线,构造出全等三角形.【详解】分别延长与 交于点, 作交 延长线于点 ,∵平分, ,∴,,又∵,∴,∴,,∵,∴,∴,∵,∴当点重合时,最大,最大值为,∴,故选:.6.D【分析】利用全等三角形的判定和性质逐一选项判断即可.【详解】解:在和中,()()()18019022m n DCE ACE ACD m m n ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒12DCE m n ∠=︒-︒CD AB G GH CB ⊥CB H ()ASA ADG ADC ≌2BG =GH CD AB G GH CB ⊥CB H AD BAC ∠AD DC ⊥GAD CAD ∠=∠90ADG ADC ∠==︒AD AD =()ASA ADG ADC ≌AC AG =CD GD =2AC AB -=2BG =111·2222BDC BCG S S BC GH GH ==⨯= GH BC ⊥B H 、GH 224BDC S GH == D ∆BEF DCF ∆,∴≌(),故选项A 正确,不合题意;连接,∵≌(),∴,∴,∵,∴,∴,故选项C 正确,不合题意;∵,证不出,∴选项D 错误,符合题意;在和中,∴≌(),故选项B 正确,不合题意;故选:D7.B【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【详解】解:∵四边形是正方形,∴.∵,B D BFE DFC BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∆BEF DCF ∆AAS BD ∆BEF DCF ∆AAS BF DF =FBD FDB ∠=∠ABC ADE ∠=∠ABD ADB ∠=∠AB AD =BF DF =DF AC =ABC ∆ADE ∆ABC ADE AB ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩ABC ∆ADE ∆ASA ABCD 90AOB AOD OA OB OD OC ∠=∠=︒===,OE OF =∴为等腰直角三角形,∴,∵,∴,∴.在和中,∴(SAS ).∴,∵,∴是等腰直角三角形,∴,∴.故选:B .8.A【分析】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,先根据直角三角形两锐角互余可得,再根据三角形全等的判定定理与性质推出,又根据三角形全等的判定定理与性质推出,由此即可得出答案.【详解】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,即在和中,OEF 45OEF OFE ∠=∠=︒25AFE ∠=︒70AFO AFE OFE ∠=∠+∠=︒20FAO ∠=︒AOF BOE △90OA OB AOF BOE OF OE =⎧⎪∠=∠=︒⎨⎪=⎩AOF BOE ≌△△20FAO EBO ∠=∠=︒OB OC =OBC △45OBC OCB ∠=∠=︒65CBE EBO OBC ∠=∠+∠=︒CG BC ⊥BAD CBG ∠=∠1G ∠=∠3G ∠=∠CG BC ⊥90BCG ∠=︒,90AB BC ABC =∠=︒45BAC ACB ∠∴∠==︒904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒BF AD⊥ 1190BAD CBG ∴∠+∠=∠+∠=︒BAD CBG∴∠=∠BAD ∆CBG ∆90BAD CBG AB BCABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩点D 是BC 的中点在和中,故选:A .9.B【分析】在BE 上截取BG =DF ,先证△ADF ≌△ABG ,再证△AEG ≌△AEF 即可解答.【详解】在BE 上截取BG =DF ,∵∠B +∠ADC =180°,∠ADC +∠ADF =180°,∴∠B =∠ADF ,在△ADF 与△ABG 中,()BAD CBG ASA ∴∆≅∆,1BD CG G∴=∠=∠ CD BD CG∴==CDF ∆CGF ∆45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS ∴∆≅∆3G∴∠=∠13∠∠∴=AB AD B ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABG (SAS ),∴AG =AF ,∠FAD =∠GAB ,∵∠EAF =∠BAD ,∴∠FAE =∠GAE ,在△AEG 与△AEF 中,∴△AEG ≌△AEF (SAS )∴EF =EG =BE ﹣BG =BE ﹣DF =4.故选:B .10.A【分析】在射线AD 上截取,连接PM ,证明,可得,,然后证明,利用相似三角形的性质进行求解可得到结论.【详解】解:如下图,在射线A D 上截取,连接PM ,∵PA 平分,∴ ,在和中,,∴,∴,.∵,∴,∴.∵PC 平分,∴.12AG AF FAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩AM AC =PAM PAC ≌PM PC =PMA PCA ∠=∠BC PM AM AC =DAC ∠60PAM PAC ∠=∠=︒PAM △PAC △PA PA PAM PAC AM AC =⎧⎪∠=∠⎨⎪=⎩PAM PAC SAS ≌()PM PC =PMA PCA ∠=∠PC AB AC =+PC AB MA MB =+=PC PM BM ==ACE ∠PCA PCE ∠=∠如下图,延长MB ,PC 交于点G ,∵,∴.∵,∴,∴,∴,∴,∴,∴,∴,∴.∵,,,∴,∴,∴,∴,∴,∴,∴,∴.GCB PCE ∠=∠PMA GCB ∠=∠BGC PGM ∠=∠BGC PGM ∽GB GC GP GM=··GB GM GC GP =GB GB BM GC GC CP ⋅+=⋅+()()22GB GB BM GC GC CP +⋅=+⋅220GB GC GB BM GC CP -+⋅-⋅=()()()0GB GC GB GC PC GB GC +-+-=()()0GB GC GB GC PC -++=)0GB >0GC >0PC >0GB GC PC ++>0GB GC -=GB GC =∠=∠GBC GCB GBC BMP ∠=∠BC PM 180BMP B ∠+∠=︒180180ABC BMP PCA ∠=︒-∠=︒-∠∵,∴.∵,∴180°-∠PCA=2∠PCA-60°,∴,∴.故选:A .二、填空题11.3<x <5【分析】延长AD 至M 使DM=AD ,连接CM ,先说明△ABD ≌△CDM ,得到CM=AB=8,再求出2AD 的范围,最后求出AD 的范围.【详解】解:如图:AB=8,AC=2,延长AD 至M 使DM=AD ,连接CM在△ABD 和△CDM 中,∴△ABD ≌△MCD (SAS ),∴CM=AB=8.在△ACM 中:8-2<2x <8+2,解得:3<x <5.故答案为3<x <5.12.60PAM PAC ∠=∠=︒60BAC ∠=︒260ABC ACE BAC PCA ∠=∠-∠=∠-︒80PCA ∠=︒180********ABC PAC ∠=︒-∠=︒-︒=∠︒AD MD ADB MDCBD CD =⎧⎪∠=∠⎨⎪=⎩A ABC ∠=∠36︒【分析】(1)根据角平分线的性质平分,可得,再由两直线平行线同位角相等,内错角相等可得即可解答;(2)利用角平分线的性质和三角形的外角定理即可求解【详解】(1)解:平分,,,当时,,故答案为:;(2)解:平分,平分,,又,当时,,故答案为:13.【分析】本题考查全等三角形的判定和性质、等腰三角形的性质、三角形的面积等知识,由面积相等可得相应等式,作出三角形的高,作出辅助线构造三角形全等,证明三角形全等是是解题的关键.【详解】解:如图:,过作于,过作 交延长线于,延长到使,PC ACM ∠ACP PCM ∠=∠ABC PCM A ACP ∠=∠∠=∠,PC ACM ∠ACP PCM ∴∠=∠ PC AB ∥ABC PCM A ACP∴∠=∠∠=∠,ABC A∠=∠∴∴ABC A ∠=∠PC AB ∥ABC A ∠=∠ BP ABC ∠PC ACM ∠12ABP PBC ABC ∴∠=∠=∠,12ACP PCM ACM ∠=∠=∠ACM ABC A ∠=∠+∠ ,22PCM PBC A∴∠=∠+∠ PCM PBC P ∠=∠+∠222PBC P PBC A∴∠+∠=∠+∠2P A ∴∠=∠72A ∠=︒36P ∴∠=︒36︒4saAB AC DE DF ===C C M A B ⊥M F FN ED ⊥ED N BA K AK AB=12ABC S AB CM S == 12DEF S DE FN S ==,,,.