人教版八年级上册三角形基础知识测试题
人教版八年级上册数学《三角形》测试卷(含答案)
人教版八年级上册数学《三角形》测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图所示,∠BAC 的对边是( )A 、BDB 、DCC 、BCD 、AD2.已知三角形的三边长分别为4、5、x ,则x 不可能是( )A .3B .5C .7D .9 3.在下列长度的线段中,能组成三角形的是( ).A .2,2,4B .2,3,5C .2,3,6D .4,4,7 4.张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是( )A 、B 、C 、D 、5.已知三角形三边的长均为整数,其中某两条边长之差为5,若此三角形周长为奇数,则第三边长的最小值为( ). A .8 B .7 C .6 D .46.已知ABC ∆的三个内角为A ∠,B ∠,C ∠,令B C α∠=∠+∠,C A β∠=∠+∠,A B γ∠=∠+∠,则α∠,β∠,γ∠中锐角的个数至多为( )A .1个B .2个C .3个D .0个 7.在凸多边形中,小于108︒的角最多可以有( )A .3个B .4个C .5个D .6个8.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中第1个黑DCBA色形由3个正方形组成,第2个黑色形由7个正方形组成,…那么组成第6个黑色形的正方形个数是( )A .22B .23C .24D .259.为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是( )A 、19.5B 、20.5C 、21.5D 、25.5 10.如图,()A B C D E F G ∠+∠+∠+∠+∠+∠+∠=A .100︒B .120︒C .150︒D .180︒二 、填空题(本大题共5小题,每小题3分,共15分)11.如图,A B C D E F G ∠+∠+∠+∠+∠+∠+∠= .11 6.55.59678854电厂DCBAGFEDCBAGFED CB A12.如图,ABC △中,ABC DBE EBC ACD DCE ECB ∠=∠=∠∠=∠=∠,,若145BEC ∠=︒,则BDC ∠等于 .13.在凸10边形的所有内角中,锐角的个数最多是 . 14.如图,求A B C D E F G ∠+∠+∠+∠+∠+∠+∠的值为 度15.如图,ABC △中,90C ∠=︒,13BAD BAE ∠=∠,13ABD ABF ∠=∠,则D ∠= .三 、解答题(本大题共8小题,共55分)16.如图,四边形ABCD 中,已知AB CD AD BC AE BC ⊥∥,∥,于E ,AF CD ⊥于F ,求证:180BAD EAF ∠+∠=︒17.在四边形ABCD 中,60D ∠=︒,B ∠比A ∠大20︒,C ∠是A ∠的2倍,求A ∠,B ∠,C ∠的大小.18.如图,已知90130100AB ED C B E D F ∠=︒∠=∠∠=︒∠=︒∥,,,,,求A ∠的大小.ED CBA G F ED CBA FE DCB AFEDCBA19.如图,127.5∠=︒,295∠=︒,338.5∠=︒,求4∠的大小.20.如图,在三角形ABC 中,42A ∠=︒,ABC ∠和ACB ∠的三等分线分别交于D 、E ,求BDC ∠的度数.21.已知一个多边形的对角线的条数为边数的2倍,求该多边形的边数. 22.把一副学生用的三角板,如图(1)放置在平面直角坐标系中,点A 在y 轴正半轴上,直角边AC 与y 轴重合,斜边AD 与y 轴重合,直角边AE 交x 轴于F ,斜边AB 交x 轴于G ,O 是AC 中点,8AC =.(1)把图1中的Rt AED △绕A 点顺时针旋转α度得图2,此时AGH △的面积是10,AHF △的面积是8,分别求F H B 、、三点的坐标.(2)如图3,设AHF ∠的平分线和AGH ∠的平分线交于点M ,EFH ∠的平分线和FOC ∠的平分线交与点N ,当AED △绕A 点转动时,N M ∠+∠的值是否会改变,若改变,请说明理由,若不改变,请求出其值.FE DCBA3421EDCBA23.已知,如图,P Q ,为三角形ABC 内两点,B P Q C ,,,构成凸四边形,求证:AB AC BP PQ QC +>++.QPCBA人教版八年级上册数学《三角形》测试卷答案解析一、选择题1.C2.D3.D4.C;∵能够铺满地面的图形是内角能凑成360°,∵正三角形一个内角60°,正方形一个内角90°,正五边形一个内角108°,正六边形一个内角120°,只有正五边形无法凑成360°.5.C;设5a b-=,由已知可得a b c++为奇数,所以c为偶数,且c a b>-,所以c的最小值为6.6.A;实际是问至多有几个顶点所对应的外角是锐角,即至多有几个内角是钝角.总结:一个三角形的内角至多有311⎧⎪⎨⎪⎩锐角个直角个钝角个;至少有2个锐角.7.B设凸n边形中,小于108︒的角有x个.当多边形的一个内角小于108︒,则它的外角大于72︒,而任意多边形的外角和等于72︒,故有72360x<解得5x<,故小于108︒的角可以有4个,故选B8.B;由图中可以看出:第1个黑色形由3个正方形组成,第2个黑色形由3+1×4=7个正方形组成,第3个黑色形由3+2×4=11个正方形组成,…那么第6个黑色形由3+5×4=23个正方形组成.9.B;如图,最短总长度应该是5+4+5.5+6=20.5cm.故选B.10.D;如图,连接EF AC,,则有G D GAD GCA∠+∠=∠+∠,()()EFC AEF EAC ACF EAD CAD GCF GCA∠+∠=∠+∠=∠+∠+∠+∠()()()()EAD GCF CAD GCA EAD GCF G D =∠+∠+∠+∠=∠+∠+∠+∠所以A B C D E F G ∠+∠+∠+∠+∠+∠+∠()()()EAD GCF G D B AEB CFB =∠+∠+∠+∠+∠+∠+∠ ()()EFC AEF B AEB CFB =∠+∠+∠+∠+∠()()180EFC CFB AEB AEF B EFB FEB B =∠+∠+∠+∠+∠=∠+∠+∠=︒二 、填空题11.540︒;连接CE BF 、,出现一个对顶八字形,故所有角度之和为一个四边形AGFB 加上一个△DEC12.110︒;根据燕尾形,故E A ABE ACE ∠=∠+∠+∠,2A E D ∠+∠=∠,35x y +=︒13.3;考虑外角,外角是钝角的个数不能超过3个,故锐角个数最多是3个 14.540︒;如图,转化为五边形ABCFG 的内角和,为540︒15.90︒;()()1118018033DAB ABD BAE ABD CAB ABC ∠+∠=∠+∠=︒-∠+︒-∠,GFEDCBAGFEDCBA yxED CBA A BCD EF G90CAB ABC ∠+∠=︒三 、解答题16.180180ABC BCD BAD ABC ∠+∠=︒∠+∠=︒,,BAD BCD∠=∠,又180EAF BCD ∠+∠=︒∴180BAD EAF ∠+∠=︒17.设(度),则,.根据四边形内角和定理得,. 解得,,∴,,. 18.120︒【解析】如图,延长DC AB ,交于点G . ∵130ED AB D ∠=︒∥,,所以50G ∠=︒.又∵90BCD BCD G CBG ∠=︒∠=∠+∠,,∴40CBG ∠=︒. ∴140ABC ∠=︒,140E ∠=︒,因为内角和为720︒,120A ∠=︒.19.23ADC ∠=∠+∠, 14180ADC ∠+∠+∠=︒,2314180∠+∠+∠+∠=︒, 9538.527.54180︒+︒+︒+∠=︒, 419∠=︒.20.设ABC ∠的三分之一为x ,ACB ∠的三分之一为y ,因为三角形内角和为180︒, 所以有:3342180x y ++=︒, 即180423x y ︒-︒+=,所以180421802883BDC ︒-︒∠=︒-⨯=︒. 21.7;提示:设边数为x ,则()322x xx -=.22.(1)()50F -,,()10H -,,()84B -,(2)97.5M N ∠+∠=︒ 【解析】(1)∵O 是AC 中点,x A =∠20+=∠x B x C 2=∠360602)20(=++++x x x 70=x ︒=∠70A ︒=∠90B ︒=∠140C GFEDCBA∴∴∴4AO OG ==,10AGH S =△,5GH =,8AHG S =△,4FH =(2)12M HAG ∠=∠()1452DAO =∠+︒,90N ∠=︒-12FAO ∠=()190302DAO ︒-∠+︒ 23.作直线PQ ,分别与AB AC ,交于点M N ,由三角形的三边关系可得AM AN MP PQ QNMP PB BPNQ NC QC +>++⎧⎪+>⎨⎪+>⎩①②③①+②+③得AM AN MP PB NQ NC MP PQ QN BP QC +++++>++++ ∴AM AN PB NC PQ BP QC +++>++即AB AC BP PQ QC +>++NM Q P CBA。
人教版初中数学八年级数学上册第一单元《三角形》测试(含答案解析)
一、选择题1.如图,在ABC中,AB边上的高为()A.CG B.BF C.BE D.AD 2.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.1,2,33.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.114.已知长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,则x的值不可能是()A.2.4 B.3 C.5 D.8.55.内角和为720°的多边形是().A.三角形B.四边形C.五边形D.六边形6.若一个多边形的每个内角都等于160°,则这个多边形的边数是()A.18 B.19 C.20 D.217.下列长度的线段能组成三角形的是()A.2,3,5 B.4,6,11 C.5,8,10 D.4,8,48.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.8 B.5 C.6 D.79.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米10.下列说法正确的有()个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C、D两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤nn-条对角线,这些对角线把这个边形从其中一个顶点出发连接其余各顶点,可以画出()3n边形分成了()2n-个三角形.A.3 B.2 C.1 D.011.如图,在五边形ABCDE中,AB∥CD,∠A=135°,∠C=60°,∠D=150°,则∠E的大小为()A.60°B.65°C.70°D.75°12.如图,已知AE交CD于点O,AB∥CD,∠A=50°,∠E=15°,则∠C的度数为()A.50°B.65°C.35°D.15°二、填空题13.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.14.如果三角形的三边长分别为5,8,a,那么a的取值范围为__.∠+∠+∠+∠+∠的度数为________.15.如图,则A B C D E16.设三角形三内角的度数分别为,,x y z ︒︒︒,如果其中一个角的度数是另一个角的度数的2倍、那我们称数对(,)()y z y z <是x 的和谐数对,当150x =时,对应的和谐数对有一个,它为(10,20);当66x =时,对应的和谐数对有二个,它们是__________.当对应的和谐数对(,)y z 有三个时,请写出此时x 的范围_______.17.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.18.将一副直角三角尺所示放置,已知//AE BC ,则AFD ∠的度数是__________.19.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.20.如图,已知ABC 的角平分线BD ,CE 相交于点O ,∠A=60°,则∠BOC=__________.三、解答题21.如图①,在ABC 中,,CD CE 分别是ABC 的高和角平分线,(),BAC B αβαβ∠=∠=∠>(1)若70,40BAC B ︒︒∠=∠=,求DCE ∠的度数(2)若(),BAC B αβαβ∠=∠=∠>,则DCE ∠= (用含,αβ的代数式表示); (3)若将ABC 换成钝角三角形,如图②,其他条件不变,试用含,αβ的代数式表示DCE ∠的度数,并说明理由;(4)如图③,若CE 是ABC 外角ACF ∠的平分线,交BA 延长线与点E ,且30αβ︒-=,则DCE ∠= (直接写出结果)22.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).23.如图1,△ABC 中,AD 是∠BAC 的角平分线,AE ⊥BC 于点E .(1)若∠C=80°,∠B=40°,求∠DAE 的度数;(2)若∠C >∠B ,试说明∠DAE=12(∠C-∠B); (3)如图2,若将点A 在AD 上移动到A′处,A′E ⊥BC 于点E .此时∠DAE 变成∠DA′E ,请直接回答:(2)中的结论还正确吗?24.如图所示,已知AD ,AE 分别是△ABC 的高和中线,AB =3cm ,AC =4 cm ,BC=5 cm ,∠CAB =90°.(1)求AD 的长.(2)求△ABE 的面积.25.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)26.平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC=24°,∠ADC=42°. (1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小.(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2),求∠ANC .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】在ABC中,过C点向AB所在的直线作垂线,顶点与垂足之间的线段是AB上的高,由此可得答案.【详解】解:ABC中,AB边上的高为:.CG故选:.A【点睛】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.2.D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形;∵14+15>13,∴能构成三角形;∵2<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键.3.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.D解析:D【分析】先根据三角形的三边之间的关系求解1<x<7,从而可得答案.【详解】解:长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,+,∴-<x<4343∴<x<7,1x的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键.5.D解析:D【分析】根据多边形内角和的计算方法(n-2)•180°,即可求出边数.【详解】解:依题意有(n-2)•180°=720°,解得n=6.该多边形为六边形,故选:D.【点睛】本题考查了多边形的内角和,利用多边形的内角和计算公式正确计算是解题关键.6.A解析:A【分析】设多边形的边数为n,然后根据多边形的内角和公式(n−2)•180°列方程求解即可.【详解】设多边形的边数为n,由题意得,(n−2)•180=160•n,解得:n=18,故选:A.【点睛】本题考查了多边形内角和公式,熟记多边形的内角和公式是解题的关键.7.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+6<11,不能组成三角形,不符合题意;C、5+8>10,能组成三角形,符合题意;D、4+4=8,不能够组成三角形,不符合题意.故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.8.C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C.【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.9.D解析:D【分析】连接AB ,根据三角形三边的数量关系得到AB 长的范围,即可得出结果.【详解】解:如图,连接AB ,∵15AO m =,10OB m =,∴15101510AB -<<+,即525AB <<.故选:D .【点睛】本题考查三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边的性质.10.C解析:C【分析】分别利用直线、射线、线段的定义、角的概念和角平分线的定义以及多边形对角线的求法分析得出即可.【详解】解:①把一个角分成两个角的射线叫做这个角的角平分线,故原说法错误; ②连接C 、D 两点的线段的长度叫两点之间的距离,故原说法错误;③两点之间线段最短,故原说法错误;④射线上点的个数与直线上点的个数没有关系,故原说法错误;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形,此说法正确.所以,正确的说法只有1个,故选:C .【点睛】此题主要考查了直线、射线、线段的定义以及角的概念和角平分线的定义等知识,正确把握相关定义是解题关键.11.D解析:D【分析】先根据多边形的内角和公式求出五边形的内角和,根据AB ∥CD 得到∠B+∠C=180°,即可求出∠E 的大小.【详解】解:由五边形的内角和公式得(5-2)×180°=540°,∵AB ∥CD ,∴∠B+∠C=180°,∴∠E=540°-∠A-∠B-∠C-∠D=540°-135°-180°-150°=75°.故选:D【点睛】本题考查了多边形的内角和公式,平行线的性质,熟练掌握多边形的内角和公式是解题关键.12.C解析:C【分析】先根据平行线的性质,得出A DOE ∠=∠,再根据DOE ∠是OCE ∆的外角,即可得到C ∠的度数.【详解】解:∵AB//CD ,45A ∠=︒,∴45DOE ∠=︒,∵DOE E C ∠=∠+∠,∴501535C DOE E ∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质,正确得出DOE ∠的度数是解题的关键.二、填空题13.30°90°或40°80°【分析】根据倍角三角形的定义结合三角形的内角和定理分三种情况即可得出结论【详解】在△ABC 中不妨设∠A=60①若∠A=2∠C 则∠C=30∴∠B=;②若∠C=2∠A 则∠C=1解析:30°,90°或40°,80°【分析】根据“倍角三角形”的定义结合三角形的内角和定理分三种情况即可得出结论.【详解】在△ABC 中,不妨设∠A=60︒,①若∠A=2∠C ,则∠C=30︒,∴∠B=180603090︒-︒-︒=︒;②若∠C=2∠A ,则∠C=120︒,∴∠B=180601200︒-︒-︒=︒(不合题意,舍去);③若∠B=2∠C ,则3∠C 18060=︒-︒=120︒,∴∠C 4=0︒,∠B=180604080︒-︒-︒=︒;综上所述,其它两个内角的度数分别是:30︒,90︒或40︒,80︒.【点睛】本题考查了“倍角三角形”的定义以及三角形的内角和等知识,解题的关键是学会用分类讨论的思想解决问题.14.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.15.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.16.(3876)(3381)【分析】根据和谐数对的定义求出当x=66时的两组数对;再分当时当时当时三种情况讨论从而得出结论【详解】解:当时180-66=114则114÷3=3838×2=76此时和谐数对解析:(38,76),(33,81) 060x ︒<<︒【分析】根据“和谐数对”的定义求出当x=66时的两组数对;再分当060x ︒<<︒时,当60120x ︒<︒时,当120180x ︒<︒时,三种情况讨论,从而得出结论.【详解】解:当66x =时,180-66=114,则114÷3=38,38×2=76,此时和谐数对为(38,76),或66÷2=33,114-33=81,此时和谐数对为(33,81),若对应的和谐数对(,)y z 有三个,当060x ︒<<︒时,它的和谐数对有(1803,2)x x ︒-,3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-; 当60120x ︒<︒时,它的和谐数对有3(,180)22x x ︒-,180(3x ︒-,2(180))3x ︒-, 当120180x ︒<︒时,它的和谐数对有180(3x ︒-,2(180))3x ︒-, ∴对应的和谐数对(,)y z 有三个时,此时x 的范围是060x ︒<<︒,故答案为:(38,76),(33,81);060x ︒<<︒.【点睛】本题考查三角形内角和定理,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.17.④【分析】四边形的内角和是根据四边形内角的性质选出正确选项【详解】解:①错误如果四个角都是锐角那么内角和就会小于;②错误可以是四个直角;③错误可以是四个直角;④正确故选:④【点睛】本题考查四边形内角解析:④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.18.【详解】根据平行线的性质及三角形内角和定理解答【点睛】解:由三角板的性质可知∠EAD=45°∠C=30°∠BAC=∠ADE=90°∵AE∥BC∴∠EAC=∠C=30°∴∠DAF=∠EAD-∠EAC=解析:75【详解】根据平行线的性质及三角形内角和定理解答.【点睛】解:由三角板的性质可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.∵AE∥BC,∴∠EAC=∠C=30°,∴∠DAF=∠EAD-∠EAC=45°-30°=15°.∴∠AFD=180°-∠ADE-∠DAF=180°-90°-15°=75°.故答案为:75°.本题考查的是平行线的性质及三角形内角和定理,平行线的性质:两直线平行同位角相等,同旁内角互补.三角形内角和定理:三角形的内角和等于180°.19.1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线可得n-3=9求出n的值最后根据多边形内角和公式可得结论【详解】解:由题意得:n-3=9解得n=12则该n边形的内角和是:(12-2解析:1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=9,求出n的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:n-3=9,解得n=12,则该n边形的内角和是:(12-2)×180°=1800°,故答案为:1800°.【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n边形从一个顶点出发可引出(n-3)条对角线是解题的关键.20.