故答案为:.14.【分析】延长至O 点,使得,连接,先证明,再证明CM FN∴=AC DF= Rt Rt (HL)AMC DNF ∴≌ MAC NDF∴∠=∠180CAK MAC ︒∠=-∠ 180EDF NDF︒∠=-∠CAK EDF∴∠=∠AK AC DE DF=== (SAS)ACK DFE ∴≌ EF CK ∴=2KBC S S= AK AC DE DF=== ABC ACB ∴∠=∠K ACK∠=∠1180902ACB ACK ABC K ︒︒∴∠+∠=∠+∠=⨯=90BCK ︒∴∠=122KBC S BC CK S ∴== BC a= 4S CK a ∴=4S EF a∴=4S a72ED OD DE =AO ≌ADO ADE V V,问题随之得解.【详解】延长至O 点,使得,连接,如图,∵,∴,∵,,∴△ADO ≌△ADE ,∴,,∴,∵,∴,∴,∵,,∴,∴,∵,,∴,∴,∵,∴,故答案为:.15.【分析】过点作,且,连接、,交于点,则是等腰直角三角形,证明,则,,则,根据EAC OAB ≌△△ED OD DE =AO 90ADB ∠=︒18090ADO ADB ∠=︒-∠=︒AD AD =OD DE =OAD EAD ∠=∠OA AE =2OAE EAD ∠=∠2BAC DAE ∠=∠BAC OAE ∠=∠EAC OAB ∠=∠OA AE =AB AC =EAC OAB ≌△△OB EC =17CE =10BE =17OB EC ==7OE OB EB =-=OD DE =1722DE OE ==722B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABE CBF △≌△ABE CBF S S =△△CGF DGE ≌CGF DGE S S =,即可求解.【详解】解:如图所示,过点作,且,连接、,交于点,则是等腰直角三角形,∵和都为等腰直角三角形,,∴∵,∴∴∴∴,则∴,∴,∵∴又∴∴∴五边形面积∴故答案为:2.212BEF S S BE == B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABC AED △90ABC AED ∠=∠=︒,BA BC AE AD==BF BE ⊥90FBE ∠=︒ABE EBC FBC EBC∠+∠=∠+∠ABE CBF∠=∠ABE CBF △≌△ABE CBFS S =△△AE CF =AEB CFB∠=∠DE CF =45,45AEB GED CFB CFG∠=︒-∠∠=︒-∠CFG DEG∠=∠CGF DGE∠=∠CGF DGE≌CGF DGES S = ABCDE 212BEF S S BE == 2BE S =216.3【详解】如图,过点D 作DH ∥AC 交BC 于H ,∵△ABC 是等边三角形,∴△BDH 也是等边三角形,∴BD=HD ,∵BD=CF ,∴HD=CF ,∵DH ∥AC ,∴∠PCF=∠PHD ,在△PCF 和△PHD 中,∴△PCF ≌△PHD (AAS ),∴PC=PH ,∵△BDH 是等边三角形,DE ⊥BC ,∴BE=EH ,∴EP=EH+HP= BC ,∵等边△ABC ,AB=6,∴EP=╳6=3.故答案是:3.17.【分析】此题考查了全等三角形的判定与性质、等腰三角形的性质,延长交 的角平PCF PHD CPF HPD HD CF ∠∠⎧⎪∠∠⎨⎪⎩===121265︒BO BAC ∠分线于点,连结,根据等腰三角形的性质及角平分线定义求出,,进而得出,利用证明,根据全等三角形的性质求出,,根据角的和差及三角形内角和定理求出,结合平角定义求出,利用证明,根据全等三角形的性质得出,再根据等腰三角形的性质及角的和差求解即可.【详解】如图,延长交 的角平分线于点,连接.平分,,,,,,,,在和中,,,,,,,,,,,在和中,P CP 55ABC ACB ∠=∠=︒35BAP CAP ∠=∠=︒30OBC ∠=︒SAS APB ACP ≌△△25ABP ACP ∠=∠=︒APB APC ∠=∠120BPC ∠=︒120APC BPC ∠=︒=∠ASA APC OPC ≌△△AP OP =BO BAC ∠P CP AP BAC ∠70BAC ∠=︒35BAP CAP ∴∠=∠=︒AB AC = 70BAC ∠=︒55ABC ACB ∴∠=∠=︒25ABO ∠=︒ 30OBC ABC ABO ∴∠=∠-∠=︒APB △ACP △AB AC BAP CAP AP AP =⎧⎪∠=∠⎨⎪=⎩(SAS)APB ACP ∴ ≌25ABP ACP ∴∠=∠=︒APB APC ∠=∠30BCP ACB ACP ∴∠=∠-∠=︒180120BPC PBC BCP ∴∠=︒-∠-∠=︒360120240APB APC ∴∠+∠=︒-︒=︒120APB APC BPC ∴∠=∠=︒=∠5OCB ∠=︒ 25OCP BCP OCB ACP ∴∠=∠-∠=︒=∠APC △OPC,,,,,故答案为:.18.①③④【分析】由 ,利用等式的性质得到夹角相等,从而得出三角形 与三角形全等,由全等三角形的对应边相等得到,本选项正确;由三角形与三角形全等,得到一对角相等,由等腰直角三角形的性质得到,进而得到 ,本选项不正确;再利用等腰直角三角形的性质及等量代换得到,本选项正确;利用周角减去两个直角可得答案;【详解】解: ,即:在 和 中,本选项正确;为等腰直角三角形,,本选项不正确;ACP OCP CP CPAPC OPC ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)APC OPC ∴ ≌AP OP ∴=1(180)302OAP AOP APO ∴∠=∠=⨯︒-∠=︒65OAC OAP CAP ∴∠=∠+∠=︒65︒①AB AC =AD AE =ABD ACE BD CE =②ABD ACE 45ABD DBC ∠+∠=︒45ACE DBC ∠+∠=︒③BD CE ⊥④90BAC DAE ∠=∠=︒① BAC CAD DAE CAD∴∠+∠=∠+∠BAD CAE∠=∠BAD CAE V AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS BAD CAE ∴≌ BD CE ∴=ABC ②45ABC ACB ∴∠=∠=︒45ABD DBC ∴∠+∠=︒BAD CAE ≌ ABD ACE ∴∠=∠45ACE DBC ∴∠+∠=︒即,∴,本选项正确;,本此选项正确;故答案为:①③④.三、解答题19.解:如图过点A 作BC 的平行线AE ,再在AE 上截取,交AE 于点D ,连接BD ,CD 即可得到△BCD .20.(1)解:∵,∴,∵平分,平分,∴,,∵是的外角,∴;(2)证明:在上截取,连接,45ABD DBC ∠+∠=︒③ 45ACE DBC ∴∠+∠=︒90DBC DCB DBC ACE ACB ∴∠+∠=∠+∠+∠=︒90BDC ∠=︒BD CE ⊥90BAC DAE ∠=∠=︒④ 3609090180BAE DAC ∴∠+∠=︒-︒-︒=︒AD AB =9060BAC ABC ∠=︒∠=︒,30ACB ∠=︒AD BAC ∠CE BAC ∠CAD ∠=1245BAC ∠=︒ACE ∠=1215ACB ∠=︒AOE ∠AOC 60AOE CAD ACE ∠=∠+∠=︒AC CF CD =OF∵平分,∴,在和中,,∴ ,∴,∵,∴,∴,∴,∵平分,∴,在和中, ∴ ,∴,∵,∴.21.(1),,(2)猜想:CE ACB ∠DCO FCO ∠=∠DCO FCO CD CF DCO FCO OC OC =⎧⎪∠=∠⎨⎪=⎩()DCO FCO SAS ≌COD COF ∠=∠60AOE =︒∠60COD COF ∠=∠=︒18060AOF AOE COF ∠=︒-∠-∠==︒AOE AOF ∠=∠AD BAC ∠EAO FAO ∠=∠EAO FAO EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAO FAO ASA ≌AE AF =AC AF CF =+=+AC AE CD 180ABD DBF ∠+∠= 180C ABD ∠+∠= C DBF∴∠=∠CE BF = DC DB=CED BFD∴ ≌DE DF∴=CE BG EG+=由(1)可知,,,,得证;(3)当成立由(1)可知,,,,得证.22.(1)(ⅰ)证明:和都是等边三角形,,,,CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=120CDB ∠= 60EDG ∠=1206060CED BDG CDB EDG ∴∠+∠=∠-∠=-=60BDG BDF ∴∠+∠=60GDF EDG∴∠==∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+1902EDG α∠=- CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=180CDB α∠=- 90EDG α∠=-o 11(180)(90)9022CED BDG CDB EDG ααα∴∠+∠=∠-∠=---=- 1902BDG BDF α∴∠+∠=- 1902GDF EDG α∴∠=-=∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+ABC ADE V AB AC ∴=AD AE =60BAC DAE ACB ABC ∠=∠=∠=∠=︒.在和中,,.(ⅱ),,.直线,,,.点,,在一条线上,,,,.,,即;(2)解:同理证明,,,,,,,即.23.(1)证明:∵,∴,∵于D ,于E ,∴,,∴,在和中,BAD CAE ∴∠=∠ABD △ACE △,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩ABD ACE ∴ ≌BD CE ∴=ABD ACE ≌BD CE ∴=ABD ACE ∠=∠AB ⊥Q l 90ABD ∴∠=︒90ACE ∠=︒30CBF ∠=︒ E C F 60ACB ∠=︒30BCF ∴∠=︒CBF BCF ∴∠=∠BF CF ∴=BD DF BF =+ BD DF CF CE ∴=+=DF CE CF=-ABD ACE ≌△△90ABD ACE ∴∠=∠=︒30FBC FCB ∠=∠=︒BD CE =BF CF ∴=BF BD DF ∴=+CF BD DF ∴=+DF CF CE =-90ACB ∠=︒90ACD BCE ∠∠+=︒AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90BCE CBE ∠∠+=︒ACD CBE ∠∠=ADC CEB,∴,∴,,∴;(2)解:结论:;理由:∵,,∴,∵,∴,∴,在和中,,∴,∴,,∴;(3)解:①当时,点M 在上,点N 在上,如图,∵,∴,解得:,不合题意;②当时,点M 在上,点N 也在上,如图,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADC CEB ≌AD CE =DC BE =DE DC CE BE AD =+=+DE AD BE =-AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90ACB ∠=︒90ACD CAD ACD BCE ∠∠∠∠+=+=︒CAD BCE ∠∠=ACD CBE ADC CEB CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBE ≌AD CE =CD BE =DE CE CD AD BE =-=-08t ≤<AC BC MC NC =162303t t -=-14t =810t ≤<BC BC∵,∴点M 与点N 重合,∴,解得:;③当时,点M 在上,点N 在上,如图,∵,∴,解得:;④当时,点N 停在点A 处,点M 在上,如图,∵,∴,解得:;综上所述:当或14或16秒时,与全等.24.(1)解:,理由如下:为等边三角形,MC NC =216303t t =﹣﹣9.2t =46103t ≤<BC AC MC NC =216330t t -=-14t =46233t ≤<BC MC NC =21616t -=16t =9.2t =MPC NQC CD BE = ABC,,由题意得:,在和中,,,;(2)证明如下:由(1)可知,,,,;(3)证明:过点作交于,,为等边三角形,为等边三角形,,,,在和中,,,.∴60A ACB ∠=∠=︒AC BC =AD CE =ADC △CEB AD CE A ACB AC CB =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADC CEB ≌∴CD BE =()SAS ADC CEB ≌∴ADC E ∠=∠ 60E ABE BAC ∠+∠=∠=︒DBQ ABE ∠=∠∴60CQE ADC DBQ ∠=∠+∠=︒D DH BC ∥AC H ∴HDF CEF ∠=∠ ABC ∴ADH ∴HD AD = AD CE =∴DH CE =DFH EFC HDF CEF DFH EFC DH CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS DFH EFC ≌∴DF EF =。
人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)
人教版八年级数学上册《第十二章全等三角形》单元测试卷(附答案)一、选择题1.下列说法正确的是( )A. 两个等边三角形一定全等B. 形状相同的两个三角形全等C. 面积相等的两个三角形全等D. 全等三角形的面积一定相等2.根据下列已知条件,能唯一画出△ABC的是( )A. AB=5,BC=3,AC=8B. AB=4,BC=3C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°3.如图,已知∠C=∠D=90°,AC=AD那么△ABC与△ABD全等的理由是( )A. HLB. SASC. ASAD. AAS4.如图∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D5.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED6.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 3<AD<11B. 3<AD<9C. 1<AD<7D. 5<AD<117.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE= 2,AB=4则AC的长为( )A. 3B. 4C. 5D. 68.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE= 55°,∠BCD=155°,则∠BPD的度数为( )A. 130°B. 155°C. 125°D. 110°9.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定10.如图AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于( )A. 6cmB. 8cmC. 10cmD. 4cm二、填空题11.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x−y=__________.12.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .13.如图△ABC≌△A′B′C′,其中∠C′=24°则∠B=°.14.如图,已知△ABC≌△ADE,若AB=7,AC=3则BE的值为_____.15.如图,已知在△ABC和△DEF中BF=CE点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图△ABC中AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_______度.17.如图△ABC≌△DCB,若AC=7,BE=5则DE的长为.18.如图,Rt△ABC中AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10则△ABD的面积是______.19.