【分析】根据三角形的内角和定理角平分线的定义即可得【详解】BDCE是的角平分线故答案为:【点睛】本题考查了三角形的内角和定理角平分线的定义熟练掌握角平分线的定义是解题关键解析:120︒【分析】根据三角形的内角和定理、角平分线的定义即可得.【详解】60A ∠=︒,180120ABC ACB A ∴∠+∠=︒-∠=︒,BD 、CE 是ABC 的角平分线,11,22OBC ABC OCB ACB ∴∠=∠∠=∠, ()1602OBC OCB ABC ACB +=∠+∠∴=∠∠︒, ()180********OBC OCB BOC ∠=︒-︒∴∠+∠=︒=-︒,故答案为:120︒.【点睛】本题考查了三角形的内角和定理、角平分线的定义,熟练掌握角平分线的定义是解题关键.三、解答题21.(1)15°;(2)1122a β-;(3)1122a β-,理由见解析;(4)75°. 【分析】(1)根据三角形的内角和180°解得=70BCA ∠︒、20DCA ∠=︒,再根据角平分线的性质,得到35ACE ∠=︒,最后由DCE ACE DCA ∠=∠-∠解题即可;(2)根据三角形的内角和180°解得BCA ∠、DCA ∠的度数,再根据角平分线的性质,得到ACE ∠的度数,最后由DCE ACE DCA ∠=∠-∠解题即可;(3)根据三角形的内角和180°解得BCA ∠、DCA ∠的度数,再根据角平分线的性质,得到BCE ∠的度数,最后由DCE BCD BCE ∠=∠-∠解题即可;(4)根据角平分线的性质,12FCE ECA FCA ∠=∠=∠,结合三角形一个外角等于不相邻的两个内角和,解得1()2ECA αβ∠=+,根据三角形的内角和180°解得DCA ∠的度数,最后由DCE DCA ACE ∠=∠+∠解题即可.【详解】(1)180BAC B BCA ∠+∠+∠=︒,70,40BAC B ∠=︒∠=︒=180704070BCA ∴∠︒-︒-︒=︒ CE 平分BCA ∠11703522ACE BCA ∴∠=∠=⨯︒=︒, CD AB ⊥180907020DCA ∴∠=︒-︒-︒=︒352015DCE ACE DCA ∴∠=∠-∠=︒-︒=︒;(2)若(),BAC B αβαβ∠=∠=∠>,=180BCA αβ∴∠︒-- CE 平分BCA ∠1111(180)902222ACE BCA αβαβ∴∠=∠=︒--=︒--, CD AB ⊥1809090DCA αα∴∠=︒-︒-=︒-11119022(90)22DCE ACE DCA αβαβα∴∠=∠-∠=-︒-=︒---, 故答案为:1122a β-; (3)若将ABC 换成钝角三角形,(),BAC B αβαβ∠=∠=∠>,=180BCA αβ∴∠︒-- CE 平分BCA ∠1111(180)902222BCE ACE BCA αβαβ∴∠=∠=∠=︒--=︒--, CD AB ⊥1809090BCD ββ∴∠=︒-︒-=︒-DCE BCD BCE ∴∠=∠-∠1190(90)22βαβ=︒--︒-- 01190229βαβ︒+=︒--+ 1122αβ=- 故答案为:1122αβ-; (4)CE 是ABC 外角ACF ∠的平分线,12FCE ECA FCA ∴∠=∠=∠ 由三角形的外角性质得,11=()22FCE ECA FCA αβ∴∠=∠=∠+ CD AB ⊥1809090ACD αα∴∠=︒-︒-=︒-DCE ACD ACE ∴∠=∠+∠190()2ααβ=︒-++ 119022αβ=︒-+ 190()2αβ=︒-- 30αβ-=︒19030752DCE ∴∠=︒-⨯︒=︒ 故答案为:75︒.【点睛】本题考查角平分线的性质、三角形内角和180°、三角形外角性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)130°;(2)125°;(3)135°;(4)1902A ︒+∠. 【分析】(1)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(2)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(3)依据∠A=90°,可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(4)根据三角形的内角和定理可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC=90°+12∠A . 【详解】解:如下图所示,(1)∵∠ABC=40°,∠ACB=60°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=20°+30°=50°,∴△BCP 中,∠P=180°-50°=130°,故答案为:130°;(2)∵∠ABC+∠ACB=110°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×110°=55°, ∴△BCP 中,∠P=180°-55°=125°,故答案为:125°;(3)∵∠A=90°,∴∠ABC+∠ACB=90°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×90°=45°, ∴△BCP 中,∠P=180°-45°=135°,故答案为:135°;(4)∵∠ABC+∠ACB=180°-∠A ,∠ABC 和∠ACB 的平分线相交于点P , ∴124(180)2A ∠+∠=⨯︒-∠, ∴△BCP 中,11180(180)9022P A A =︒-⨯︒-∠=︒+∠∠. 故答案为:1902A ︒+∠. 【点睛】 本题主要考查了三角形内角和定理以及角平分线的定义的运用,解题时注意:三角形内角和是180°.23.(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC 的度数,再根据角平分线的定义求得∠BAD 的度数,在△ABE 中,利用直角三角形的性质求出∠BAE 的度数,从而可得∠DAE 的度数. (2)结合第(1)小题的计算过程进行证明即可.(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B 和∠C 表示出∠A′DE ,再根据三角形的内角和定理可证明∠DA′E=12(∠C-∠B). 【详解】(1)∵∠C=80°,∠B=40°,∴∠BAC=180°-∠B-∠C =180°-40°-80°=60°,∵AD 是∠BAC 的角平分线,∴∠BAD=∠CAD=12∠BAC=30°, ∵AE ⊥BC ,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD =20°;(2)理由:∵AD 是∠BAC 的角平分线,∴∠BAD=∠CAD=12∠BAC=12(180°-∠B-∠C)= 90°-12∠B-12∠C , ∵AE ⊥BC ,∴∠AEC=90°,∴∠BAE=90°-∠B ,∴∠DAE=∠BAE-∠BAD=(90°-∠B) -(90°-12∠B-12∠C ) =12∠C-12∠B =12(∠C-∠B); (3)(2)中的结论仍正确.∵∠A′DE=∠B+∠BAD=∠B+12∠BAC=∠B+12(180°-∠B-∠C) = 90°+12∠B-12∠C ; 在△DA′E 中,∠DA′E=180°-∠A′ED -∠A′DE=180°-90°-(90°+12∠B-12∠C) =12(∠C-∠B). 【点睛】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.24.(1)125cm ;(2)3cm 2 【分析】(1)利用“面积法”来求线段AD 的长度;(2)△AEC 与△ABE 是等底同高的两个三角形,它们的面积相等【详解】解:∵∠BAC=90°,AD 是边BC 上的高, ∴12AB•AC=12BC•AD , ∴341255AB AC AD BC ⋅⨯===(cm ),即AD 的长度为125cm ; (2)如图,∵△ABC 是直角三角形,∠BAC=90°,AB=3cm ,AC=4cm ,∴S △ABC =12AB•AC=12×3×4=6(cm 2). 又∵AE 是边BC 的中线,∴BE=EC , ∴12BE•AD=12EC•AD ,即S △ABE =S △AEC , ∴S △ABE=12S △ABC =3(cm 2). ∴△ABE 的面积是3cm 2.【点睛】本题考查了中线的性质.解题的关键是利用三角形面积的两个表达式相等,求出AD . 25.(1)150︒ (2)60︒;理由见解析【分析】(1)根据三角形的内角和定理即可求得答案;(2)先求得XBC XCB ∠+∠=90°,再根据ABX ACX ∠+∠()()ABC ACB XBC XCB =∠+∠-∠+∠即可求得答案.【详解】解:(1)∵180ABC ACB A ∠+∠+∠=︒,30A ∠=︒,∴180ABC ACB A ∠+∠=︒-∠18030=︒-︒150=︒,故答案为:150°;(2)60ABX ACX ∠+∠=︒,理由如下:∵180XBC XCB X ∠+∠+∠=︒,90X ∠=︒,∴180XBC XCB X ∠+∠=︒-∠18090=︒-︒90=︒,∴ABX ACX ∠+∠ABC XBC ACB XCB =∠-∠+∠-∠()()ABC ACB XBC XCB =∠+∠-∠+∠15090=︒-︒60=︒,故答案为:60°.【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解决本题的关键. 26.(1)33°;(2)123°【分析】(1)AM 与BC 交于E ,AD 与MC 交于F ,利用角平分线性质和三角形外角性质可得,BEM ∠是ABE △和MCE 的外角,MFD ∠是MAF △和FCD 的外角,列出关于AMC ∠的方程组,计算得出AMC ∠的度数.(2)AN 与BC 交于点G ,AD 与BC 交于点F ,根据角平分线性质和三角形外角性质可得,BFD ∠是ABF 和FCD 的外角,AGC ∠是NGC 和ABG 的外角,列出关于ANC ∠的方程组,计算得出ANC ∠的度数.【详解】解:(1)AM 与BC 相交于E ,AD 与MC 相较于F ,如图:∵MA 和MC 是∠BAD 和∠BCD 的角平分线,∴设∠BAM=∠MAD=a ,∠BCM=∠MCD=b ,∵∠BEM 是△ABE 和△MCE 的外角,∴∠M+∠BCM=∠B+∠BAM ,即:∠M+b=24°+a①,又∵∠MFD 是△MAF 和△CDF 的外角,可得∠M+a=42°+b②,①式+②式得2∠M=24°+42°,解得:∠M=33°,∴=33AMC ∠︒.(2)AN 与BC 相交于G ,AD 与BC 相较于F ,如图:∵NA 和NC 是∠EAD 和∠BCD 的角平分线,∴设∠EAN=∠NAD=m ,∠BCN=∠NCD=n ,∵∠BFD 是△ABF 和△FCD 的外角,∴∠B+∠BAD=∠D+∠BCD ,即:24°+(180°-2m )=42°+2n ,可得m+n=81°①,又∵∠AGC 是△NGC 和△ABG 的外角,可得∠N+n=24°+(180°-m ),得∠N=204°-(m+n )②,①式代入②式,得∠N=204°-81°=123°,∴123ANC ∠=︒.【点睛】本题考查了角平分线的性质和三角形外角性质,用设未知数列方程组的方法计算角度是解题关键.。
人教版数学八年级上册第十一章三角形 测试题含答案
人教版数学八年级上册第十一章《三角形》考试卷班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为 .2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.3.如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为______.4.如图,已知AB ∥CD ,∠A =55°,∠C =20°,则∠P =___________.5.如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °.6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米. 7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可) .第6题30°30°30°A 第8题G ED CBA第5题DCBA第2题 第3题 第4题第15题第16题8.如图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G 的度数为 .9.如图,△ABC 中,BD 平分∠ABC ,CD 平分∠ACE ,请你写出∠A 与∠D 的关系: . 10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为 . 11.在△ABC 中,∠A =55°,高BE 、CF 交于点O ,则∠BOC =______. 12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A =50°,∠ACD =40°,∠ABE =28°,则∠CFE 的度数为______.14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”). 二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( )A .AC 是△ABC 和△ABE 的高B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形第9题 第12题 第13题EDC BA18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是()A.6 B.7 C.8 D.9三、解答题(共60分)19.(4分)△ABC中,∠A=2∠B=3∠C,则这个三角形中最小的角是多少度?20.(4分)如图,已知四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的关系,并说明理由.21.(4分)如图,△ABC的外角∠CBD、∠BCE的平分线相交于点F,若∠A=68°,求∠22.(6分)在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) . 24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少? 25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?D C B A C B A C B A26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A +∠B +∠C +∠D +∠E =180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.图1 图2 图328.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.参考答案:一、填空题1.2 2.稳定3.60°4.35°5.82.5 6.120 7.答案不唯一8.540°9.∠A=2∠D10.130°11.55或12512.36013.6214.否二、选择题15.C 16.C 17.B 18.C三、解答题19.36011⎛⎫⎪⎝⎭20.AD BC∥21.5622.三边长为16,16,22或20,20,14 23.略24.六边形25.只要量得∠B+∠C=150°,∠C+∠D=160°,则模板即为合格26.(1)两点之间,线段最短;(2)略27.结论都成立,理由略28.(1)60°,90°,108°,120°,(2)180nn-°;(2)正三角形、正方形、正六边形;(3)答案不唯一,如正方形和正八边形,正三角形和正十二边形.。
人教版八年级上册数学《三角形》试卷(含答案)
八年级上册数学单元测试题(三角形)一、选择题(每题3分,共30分)1、下列长度的三条线段(单位:cm )能组成三角形的是( )A 、1、2、3.5B 、4、5、9C 、20、15、8D 、5、15、82、如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确定3、在ABC ∆中, 20=∠A , 60=∠B ,则ABC ∆的形状是( )A 、等边三角形B 、锐角三角形C 、直角三角形D 、钝角三角形4、直角三角形中,一个锐角的度数为30,则另一个锐角的度数是( )A 、70B 、60C 、45D 、30 5、如图,在ABC ∆中, 40=∠B , 30=∠C ,延长BA 至点D ,则CAD ∠的大小为( )A 、110B 、80C 、70D 、606、如图所示的四边形的表示方法正确的是( )A 、四边形ABCDB 、四边形ACBDC 、四边形ABDCD 、四边形ADBC7、已知一个正多边形的内角是140 ,则这个正多边形的边数是( )A 、6B 、7C 、8D 、98、已知ABC ∆三边a 、b 、c 满足0)(2=-+-c b b a ,则ABC ∆的形状是( )A 、钝角三角形B 、直角三角形C 、等边三角形D 、以上都不对9、如图,已知AB//CD ,AD 和BC 相交于点O , 50=∠A , 105=∠AOB ,则C ∠等于( )A 、20B 、25C 、35D 、 4510、如图,若 27=∠A , 45=∠B , 38=∠C ,则DFE ∠等于( )A 、120B 、115C 、110D 、105二、填空(每题4分,共24分)11、如图,BD=DE=EF=CF ,AEC ∆的中线是 ,AE 是 的中线.12、如果一个三角形的三边长分别为x 、2、3,那么x 的取值范围是 .13、如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条,这样做的数学道理是 .14、一个三角形三个内角的度数之比为3:4:7,这个三角形一定是 .15、若一个多边形的内角和比它的外角和的3倍少180,则它的边数是 .16、如图,若 130=∠AFD ,则+∠+∠+∠+∠+∠+∠+∠ACB FEB EFC B AFE AEF AD ACD ∠+∠= .三、解答题一(每题6分,共18分)17、如图,有多少个三角形?用符号表示这些三角形.18、若等腰三角形的两边长分别为cm 7和cm 14,则等腰三角形的周长为多少?19、如图,AD 是ABC ∆的边BC 上的中线,已知AB=5cm ,AC=3cm ,求ABD ∆与ACD ∆的周长之差.四、解答题二(每题7分,共21分)20、如图,EF//BC ,AC 平分BAF ∠,80=∠B ,求C ∠的度数.21、如图,已知ABC ∆中,AB=2,BC=4.(1)画出ABC ∆的高AD 和CE.(2)若AD=23,求CE 的长.22、一个同学在进行多边形的内角和计算时,求得的内角和为1125 ,当发现错了以后,重新检查,发现少算了一个内角,则这个内角是多少度?他求的是几边形的内角和?五、解答题三(每题9分,共27分)23、如图,在ACB ∆中, 90=∠ACB ,AB CD ⊥于点D.(1)求证:.B ACD ∠=∠(2)若AF 平分CAB ∠分别交CD ,BC 于点E ,F ,求证:.CFE CEF ∠=∠24、如图,P 是ABC ∆内部的一点.(1)度量AB ,AD ,PB ,PC 的长,根据度量结果比较AC AB +与PC PB +的大小.(2)改变点P 的位置,上述结论还成立吗?(3)你能说明上述结论为什么成立吗?25、如图,在ABC ∆中,BC AD ⊥,AE 平分BAC ∠, 70=∠B , 30=∠C .(1)求BAE ∠的度数;(2)求DAE ∠的度数;(3)探究:小明认为如果只知道 40=∠-∠C B ,也能得出DAE ∠的度数.你认为可以吗?若能,请你写出求解过程;若不能,请说明理由.三角形参考答案一、CBDBC CDCBC二、11、AF ,ABC ∆和ADF ∆ 12、51<<x 13、三角形具有稳定性14、直角三角形 15、7 16、670三、17、解:有三个三角形,分别是:ABD ∆、ADC ∆、.ABC ∆18、:当7cm 为腰时,三边长为7cm ,cm 7,14cm ,无法构成三角形;当14cm 为腰时,三边长为7cm ,14cm ,14cm ,能构成三角形,所以三角形的周长为7+14+14=35(cm ).19、解:AD 是ABC ∆的边BC 上的中线, CD BD =∴,CD AD AC BD AD AB CD AD AC BD AD AB ---++=++-++∴)()( =).(235cm AC AB =-=-四、20、解:BC EF // , 100180=∠-=∠∴B BAFAC 平分BAF ∠, 5021=∠=∠∴BAF CAF , BC EF // , 50=∠=∠∴CAF C21、解:(1)如图:(2)CE AB BC AD S ABC ⨯=⨯⨯=∆2121 ,CE ⨯⨯=⨯⨯∴22142321,.3=∴CE 22、解:设此多边形的内角和为 x ,则有:180********+<<x ,即457180456180+⨯<<+⨯x ,因为 x 为多边形的内角和,所以它应为180 的整数倍, 所以12607180=⨯=x ,所以927=+,1260-1125=135 ,因此这个内角是135,他求的是九边形的内角和.五、23、证明:(1) 90=∠ACB ,AB CD ⊥于点D , 90=∠+∠∴BCD ACD , 90=∠+∠BCD B.B ACD ∠=∠∴(2)在AFC Rt ∆中,CAF CFA ∠-=∠ 90,同理在AED Rt ∆中,DAE AED ∠-=∠ 90,又 AF 平分CAB ∠,DAE CAF ∠=∠∴, CFE AED ∠=∠∴,又AED CEF ∠=∠ ,.CFE CEF ∠=∠∴24、解:(1)度量结果略..PC PB AC AB +>+(2)成立(3)延长BP 交AC 于点D ,在ABD ∆中,PD BP AD AB +>+① 在PDC ∆中,PC DC PD >+②①+②,得PC PD BP DC PD AD AB ++>+++,即.PC PB AC AB +>+25、解:(1)30,70=∠=∠C B , 803070180=--=∠∴BAC ,AE 平分BAC ∠,.40802121 =⨯=∠=∠∴BAC BAE (2)70,=∠⊥B BC AD , 20709090=-=∠-=∠∴B BAD ,202040,40=-=∠-∠=∠∴=∠BAD BAE DAE BAE(3)可以,理由如下:AE 平分BAC ∠,2180C B BAE ∠-∠-=∠∴ , B BAD ∠-=∠ 90,,2)90(2180C B B C B BAD BAE DAE ∠-∠=∠--∠-∠-=∠-∠=∠∴ 若,40 =∠-∠C B 则.20 =∠DAE。
八年级数学上册《三角形》专项测试卷及答案-人教版