如图,在△ABC中∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF其中正确的结论是______ .三、解答题21.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)22.如图AB//CD,AB=CD,CE=BF请写出DF与AE的数量关系,并证明你的结论.23.已知:如图AB//DE,点C、F在AD上AF=DC,AB=DE.求证:△ABC≌△DEF.24.如图,点A,E,F,B在直线l上AE=BF,AC//BD且AC=BD,求证:CF=DE.25.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.答案和解析1.【答案】D【解析】【分析】本题考查的是全等图形,熟知全等三角形的判定与性质是解答此题的关键,根据全等图形的性质对各选项进行逐一分析即可.【解答】解:A.两个边长不相等的等边三角形不全等,故本选项错误;B.形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C.面积相等的两个三角形不一定全等,故本选项错误;D.全等三角形的面积一定相等,故本选项正确.故选D.2.【答案】D【解析】【分析】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A∵3+5=8∴根据三角形三边关系AB=5BC=3AC=8不能画出三角形故本选项错误;B已知AB BC和BC的对角AB=4BC=3∠A=30°不能画出唯一三角形故本选项错误;C根据∠C=90°AB=6已知一个角和一条边不能画出唯一三角形故本选项错误;D根据∠A=60°∠B=45°AB=4已知两角和夹边符合全等三角形的判定定理ASA即能画出唯一三角形故本选项正确;故选D.3.【答案】A【解析】【分析】本题考查全等三角形的判定解题的关键是注意AB是两个三角形的公共边本题属于基础题型.已知∠C=∠D=90°AC=AD且公共边AB=AB故△ABC与△ABD全等.【解答】解:在Rt△ABC与Rt△ABD中{AB=ABAC=AD∴Rt△ABC≌Rt△ABD(HL)故选A.4.【答案】C【解析】【分析】本题主要考查全等三角形的判定.熟记5种判定并灵活运用是解决本题的关键.【解答】解:A.添加AC=BD则可以通过(SAS)判定△ABC≌△BAD故本选项不符合题意;B.添加∠1=∠2则可以通过(ASA)判定△ABC≌△BAD故本选项不符合题意;C.添加AD=BC不能判定△ABC≌△BAD故本选项符合题意;D.添加∠C=∠D则可以通过(AAS)判定△ABC≌△BAD故本选项不符合题意;故选C.5.【答案】B【解析】【分析】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE∴AC=AE AB=AD∠ABC=∠ADE∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE.故A C D选项错误B选项正确故选:B.6.【答案】C【解析】【分析】这是一道考查全等三角形的判定和三角形的三边关系的题目解题关键在于构造三角形延长AD至E使DE=AD连接CE证明△ABD≌△ECD再利用三边关系即可得到答案.【解答】解:延长AD至E使DE=AD连接CE在△ABD和△ECD中{AD=ED∠ADB=∠EDC DB=DC,∴△ABD≌△ECD∴CE=AB=8在△ACE中CE−AC<AE<CE+AC即2<2AD<14故1<AD<7故选C.7.【答案】A【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法要注意掌握应用.先由角平分线的性质可知DF=DE=2然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线DE⊥AB于点E DF⊥AC交AC于点F∴DF=DE=2又∵S△ABC=S△ABD+S△ACD AB=4∴7=12×4×2+12·AC·2∴AC=3.故选A.8.【答案】A【解析】【分析】本题考查了全等三角形的判定和性质三角形的内角和定理以及四边形的内角和定理易证△ACD≌△BCE由全等三角形的性质可知:∠A=∠B再根据已知条件和四边形的内角和为360°即可求出∠BPD的度数.【解答】解:在△ACD 和△BCE 中{AC =BC CD =CE AD =BE∴△ACD≌△BCE(SSS)∴∠A =∠B ∠BCE =∠ACD∴∠BCA =∠ECD∵∠ACE =55° ∠BCD =155°∴∠BCA +∠ECD =100°∴∠BCA =∠ECD =50°∵∠ACE =55°∴∠ACD =105°∴∠A +∠D =75°∴∠B +∠D =75°∵∠BCD =155°∴∠BPD =360°−75°−155°=130°.故选A .9.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质 三角形的三边关系.注意:倍长中线是常见的辅助线之一. 延长AD 至E 使DE =AD 连接CE.根据SAS 证明△ABD≌△ECD 得CE =AB 再根据三角形的三边关系即可求解.【解答】解:延长AD 至E 使DE =AD 连接CE .在△ABD和△ECD中{DE=AD∠ADB=∠CDE DB=DC∴△ABD≌△ECD(SAS)∴CE=AB.在△ACE中CE−AC<AE<CE+AC即2<2AD<141<AD<7.故选:C.10.【答案】B【解析】【分析】由题意可证△ABC≌△CDE即可得CD=AB=5cm DE=BC=3cm进而可求BD的长。
2014年秋季新版新人教版八年级数学上学期第十二章 全等三角形单元复习试卷8
第十一章《全等三角形》测试题班别:________ 姓名:_________ 成绩:____________一、 选择题(每小题5分,共25分)1、两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A 、两角和一边B 、两边及夹角C 、三个角D 、三条边2、某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A 、带①去B 、带②去C 、带③去D 、①②③都带去3、如图,Rt ΔABC 沿直角边BC 所在的直线向右平移得到ΔDEF ,下列结论中错误的是( )A 、ΔABC ≌ΔDEFB 、∠DEF =90°C 、AC =DFD 、EC =CF4.三角形中到三边的距离相等的点是( D )A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点5、下列结论正确的是( )A 、两个锐角相等的两个直角三角形全等;B 、一条斜边对应相等的两个直角三角形等;C 、顶角和底边对应相等的两个等腰三角形全等;D 、两个等边三角形全等.二、 填空题(每题5分,共25分)6、_________________上的点到角的两边的距离相等。
7、如图,⊿ABC ≌⊿DEC ,则CA 和 是对应边,=∠ACD 。
8、如图,已知AD =BC ,要证明ΔABC ≌ΔBAD 。
根据“SSS ”,还需要一个条件 ,根据“SAS ”,还需要一个条件 。
9、如图,点O 是AB 的中点,AC ∥BD ,则ΔAOC ≌ΔBOD 的理由是 。
10、如图,在ΔABC 中,∠C =90°,AD 平分∠CAB ,AC =BC =8㎝,BD =5㎝,则点D 到AB 的距离是 。
(第2题图) ③ ① ② F E D C B A (第3题图)三、 尺规作图,并保留作图痕迹(10分)11、先作出∠ABC 的角平分线,并画出ΔABC 的全等三角形DEF 。
2014年秋季新版新人教版八年级数学上学期第十二章 全等三角形单元复习试卷50