八年级数学上册《三角形》专项测试卷及答案-人教版(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.如图,在△ABC中∠ACB=90∘,点D在AB上,将△BDC沿CD折叠,点B落在AC边上的点Bʹ处,若∠ADBʹ=20∘,则∠A的度数为( )A.20∘B.25∘C.35∘D.40∘2.如图∠ACB=90∘,CD⊥AB垂足为D,下列结论中错误的是( )A.图中有三个直角三角形B.∠1=∠2C.∠1与∠B都是∠A的余角D.∠A=∠23.如图所示AB∥CD,∠E=37∘,∠C=20∘,则∠EAB的度数为( )A.57∘B.60∘C.63∘D.123∘4.如图,直线AB∥CD,BC平分∠ABD,若∠1=65∘ , 则∠2的大小为( )A.35∘B.40∘C.50∘D.65∘5.在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C.D.6.如图,a∥b一个直角三角形的一个顶点落在其中一条直线上,若∠1=78°,则∠2的度数为( )A.12°B.15°C.25°D.30°7.一个等腰三角形的边长是6,腰长是一元二次方程x2–7x+12=0的一根,则此三角形的周长是( )A.12B.13C.14D.12或14 8.如图AB∥CD,∠1=100°,∠2=120°,则∠α等于()A.100°B.80°C.60°D.40°二、填空题(共5题,共15分)9.如图,D是BC的中点,E是AC的中点S△ADE=2则S△ABC=.10.如图,一副三角板如图叠放在一起,则图中∠α的度数为.11.如图,在△ABC中,点D在AC上,点E在BD上,若∠A=70∘,∠ABD= 22∘,∠DCE=25∘则∠BEC的度数为.12.如图,将△ABC沿着DE对折,点A落到Aʹ处,若∠BDAʹ+∠CEAʹ=70∘,则∠A=.13.如图,E为△ABC边CA延长线上一点,过点E作ED∥BC,若∠BAC= 70∘,∠CED=50∘则∠B=∘.三、解答题(共3题,共45分)14.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠ABC= 30∘,∠ACB=60∘.(1) 求∠DAE的度数.(2) 写出∠DAE与∠C−∠B的数量关系,并证明你的结论.15.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35∘,∠D= 42∘求∠ACD的度数.16.已知a,b,c为△ABC的三边长,b,c满足(b−2)2+∣c−3∣=0,且a为方程∣a−4∣=2的解,求△ABC的周长,并判断△ABC的形状.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】A7.【答案】C8.【答案】D9.【答案】810.【答案】105∘11.【答案】117°12.【答案】35°13.【答案】6014.【答案】(1) ∵∠B+∠C+∠BAC=180∘∠ABC=30∘,∠ACB=60∘∴∠BAC=180∘−30∘−60∘=90∘.∵AE是△ABC的角平分线∴∠BAE=12∠BAC=45∘.∵∠AEC为△ABE的外角∴∠AEC=∠B+∠BAE=30∘+45∘=75∘.∵AD是△ABC的高∴∠ADE=90∘.∴∠DAE=90∘−∠AEC=90∘−75∘=15∘.(2) ∠DAE=12(∠C−∠B)由(1)知∠DAE=90∘−∠AEC=90∘−(∠B+12∠BAC)又∵∠BAC=180∘−∠B−∠C.∴∠DAE=90∘−∠B−12(180∘−∠B−∠C)=12(∠C−∠B).15.【答案】略16.【答案】∵(b−2)2+∣c−3∣=0∴b−2=0,c−3=0,解得:b=2,c=3∵a为方程∣a−4∣=2的解∴a−4=±2解得:a=6或2∵a,b,c为△ABC的三边长b+c<6∴a=6不合题意,舍去∴a=2∴△ABC的周长为:2+2+3=7∴△ABC是等腰三角形.。
人教八年级上册第11章《三角形》单元检测及答案
人教八年级上册第11章《三角形》单元检测及答案一. 选择题。
(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. 19cB. 914cC. 1018cD. 无法确定 2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( ) A. n 个 B. (n-1)个 C. (n-2)个 D. (n-3)个4. n 边形所有对角线的条数有( ) A.()12n n -条 B. ()22n n -条 C. ()32n n -条 D. ()42n n -条 5. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。
若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( ) A. 1种 B. 2种 C. 3种 D. 4种 6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定8. 若一个三角形的三边长是三个连续的自然数,其周 长m 满足1022m ,则这样的三角形有( )A. 2个B. 3个C. 4个D. 5个 二. 填空题。
(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8c m ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。
新人教版初中数学八年级数学上册第一单元《三角形》测试题(包含答案解析)(4)
一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.如图,下列结论中正确的是( )A .12A ∠>∠>∠B .12A ∠>∠>∠C .21A ∠>∠>∠D .21A ∠>∠>∠ 3.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠; ②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个 4.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( )A .15B .20C .30D .40 5.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB=10米,A 、B 间的距离不可能是( )A .20米B .15米C .10米D .5米6.将一个直角三角板和一把直尺如图放置,如果∠α=47°,则∠β的度数是( )A .43°B .47°C .30°D .60°7.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .0 8.内角和与外角和相等的多边形是( ) A .六边形 B .五边形 C .四边形 D .三角形 9.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30°10.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 11.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒ 12.如图,盖房子时,在窗框没有安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,这种做法的根据是( )A .两点之间线段最短B .长方形的对称性C .长方形四个角都是直角D .三角形的稳定性二、填空题13.如图,BF 平分∠ABD ,CE 平分∠ACD ,BF 与CE 交于G ,若130,90BDC BGC ∠=︒∠=︒,则∠A 的度数为_________.14.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.15.一个正多边形的每个内角为108°,则这个正多边形所有对角线的条数为_____. 16.一个多边形的内角和比它的外角和的3倍还多180°,则它是___________边形,从该多边形的一个顶点,可以引__________条对角线.17.一块含45°角的直角三角板如图放置,其中,直线//a b ,185∠=︒,则2∠=______度.18.如图,在△ABC 中,∠A=64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n-1BC 与∠A n-1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.19.一个三角形的三个内角度数之比为2:3:5,那这个三角形一定是三角形__________. 20.如图,已知ABC 的角平分线BD ,CE 相交于点O ,∠A=60°,则∠BOC=__________.三、解答题21.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若∠1与∠2都是锐角,请写出∠C 与∠1,∠2之间的数量关系并说明理由.(2)把Rt △ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有∠BDF =∠GDF ,求AEN CDG∠∠的值. (3)如图3,若点D 是MN 下方一点,BC 平分∠PBD ,AM 平分∠CAD ,已知∠PBC =25°,求∠ACB +∠ADB 的度数.22.如图,已知在ABC 中,CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线.(1)求证:2A E ∠=∠.(2)若A ABC ∠=∠,求证://AB CE .23.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于点E ,若70C ∠=︒,24B ∠=︒,求P ∠的度数.24.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.25.()1若n边形的内角和等于它外角和的3倍,求边数n.()2已知a,b,c为三角形三边的长,化简:a b c b c a--+--.26.如图,PB和PC是ABC的两条外角平分线.求证:1902BPC BAC ∠=︒-∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、1+2<4,不能构成三角形;B、5+6=11,不能构成三角形;C、3+3>3,能构成三角形;D、8+4=12,不能构成三角形.故选:C.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于最大的数.2.D解析:D【分析】三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.【详解】解:∵∠2是△BCD 的外角,∴∠2>∠1,∵∠1是△ABC 的外角,∴∠1>∠A ,∴21A ∠>∠>∠.故选D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键. 3.C解析:C【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,GE∠=︒,60∴∠=︒-︒-︒=︒,AGE180306090∠=∠=︒B C45,∴∠=∠-∠=︒-︒=︒AGE B4904545.∴∠=∠故④符合题意,4.C综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.4.A解析:A【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,列出方程求解即可.【详解】解:∵∠C的外角=∠A+∠B,∴x+40=2x+10+x,解得x=15.故选:A.【点睛】本题考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5.D解析:D【分析】连接AB,根据三角形三边的数量关系得到AB长的范围,即可得出结果.【详解】解:如图,连接AB,∵15AO m =,10OB m =,∴15101510AB -<<+,即525AB <<.故选:D .【点睛】本题考查三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边的性质.6.A解析:A【分析】延长BC 交刻度尺的一边于D 点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt △CDE 中,利用内角和定理求解.【详解】如图,延长BC 交刻度尺的一边于D 点,∵AB ∥DE ,∴∠β=∠EDC ,又∵∠CED =∠α=47°,∠ECD =90°,∴∠β=∠EDC =90°﹣∠CED =90°﹣47°=43°.故选:A .【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键. 7.C解析:C【分析】分别利用直线、射线、线段的定义、角的概念和角平分线的定义以及多边形对角线的求法分析得出即可.【详解】解:①把一个角分成两个角的射线叫做这个角的角平分线,故原说法错误;②连接C 、D 两点的线段的长度叫两点之间的距离,故原说法错误;③两点之间线段最短,故原说法错误;④射线上点的个数与直线上点的个数没有关系,故原说法错误;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形,此说法正确.所以,正确的说法只有1个,故选:C .【点睛】此题主要考查了直线、射线、线段的定义以及角的概念和角平分线的定义等知识,正确把握相关定义是解题关键.8.C解析:C【分析】设这个多边形为n 边形,根据题意列出方程,解方程即可求解.【详解】解:设这个多边形为n 边形,由题意得(n-2)180°=360°,解得n=4,所以这个多边形是四边形.故选:C【点睛】本题考查多边形的内角和公式,多边形的外角和360°,熟知两个定理是解题关键. 9.C解析:C【分析】先依据平行线的性质可求得∠ABC 的度数,然后在直角三角形CBD 中可求得∠BCD 的度数.【详解】解:∵//BC AE ,150∠=︒,∴∠1=∠ABC=50°.∵CD AB ⊥于点D ,∴∠CDB=90°.∴∠BCD+∠DBC=90°,即∠BCD+50°=90°.∴∠BCD=40°.故选:C .【点睛】本题主要考查平行线的性质、垂线的定义、直角三角形两锐角互余的性质,掌握相关知识是解题的关键.10.C解析:C【分析】设选取的木棒长为xcm,再根据三角形的三边关系求出x的取值范围,选出合适的x的值即可.【详解】解:设选取的木棒长为xcm,∵两根木棒的长度分别为5cm和13cm,∴13cm-5cm<x<13cm+5cm,即8cm<x<18cm,∴12cm的木棒符合题意.故选:C.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.11.A解析:A【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】∵四边形的内角和等于a,∴a=(4-2)•180°=360°;∵五边形的外角和等于b,∴b=360°,∴a=b.故选:A.【点睛】本题考查了多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.12.D解析:D【分析】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,据此即可判断是利用了三角形的稳定性.【详解】在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,利用了三角形的稳定性,D正确.故答案选D.【点睛】本题比较简单主要考查三角形稳定性的实际应用,通常要使一些图形具有稳定的结构,往往是将其转化为三角形而获得.二、填空题13.50°【分析】连接BC根据三角形内角和定理可求得∠DBC+∠DCB的度数再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数即可求得∠A的度数【详解】解:连接BC∵∠BDC=130°解析:50°【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再利用三角形内角和定理及角平分线的定义可求得∠ABC+∠ACB的度数,即可求得∠A的度数.【详解】解:连接BC,∵∠BDC=130°,∴∠DBC+∠DCB=180°−∠BDC=50°,∵∠BGC=90°,∴∠GBC+∠GCB=180°−∠BGC=90°,∴∠GBD+∠GCD=(∠GBC+∠GCB)−(∠DBC+∠DCB)=40°,∵BF平分∠ABD,CE平分∠ACD,∴∠ABD+∠ACD=2∠GBD+2∠GCD=80°,∴∠ABC+∠ACB=(∠ABD+∠ACD)+(∠DBC+∠DCB)=130°,∴∠A=180°−(∠ABC+∠ACB)=180°−130°=50°.故答案为:50°.【点睛】本题主要考查了与角平分线有关的三角形内角和问题,根据题意作出辅助线,构造出三角形是解答此题的关键.14.1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线可得n-3=9求出n的值最后根据多边形内角和公式可得结论【详解】解:由题意得:n-3=9解得n=12则该n边形的内角和是:(12-2解析:1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=9,求出n的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:n-3=9,解得n=12,则该n边形的内角和是:(12-2)×180°=1800°,故答案为:1800°.【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n边形从一个顶点出发可引出(n-3)条对角线是解题的关键.15.【分析】先根据多边形的内角度数得出每个外角的度数再根据外角和为360°求出多边形的边数最后根据n边形多角线条数为求解即可【详解】∵一个正多边形的每个内角为108°∴每个外角度数为180°﹣108°=解析:【分析】先根据多边形的内角度数得出每个外角的度数,再根据外角和为360°求出多边形的边数,最后根据n边形多角线条数为(3)2n n-求解即可.【详解】∵一个正多边形的每个内角为108°,∴每个外角度数为180°﹣108°=72°,∴这个正多边形的边数为360°÷72°=5,则这个正多边形所有对角线的条数为(3)2n n-=5(53)2⨯-=5,故答案为:5.【点睛】本题主要考查多边形内角与外角、多边形的对角线,解题的关键是掌握多边形外角和度数为360°,n边形多角线条数为()32n n-.16.九六【分析】设边数为n建立方程即可n边形一个顶点引的对角线为(n-3)条【详解】解:设多边形的边数为n则:解得:n=9对角线条数为n-3=6故答案为:9;6【点睛】本题考查多边形内角和与外角和关系以解析:九六【分析】设边数为n,建立方程即可,n边形一个顶点引的对角线为(n-3)条.【详解】解:设多边形的边数为n,则:(2)1803603180n-•=⨯+解得:n=9对角线条数为n-3=6故答案为:9;6【点睛】本题考查多边形内角和与外角和关系,以及对角线的条数,属于基础题.17.40【分析】如图(见解析)先根据直角三角板的定义可得再根据平行线的性质可得然后根据三角形的外角性质可得最后根据对顶角相等即可得【详解】如图由题意得:由对顶角相等得:故答案为:40【点睛】本题考查了平解析:40【分析】如图(见解析),先根据直角三角板的定义可得445∠=︒,再根据平行线的性质可得1585=∠∠=︒,然后根据三角形的外角性质可得340∠=︒,最后根据对顶角相等即可得.【详解】如图,由题意得:445∠=︒,//a b,185∠=︒,1855∴∠∠==︒,35440∴∠=∠-∠=︒,由对顶角相等得:2340∠=∠=︒,故答案为:40.【点睛】本题考查了平行线的性质、对顶角相等、三角形的外角性质,熟练掌握三角形的外角性质是解题关键.18.6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到∠A =2∠A1同理可得∠A1=2∠A2即∠A=22∠A2因此找出规律【详解】由三角形的外角性质得∠ACD=∠A+∠ABC∠A1CD=∠A解析:6【分析】根据三角形的一个外角等于与它不相邻的两个内角的和得到∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∴n=6.故答案为:6.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.19.直角【分析】若三角形三个内角的度数之比为2:3:5利用三角形的内角和定理:三角形的内角和为180°可求出三个内角分别是36°54°90°则这个三角形一定是直角三角形【详解】解:设三角分别为2x3x5解析:直角【分析】若三角形三个内角的度数之比为2:3:5,利用三角形的内角和定理:三角形的内角和为180°,可求出三个内角分别是36°,54°,90°.则这个三角形一定是直角三角形.【详解】解:设三角分别为2x,3x,5x,依题意得2x+3x+5x=180°,解得x=18°.故三个角的度数分别为36°,54°,90°.故答案为:直角.【点睛】此题主要考查了三角形的内角和定理:三角形的内角和为180°,熟练掌握三角形内角和定理是解决本题的关键.20.【分析】根据三角形的内角和定理角平分线的定义即可得【详解】BDCE是的角平分线故答案为:【点睛】本题考查了三角形的内角和定理角平分线的定义熟练掌握角平分线的定义是解题关键解析:120︒【分析】根据三角形的内角和定理、角平分线的定义即可得.【详解】60A ∠=︒,180120ABC ACB A ∴∠+∠=︒-∠=︒,BD 、CE 是ABC 的角平分线,11,22OBC ABC OCB ACB ∴∠=∠∠=∠, ()1602OBC OCB ABC ACB +=∠+∠∴=∠∠︒, ()180********OBC OCB BOC ∠=︒-︒∴∠+∠=︒=-︒,故答案为:120︒.【点睛】本题考查了三角形的内角和定理、角平分线的定义,熟练掌握角平分线的定义是解题关键.三、解答题21.(1)12C ∠=∠+∠,理由见解析;(2)12;(3)75︒. 【分析】(1)过C 作//l MN ,标注字母,如图1所示,根据平行线公理证明//l PQ ,再根据平行线的性质即可求解.(2)先证明∠GDF =∠PDC ,可得∠CDG +2∠PDC =180°,即∠PDC =1902CDG ︒-∠,再证明∠AEN =∠CEM 90PDC =︒-∠,再代入AEN CDG∠∠计算即可得到答案; (3)利用角平分线的定义与平行线的性质求解:∠ADB =50BKA MAD CAM ∠-∠=︒-∠,再利用(1)的结论可得,∠ACB =∠PBC +∠CAM ,从而可得答案.【详解】解:(1)∠C =∠1+∠2,证明:过C 作//l MN ,标注字母,如图1所示,∵//l MN ,∴∠4=∠2(两直线平行,内错角相等),∵//l MN ,//PQ MN ,∴//l PQ ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴12DCE ∠=∠+∠;(2)如图2,∵∠BDF =∠GDF ,∠BDF =∠PDC ,∴∠GDF =∠PDC ,∵∠PDC +∠CDG +∠GDF =180°,∴∠CDG +2∠PDC =180°,∴∠PDC =1902CDG ︒-∠, 由(1)可得,∠PDC +∠CEM =∠C =90°,∠AEN =∠CEM ,1909090122CDG AEN CEM PDC CDG CDG CDG CDG ⎛⎫︒-︒-∠ ⎪∠∠︒-∠⎝⎭∴====∠∠∠∠; (3)如图3,标注字母,∵BC 平分∠PBD ,AM 平分∠CAD ,∠PBC =25°,∴∠PBD =2∠PBC =50°,∠CAM =∠MAD ,∵//PQ MN ,∴BKA ∠=∠PBD =50°,∴∠ADB =5050BKA MAD MAD CAM ∠-∠=︒-∠=︒-∠,由(1)可得,∠ACB =∠PBC +∠CAM ,∴∠ACB +∠ADB =∠PBC +∠CAM 50255075CAM +︒-∠=︒+︒=︒.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,平角的定义,三角形的外角的性质,掌握以上知识是解题的关键.22.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线的性质和三角形的外角性质即可求证;(2)由∠A=2∠E ,∠A=∠ABC ,∠ABC=2∠ABE 得∠ABE=∠E ,从而AB ∥CE .【详解】证明:(1)∵ACD ∠是ABC 的一个外角,2∠是BCE 的一个外角,∴ACD ABC A ∠=∠+∠,21E ∠=∠+∠,∴A ACD ABC ∠=∠-∠,21E ∠=∠-∠.∵CE 是外角ACD ∠的平分线,BE 是ABC ∠的平分线,∴22ACD ∠=∠,21ABC ∠=∠,∴2221A ∠=∠-∠2(21)=∠-∠2E =∠.(2)由(1)可知2A E ∠=∠.∵A ABC ∠=∠,2ABC ABE ∠=∠,∴22E ABE ∠=∠,即E ABE ∠=∠,∴//AB CE .【点睛】本题考查了三角形的综合问题,涉及平行线的判定,三角形的外角性质,角平分线的性质,灵活运用所学知识是解题的关键.23.23°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠CAD 的度数,在△ACD 中,利用三角形外角定理可求出∠CDP 的度数,结合PE BC ⊥即90PED ∠=︒及三角形外角定理,从而得出P CDP PED ∠=∠-∠即可求得∠P 的度数.【详解】解:在ABC 中,70C ∠=︒,24B ∠=︒,∴180702486BAC ∠=︒-︒-︒=︒,∵AD 平分BAC ∠,∴43CAD ∠=︒,∴4370113CDP CAD C ∠=∠+∠=︒+︒=︒,∵PE BC ⊥,即90PED ∠=︒,∴1139023P CDP PED ∠=∠-∠=︒-︒=︒.【点睛】本题考查了三角形外角定理、角平分线的定义,利用三角形外角定理及角平分线的定义,求出∠CDP 的度数是解题的关键.24.21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 25.()18;()22c .【分析】(1)根据多边形的内角和与外角和公式列出方程即可求解;(2)根据三角形的三边关系可得a c b +>,b c a +>,再根据化简绝对值的方法即可求解.【详解】解:()1由题意得:()18023603n ︒-=︒⨯,解得:8n =.()2∵a ,b ,c 为三角形三边的长,∴a c b +>,b c a +>, ∴a b c b c a --+--()()2a b c b c a b c a a c b c =-++-+=+-++-=.【点睛】此题主要考查多边形的内角和与外角和、三角形的三边关系的应用,解题的关键是熟知多边形的性质及去绝对值的方法.26.见解析【分析】 根据外角的性质和角平分线的性质证明1902PBC BCP BAC ∠+∠=︒+∠,再根据三角形内角和定理得到180PBC BCP BPC ∠+∠=︒-∠,就可以证明结论.【详解】解:∵180DBC ABC ∠=︒-∠,180BCE ACB ∠=︒-∠, ∴()()360360180180DBC BCE ABC ACB BAC BAC ∠+∠=︒-∠+∠=︒-︒-∠=︒+∠,∵BP 平分DBC ∠,CP 平分BCE ∠, ∴12PBC DBC ∠=∠,12BCP BCE ∠=∠, ∴()119022PBC BCP DBC BCE BAC ∠+∠=∠+∠=︒+∠, ∵180PBC BCP BPC ∠+∠=︒-∠, ∴1180902BPC BAC ︒-∠=︒+∠,即1902BPC BAC ∠=︒-∠. 【点睛】本题考查三角形的内角和定理和角平分线的性质,解题的关键是掌握这些性质定理进行角度求解.。
人教版数学八年级上册第十一章《三角形》测试卷(含答案)
人教版数学八年级上册第十一章《三角形》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.如图所示,∠BAC为钝角,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,△ABC中AC边上的高为()A.ADB.BEC.CFD.AF2.(2019贵州毕节中考)在下列长度的三条线段中,不能组成三角形的是()A.2 cm,3 cm,4 cmB.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cmD.5 cm,6 cm,7 cm3.(2020辽宁沈阳中考)如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD 的度数为()A.65°B.55°C.45°D.35°4.(2021湖北仙桃、潜江、天门、江汉油田中考)如图,在△ABC中,∠C=90°,点D在AC 上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,若∠A=70°,∠B=40°,∠C=32°,则∠BDC=()A.102°B.110°C.142°D.148°6.(2022独家原创)如图,在△ABC中,AD平分∠BAC,点E在射线BC上,EF⊥AD于F,∠B=40°,∠ACE=72°,则∠E的度数为()A.68°B.56°C.34°D.32°7.(2021台湾省中考改编)如图,四边形ABCD中,∠1、∠2、∠3分别为四边形ABCD 的外角.判断下列大小关系何者正确.()A.∠1+∠3=∠ABC+∠DB.∠1+∠3<∠ABC+∠DC.∠1+∠2+∠3=360°D.∠1+∠2+∠3>360°8.如图,在△ABC中,AE平分∠BAC交BC于点E,过点A作AD⊥BC,垂足为D,过点E 作EF⊥AC,垂足为F.若∠DAE=15°,∠AEF=50°,则∠B的度数为()A.55°B.65°C.75°D.80°9.(2020黑龙江牡丹江期中)如图,△ABC的面积是1,AD是△ABC的中线,AF=12FD,CE= 12EF,则△DEF的面积为()A.12B.34C.827D.2910.(2020山东青岛市北期末)如图,已知△ABC中,∠B=α,∠C=β(α>β),AD是BC边上的高,AE是∠BAC的平分线,则∠DAE的度数为()A.α-βB.2(α-β)C.α-2βD.12(α-β)二、填空题(每小题3分,共24分)11.(2022江西南昌十中期末)如图,邱叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.12.(2021湖南郴州中考)一个多边形的每一个外角都等于60°,则这个多边形的内角和为度.13.(2021江苏淮安中考)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是.14.(2021天津南开田家炳中学期中)将一副分别含有30°和45°角的两个直角三角板拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是.15.(2021河南郑州五校联考)如图,三角形纸片ABC中,∠A=75°,∠B=72°.将三角形纸片的一角折叠,使点C落在△ABC内,如果∠1=32°,那么∠2=.16.(2021福建厦门三中期末)如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.17.(教材P12变式题)在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,则∠ADB 的度数为.18.(2022福建泉州七中期中)如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足为D,延长CE与外角∠ABG的平分线交于点F.若∠A=60°,则∠DCE+∠F=.三、解答题(共46分)19.(6分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.20.(6分)如图,已知△ABC的周长为33 cm,AD是BC边上的中线,AB=3AC.2(1)当AC=10 cm时,求BD的长;(2)若AC=12 cm,能否求出DC的长?为什么?21.(6分)如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.22.(8分)如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E.(1)若∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于点F,求证:∠C=2∠FEC.23.(2022吉林临江期末)(10分)我们探究过三角形内角和等于180°,四边形内角和等于360°,请解决下面的问题:(1)如图1,∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果);(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图2,如果∠AOB=110°,求∠COD的度数;②如图3,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.24.(2022山东济南外国语学校期末)(10分)已知∠MON=90°,点A、B分别在OM、ON 上运动(不与点O重合).(1)如图1,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=;(2)如图2,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=70°,则∠D=°;②随着点A、B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)在图2的基础上,如果∠MON=α,其余条件不变,随着点A、B的运动(如图3),求∠D 的度数.(用含α的式子表示)答案全解全析1.B 三角形的高是过一个顶点作垂直于它对边所在的直线的线段,所以△ABC 中,AC 边上的高是线段BE.故选B.2.C 选项A,2+3>4,能组成三角形;选项B,3+6>6,能组成三角形;选项C,2+2<6,不能组成三角形;选项D,5+6>7,能组成三角形.故选C.3.B ∵AC ⊥CB,∴∠ACB=90°, ∴∠ABC=90°-∠BAC=90°-35°=55°, ∵AB ∥CD,∴∠BCD=∠ABC=55°, 故选B.4.D ∵∠CDE=160°, ∴∠ADE=180°-160°=20°, ∵DE ∥AB,∴∠A=∠ADE=20°,∴∠B=180°-∠A-∠C=180°-20°-90°=70°.故选D.5.C 如图,连接AD 并延长,则∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C, ∴∠BDC=∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠C=∠BAC+∠B+∠C=142°, 故选C.6.C 由题图知∠ACE=∠B+∠BAC,∠B=40°,∠ACE=72°, ∴∠BAC=∠ACE-∠B=72°-40°=32°. ∵AD 平分∠BAC,∴∠BAD=12∠BAC=12×32°=16°, ∴∠ADE=∠BAD+∠B=16°+40°=56°. ∵EF ⊥AD,∴∠E=90°-∠ADE=90°-56°=34°.7.A 如图,连接BD,∵∠1=∠ABD+∠ADB,∠3=∠DBC+∠BDC,∴∠1+∠3=∠ABD+∠ADB+∠DBC+∠BDC=∠ABC+∠ADC, ∵四边形的外角和是360°, ∴∠1+∠2+∠3<360°.故选A. 8.B ∵AD ⊥BC,∠DAE=15°, ∴∠AED=90°-15°=75°, ∵∠AEF=50°,∴∠FEC=180°-∠AEF-∠AED=55°, ∵EF ⊥AC,∴∠EAF=90°-∠AEF=40°,∠C=90°-∠FEC=35°, ∵AE 平分∠BAC,∴∠BAC=2∠EAC=80°, ∵∠B+∠C+∠BAC=180°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°. 9.D ∵△ABC 的面积是1,AD 是△ABC 的中线, ∴S △ACD =12S △ABC =12, ∵AF=12FD,∴DF=23AD, ∴S △CDF =23S △ACD =23×12=13,∵CE=12EF,∴EF=23CF,∴S △DEF =23S △CDF =23×13=29,故选D.10.D 在△ABC 中,∠B=α,∠C=β,∴∠BAC=180°-∠B-∠C=180°-α-β,∵AE 是∠BAC 的平分线,∴∠EAC=12∠BAC=90°-12(α+β).在Rt △ADC 中,∠DAC=90°-∠C=90°-β,∴∠DAE=∠DAC-∠EAC=90°-β-90°+12(α+β)=12(α-β),故选D. 11.三角形的稳定性解析 给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是三角形的稳定性. 12.720解析 ∵多边形的每一个外角都等于60°, ∴它的边数为360°÷60°=6, ∴它的内角和为180°×(6-2)=720°, 故答案为720. 13.4解析 设第三边长为a,根据三角形的三边关系知, 4-1<a<4+1,即3<a<5,又∵第三边的长是偶数,∴a 为4. 故答案为4. 14.15°解析 ∵Rt △CDE 中,∠C=90°,∠E=30°, ∴∠BDF=∠C+∠E=90°+30°=120°, ∵△BDF 中,∠B=45°,∠BDF=120°, ∴∠BFD=180°-45°-120°=15°.故答案为15°. 15.34°解析 如图,延长AE 、BF 交于点C',连接CC'.在△ABC'中,∠AC'B=180°-72°-75°=33°,∵∠ECF=∠AC'B,∠1=∠ECC'+∠EC'C,∠2=∠FCC'+∠FC'C,∴∠1+∠2=∠ECC'+∠EC 'C+∠FCC'+∠FC'C=2∠AC'B=66°,∵∠1=32°,∴∠2=66°-32°=34°,故答案为34°.16.40°解析∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°-40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°-50°=40°,故答案为40°.17.108°解析∵在△ABC中,∠ABC=∠C=2∠A,∴令∠A=x,则∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,解得x=36°,∴∠A=36°,∠ABC=72°.∵BD是∠ABC的平分线,∠ABC=36°,∴∠ABD=12∴∠ADB=180°-∠A-∠ABD=180°-36°-36°=108°.18.45°解析∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CE平分∠ACB,∠ACB=90°,∠ACB=45°,∴∠ACE=∠ECB=12∴∠DCE=∠ACE-∠ACD=45°-30°=15°,∵∠ABG=∠A+∠ACB=150°,BF平分∠ABG,∴∠FBG=1∠ABG=75°,2∵∠FBG=∠F+∠FCB,∴∠F=75°-45°=30°.∴∠DCE+∠F=15°+30°=45°.19.解析(1)如图所示,虚线即为所求.×10=5.(2)∵AD是△ABC的边BC上的中线,△ABC的面积为10,∴△ADC的面积=12(3)∵AD是△ABC的边BC上的中线,∴BD=CD,∵△ABD的面积为6,∴△ABC的面积为12,∵BD边上的高为3,∴BC=12×2÷3=8.20.解析(1)∵AB=3AC,AC=10 cm,∴AB=15 cm.2又∵△ABC的周长是33 cm,∴BC=33-10-15=8(cm).∵AD是BC边上的中线,∴BD=1BC=4 cm.2(2)不能.理由如下:AC,AC=12 cm,∴AB=18 cm.∵AB=32又∵△ABC的周长是33 cm,∴BC=33-12-18=3(cm).∵AC+BC=15<18,∴不能构成三角形,则不能求出DC的长.21.解析(1)∵BD是AC边上的高,∴∠ADB=∠BDC=90°,∵∠A=70°,∴∠ABD=90°-70°=20°.(2)∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=118°-90°=28°,∵CE 平分∠ACB,∴∠DCB=2∠DCE=56°, ∴∠DBC=90°-56°=34°,∴∠ABC=∠ABD+∠DBC=20°+34°=54°. 22.解析 (1)∵∠C=40°,∠B=2∠C, ∴∠B=80°,∴∠BAC=180°-80°-40°=60°,∵AE 平分∠BAC,∴∠EAC=12∠BAC=30°,∵AD ⊥BC,∴∠ADC=90°, ∴∠DAC=90°-40°=50°,∴∠DAE=∠DAC-∠EAC=50°-30°=20°. (2)证明:如图,∵EF ⊥AE,∴∠AEF=90°, ∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC, ∵AE 平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C)=12(180°-3∠C)=90°-32∠C, ∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-32∠C)=90°-∠C-90°+32∠C=12∠C, ∴∠FEC=12∠C,∴∠C=2∠FEC.23.解析(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°, ∴∠AOB+∠COD=360°-180°=180°. 故答案为180°.(2)①∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°, 在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∵∠AOB=110°,∴∠COD=180°-110°=70°. ②AB ∥CD.理由如下:∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°,在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∴∠AOD+∠BOC=360°-(∠AOB+∠COD)=360°-180°=180°, ∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在△AOD 中,∠DAO+∠ADO=180°-∠AOD=180°-90°=90°,∵∠DAO=12∠DAB,∠ADO=12∠ADC,∴12∠DAB+12∠ADC=90°,∴∠DAB+∠ADC=180°,∴AB ∥CD.24.解析 (1)∵∠MON=90°,∴∠OAB+∠OBA=90°, ∵AE 、BE 分别是∠BAO 和∠ABO 的平分线,∴∠BAE=12∠BAO,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠BAO+∠ABO)=45°, ∴∠AEB=180°-45°=135°,故答案为135°.(2)①∵∠AOB=90°,∠BAO=70°, ∴∠ABO=20°,∠ABN=160°, ∵BC 是∠ABN 的平分线,∴∠OBD=∠CBN=12×160°=80°,∵AD 平分∠BAO,∴∠DAB=35°,∴∠D=180°-∠ABD-∠BAD=180°-∠OBD-∠ABO-∠BAD=180°-80°-20°-35°=45°, 故答案为45.②∠D 的度数不随A 、B 的移动而发生变化. 设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=90°,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=90°+2x, ∵BC 平分∠ABN,∴∠ABC=12∠ABN=45°+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=45°+x-x=45°. (3)设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=α,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=α+2x, ∵BC 平分∠ABN,∴∠ABC=12α+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=12α+x -x=12α.。
人教版八年级上册数学《三角形》单元测试题带答案
人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1.能将三角形面积平分的是三角形的..)A.角平分..B...C.中..D.外角平分线2.已知三角形的两边长分别为4cm和9cm, 则下列长度的四条线段中能作为第三边的是.. )A.13c..B.6c..C.5c..D.4cm3.三角形一个外角小于与它相邻的内角, 这个三角形是...)A.直角三角..B.锐角三角..C.钝角三角..D.属于哪一类不能确定4.若一个多边形每一个内角都是135º, 则这个多边形的边数是...)A...B...C.1..D.125.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面, 可供选择的地砖共有( )A.4..B.3..C.2..D.1种6.一个多边形的外角和是内角和的一半, 则它是. )边形A...B...C...D.47.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S △DGF的值为. )学*科*网...学*科*网...A.4cm..B.6cm..C.8cm..D.9cm28.已知△ABC中, ∠A=20°, ∠B=∠C, 那么三角形△ABC是()A.锐角三角..B.直角三角..C.钝角三角..D.正三角形9.试通过画图来判定, 下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形10.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35..B.55..C.60..D.70°二、填空题11.如果点G是△ABC的重心.AG的延长线交BC于点D.GD=12.那么AG=________.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1= ,∠2= ,则∠3=_____________°.13.若一个多边形的内角和比外角和大360°, 则这个多边形的边数为_______________.14.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D.E、F,则线段___是△ABC中AC边上的高.15.一个多边形的内角和是外角和的2倍, 则这个多边形的边数为___.16.十边形的外角和是_____°.17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18.如图,⊿ABC中,∠..40°,∠..72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CD.=_________度。
人教版数学八年级上册 12.1全等三角形基础检测含答案