第十二章 全等三角形单元复习测试卷(时间:45分钟 满分:100分)班级 姓名 座号 成绩一、选择题(每题5分,共25分)1.如图,△ABC ≌△BAD ,如果AB =6cm ,BD =5cm ,AD =4cm ,那么BC 的长是( ) A.4cmB.5cmC.6cmD.无法确定第1题第2题2.如图,△ABE ≌△ACD ,∠B =50 ,∠AEC =120 ,则∠DAC 的度数等于( ) A.120°B.70°C.60°D.50°3.下列判断中错误的是( )A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的高线对应相等的两个三角形全等D.有两边对应相等的两个直角三角形全等 4.根据下列已知条件,能唯一画出△ABC 的是( ) A.AB =3,BC =4,CA =8 B.AB =4,BC =3,∠A =30 C.∠A =30 ,∠B =45 ,AB =4D.∠C =90 ,AB =65.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去 配一块完全一样的玻璃,那么最省事的方法是( ) A.带①去 B.带②去 C.带③去 D.①②③都带去 二、填空题(每题5分,共25分)6.如图,AC 、BD 相交于点O,△AOB ≌△COD ,则AB 与CD 的位置关系是 .7.如图,在△ABC 中,∠C =90 ,AD 平分∠BAC ,BC =10,BD =6,则点D 到AB 的距离为 .ABC第5题第6题第7题第8题8.如图,∠1=∠2,要使△ABE ≌△ACE ,还需添加一个条件是 .(填上你认为适当的一个条件即可).9.如图,把一张长方形的纸片ABCD 沿BD 对折,使C 点落在E 点处,BE 与 AD 相交于点O ,图中除了△ABD ≌△CDB 外,请写出其他一组全等三角 形 .10.如图,直线1l 、2l 、3l 表示三条相互交叉的公路, 现要建一个货物中转站,要求它到三条公路的距 离相等,可供选择的地址有 处.三、解答与证明(共50分)11.(10分)如图,D 、E 在BC 上,且BD =CE ,AD =AE ,∠ADE =∠AED .求证AB =AC .12.(13分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形?请一一列出;.(2)选择一对你认为全等的三角形进行证明13.(13分)如图BF⊥AC,CE⊥AB,CE、BF相交于D,BD=CD.求证点D在∠BAC的平分线上14.(14分)如图,工人师傅要检查模型中的∠A和∠B是否相等,但他手边没有量角器,只有一把刻度尺,请你设计一个方案来说明∠A和∠B是否相等.参考答案一、选择题(每题5分,共25分)1.如图,△ABC ≌△BAD ,如果AB =6cm ,BD =5cm ,AD =4cm ,那么BC 的长是( A ) A.4cmB.5cmC.6cmD.无法确定第1题第2题2.如图,△ABE ≌△ACD ,∠B =50 ,∠AEC =120 ,则∠DAC 的度数等于( B ) A.120°B.70°C.60°D.50°3.(07天津)下列判断中错误的是( B ) A.有两角和一边对应相等的两个三角形全等 B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的高线对应相等的两个三角形全等D.有两边对应相等的两个直角三角形全等 4.根据下列已知条件,能唯一画出△ABC 的是( C ) A.AB =3,BC =4,CA =8 B.AB =4,BC =3,∠A =30 C.∠A =30 ,∠B =45 ,AB =4D.∠C =90 ,AB =65.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去 配一块完全一样的玻璃,那么最省事的方法是( C ) A.带①去 B.带②去 C.带③去 D.①②③都带去 二、填空题(每题5分,共25分)6.如图,AC 、BD 相交于点O ,△AOB ≌△COD ,则AB 与CD 的位置关系是 平行 .7.如图,在△ABC 中,∠C =90 ,AD 平分∠BAC ,BC =10,BD =6,则点D 到AB 的距离为 4 .ABC第5题第6题第7题第8题8.如图,∠1=∠2,要使△ABE ≌△ACE ,还需添加一个条件是 ∠B =∠C (答案不唯一) . (填上你认为适当的一个条件即可)9.如图,把一张长方形的纸片ABCD 沿BD 对折,使C 点落在E 点处,BE 与 AD 相交于点O ,图中除了△ABD ≌△CDB 外,请写出其他一组全等 三角形 △BCD ≌△BED 或△BED ≌△DAB 或△AOB ≌△EOD . 10.如图,直线1l 、2l 、3l 表示三条相互交叉的公路, 现要建一个货物中转站,要求它到三条公路的距 离相等,可供选择的地址有 4 处. 三、解答与证明(共50分)11.(10分)如图,D 、E 在BC 上,且BD =CE ,AD =AE ,∠ADE =∠AED .求证AB =AC . 证明:∵∠ADE =∠AED ∴∠ADB =∠AEC在△ABD 和△ACE 中 =⎧⎪∠=∠⎨⎪=⎩AD AE ADB AEC BD CE∴△ABD ≌△ACE (SAS ) ∴AB =AC12.(13分)如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BE =CF . (1)图中有几对全等的三角形?请一一列出; (2)选择一对你认为全等的三角形进行证明.解:(1)图中全等三角形共有3对,分别是:△ABD ≌△ACD ;△ADE ≌△ADF ;△BDE ≌△CDF . (2)选择:△BDE ≌△CDF 证明:∵DE ⊥AB ,DF ⊥AC ∴∠BED =∠CFD =90 ∵D 是BC 的中点 ∴BD =CD在Rt △BDE 和Rt △CDF =⎧⎨=⎩BD CDBE CF∴Rt △BDE ≌Rt △CDF (HL )13.(13分)如图BF ⊥AC ,CE ⊥AB ,CE 、BF 相交于D ,BD =CD .求证点D 在∠BAC 的平分线上. 证明:∵BF ⊥AC ,CE ⊥AB∴∠BED =∠CFD =90 在△BED 和△CFD 中 12∠=∠⎧⎪∠=∠⎨⎪=⎩BED CFD BD CD∴△BED ≌△CFD (AAS ) ∴DE =DF又∵BF ⊥AC ,CE ⊥AB ∴点D 在∠BAC 的平分线上14.(14分)如图,工人师傅要检查模型中的∠A 和∠B 是否相等,但他手边没有量角器,只有一把刻度尺,请你设计一个方案来说明∠A 和∠B 是否相等.解:方案如下:(1)分别在AB上取两点E、G,使AE=BG;(2)分别在AC和BD上取两点F、H,使AF=BH(3)量出EF和GH的长度.若EF=GH,则根据“SSS”证明△AEF≌△BGH,从而得到∠A=∠B;若EF≠GH,则∠A≠∠B.。
新人教版八年级数学第12章全等三角形单元试卷及参考答案
新人教版八年级数学第12章单元考试试卷一、选择题(每小题3分,共30分)1.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C2.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A.线段CD 的中点B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点D.CD 与∠AOB 的平分线的交点第2题图 第3题图 第4题图3.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD ∥BC ,且AD =BC4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( )5A.6A.789.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB A D A C B O D CB A于F ,则( )A. AF =2BFB.AF =BFC.AF >BFD.AF <BF第8题图 第9题图 第10题图10.将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95°二、填空题(每题3分,共15分)11.能够____ 的两个图形叫做全等图形.12.已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.13.如图,△ABC ≌△ADE ,则,AB = ,∠E = ∠ .若∠BAE =120°,∠BAD =40°,则∠BAC = .14.△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则AC = .15.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点D 到AB •的距离是________.三、解答题(共55分)16.(7分)如图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.