人教版数学八年级上册第12章基础检测含答案12.1全等三角形一.选择题1.已知△ABC的三边的长分别为3,5,7,△DEF的三边的长分别为3,7,2x﹣1,若这两个三角形全等,则x的值是()A.3 B.5 C.﹣3 D.﹣52.如图,△ABD≌△CDB,下面四个结论中,不正确的是()A.∠ABD=∠CBD B.△ABD和△CDB的周长相等C.AD=BC D.△ABD和△CDB的面积相等3.如图两个直角三角形,若△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直4.如图,△ABC与△DEF是全等三角形,则图中相等的线段有()A.1对B.2对C.3对D.4对5.△ABC≌△DEF,AB=2,BC=4,若△DEF的周长为偶数,则DF的取值为()A.3 B.4 C.5 D.3或4或5 6.下列说法正确的是()A.面积相等的两个图形全等B.周长相等的两个图形全等C.形状相同的两个图形全等D.全等图形的形状和大小相同7.已知△ABC≌△FED,若∠E=37°,∠C=100°,则∠A的度数是()A.100°B.80°C.43°D.37°8.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为()A.30°B.50°C.60°D.100°9.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形10.已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DF B.AD=BE C.DF=EF D.BC=EF二.填空题11.已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是厘米.12.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE 和△ACB全等,写出所有满足条件的E点的坐标.13.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC=.14.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=5,则AC=.15.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′=°,∠A =°,B′C′=,AD=.三.解答题16.已知:如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的对应边上的高.求证:AM=DN.17.如图,△ABC≌△DBE,点D在边AC上,BC与DE交于点P,已知∠ABE=162°,∠DBC=30°,求∠CDE的度数.18.如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.19.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.参考答案与试题解析一.选择题1.【解答】解:∵这两个三角形全等,∴2x﹣1=5,解得,x=3,故选:A.2.【解答】解:A、∵△ABD≌△CDB,∴∠ABD=∠CBD,选项说法错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,选项说法正确;C、∵△ABD≌△CDB,∴AD=BC,选项说法正确;D、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,选项说法正确;故选:A.3.【解答】解:∵Rt△ABC≌Rt△CDE,∴AC=CE,∠A=∠ECD,∠B=∠D,∠ACB=∠E.∵△ABC是直角三角形,∠A+∠ACB=90°,∴∠ACB+∠ECD=∠ACB+∠A=90°,∴∠ACE=180°﹣90°=90°,∴AC⊥CE,∴AC和CE相等且互相垂直,故选:D.4.【解答】解:∵△ABC与△DEF是全等三角形,∴AB=DE,AC=DF,BC=EF,∴BC﹣EC=EF﹣EC,∴BE=CF,即相等的线段有4对,故选:D.5.【解答】解:∵△ABC≌△DEF,AB=2,BC=4,∴DE=AB=2,EF=BC=4,∴4﹣2<DF<4+2,∴2<DF<6,∵DE=2,EF=4,△DEF的周长为偶数,∴DF=4,故选:B.6.【解答】解:A、面积相等的两个图形全等,说法错误;B、周长相等的两个图形全等,说法错误;C、形状相同的两个图形全等,说法错误;D、全等图形的形状和大小相同,说法正确;故选:D.7.【解答】解:∵△ABC≌△FED,∠E=37°,∴∠B=∠E=37°,∵∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣37°﹣100°=43°,故选:C.8.【解答】解:∵△ABC≌△DEF,∠A=50°,∠C=30°,∴∠F=∠C=30°,∠D=∠A=50°,∴∠E=180°﹣∠D﹣∠F=180°﹣50°﹣30°=100°,故选:D.9.【解答】解:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选:B.10.【解答】解:A、∵△ABC≌△DEF,∴AC=DF,故此结论正确;B、∵△ABC≌△DEF,∴AB=DE;∵DB是公共边,∴AB﹣BD=DE﹣BD,即AD=BE;故此结论正确;C、∵△ABC≌△DEF,∴AC=DF,故此结论DF=EF错误;D、∵△ABC≌△DEF,∴BC=EF,故此结论正确;故选:C.二.填空题(共5小题)11.【解答】解:设△ABC边BC上的高为h,则△ABC的面积=BCh=×6h=9,解得h=3,∵△ABC≌△DEF,BC=EF,∴EF边上的高是3cm.故答案为:3.12.【解答】解:如图所示:有3个点,当E在E、F、N处时,△ACE和△ACB全等,点E的坐标是:(1,5),(1,﹣1),(5,﹣1),故答案为:(1,5)或(1,﹣1)或(5,﹣1).13.【解答】解:∵∠BAE=120°,∠BAD=40°,∴∠DAE=∠BAE﹣∠BAD=120°﹣40°=80°,∵△ABC≌△ADE,∴∠BAC=∠DAE=80°.故答案为:80°.14.【解答】解:∵△ABC≌△DEF,EF=5,∴BC=EF=5,∵△ABC的周长为12,AB=3,∴AC=12﹣5﹣3=4.故答案为:4.15.【解答】解:由题意得:∠A′=70°,∠A=∠A′=70°,B′C′=BC=12,AD=A′D′=6.故答案为:70°,70°,12,6.三.解答题(共4小题)16.【解答】方法一:证明:∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∵AM,DN分别是△ABC,△DEF的对应边上的高,即AM⊥BC,DN⊥EF,∴∠AMB=∠DNE=90°,在△ABM和△DEN中,∴△ABM≌△DEN(AAS),∴AM=DN.方法二:∵△ABC≌△DEF,∴BC=EF,∵AM、DN分别是△ABC、△DEF的对应边上的高,∴BCAM=EFDN,∴AM=DN.17.【解答】解:∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°,∵△ABC≌△DBE,∴∠ABC=∠DBE,∠C=∠E,∴∠ABD=∠CBE=132°÷2=66°,∵∠CPD=∠BPE,∴∠CDE=∠CBE=66°.18.【解答】解:∵△ABC≌△DBC,∴∠ACB=∠DCB,∵∠ACD=88°,∴∠ACB=44°,∵∠A=40°,∴∠ABC=180°﹣40°﹣44°=96°.19.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s12.2三角形全等的判定一.选择题1.如图,在△ABC中,AB=AC,E、D分别为AB、AC边上的中点,连接BD、CE交于O,此图中全等三角形的对数为()对.A.4 B.3 C.2 D.12.如图,AB=AD,∠1=∠2,则不一定使△ABC≌△ADE的条件是()A.∠B=∠D B.∠C=∠E C.BC=DE D.AC=AE3.如图,A、B、C、D在一条直线上,MB=ND,∠MBA=∠D,添加下列某一条件后不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN4.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8 D.∠A=40°,∠B=50°,∠C=90°5.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC6.如图,给出的四组条件中,不能证明△ABC≌△DEF的是()A.AB=DE,BC=EF,AC=DF B.AB=DE,∠B=∠E,BC=EFC.AB=DE,AC=DF,∠B=∠E D.∠B=∠E,BC=EF,∠C=∠F.7.如图所示,为了测量出A,B两点之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定D,使CD=BC,那么只要测量出AD的长度也就得到了A,B两点之间的距离,这样测量的依据是()A.AAS B.SAS C.ASA D.SSS8.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是()A.SAS B.SSS C.ASA D.AAS9.如图所示为打碎的一块三角形玻璃,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①去B.带②去C.带③去D.带①和②去10.在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A.①②③B.①②⑤C.①②④D.②⑤⑥二.填空题11.△ABC中,AB=5,AC=a,BC边上的中线AD=4,则a的取值范围是.12.如图,已知CA=DB,要使△ABC和△ABD全等,请补充条件(填上一种即可).13.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.若AC =5,则DF=.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AF2=EC2﹣EF2;④BA+BC=2BF.其中正确的是.15.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB =m,PC=n,AB=c,AC=b,则m+n b+c.三.解答题16.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A =∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.17.已知:如图,E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC的长.18.如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周长.19.已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.参考答案与试题解析一.选择题1.【解答】解:∵AB=AC,∴∠EBC=∠DCB,∵AE=BE,AD=DC,∴BE=DC,∵BC=CB,∴△EBC≌△DCB,∴∠ECB=∠DBC,∴∠EBO=∠DCO,∵BE=CD,∴∠BOE=∠COD,∴△BOE≌△COD,∵∠A=∠A,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE,共有3对全等三角形,故选:B.2.【解答】解:∵∠1=∠2,∵∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,A、符合ASA定理,即能推出△ABC≌△ADE,故本选项错误;B、符合AAS定理,即能推出△ABC≌△ADE,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABC≌△ADE,故本选项正确;D、符合SAS定理,即能推出△ABC≌△ADE,故本选项错误;故选:C.3.【解答】解:A、根据ASA可以判定△ABM≌△CDN;B、根据SAS可以判定△ABM≌△CDN;C、SSA无法判定三角形全等;D、根据AAS即可判定△ABM≌△CDN;故选:C.4.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.5.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.6.【解答】解:A、由全等三角形的判定定理SSS能证明△ABC≌DEF,故此选项错误;B、由全等三角形的判定定理SAS能证明△ABC≌DEF,故此选项错误;C、由SSA不能证明△ABC≌DEF,故此选项正确;D、由全等三角形的判定定理ASA能证明△ABC≌DEF,故此选项错误;故选:C.7.【解答】解:∵AC⊥BD,∴∠ACB=∠ACD=90°,在△ACB和△ACD中,,∴△ACB≌△ACD(SAS),∴AB=AD(全等三角形的对应边相等).故选:B.8.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA)故选:C.9.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选:C.10.【解答】解:∵在△ABC和△A′B′C′中,有边边角、角角角不能判定三角形全等,∴①②④是边边角,∴不能保证△ABC≌△A′B′C′.故选:C.二.填空题(共5小题)11.【解答】解:延长AD到E,使AD=DE,连接BE,∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=a,在△AEB中,AB﹣BE<AE<AB+BE,即5﹣a<2AD<5+a,∴<AD<.,∵AD=4,∴a的取值范围是3<a<13,故答案为:3<a<1312.【解答】解:当CB=DA时,△ABC≌△ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(SSS),故答案为:CB=DA.13.【解答】解:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF=5(全等三角形对应边相等).故答案为:5.14.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵EF⊥AB,∴AF2=EC2﹣EF2;∴③正确;④如图,过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AFE(HL),∴AF=CG,∴BA+BC=BF+F A+BG﹣CG=BF+BG=2BF,∴④正确.故答案为:①②③④.15.【解答】解:如图,在BA的延长线上取点E,使AE=AC,连接EP,∵AD是∠A的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.故答案为:>.三.解答题(共4小题)16.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.17.【解答】(1)证明:在△ABE中,∠ABE=180°﹣∠BAE﹣∠AEB,在△ABC中,∠C=180°﹣∠BAC﹣∠ABC,∵∠AEB=∠ABC,∠BAE=∠BAC,∴∠ABE=∠C;(2)解:∵FD∥BC,∴∠ADF=∠C,又∠ABE=∠C,∴∠ABE=∠ADF,∵AF平分∠BAE,∴∠BAF=∠DAF,在△ABF和△ADF中,,∴△ABF≌△ADF(AAS),∴AB=AD,∵AB=8,AC=10,∴DC=AC﹣AD=AC﹣AB=10﹣8=2.18.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=2,∴BD=4,∴BC=2BD=8,∴△ABC的周长为24.19.【解答】解:(1)∵BD⊥AC,CF⊥AB,∴∠DCE+∠DEC=∠DCE+∠F AC=90°,∴∠DEC=∠BAC,∠DEC+∠BEC=180°,∴∠BAC+∠BEC=180°;(2)∵BD平分∠ABC,CF平分∠ACB,∴∠EBC=ABC,∠ECB=ACB,∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°∠BAC;(3)作∠BEC的平分线EM交BC于M,∵∠BAC=60°,∴∠BEC=90°+BAC=120°,∴∠FEB=∠DEC=60°,∵EM平分∠BEC,∴∠BEM=60°,在△FBE与△EBM中,12.3《角平分线性质》一、选择题1.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°2.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是( )A.∠CEO=∠DEO B.CM=MD C.∠OCD=∠ECD D.S四边形OCED=CD•OE3.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:54.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,若BC=7,则AE的长为()A.4B.5C.6D.75.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AB=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个6.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A. 6B. 3C. 2D. 1.57.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cmB.4cmC.10cmD.以上都不对8.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PNB.PM<PNC.PM=PND.不能确定9.如图,点P是△ABC外的一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70°,则∠BPC的度数为()A.25°B.30° C.35° D.40°10.如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于D,∠ABD1与∠ACD1的角1平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.56° B.60° C.68° D.94°11.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BG C.AE=CE D.AF=FD12.如图,BD为∠ABC的角平分线,且BD=BC,E为BD的延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①∠ABE=∠ACE;②∠BCE+∠BCD=180°;③AE=EC;④BE+BD=2BF,其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题13.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB,AC=8cm,AE=4cm,则DE的长是.14.如图,AD是△ABC的角平分线,DE⊥AB于E,若AB=18,AC=12,△ABC的面积等于36,则DE= .15.若△ABC的周长为41 cm,边BC=17 cm,AB<AC,角平分线AD将△ABC的面积分成3:5的两部分,则AB= cm.16..如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC= .17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是.18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为.三、解答题19.如图所示,已知AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF.20.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:CO平分∠ACD;(2)求证:AB+CD=AC.21.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.22.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B.23.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.24.(1)如图1,△ABC中,作∠ABC、∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于E、F.①求证:OE=BE;②若△ABC 的周长是25,BC=9,试求出△AEF的周长;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,试探求∠BAC 与∠PAC的数量关系式.参考答案1.D2.答案为:C.3.C4.D5. 答案为:A;6. 答案为:D;7.A.8.C9.C10.A11.B12.答案为:D.13.答案为:3cm.14.答案为:2.4.15.答案为:9;16.答案为:125°.17.答案为:36.18.答案为:6;19.证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.20.证明:(1)过O点作OE⊥AC于点E.∵∠ABD=90°且OA平分∠BAC∴OB=OE,又∵O是BD中点∴OB=OD,∴OE=OD,∵OE⊥AC,∠D=90°∴点O在∠ACD 的角平分线上∴OC平分∠ACD.(2)在Rt△ABO和Rt△AEO中∵∴Rt△ABO≌Rt△AEO(HL),∴AB=AE,在Rt△CDO和Rt△CEO中∵∴Rt△CDO≌Rt△CEO(HL),∴CD=CE,∴AB+CD=AE+CE=AC.21.(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.22.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB,∠EAD=∠BAD,AD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B23.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.24.(1)∵BO平分∠ABC,∴∠EBO=∠OBC,∵EF∥BC,∴∠EDB=∠OBC,∴∠EOB=∠EBO,∴OE=BE(2)△AEF的周长=AE+AF+EF=AE+AF+EB+FC=AB+AC=25-9=16(3)延长BA,证明P点在∠BAC外角的角平分线上,从而得到2∠PAC+∠BAC=180°。
新人教版八年级数学上册三角形》测试题
新人教版八年级数学上册三角形》测试题一.选择题(10小题,共30分)1.以下哪组线段能组成三角形。
A。
3cm,4cm,5cmB。
4cm,6cm,10cmC。
1cm,1cm,3cmD。
3cm,4cm,9cm2.等腰三角形的一边长等于4,另一边长等于9,则它的周长是多少。
A。
17B。
13C。
17或22D。
223.一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为多少。
A。
6B。
8C。
10D。
124.在下图中,正确画出AC边上高的是哪个选项。
5.如图,线段AD把△ABC分为面积相等的两部分,则线段AD是哪个选项。
A。
三角形的角平分线B。
三角形的中线C。
三角形的高D。
以上都不对6.适合条件∠A=∠B=∠C的三角形是哪个选项。
A。
锐角三角形B。
等边三角形C。
钝角三角形D。
直角三角形7.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是多少。
A。
8B。
9C。
10D。
118.若一个多边形的内角和等于1080°,则这个多边形的边数是多少。
9.n边形的每个外角都为24°,则边数n为多少。
A。
13B。
14C。
15D。
1610.如图,∠A+∠B+∠C+∠D+∠E+∠F的和为多少度。
二、填空题(每小题3分,共30分)1.如图1,共有多少个三角形。
2.如图2,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是多少。
3.如图3,∠1,∠2,∠3是△ABC的三个外角,则∠1+∠2+∠3等于多少度。
4.要使五边形木架(用5根木条钉成)不变形,至少要再钉几根木条。
5.一个多边形的内角和的度数是外角和的2倍,这个多边形是什么类型。
6.△ABC中,∠A=36°,BE平分∠ABC,CE平分∠ACD,∠E等于多少度。
7.在△ABC中,∠A=100°,∠B=3∠C,则∠B等于多少度?8、在△ABC中,已知∠A=35°,∠C=60°,BD平分∠ABC,DE∥BC交AB于E,求∠BDE的度数。
八年级数学上册第十一章《三角形》测试题-人教版(含答案)
八年级数学上册第十一章《三角形》测试题-人教版(含答案)一、选择题(30分)1.下列说法错误的是()A.三角形的角平分线把三角形分成面积相等的两部分B.三角形的三条中线相交于一点C.直角三角形的三条高交于三角形的直角顶点处D.钝角三角形的三条高所在直线的交点在三角形的外部2.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④3.如果线段AB=3cm,BC=1cm,那么A,C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°5.如图,△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE,∠F, ②2∠BEF,∠BAF,∠C,③∠F,∠BAC,∠C,④∠BGH,∠ABE,∠C,其中正确个数是()A.4个B.3个C.2个D.1个6.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.147.如图,直线AB,CD被BC所截,若AB,CD,,1,45°,,2,35°,则∠3,( )A.80°B.70°C.60°D.90°8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定9.若a,b,c是△ABC的三边的长,则化简|a,b,c|,|b,c,a|,|a,b,c|的结果是()A.a,b,c B.,a,3b,c C.a,b,c D.2b,2c10.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6B.7C.8D.9二、填空题(15分)11.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.12.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x,150°时,对应的和谐数对有一个,它为(10,20);当x,66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________,13.根据如图所示的已知角的度数,求出其中∠α的度数为______.14.在图中过点P任意画一条直线,最多可以得到____________个三角形.15.如图,点O是△ABC的两条角平分线的交点,若△BOC=118°,则△A的大小是。
人教版八年级上册数学《 三角形》试题(带答案)
八年级数学上册第11章《三角形》试题姓名:学号:分数:一、选择题(本大题共10道小题,每小题3分,共30分)1. 在一个直角三角形中,有一个锐角等于35°,则另一个锐角的度数是()A.75°B.65°C.55°D.45°2. 如图所示,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,则AE是哪个三角形的角平分线()A.△ABE B.△ADFC.△ABC D.△ABC,△ADF3. 在△ABC中,BC边所对的角是()A.∠A B.∠B C.∠C D.∠D4. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD5. 如图,以AB为边的三角形共有()A.5个B.4个C.3个D.2个6. 如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A. 40°B. 50°C. 60°D. 70°7. 用三角尺作△ABC的边BC上的高,下列三角尺的摆放位置正确的是()8. 已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A. 8B. 10C. 8或10D. 129. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.610. 如图,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形.若这两个多边形的内角和分别为M和N,则M+N不可能是()A.360°B.540°C.720°D.630°二、填空题(本大题共10道小题,每小题3分,共30分)11. 如图,D是△ABC的边BC上的一点,则在△ABC中,∠C所对的边是________;在△ACD 中,∠C所对的边是________.12. 如图,有一个与地面成30°角的斜坡,现要在斜坡上竖一电线杆,当电线杆与地面垂直时,它与斜坡所成的角α=________°.13. 如图,以点A为顶点的三角形有________个,它们分别是_______________.14. 如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2=________.15. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.16. 如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线.若∠B=71°,则∠BAC=________.17. 如图所示,x的值为________.18. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD 的周长为________.19. 如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=________°.20. 如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=4 cm2,则阴影部分的面积为________.三、解答题(本大题共8道小题,每小题6-10分,共60分)21. (6分)已知一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.22. (6分)“X”与“Y”分别是两个多边形,请根据图中“X”与“Y”的对话,解答下列各小题.(1)求“X”与“Y”的外角和相加的度数;(2)分别求“X”与“Y”的内角和的度数.23. (6分)用一条长41 cm的细绳围成一个三角形,已知此三角形的第一条边长为x cm,第二条边长比第一条边长的3倍少4 cm.(1)请用含x的式子表示第三条边长;(2)若此三角形恰好是一个等腰三角形,求这个等腰三角形的三边长.24. (6分)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AF是角平分线,交CD于点E.试说明:∠1=∠2.25. (8分)在平面内,分别用相同的3根、5根、6根……火柴首尾顺次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:(1)4根火柴能搭成三角形吗?(2)12根火柴能搭成几种不同形状的三角形?请画出它们的示意图.(提示:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形)26. (8分)数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?27. (10分)等面积法如图,BE,CF均是△ABC的中线,且BE=CF,AM⊥CF于点M,AN⊥BE于点N.求证:AM=AN.28. (10分)观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.答案1. 【答案】C2. 【答案】D3. 【答案】A4. 【答案】D5. 【答案】C6. 【答案】B【解析】∵AB∥CD,∴∠A=∠ACD=40°,∵∠ACB=90°,∴∠B=90°-∠A=90°-40°=50°.7. 【答案】A8. 【答案】B 【解析】解一元二次方程x2-6x+8=0,得x1=2,x2=4.当三角形三边为2,2,4时,∵2+2=4,∴不符合三边关系,应舍去;当三角形三边为2,4,4时,∵2+4>4,符合三边关系,∴三角形的周长为10,故选B.9. 【答案】B10. 【答案】D[解析] 一条直线将长方形ABCD分割成两个多边形的情况共四种:两个三角形、三角形和四边形、三角形和五边形、两个四边形.二、填空题(本大题共10道小题)11. 【答案】AB AD12. 【答案】60[解析] 如图,延长电线杆与地面相交.∵电线杆与地面垂直,∴∠1=90°-30°=60°.由对顶角相等,得α=∠1=60°.13. 【答案】4△ABC,△ADC,△ABE,△ADE14. 【答案】54°【解析】如解图,过点C作直线CE∥a,则a∥b∥CE,则∠1=∠ACE,∠2=∠BCE,∵∠ACE+∠BCE=90°,∴∠1+∠2=90°,∵∠1=36°,∴∠2=54°.15. 【答案】6【解析】设这个多边形的边数为n,则内角和为(n-2)·180°,外角和为360°,则根据题意有:(n-2)·180°=2×360°,解得n=6.16. 【答案】38° 【解析】∵AD ∥BC ,∠B =71°,∴∠EAD =∠B =71°.∵AD 是∠EAC 的平分线,∴∠EAC =2∠EAD =142°,∴∠BAC =180°-∠EAC =180°-142°=38°. 17. 【答案】55° [解析] 由多边形的外角和等于360°,得360°-105°-60°+x +2x =360°,解得x =55°.18. 【答案】13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.19. 【答案】75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.20. 【答案】1 cm 2 [解析] 因为E 为AD 的中点,所以S △BDE =12S △ABD ,S △CDE =12S △ACD .所以S △BCE =12S △ABC .又因为F 为EC 的中点,所以S △BFE =12S △BCE .所以S △BFE =12×12×4=1(cm 2).三、解答题(本大题共8道小题)21. 【答案】解:设这个多边形的边数是n. 依题意,得(n -2)×180°=3×360°-180°, 解得n =7.∴这个多边形的边数是7.22. 【答案】解:(1)360°+360°=720°. (2)设X 的边数为n ,则Y 的边数为3n. 由题意,得180(n -2)+180(3n -2)=1440, 解得n =3.所以X 的内角和为180°×(3-2)=180°, Y 的内角和为180°×(3×3-2)=1260°.答:“X”的内角和的度数为180°,“Y”的内角和的度数为1260°.23. 【答案】解:(1)∵三角形的第一条边长为x cm ,第二条边长比第一条边长的3倍少4 cm , ∴第二条边长为(3x -4)cm.∴第三条边长为41-x -(3x -4)=(45-4x)cm.(2)若x =3x -4,则x =2,另两边长分别为2和37,根据三角形三边关系可知,2,2,37不能组成三角形;若x =45-4x ,则x =9,另两边长分别为9和23,根据三角形三边关系可知,9,9,23不能组成三角形;若3x -4=45-4x ,则x =7,另两边长分别为17,17,根据三角形三边关系可知,7,17,17可以组成三角形.∴这个等腰三角形的三边长分别为17 cm ,17 cm ,7 cm. 24. 【答案】解:∵∠ACB =90°, ∴∠2+∠CAF =90°. ∵AF 是△ABC 的角平分线, ∴∠CAF =∠BAF. ∴∠2+∠BAF =90°.∵CD ⊥AB ,∴∠AED +∠BAF =90°. 又∵∠AED =∠1, ∴∠1+∠BAF =90°. ∴∠1=∠2.25. 【答案】解:(1)4根火柴不能搭成三角形. (2)12根火柴能搭成3种不同形状的三角形. 示意图如下:26. 【答案】解:(1)把100 cm 的木棒折去了35 cm 后还剩余65 cm. ∵20+65<90,∴20 cm ,65 cm ,90 cm 长的三根木棒不能构成三角形. (2)设折去x cm 后剩余的部分不能与另两根木棒搭成三角形. 根据题意,得20+(100-x)≤90, 解得x≤30,∴100 cm 长的木棒至少折去30 cm 后剩余的部分就不能与另两根木棒搭成三角形. 27. 【答案】83证明:∵BE ,CF 均是△ABC 的中线, ∴S △ABE =S △ACF =12S △ABC .∵BE =CF ,AM ⊥CF 于点M ,AN ⊥BE 于点N , ∴12AM·CF =12AN·BE. ∴AM =AN.28. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M. 由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.。
人教版八年级上册数学《三角形》单元测试题带答案
人教版八年级上册数学《三角形》单元测试题带答案一、选择题1. 下列关于三角形的说法中,错误的是()。
A. 三角形的内角和为180度B. 一个三角形有三个顶点C. 三角形的三条边互相垂直D. 三角形的一个外角等于另外两个内角的和答案:C2. 在直角三角形ABC中,已知∠A=30°,∠B=60°,则∠C=()。
A. 60°B. 30°C. 90°D. 120°答案:C3. 三角形的一个内角是60°,一个外角是120°,则另一个内角是()。
A. 60°B. 120°C. 90°D. 150°答案:D4. 已知在三角形ABC中,∠A=50°,∠B=70°,AB=BC,则AC的大小为()。
A. 50°B. 70°C. 60°D. 80°答案:D5. 若两个三角形的对应角相等,则这两个三角形是()。
A. 相似三角形B. 对称三角形C. 同位角三角形D. 直角三角形答案:A二、填空题1. 三角形的外角是()。
答案:两个不相邻的内角的和2. 一个三角形的外角等于一个角的两个不相邻内角的和,这个角是一个()。
答案:内角3. 相似三角形对应角相等,对应边(比例/成比例)。
答案:成比例4. 三角形的一个内角为60度,则这个角的补角是()。
答案:120度5. 等边三角形的三个角都是()。
答案:60度三、计算题1. 已知在三角形ABC中,∠B=50°,∠C=60°,AC=7cm,求BC的长度。
答案:由三角形内角和的性质可得∠A=180°-50°-60°=70°。
由正弦定理可得:$\frac{BC}{\sin 50^\circ}=\frac{7}{\sin 70^\circ}$,解得BC=6cm。
新人教版初中数学八年级数学上册第一单元《三角形》测试题(包含答案解析)(1)
一、选择题1.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质( )A .三角形两边之和大于第三边B .三角形具有稳定性C .三角形的内角和是180D .直角三角形两个锐角互余2.小李同学将10,12,16,22cm cm cm cm 的四根木棒首尾相接,组成一个凸四边形,若凸四边形对角线长为整数,则对角线最长为( )A .25cmB .27cmC .28cmD .31cm 3.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒ 4.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠D .C D ∠=∠ 5.若过六边形的一个顶点可以画n 条对角线,则n 的值是( )A .1B .2C .3D .4 6.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30° 7.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2mB .3mC .5mD .7m 8.下列长度的三条线段能组成三角形的是( ) A .3,3,4 B .7,4,2 C .3,4,8 D .2,3,5 9.将一副三角板如图放置,使等腰直角三角板DEF 的锐角顶点D 放在另一块直角三角板(60B ∠=)的斜边AB 上,两块三角板的直角边交于点M .如果75BDE ∠=,那么AMD ∠的度数是( )A .75°B .80°C .85°D .90°10.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④ 11.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm 12.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .8 二、填空题13.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.14.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.15.如图所示,△ABC 中,∠BAC 、∠ABC 、∠ACB 的四等分线相交于D 、E 、F (其中∠CAD =3∠BAD ,∠ABE =3∠CBE ,∠BCF =3∠ACF ),且△DFE 的三个内角分别为∠DFE =60°、∠FDE =53°、∠FED =67°,则∠BAC 的度数为_________°.16.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______.17.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.18.如图,若//AB CD ,BF 平分ABE ∠,DF 平分CDE ∠,90BED ∠=,则BFD ∠=______.19.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.20.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.三、解答题21.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′; (2)在图中画出△ABC 的高CD ,中线BE ;(3)在图中能使S △ABC =S △PBC 的格点P 的个数有 个(点P 异于点A ).22.如图,在ABC 中,D 是AB 上一点,且AD AC =,连结CD .请在下面空格中用“>”,“<”或“=”填空.(1)AB________AC BC +;(2)2AD________CD ;(3)BDC ∠________A ∠.23.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 24.如图所示,AD 、AE 分别是△ABC 的高和角平分线,∠B=20°,∠C=80°,求∠EAD 的度数.25.如图,A、O、B三点在同一直线上,OE,OF分别是∠BOC与∠AOC的平分线.求:(1)当∠BOC=30°时,∠EOF的度数;(2)当∠BOC=60°时,∠EOF等于多少度?(3)当∠BOC=n°时,∠EOF等于多少度?(4)观察图形特点,你能发现什么规律?26.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的稳定性可以解决.【详解】因为三角形具有稳定性,手机支架与桌面形成了一个三角形,所以是利用了三角形的稳定性.故选:B.【点睛】本题考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2.B解析:B【分析】根据三角形的三边的关系确定对角线的长度范围即可选择.【详解】如图,设10AB cm =,12BC cm =,16CD cm =,22AD cm =.根据三角形三边关系可知①101222AC AB BC cm <+=+=,162238AC AD CD cm <+=+=,故22AC cm <.②102232BD AB AD cm <+=+=,121628BD BC CD cm <+=+=,故28BD cm <.∵凸四边形对角线长为整数,∴对角线最长为27cm .故选:B .【点睛】本题考查三角形的三边关系.熟知三角形两边之和大于第三边是解答本题的关键. 3.C解析:C【分析】根据平行线的性质求出140∠=︒,根据三角形内角和定理计算,得到答案.【详解】解:∵//AB CD ,40B ∠=︒,50C ∠=︒,∴140B ∠=∠=︒,∴ 1801180405090E C ∠=︒-∠-∠=︒-︒-︒=︒.故选:C【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.4.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C,∠1=∠A+∠D,∠2=∠B+∠C,∴∠B=∠D,∴选项A、B正确;∵∠2=∠A+∠D,∠>∠,∴2D∴选项C正确;∠=∠没有条件说明C D故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键. 5.C解析:C【分析】根据从一个n边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可.【详解】解:6-3=3(条).答:从六边形的一个顶点可引出3条对角线.故选:C.【点睛】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3.6.A解析:A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,再根据∠B=∠C,∠ADE=∠AED即可得出结论.【详解】解:∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED是△CDE的外角,∴∠AED=∠C+∠EDC,∵∠ADE=∠AED,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.7.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x m ,则5-2<x <5+2即3<x <7,∴当x=5时,能与2m 、5m 长的两根木棒钉成一个三角形,故选:C .