证明: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中 ∵⎪⎪⎩⎪⎪⎨⎧ ∴△ABD ≌△ACD ( )B A CBA ED 第12题图 第13题图FE DC B A A ECB A ′ E ′ D17.(8分)已知:如图,在直线MN 上求作一点P ,使点P 到 ∠AOB 两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)18.(8分)已知: BE ⊥CD ,BE =DE ,BC =DA ,求证:△BEC ≌△DAE19.(8分)已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF , 求证:△ABC ≌△DEF .B C EF AO N M B A20.(8分)已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .21.(8分)已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .22.(8分)如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm ,求DEA CB D E F新人教版八年级数学第十一章单元考试试卷参考答案一、选择题1.A 2.D 3.C 4.D 5.D 6.D 7.B 8.D 9.B 10.C 二、填空题11.完全重合12.3 13.AD C 80°14.5 15.4cm三、解答题16.BAD CAD AB=AC ∠BAD=∠CAD AD=AD SAS17.作∠BOA的平分线交MN于P点,就是所求做的点。
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题七(含答案) (81)
人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题七(含答案)一、单选题1.如图,已知AD=AE ,BE=CD ,∠1=∠2=110°,∠BAC=80°,则∠CAE 的度数是( )A .20°B .30°C .40°D .50°【答案】A【解析】 运用SAS 证明△ABD △△ACE ,得△B=△C .根据三角形内角和定理可求△C 和△CAE 的度数.解:△BE=CD ,△BD=CE .在△ABD 和△ACE 中,BD CE{12AD AE=∠=∠=△△ABD △△ACE (SAS )△△B=△C .△△BAC=80°,△△C=(180°-80°)÷2=50°.△△CAE=180°-110°-50°=20°.故答案为A.2.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等;B.顶角和底边对应相等的两个等腰三角形全等C.一条斜边对应相等的两个直角三角形全等;D.两个等边三角形全等.【答案】B【解析】试题解析:A两个锐角相等的两个直角三角形不全等,故该选项错误;B中两角夹一边对应相等,能判定全等,故该选项正确;C一条斜边对应相等的两个直角三角形不全等,故该选项错误;D中两个等边三角形,虽然角相等,但边长不确定,所以不能确定其全等,所以D错误.故选B.3.下列说法中,错误的有().①周长相等的两个三角形全等;②周长相等的两个等边三角形全等;③有三个角对应相等的两个三角形全等;④有三边对应相等的两个三角形全等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】根据能够完全重合的两个三角形是全等三角形,①周长相等,各边不一定相等,不一定完全重合,故①说法错误;①周长相等的两个等边三角形,边长一定相等,三边相等的两个三角形全等,所以①说法正确;①有三个角对应相等,边不一定相等,所以不一定全等;故①说法错误;①符合边边边判定公理,正确;故有2个错误,选B .4.如图,已知A D =A B ,那么添加下列一个条件后,仍无法判定ABC △≌ADC △的是A . CD =CBB .DAC ∠=B AC ∠C .DCA ∠=B CA ∠D .90=D ∠=B ∠°【答案】C【解析】试题分析:因为在△ABC 和△ADC 中, A D =A B ,AC=AC ,所以添加条件A . CD =CB ,根据SSS 可判定ABC △≌ADC △,所以A 正确;添加条件B .DAC ∠=B AC ∠,根据SAS 可判定ABC △≌ADC △,所以B 正确;添加条件C .DCA ∠=B CA ∠,因为角不是两边的夹角,所以不能判定ABC △≌ADC △,所以C 错误;添加条件D .90=D ∠=B ∠°,根据HL 可判定ABC △≌ADC △,所以D正确;故选:C.考点:全等三角形的判定.5.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③【答案】C【解析】试题分析:因为两个三角形的两个角对应相等,根据内角和定理,可知另一对对应角也相等,那么总能利用ASA来判定两个三角形全等,故选项①正确;两个全等的直角三角形都和一个等边三角形不全等,但是这两个全等的直角三角形可以全等,故选项②错误;判定两个三角形全等时,必须有边的参与,否则不会全等,故选项③正确;故选C.考点:全等三角形的判定.6.根据下列条件,能判定△ABC≌△A′B′C′的是()A、AB=A′B′,BC=B′C′,∠A=∠A′B、∠A=∠A′,∠B=∠B′,AC=B′C′C、∠A=∠A′,∠B=∠B′,∠C=∠C′D、AB=A′B′,BC=B′C′,△ABC与△A′B′C′的周长相等【答案】D【解析】试题分析:根据三角形全等的判定:A :∠A=∠A ’不是已知边的夹角,所以不全等;B :边不对应,不全等;C :给的角与边不是对应角与边,不符合△ABC ≌△A ’B ’C ’;D :根据题意可得:AC=A ′C ′,满足SSS ,所以全等;故选D考点:三角形全等的判定7.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD ,AB=CB ,小明在探究筝形的性质时,得到如下结论:①AC ⊥BD ;②AO=CO=21AC ;③△ABD ≌△CBD ,其中正确的结论有( ) A .①② B .①③ C .②③ D .①②③【答案】D .【解析】试题解析:在△ABD 与△CBD 中,AD CD AB BC DB DB ===⎧⎪⎨⎪⎩, ∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB=∠CDB ,在△AOD 与△COD 中,AD CD ADB CDB OD OD =∠=∠=⎧⎪⎨⎪⎩, ∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②正确;故选D .考点:全等三角形的判定与性质.8.根据下列已知条件,能唯一画出∠ABC 的是( )A .AB =5,BC =3,AC =8 B .AB =4,BC =3,∠A =30°C .∠C =90°,AB =6D .∠A =60°,∠B =45°,AB =4【答案】D【解析】试题分析:A 、不符合三角形三边之间的关系,不能作出三角形,错误;B 、属于全等三角形判定中的SSA 情况,不能画出唯一的三角形,错误;C ,没有明确边的大小,只能画出相似的三角形,错误,D 、符合全等三角形判定中的ASA ,正确;故选D .考点:全等三角形的判定9.如图,在Rt △ABC 中,△ACB =90°,AC =BC ,CD △AB 于D 点,M ,N 是AC ,BC 上的动点,且∠MDN =90°,下列结论:△AM =CN ;②四边形MDNC 的面积为定值;△AM2+BN2=MN2;△NM平分∠CND.其中正确的是()A.△△△B.△△△C.△△△D.△△△△【答案】A【解析】试题解析:△△ACB=90°,AC=BC,CD△AB,△△ADC=△BDC=90°,AD=BD=CD=AB,△ACD=△BCD=△A=△B=45°.△△MDN=90°,△△ADM=△CDN.在△AMD和△CND中,,△△AMD△△CND(ASA),△AM=CN,DM=DN,S△AMD=S△CND.△CM=BN.△四边形MDNC的面积=S△CDM+S△CDN=S△CDM+S△ADM=S△ADC.故为定值.△CM2+CN2=MN2,△BN2+AM2=MN2.当MN△AB时,MN平分△CND.△正确的有:①②③.考点:1.全等三角形的判定与性质;2.勾股定理;3.等腰直角三角形.10.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其全等的依据是()A.SAS B.ASA C.AAS D.SSS【答案】D【解析】试题分析:本题考查的关键是作角的过程,作角过程中所产生的条件就是证明全等的条件.根据用直尺和圆规画一个角等于已知角的过程很容易看出所得两个三角形三边对应相等.解:设已知角为△O,以顶点O为圆心,任意长为半径画弧,交角的两边分别为A,B两点;画一条射线b,端点为M;以M为圆心,OA长为半径画弧,交射线b于C点;以C为圆心,AB长为半径画弧,两弧交于点D;作射线MD.则△COD就是所求的角.由以上过程不难看出两个三角形中有三条边对应相等,△证明全等的方法是SSS.考点:全等三角形的判定.。
人教版_部编版八年级数学上册第十二章全等三角形复习与测试习题(含答案) (70)
人教版_部编版八年级数学上册第十二章全等三角形复习与测试习题(含答案)如图,OA平分∠BAC,∠AOD=∠AOE,则图中的全等三角形共有__对.【答案】3【解析】∴∠DAO=∠EAO.在△DAO和△EAO中,DAO EAO AO AOAOD AOE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DAO≌△EAO(ASA).∴OD=OE,∠ADO=∠AEO,∴∠BDO=∠CEO.在△BDO和△CEO中,BDO CEO OD OEBOD COE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDO≌△CEO(ASA),∴OB=OC.∵∠AOD=∠AOE,∠BOD=∠COE,∴∠AOB=∠AOC.在△AOB和△AOC中,AO AOAOB AOC OB OC=⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△AOC(SAS).故答案为:3.92.如图,已知△ABC 的三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC ,若∠BAC =80°,则∠BOD 的度数为_____.【答案】100°【解析】如图在CO 的延长线上取一点H .∵∵DOH=∵D+∵DCO ,∵BOH=∵OBC+∵OCB ,∵∵DOB=∵D+∵OBC+∵OCD+∵OCB=∵D+∵OBC+∵ACB ,∵O 三个内角的平分线的交点,∵∵DCO=∵BCO ,在△OCD 和△OCB 中,OC OC OCD OCB CD CB ⎧⎪∠∠⎨⎪⎩=== , ∵∵OCD ∵∵OCB ,∵∵D=∵OBC=∵ABO ,∵∵DOB=∵ABC+∵ACB=180°-∵BAC=100°,故答案是:100°.【点睛】主要运用了全等三角形的判定和性质、三角形的内心的性质,三角形的外角的性质等知识,解题的关键是证明∠DOB=∵ABC+∵ACB=180°-∵BAC.93.已知△ABC≌△DEF,且△ABC的周长为12 cm,面积为6 cm2,则△DEF的周长为____cm,面积为_____cm2.【答案】12 6【解析】根据全等三角形的性质(两个全等三角形的面积和周长都相等)可得:因为△ABC≌△DEF,且△ABC的周长为12 cm,面积为6 cm2,所以△DEF的周长为12cm,面积为6cm2.故答案是:12,6.94.如图,要测量池塘两端A,B的距离,可先在平地上取一个可以直接到达A,B两点的C,连接AC并延长AC到点D,使CD=CA,连接BC并延长BC到点E,使CE=CB,连接DE,那么量出DE的长就等于AB的长,这是因为△ABC≌△DEC,而这个判定全等的依据是____________.【答案】SAS【解析】根据题意可知,在△ABC和△DEC中,CA=CD,∠ACB=∠DCE,CB=CE,利用SAS即可判定△ABC≌△DEC,所以本题答案为SAS.95.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B 出发,以2cm/秒的速度沿BC向点C运动。
新人教版八年级数学上册第12章《全等三角形》单元综合测试卷含答案
第12《全等三角形》单元综合测试卷满分100分姓名:___________班级:___________考号:___________一.选择题(共10小题,满分30分,每小题3分)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.面积相等的两个三角形全等D.全等三角形的面积一定相等3.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A.2B.3C.4D.54.如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD5.如图,点O在△ABC内,且到三边的距离相等.若∠A=40°,则∠BOC等于()A.110°B.115°C.125°D.130°6.已知如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若∠MON =60°,OP=4,则PQ的最小值是()A.2B.3C.4D.不能确定7.如图,在Rt△ABC中,∠C=90°,AD是角平分线,若BC=10cm,BD:CD=3:2,则点D到AB的距离是()A.6cm B.5cm C.4cm D.3cm8.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)9.如图,AB∥CD,AD∥BC,AC与BD相交于点O,AE⊥BD,CF⊥AC,垂足分别是E,F.则图中共有()对全等三角形.A.5B.6C.7D.810.已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.4二.填空题(共6小题,满分24分,每小题4分)11.能够的两个图形叫做全等图形.12.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第块去配,其依据是根据定理(可以用字母简写)13.已知:△ABC≌△DEF,若∠ABC=75°,则∠DEF=.14.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=°.15.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.16.如图,点I为△ABC角平分线交点,AB=8,AC=6,BC=5,将∠ACB平移使其顶点C与点I重合,则图中阴影部分的周长为.三.解答题(共7小题,满分46分)17.(5分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:∠C=∠D.18.(5分)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?19.(6分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,试说明:(1)△ACE≌△BDF.(2)AE∥BF.20.(7分)如图,三条公路OA,OB,AB两两相交于点O,点A和点B,现在建一个工厂P,使得工厂P到三条公路的距离相等(1)若P在△AOB的内部,你能确定工厂P的位置吗?说说你的想法;(2)若P为△AOB所在平面内一点,工厂P的位置又是怎样的?21.(7分)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE 上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.22.(7分)如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.23.(9分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.解:A、两个边长不相等的等边三角形不全等,故本选项错误;B、形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C、面积相等的两个三角形不一定全等,故本选项错误;D、全等三角形的面积一定相等,故本选项正确.故选:D.3.解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选:A.4.解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,∴△EAC≌△FDB(SAS),故选:D.5.