【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.8.A解析:A【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】解:A 、3+3>4,能构成三角形,故此选项正确;B 、4+2<7,不能构成三角形,故此选项错误;C 、3+4<8,不能构成三角形,故此选项错误;D 、2+3=5,不能构成三角形,故此选项错误.故选:A .【点睛】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.D解析:D由题意得:∠A=30°,∠FDE=45°,利用平角等于180°,可得到∠ADF 的度数,在△AMD 中,利用三角形内角和为180°,可以求出∠AMD 的度数.【详解】解:∵∠B=60°,∴∠A=30°,∵∠BDE=75°,∠FDE=45°,∴∠ADF=180°-75°-45°=60°,∴∠AMD=180°-30°-60°=90°,故选D .【点睛】此题主要考查了三角形的内角和定理的应用,题目比较简单,关键是要注意角之间的关系.10.C解析:C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C ,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.11.C解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<,∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.12.D解析:D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×3,解得n=8.故选:D .【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.二、填空题13.④【分析】四边形的内角和是根据四边形内角的性质选出正确选项【详解】解:①错误如果四个角都是锐角那么内角和就会小于;②错误可以是四个直角;③错误可以是四个直角;④正确故选:④【点睛】本题考查四边形内角解析:④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.14.125°【分析】求出O为△ABC的三条角平分线的交点求出∠OBC=∠ABC∠OCB=∠ACB根据三角形内角和定理求出∠ABC+∠ACB求出∠OBC+∠OCB再根据三角形内角和定理求出∠BOC的度数即解析:125°【分析】求出O为△ABC的三条角平分线的交点,求出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,再根据三角形内角和定理求出∠BOC的度数即可;【详解】∵在△ ABC中,点O是△ABC内的一点,且点O到△ ABC三边距离相等,∴ O为△ABC的三条角平分线的交点,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-∠OBC-∠OCB=125°,故答案为:125°.【点睛】本题考查了角平分线的有关计算,三角形内角和定理的应用,能正确掌握与角平分线有关的三角形内角和问题是解题的关键;15.72【分析】由∠CAD=3∠BAD∠ABE=3∠CBE∠BCF=3∠ACF易得各角与∠ABC∠ACB∠BAC之间的关系由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论【详解】解:∵∠CAD解析:72【分析】由∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF易得各角与∠ABC、∠ACB、∠BAC之间的关系,由三角形外角等于不相邻的两个内角和列方程组求解即可得出结论.【详解】解:∵∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF,∴∠CAD=34∠BAC,∠BAD=14∠BAC,∠ABE=34∠ABC,∠CBE=14∠ABC,∠BCF=34∠ACB ,∠ACF=14∠ACB . ∵∠DFE =60°、∠FDE =53°、∠FED =67°,∴136********4136744BAC ABC ABC ACB ACB BAC ⎧∠+∠=⎪⎪⎪∠+∠=⎨⎪⎪∠+∠=⎪⎩, 解得∠BAC=72°,∠ABC=56°,∠ACB=52°,故答案为:72.【点睛】本题考查了三元一次方程组的应用,以及三角形外角的性质.解题的关键是由外角的性质列出方程组.本题属于中档题,难度不大,但在角的变化上稍显繁琐,一不注意就易失分,做形如此类题型时,牢牢把握等量关系是关键.16.90°或40°【分析】画出图形可知有两种情况:∠BAC =∠BAD +∠CAD 和∠BAC =∠BAD−∠CAD 【详解】:如图:∠BAC =∠BAD +∠CAD =65°+25°=90°;如图:∠BAC =∠BAD解析:90°或40°.【分析】画出图形可知有两种情况:∠BAC =∠BAD +∠CAD 和∠BAC =∠BAD−∠CAD .【详解】:如图:∠BAC =∠BAD +∠CAD =65°+25°=90°;如图:∠BAC =∠BAD−∠CAD =65°−25°=40°.故答案为:90°或40°.【点睛】本题考查了三角形的高线的概念:可能在三角形内部,也可能在三角形的外部.注意本题要分两种情况讨论.17.120°【分析】先根据三角形内角和定理求出∠A的度数再根据CF是AB上的高得出∠ACF的度数再由三角形外角的性质即可得出结论【详解】解:∵∠ABC=66°∠ACB=54°∴∠A=60°∵CF是AB上解析:120°【分析】先根据三角形内角和定理求出∠A的度数,再根据CF是AB上的高得出∠ACF的度数,再由三角形外角的性质即可得出结论.【详解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF是AB上的高,∴在△ACF中,∠ACF=180°-∠AFC-∠A=30°,在△CEH中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案为120°.【点睛】本题考查的是三角形内角和定理及三角形外角的性质、三角形的高线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.45°【分析】如图作射线BF与射线BE根据平行线的性质和三角形的外角性质可得∠ABE+∠EDC=90°然后根据角平分线的定义和三角形的外角性质即可求出答案【详解】解:如图作射线BF与射线BE∵AB∥解析:45°【分析】如图,作射线BF与射线BE,根据平行线的性质和三角形的外角性质可得∠ABE+∠EDC=90°,然后根据角平分线的定义和三角形的外角性质即可求出答案.【详解】解:如图,作射线BF与射线BE,∵AB∥CD,∴∠ABE=∠4,∠1=∠2,∵∠BED=90°,∠BED=∠4+∠EDC,∴∠ABE+∠EDC=90°,∵BF平分∠ABE,DF平分∠CDE,∴∠1+∠3=12∠ABE+12∠EDC=45°,∵∠5=∠2+∠3,∴∠5=∠1+∠3=45°,即∠BFD=45°,故答案为:45°.【点睛】本题考查了平行线的性质、角平分线的定义和三角形的外角性质,属于常考题型,熟练掌握上述知识是解题的关键.19.25【分析】依据角平分线的定义即可得到∠DBC的度数再根据三角形外角的性质即可得到∠CAE的度数【详解】解:∵∠ABC=30°BD平分∠ABC∴∠DBC=∠ABC=×30°=15°又∵AE⊥BD∴∠解析:25【分析】依据角平分线的定义即可得到∠DBC的度数,再根据三角形外角的性质,即可得到∠CAE 的度数.【详解】解:∵∠ABC=30°,BD平分∠ABC,∴∠DBC=12∠ABC=12×30°=15°,又∵AE⊥BD,∴∠BEA=90°-15°=75°,∵∠AEB是△ACE的外角,∴∠CAE=∠AEB-∠C=75°-50°=25°,故答案为:25.【点睛】本题考查了三角形内角和定理,解决问题的关键是掌握三角形外角的性质.三角形的一个外角等于和它不相邻的两个内角的和.20.【分析】直接根据高相等的三角形面积之比等于底之比【详解】解:∵是边上的中线∴BD=DC又∵的面积是2和的高相等∴∵和的高相等∴∴又∴同理:故答案为:【点睛】此题主要考查根据高相等的三角形面积之比等于解析:4 9【分析】直接根据高相等的三角形,面积之比等于底之比.【详解】解:∵AD是BC边上的中线∴BD=DC又∵ABC ∆的面积是2,D AB ∆和D A C ∆的高相等∴D DC S =S =1AB A ∆∆ ∵13AE AD = E AB ∆和BDE ∆的高相等∴E BDE ABD 11S =S =S 23AB ∆∆∆ ∴BDE 2S =3∆ 又12BF EF =,∴1B 3BF E =,同理: DEF BFD BDE 24S =2S =S =39∆∆∆ 故答案为:49. 【点睛】此题主要考查根据高相等的三角形,面积之比等于底之比求三角形的面积,解题的关键是正确理解高相等的三角形之间的关系. 三、解答题21.(1)见解析;(2)见解析;(3)4.【分析】(1)利用网格特点和平移的性质,分别画出点A 、B 、C 的对应点A '、B '、C '即可; (2)利用网格特点,作CD ⊥AB 于D ,找出AC 的中点可得到BE ;(3)利用平行线的性质过点A 作出BC 的平行线进而得出符合题意的点.【详解】(1)如图所示:△A ′B ′C ′即为所求;(2)如图所示:CD 即为所求;(3)如图所示:能使S △PBC =S △ABC 的格点P 的个数有4个.故答案为:4.【点睛】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.22.(1)<;(2)>;(3)>【分析】(1)根据三角形的三边关系解答;(2)根据三角形的三边关系解答;(3)根据三角形的外角性质解答.【详解】(1)在△ABC中,AB<AC+BC,故答案为:<;(2)在△ACD中,AD+AC>CD,,∵AD AC∴2AD>CD,故答案为:>;(3)∵∠BDC是△ACD的外角,∴∠BDC>∠A,故答案为:>.【点睛】此题考查三角形的三边关系:两边之和大于第三边,三角形的外角性质三角形的外角大于每一个与它不相邻的内角.23.﹣2a+4b﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a,b,c为ABC的三边,∴a+b>c,b+c>a,a+c>b∴|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b﹣c|=﹣[a﹣(b+c)]+2[b﹣(c+a)]+(a+b﹣c)=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b﹣2c﹣2a+a+b﹣c=﹣2a+4b﹣2c.【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.24.30°【分析】由三角形的内角和可求得∠BAC,则由角平分线定义可求得∠EAC,三角形的内角和可求得∠DAC即可.【详解】解:在△ABC中∵∠B=20°,∠C=80°∴∠BAC=180°-∠B-∠C =180°-20°-80°=80°;∵AE是△ABC的角平分线,∴∠EAC=12∠BAC=12×80°=40°;∵AD是△ABC的高∴∠ADC=90°;又∵在△ADC中,∠C=80°∴∠DAC=180°-∠C-∠ADC=180°-80°-90°=10°;∴∠EAD=∠EAC-∠DAC=40°-10°=30°;【点睛】本题考查了角平分线定义,三角形内角和定理的应用,题目比较好,难度适中.25.(1)∠EOF=90°;(2)∠EOF=90°;(3)∠EOF=90°;(4)∠EOF的度数与∠BOC的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【分析】根据∠BOC求得∠AOC,再由∠BOC和∠AOC的角平分线,即可求得;【详解】解:(1)∵∠BOC=30°,∴∠AOC=180°-30°=150°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=15°,∠COF=12∠COA=75°,∴∠EOF=75°+15°=90°;(2)∵∠BOC=60°,∴∠AOC=180°-60°=120°,∵OE平分∠BOC,OF平分∠AOC,∴∠EOC=12∠BOC=30°,∠COF=12∠COA=60°,∴∠EOF=60°+30°=90°;(3)∵∠BOC=n ,∴∠AOC=180°-n ,OE 平分∠BOC ,OF 平分∠AOC ,∴∠EOC=12∠BOC=90°-12n ,∠COF=12∠COA=12n , ∴∠EOF=90°-12n+12n=90°; (4)∠EOF 的度数与∠BOC 的大小无关,互为邻补角的两个角的角平分线所组成的角是一个直角.【点睛】本题考查角平分线和规律的总结与归纳,掌握角平分线的性质是解题的关键.26.(1)10︒;(2)1122βα- 【分析】(1)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案;(2)根据三角形的内角和求出∠BAC 的度数,得到∠BAE 的度数,求出∠AED 的度数,根据AD 是高线,求得答案.【详解】(1)∵∠B =40°,∠C =60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC ,∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-.【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键.。
人教版八年级上册第十一章《三角形》检测题(配套练习附答案)
【解析】
【分析】
根据前几个图形的边数计算可知正n边形“扩展”而来的多边形的边数为n(n+1).
【详解】解:∵①正三边形“扩展”而来的多边形的边数是12=3×4,
②正四边形“扩展”而来的多边形的边数是20=4×5,
③正五边形“扩展”而来的多边形的边数为30=5×6,
④正六边形“扩展”而来的多边形的边数为42=6×7,
5.如图, 是 的外角 的平分线,B
【解析】
【分析】
【详解】试题分析:因为CE是△ABC的外角∠ACD的平分线,所以∠ACD=2∠ACE,而∠ACE=60°,所以∠ACD=120°,因为三角形的外角等于和它不相邻的内角和,∠B=35°,所以∠A=∠ACD-∠B=120°-35°=85°,故选B.
【解析】
【分析】
已知等腰三角形的周长为18cm,两边之差为3cm,但没有明确指明底边与腰谁大,因此要分两种情况,分类讨论.
【详解】设腰长为xcm,底边长为y cm,
或
解得 或
经检验均能构成三角形,即三角形的三边长是7cm,7 cm,4 cm或5 cm,5 cm,8 cm
【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
20.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=70°,∠DAE=18°,求∠C的度数.
【答案】
【解析】
【分析】
根据三角形的内角和得出∠BAD=20°,再利用角平分线得出∠BAC=76°,利用三角形内角和解答即可.
【详解】∵AD是高,∠B=70°,
(常考题)人教版初中数学八年级数学上册第一单元《三角形》测试卷(有答案解析)
一、选择题1.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒2.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( ) A .2.4 B .3C .5D .8.53.如图,ABC 中,55,B D ∠=︒是BC 延长线上一点,且130ACD ∠=︒,则A ∠的度数是( )A .50︒B .65︒C .75︒D .85︒4.如图,1∠等于( )A .40B .50C .60D .70 5.在ABC 中,若B 与C ∠互余,则ABC 是( )三角形A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 6.若一个三角形的三个内角的度数之比为11:13:24,那么这个三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形7.在ABC 中,若一个内角等于另两个内角的差,则( ) A .必有一个内角等于30° B .必有一个内角等于45° C .必有一个内角等于60° D .必有一个内角等于90° 8.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm9.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④ 10.以下列各组线段为边,能组成三角形的是( ) A .1,2,3B .2,3,4C .2,5,8D .6,3,311.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④B .①②③C .①④⑤D .②④⑤12.具备下列条件的三角形中,不是..直角三角形的是( ) A .A B C ∠+∠=∠ B .12A B C ∠=∠=∠ C .3A B C ∠=∠=∠D .1123A B C ∠=∠=∠ 二、填空题13.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.14.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.15.如图1,△ABC 中,有一块直角三角板PMN 放置在△ABC 上(P 点在△ABC 内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C .若∠A =52°,则∠1+∠2=__________;16.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.17.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.18.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABCS=,则BEF S =△______.19.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB⊥AE,则∠BFC=75°;②图 2 中 BD过点C,则有∠DAE+∠DCE=45°;③图 3中∠DAE+∠DFC等于 135°;④保持重合的顶点不变,改变三角板BAD的摆放位置,使得D在边AC上,则∠BAE=105°.20.如图,∠BAK+∠B+∠C+∠CDE+∠E+∠F+∠MGN+∠H+∠K=________.三、解答题21.已知AB∥CD,CF平分∠ECD.(1)如图1,若∠DCF=25°,∠E=20°,求∠ABE的度数.(2)如图2,若∠EBF=2∠ABF,∠CFB的2倍与∠CEB的补角的和为190°,求∠ABE的度数.22.如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.(1)过点A画线段BC的垂线,垂足为E;(2)过点A画线段AB的垂线,交线段CB的延长线于点F;(3)线段BE的长度是点到直线的距离;(4)线段AE、BF、AF的大小关系是.(用“<”连接)23.如图,在平面内有三个点、、A B C(1)根据下列语句画图: ①连接AB ; ②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ; (2)比较,,AB BD AB BC CD AD +++的大小关系.24.如图,在ABC 中,AD 为高,AE 为BAC ∠的平分线,若28B ∠=︒,52ACD ∠=°,求EAD ∠的度数.25.如果正多边形的每个内角都比它相邻的外角的4倍多30°. (1)它是几边形?(2)这个正多边形的内角和是多少度? (3)求这个正多边形对角线的条数.26.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)【参考答案】***试卷处理标记,请不要删除1.C 解析:C 【分析】根据平行线的性质求出140∠=︒,根据三角形内角和定理计算,得到答案. 【详解】解:∵//AB CD ,40B ∠=︒,50C ∠=︒, ∴140B ∠=∠=︒,∴ 1801180405090E C ∠=︒-∠-∠=︒-︒-︒=︒.故选:C 【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.2.D解析:D 【分析】先根据三角形的三边之间的关系求解1<x <7,从而可得答案. 【详解】 解:长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,43∴-<x <43+, 1∴<x <7,x 的值不可能是8.5.故选:.D 【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键.3.C解析:C 【分析】根据三角形的外角性质求解 . 【详解】解:由三角形的外角性质可得: ∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=130°-55°=75°,【点睛】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键.4.D解析:D 【分析】根据三角形外角的性质直接可得出答案. 【详解】解:由三角形外角的性质,得160=130∠+︒︒11306070∴∠=︒-︒=︒ 故选D . 【点睛】本题考查了三角形外角的性质,比较简单.5.B解析:B 【分析】由B 与C ∠互余,结合180A B C ∠+∠+∠=︒,求解A ∠,从而可得答案. 【详解】 解:B 与C ∠互余,90B C ∴∠+∠=︒, 180A B C ∠+∠+∠=︒, 90A ∴∠=︒,ABC ∴是直角三角形,故A 、C 、D 不符合题意,B 符合题意, 故选:B . 【点睛】本题考查的是两个角互余的概念,三角形的内角和定理的应用,二元一次方程组的解法,掌握以上知识是解题的关键.6.B解析:B 【分析】根据角的度数之比,求得最大角的度数,根据最大角的性质判断即可. 【详解】∵三个内角的度数之比为11:13:24,∴最大角的度数为°24180111324⨯++=90°,∴三角形是直角三角形,【点睛】本题考查了三角形按角的分类,根据度数之比求得最大角的度数是解题的关键.7.D解析:D 【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B 代入求出∠C 即可判断. 【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B , ∴2∠C=180°, ∴∠C=90°,∴必有一个内角等于90°, 故选:D . 【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.8.D解析:D 【分析】根据三角形的三边关系解答. 【详解】解:∵三角形的两边为3cm ,7cm , ∴第三边长的取值范围为7-3<x <7+3, 即4<x <10, 只有D 符合题意, 故选:D . 