解:∵O到三角形三边距离相等,∴O是△ABC的内心,即三条角平分线交点,∴AO,BO,CO都是角平分线,∴∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∵∠ABC+∠ACB=180°﹣40°=140°,∴∠OBC+∠OCB=70°,∴∠BOC=180°﹣70°=110°,故选:A.6.解:作PQ′⊥OM于Q′,∵∠MON=60°,OP平分∠MON,∴∠POQ′=30°,∴PQ′=OP=2,由垂线段最短可知,PQ的最小值是2,故选:A.7.解:∵BC=10cm,BD:CD=3:2,∴CD=×10=4,∵AD是角平分线,∴点D到AB的距离等于CD,即点D到AB的距离为4cm.故选:C.8.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.9.解:∵AB∥CD,AD∥BC,∴∠ABD=∠CDB,∠ADB=∠CBD,∠BAC=∠DCA,在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),同理:△ABC≌△CDA(ASA);∴AB=CD,BC=DA,在△AOB和△COD中,,∴△AOB≌△COD(AAS),同理:△AOD≌△COB(AAS);∵AE⊥BD,CF⊥BD,∴∠AEB=∠AEO=∠CFD=∠CFO=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),同理:△AOE≌△COF(AAS),△ADE≌△CBF(AAS);图中共有7对全等三角形;故选:C.10.解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EF A,∴∠EAB=∠F AC,∠AFC=∠C,∴∠EF A=∠AFC,即F A平分∠EFC.又∵∠AFB=∠C+∠F AC=∠AFE+∠BFE,∴∠BFE=∠F AC.故①②③④正确.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第③块.故答案为:③;ASA.13.解:∵△ABC≌△DEF,∴∠DEF=∠ABC=75°.故答案为75°.14.解:∵DE⊥AB,∴∠ADE=90°.∵∠C=90°,∴∠C=∠ADE.在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL).∴∠CAE=∠DAE.∵∠B=28°,∴∠BAC=62°,∴∠CAE=31°,∴∠AEC=59°故答案为:59°.15.解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=(180°﹣∠BAD)=70°,故答案为:70°.16.解:如图,连接AI,BI,∵点I为△ABC角平分线交点,∴IA和IB分别平分∠CAB和∠CBA,∴∠CAI=∠DAI,∠CBI=∠EBI,∵将∠ACB平移,使其顶点与点I重合,∴DI∥AC,EI∥BC,∴∠CAI=∠DIA,∠CBI=∠EIB,∴∠DAI=∠DIA,∠EBI=∠EIB,∴DA=DI,EB=EI,∴DE+DI+EI=DE+DA+EB=AB=8.即图中阴影部分的周长为8.故答案为:8.三.解答题(共7小题,满分46分)17.证明:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,∴△ADF≌△BCE(SAS),∴∠C=∠D.18.解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE.19.证明:(1)∵AD=BC,∴AC=BD,在△ACE与△BDF中,∴△ACE≌△BDF(SSS);(2)∵△ACE≌△BDF,∴∠A=∠B,∴AE∥BF.20.解:(1)∵到三角形三条边距离相等的点,是三角形内角平分线的交点,∴P应该在三角形内角平分线的交点上;(2)∵到三角形三条边距离相等的点,是三角形角平分线的交点,∴P应该在三角形外角平分线的交点上.21.(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.22.证明:(1)∵AB=AE,D为线段BE的中点,∴AD⊥BC∴∠C+∠DAC=90°,∵∠BAC=90°∴∠BAD+∠DAC=90°∴∠C=∠BAD(2)∵AF∥BC∴∠F AE=∠AEB∵AB=AE∴∠B=∠AEB∴∠B=∠F AE,且∠AEF=∠BAC=90°,AB=AE∴△ABC≌△EAF(ASA)∴AC=EF23.(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB =AC,否则AB≠AC.(如示例图)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.4 第十一章 全等三角形复习课
班级:__________ 姓名:
_______________
全等三角形:
能够_________的两个三角形是全等三角形。
全等三角形的性质:
全等三角形的对应边__________,全等三角形的对应角_______
【练一练】
1、下列说法正确的是( )
A 、全等三角形的周长相等;
B 、全等三角形是指面积相等的三角形;
C 、全等三角形的角都相等;
D 、全等三角形是指形状相同的三角形
2 、如图1,ΔABE ≌ΔACD ,AB=8cm ,AD=5cm , ∠A=60°,∠B=40°,则AE=_______,∠C=_____; 3、如右图,在△ABC 中,∠BAC=60°,将△ABC 绕着 点A 顺时针旋转40°后得到△ADE ,则∠BAE 的度 数为
___________
全等三角形的识别方法(用字母表示):
_______、_______、_______、________、_______。
【练一练】
4、 已知,如图2,∠ABC=∠DEF ,AB=DE ,要说明ΔABC ≌Δ
(1) 若以“SAS ”为依据,还要添加的条件为______________(2) 若以“ASA ”为依据,还要添加的条件为______________;
5、如图3,在△ABC 中,AD=AE ,BD=EC ,∠ADB=∠∠B=30°,则∠CAE=_____________
6、如图4,AB=DB,BC=BE,欲证ΔABE ≌ΔDBC,则需补充的条件是(
) A 、∠A=∠D B 、∠E=∠C C 、∠A=∠C D 、∠1=∠C
D
E
C
图3 C
图2
B F
E C
8、如图6,在△ABC 中,AB=AC,AD ⊥BC 交BC 于D 点,
E,F 分别是DB ,DC 的中点,则图中全等三角形的对数是( )
A 、1
B 、2
C 、3
D 、
9、如图7,AB=DE,AC=DF,BF=EC, ΔABC 和ΔDEF 全等吗?请说明理由。
12、如图
8:点B 、F 、C 、E 在同一条直线上,AC=DF,AB ∥ED,AC ∥FD,求证:BF=EC
13、如图9:CE ⊥AB,DF ⊥AB,垂足分别为EF ,AC ∥DB, 且AF=BE ,求证:CE=DF
15、如图
10,AB=AC ,∠BAC=90°,BD ⊥AE 于点D ,CE ⊥AE
于点E ,且BD >CE ,求证:BD=EC+ED
B
A
图6 F E
B C
图7
图9
E
D
A B
B
角平分线
角平分线性质:角的平分线上的点到角的两边________相等。
角的平分线的判定:到角的两边距离相等的点在_____________________。
三角形三个内角的平分线交于一点,这一点到三角形三边的距离_________________。
三角形内,到三边距离相等的点就是____________________________________。
【练一练】
16.到三角形三边距离相等的点是( )
A .三边垂直平分线的交点
B .三个内角平分线的交点
C .三边高所在直线的交点
D .三边中线的交点
17、如图11, Rt △ABC 中, ∠A=90°,点D 在AC 边上,作DE ⊥BC 于E
若AD=ED ,∠ABD=20°,则∠ADE=___________
19、如图12,已知CD ⊥AB 于D ,BE ⊥AC 于E ,CD 、BE 交于O ,且∠1=∠2,求证:OB=OC
图11
D C A
18、如图13,已知∠B=∠C=90,M是BC中点,AM平分∠DAB。
求证:DM平分∠ADC
M
A
图13。