【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.9.C解析:C 【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确; 根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确. 【详解】解:∵,,AD BC FG BC ⊥⊥ ∴∠FGB=∠ADB=90°,∴FG∥AD,∠ADE+∠BDE=90°,故①正确;∵DE∥AC,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∠=∠,∴B ADE∴③正确;DE AC,∵//∴∠BDE=∠C,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C.【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.10.B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A、1+2=3,不能构成三角形,A错误;B、2+3=5>4可以构成三角形,B正确;C、2+5=7<8,不能构成三角形,C错误;D、3+3=6,不能构成三角形,D错误.故答案选:B.【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.11.A解析:A【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断.【详解】①过两点有且只有一条直线,故①正确;②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确; ⑤各角都相等且各边相等的多边形是正多边形,故⑤错误. ∴正确的有①②④, 故选:A . 【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键.12.C解析:C 【分析】利用三角形的内角和,代入已知条件求出角的度数,逐一判断是否有直角即可. 【详解】A :ABC ∠+∠=∠,代入+=180A B C ∠+∠∠︒得:2=180C ︒∠⇒=90C ∠︒,故此选项不符合题意; B :12A B C ∠=∠=∠,代入+=180A B C ∠+∠∠︒得:11++=2=18022C C C C ︒∠∠∠∠⇒=90C ∠︒,故此选项不符合题意; C :3A B C ∠=∠=∠,代入+=180A B C ∠+∠∠︒得:3+3+=180C C C ︒∠∠∠⇒26C ≈︒∠,故此选项符合题意;D :1123A B C ∠=∠=∠代入+=180A B C ∠+∠∠︒得:12++=18033C C C ︒∠∠∠⇒=90C ∠︒,故此选项符合题意; 故答案选:C 【点睛】本题主要考查了三角形的内角和,熟悉掌握三角形的内角和运算方式是解题的关键.二、填空题13.【分析】延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 交CE 于点N 根据平行的性质得由得再根据三角形的外角的性质得即可求出和的数量关系【详解】解:如图延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 解析:1483E G ∠=︒-∠【分析】延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,根据平行的性质得G BAG GCD ∠=∠+∠,由3BAF BAG ∠=∠,3DCE DCG ∠=∠,得333G BAG DCG ∠=∠+∠,再根据三角形的外角的性质得E EMA EAF BAF ∠+∠=∠-∠,即可求出E ∠和G ∠的数量关系.【详解】解:如图,延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,∵//AB CD ,∴////BH GN CD ,∴BAG AGN ∠=∠,NGC GCD ∠=∠,EMA ECD ∠=∠,∵G AGN NGC ∠=∠+∠,∴G BAG GCD ∠=∠+∠,∵3BAF BAG ∠=∠,3DCE DCG ∠=∠,∴333G BAG DCG ∠=∠+∠,∵EAB E EMA ∠=∠+∠,EAB EAF BAF ∠=∠-∠,∴E EMA EAF BAF ∠+∠=∠-∠,∴E ECD EAF BAF ∠+∠=∠-∠,∴31483E DCG BAG ∠+∠=︒-∠,∴()14833E BAG DCG ∠=︒-∠+∠,∴1483E G ∠=︒-∠.故答案是:1483E G ∠=︒-∠.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是通过平行线的性质和三角形外角的性质找到角与角之间的数量关系.14.【分析】根据求出根据多边形内角和公式求出五边形的内角和即可得到答案【详解】∵∴∵五边形内角和=∴==故答案为:【点睛】此题考查两直线平行同旁内角互补多边形内角和公式熟记多边形内角和计算公式是解题的关键 解析:360︒【分析】根据//AE BC 求出180A B ∠+∠=︒,根据多边形内角和公式求出五边形ABCDE 的内角和,即可得到答案.【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.【点睛】此题考查两直线平行同旁内角互补,多边形内角和公式,熟记多边形内角和计算公式是解题的关键.15.38°【分析】根据三角形内角和定理易求∠ABC +∠ACB 的度数已知∠P =90°根据三角形内角和定理易求∠PBC +∠PCB 的度数进而得到∠1+∠2的度数【详解】∵∠A =52°∴∠ABC +∠ACB =18解析:38°【分析】根据三角形内角和定理易求∠ABC +∠ACB 的度数.已知∠P =90°,根据三角形内角和定理易求∠PBC +∠PCB 的度数,进而得到∠1+∠2的度数.【详解】∵∠A =52°,∴∠ABC +∠ACB =180°−52°=128°,∵∠P =90°,∴∠PBC +∠PCB =90°,∴∠ABP +∠ACP =128°−90°=38°,即∠1+∠2=38°.故答案为:38°.【点睛】本题考查的是三角形内角和定理以及直角三角形的性质等知识,注意运用整体法计算,解决问题的关键是求出∠ABC +∠ACB ,∠PBC +∠PCB 的度数.16.35°【分析】先求出等边三角形正方形正五边形的内角度数再根据三角形的外角和为360°即可求解【详解】∵等边三角形的内角度数是60°正方形的度数是90°正五边形的度数是∴∠3=360°-60°-90°解析:35°【分析】先求出等边三角形,正方形,正五边形的内角度数,再根据三角形的外角和为360°,即可求解.【详解】∵等边三角形的内角度数是60°,正方形的度数是90°,正五边形的度数是(52)1801085-⨯︒=︒,∴∠3=360°-60°-90°-108°-∠1-∠2=360°-60°-90°-108°-47°-20°=35°,故答案是:35°【点睛】本题主要考查正多边形的内角和以及外角和定理,准确分析图形中角的数量关系,是解题的关键.17.【分析】根据三角形的面积公式列方程即可得到结论【详解】解:根据三角形面积公式可得∵AB=3BC=6CE=5∴解得故答案为:【点睛】本题考查了三角形的高以及三角形的面积熟记三角形的面积公式是解题的关键解析:2.5【分析】根据三角形的面积公式列方程即可得到结论.【详解】解:根据三角形面积公式可得,1122ABCS AB CE BC AD =⨯=⨯,∵AB=3,BC=6,CE=5,∴11356 22AD⨯⨯=⨯⨯,解得 2.5AD=.故答案为:2.5.【点睛】本题考查了三角形的高以及三角形的面积,熟记三角形的面积公式是解题的关键.18.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC∴S△ABD=S△ADC=×6=3(cm2)∵AE=DE∴S△AEB=S△AEC=×3=(cm2)∴S△BEC解析:3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC,∴S△ABD=S△ADC=12×6=3(cm2),∵AE=DE,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S △BEF =12×3=32(cm 2), 故答案为32. 【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.①②③④【分析】由可得:再结合:从而可求解于是可得可判断①;由可得:再利用:求解可判断②;由再利用角的和差可得:可判断③;由图4可得:可判断④【详解】解:如图1故①正确;如图2故②正确;如图3故③正解析:①②③④.【分析】由,AB AE ⊥可得:90BAC CAD DAE ∠+∠+∠=︒,再结合:2105BAC CAD DAE ∠+∠+∠=︒,从而可求解CAD ∠,于是可得BFC ∠,可判断①;由90ADB ,∠=︒可得:90DAC ACD ∠+∠=︒,再利用:180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,求解DAE DCE ∠+∠,可判断②;由,DFC D DAF ∠=∠+∠再利用角的和差可得:135DFC DAE D CAE ∠+∠=∠+∠=︒,可判断③;由图4可得:105BAE BAC CAE ∠=∠+∠=︒,可判断④. 【详解】解:如图1,,AB AE ⊥90BAC CAD DAE ∴∠+∠+∠=︒,60BAD BAC CAD ∠=∠+∠=︒,45CAE CAD DAE ∠=∠+∠=︒,2105BAC CAD DAE ∴∠+∠+∠=︒,15CAD ∴∠=︒,90ADB ∠=︒,901575BFC AFD ∴∠=∠=︒-︒=︒,故①正确; 如图2,90ADB ∠=︒,90DAC ACD ∴∠+∠=︒,180CAE E ACE ∠+∠+∠=︒, 45E ∠=°,90ACE ∠=︒, 180CAD DAE ACD DCE E ∴∠+∠+∠+∠+∠=︒,()()180180904545DAE DCE CAD ACD E ∴∠+∠=︒-∠+∠+∠=︒-︒+︒=︒, 故②正确;如图3,,DFC D DAF ∠=∠+∠9045135DFC DAE D DAF DAE D CAE ∴∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故③正确;如图4,6045BAD CAE ∠=︒∠=︒,,6045105BAE ∴∠=︒+︒=︒,故④正确.故答案为:①②③④.【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,角的和差,掌握以上知识是解题的关键.20.540°【分析】连接AGGD 先根据∠H+∠K=∠HGA+∠KAG ∠E+∠F=∠EDG+∠FGD 最后根据多边形的面积公式解答即可【详解】解:连接AGGD ∵∠H+∠K+∠HMK=180°∠HGA+∠KA解析:540°【分析】连接AG 、GD ,先根据∠H+∠K=∠HGA+∠KAG, ∠E+∠F=∠EDG+∠FGD,最后根据多边形的面积公式解答即可.【详解】解:连接AG 、GD ,∵∠H+∠K+∠HMK=180°,∠HGA+∠KAG +∠AMG=180°,∠HMK=∠AMG∴∠H+∠K=∠HGA+∠KAG ;同理:∠E+∠F=∠EDG+∠FGD∴∠BAK +∠B +∠C +∠CDE +∠E +∠F +∠MGN +∠H +∠K=∠BAK +∠B +∠C +∠CDE +∠EDG+∠FGD +∠MGN +∠HGA+∠KAG=五边形的内角和=(5-2)×180°=540°故答案为540°.【点睛】本题考查了三角形内角和定理和多边形内角和定理,根据题意正确作出辅助线成为解答本题的关键.三、解答题21.(1)∠ABE=30°;(2)∠ABE=30°【分析】(1)假设CE与AB相交于点G,由题意易得∠DCE=50°,则有∠CGA=∠BGE=130°,然后根据三角形内角和可求解;(2)假设CE与AB、BF相交于点M、N,设∠ABF=x,∠DCF=∠FCE=y,则有∠EBF=2x,∠ABE=3x,∠DCE=2y,根据题意可得∠AMC=180°-2y,∠E=2y-3x,2∠CFB-∠CEB=10°,进而根据三角形内角和及角的和差关系可求解.【详解】解:(1)假设CE与AB相交于点G,如图所示:∵CF平分∠DCE,∠DCF=25°,∴∠DCE=50°,∵AB∥DC,∴∠DCE+∠AGC=180°,∴∠AGC=130°,∴∠EGB=∠AGC=130°,∵∠E=20°,∴∠ABE=30°;(2)假设CE与AB、BF相交于点M、N,如图所示:设∠ABF=x,∠DCF=y,∵∠EBF=2∠ABF,CF平分∠DCE,∴∠EBF=2x,∠ABE=3x,∠FCE=y,∠DCE=2y,∵AB∥DC,∴∠DCE+∠AMC=180°,∴∠EMB=∠AMC=180°-2y,∵∠E+∠EMB+∠ABE=180°,∴∠E=2y-3x ,∵∠E+∠ENB+∠FBE=180°,∴∠ENB=180°+x-2y ,∵∠CFB+∠CNF+∠FCE=180°,∴∠CFB=y-x ,∵∠CFB 的2倍与∠CEB 的补角的和为190°,∴2∠CFB-∠CEB=10°,∴()()22310y x y x ---=︒,解得:10x =︒,∴∠ABE=30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.22.(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE ⊥,∴线段BE 的长度是点B 到直线AE 的距离,故答案是:B ,AE ;(4)∵AE 是直角三角形AEF 的直角边,AF 是直角三角形AEF 的斜边,∴AE AF <,∵BF 是直角三角形ABF 的斜边,AF 是直角三角形ABF 的直角边,∴AF BF <,∴AE AF BF <<,故答案是:AE AF BF <<.【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.23.(1)见解析;(2)AB BC CD AB BD AD ++>+>【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC ,然后以点C 为圆心,BC 为半径画弧,交射线AC 于点D ,连接BD ;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB 即为所求;②如图,直线BC 即为所求;③如图,射线AC ,点D ,线段BD 即为所求(2)如图,在△BCD 中,BC+CD >BD∴AB BC CD AB BD ++>+在△ABD 中,AB+BD >AD∴AB BC CD AB BD AD ++>+>【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.24.50°【分析】由AD 为高,28B ∠=︒,求出52ACD ∠=°,利用外角性质求出24BAC ACD B ∠∠∠=-=︒,根据AE 是角平分线,求出1122BAE BAC ∠∠==︒,即可求出EAD ∠的度数.【详解】解:∵AD 为高,28B ∠=︒,∴62BAD ∠=︒.∵52ACD ∠=°,∴24BAC ACD B ∠∠∠=-=︒.∵AE 是角平分线, ∴1122BAE BAC ∠∠==︒, ∴50EAD BAD BAE ∠=∠-∠=︒.此题考查三角形的角平分线的性质,直角三角形两锐角互余的性质,三角形的外角等于与它不相邻的两个内角的和.25.(1)十二边形;(2)这个正多边形的内角和为1800︒;(3)对角线的总条数为54 条.【分析】(1)设一个外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x 的值,再利用外角和360°÷外角的度数可得边数; (2)利用多边形内角和公式即可得到答案;(3)根据n 边形有()32n n -条对角线,即可解答. 【详解】(1)设这个正多边形的一个外角为x ︒,依题意有430180x x ++=,解得30x =, 3603012︒÷︒=∴这个正多边形是十二边形.(2)这个正多边形的内角和为(122)1801800-⨯︒=︒;(3)对角线的总条数为()12312542⨯=-(条) . 【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.另外还要注意从n 边形一个顶点可以引(n-3)条对角线. 26.(1)150︒ (2)60︒;理由见解析【分析】(1)根据三角形的内角和定理即可求得答案;(2)先求得XBC XCB ∠+∠=90°,再根据ABX ACX ∠+∠()()ABC ACB XBC XCB =∠+∠-∠+∠即可求得答案.【详解】解:(1)∵180ABC ACB A ∠+∠+∠=︒,30A ∠=︒,∴180ABC ACB A ∠+∠=︒-∠18030=︒-︒150=︒,故答案为:150°;(2)60ABX ACX ∠+∠=︒,理由如下:∵180XBC XCB X ∠+∠+∠=︒,90X ∠=︒,∴180XBC XCB X ∠+∠=︒-∠18090=︒-︒∠+∠∴ABX ACX=∠-∠+∠-∠ABC XBC ACB XCB()()=∠+∠-∠+∠ABC ACB XBC XCB=︒-︒15090=︒,60故答案为:60°.【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解决本题的关键.。
人教版八级上第章三角形全章测试卷含答案
初二数学 人教版八年级上册 第11章 三角形 全章测试卷一.填空题1.在△ABC 中,<1>若∠A=500, ∠B=700,则∠C=;<2> 若∠A=300, ∠B:∠C=3:2,则∠B=;<3>若∠A=∠B +∠C,则这个三角形是三角形.2.如图<1>:在△ABC 中, ∠ACB=900,CD 是AB 上的高,则与∠A 相等的角是.3.直角三角形中两个锐角之差为200,则这两个锐角度数分别为.4.三角形的两边长为2和5,则第三边x 的取值范围是.5.若三角形三个内角的度数比为3:4:5,则此三角形是 三角形<按角分类>.6.日常生产生活实际中,很多物体都采用三角形结构,这是因为三角形具有.7.等腰三角形的两边长为3和8,则它的周长是.8.如果等腰三角形的一边长等于5,另一边等于6, 则它的周长是.9.若等腰三角形的一个外角等于1000,则顶角等于.10.若一个多边形的每一个外角都等于300,则它的边数为,这个多边形共有条对角线.11.已知三角形两边长为2cm 和8cm,且周长为奇数,则周长为.12.正十边形的内角和等于度,每个内角等于.13.在△ABC 中,已知∠A +∠B=2∠C, ∠A -∠B=300,则∠A=, ∠C=.14.要使五边形木架不变形,则至少要钉上根木条.15.在正三角形、正五边形、正七边形、正九边形、正十一边形中,能铺满地面的正多边形是 .二.选择题16.下列说法中正确的是 < >A.三角形的外角大于任何一个内角B.三角形的内角和小于外角和C.三角形的外角和小于四边形的外角和D.三角形的一个外角等于两个两个内角的和.17.△ABC 中,若AB=2,BC=3,周长为偶数,则AC 的长为 < >A .1B .2C .3D .418.若一个多边形的内角和是外角和的2倍,则此多边形的边数是 < >A .3B .4C .5D .619.用大批形状、大小完全相同,但不规则的三角形材料可以拼地板吗? < > <1>A.不能B.能C.不一定能D.无法确定20.三角形的角平分线、中线、高线中A.每一条都是线段B.角平分线是射线,其余是线段C.高线是直线,其余是线段D.高线是直线,角平分线是射线,中线是线段21. △ABC中,三边长为a、b、c,且a>b>c,若b=8 , c=3 ,则a的取值范围是 < > A.3<a<8B.5<a<11C.8<a<11D.6<a<1022.三角形中最大的内角不能小于 < > A.300B.450C.600D.900三.解答题(1)已知:△ABC中, ∠A=1050 , ∠B-∠C=150 ,求∠B、∠C的度数.(2)已知△ABC的周长为24cm,三边a、b、c满足a+c=2b ,c-a=4 cm ,求a、b、c的长.(3)已知:如图<2>,不规则的六边形铁板,ABCDEF,每个内角为1200且AB=BC=3 ,AF=DE=2,求该铁板的周长.BD E<2>答案一、1.<1>600 <2>900 <3>直角 2.∠BCD 3.550,350 4.3<x<7 5.锐角 6.稳定性7.19 8.16,17 9.200或800 10.12,54 11.17或19 12.1440,144 13.750,60014.两 15.正三角形二、16.B 17.C 18.D 19.B 20.A 21.C 22.C三、23. <1> 450,300<2> 因为a+b+c=24,a+c=2b,所以3b=24,所以b=8,所以a+c=6,又c-a=4,所以c=10,a=6,故a=6,b=8,c=10<3> 17 延长各边,将六边形转化为三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册三角形
基础知识测试题
Prepared on 24 November 2020
三角形基本知识训练
一、选择题(12*3’=36’)
1.如图1所示,已知AB⊥BD,AC⊥CD,∠A=35°,则∠D的度数为()
A.35° B.65° C.55° D.45°
(1)(2) (3)
2.如图2所示,AB∥CD,∠A=55°,∠C=80°,则∠M等于()
A.55° B.25° C.35° D.15°
3.三角形中,最大的内角不能小于()
A.30° B.60° C.90° D.45°
4.如图3所示,△ABC为直角三角形,∠ACB=90°,与∠1互余的角有()A.∠B B.∠A C.∠BCD和∠A D.∠BCD
5、以下列长度的三条线段为边,能构成三角形的()
A、7㎝,8㎝,15㎝
B、15㎝,20㎝,5㎝
C、6㎝,7㎝,5㎝
D、7㎝,6㎝,14㎝
6.若三角形的三边长分别为1,a,8,且a为整数,则a的值为()
A.6 B.7 C.8 D.9
7.在等腰三角形ABC中,它的两边长分别为8cm和3cm,则它的周长为()
A.19cm或11cm B.19cm或14cm C.11cm 或14cm D.10cm
8.如图所示,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()
A.三角形的稳定性;B.两点之间线段最短;C.两点确定一条直线;D.垂线段最短9.如图4所示,在△ABC中,∠BAC=80°,∠B=35°,AD平分∠BAC,则∠ADC的度数为()A.90° B.95° C.75° D.55°
(4) (5) (6) 10.如图5所示,在△ABC中,∠ABC=40°,AD,CD•分别平分∠BAC,•∠ACB,•则∠ADC等于()
A.110° B.100° C.190° D.120°
11.如图6所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()A.50° B.60° C.70° D.80°
12.两根木棒长分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,•如果第三根木棒长为偶数,则组成方法有()
A.3种 B.4种 C.5种 D.6种
二、填空题(2’*16=32’)
1.在一个三角形中,最多有______个锐角,有______个直角,有_______个钝角.
(7) (8) (9) (10)
2.如图7所示,以∠1为内角的三角形有____ ___.
3.如图8所示,AB∥CD,∠E=130°,∠F=70°,则∠1+∠2=_______,∠3+•∠4=_______.4.如图9所示,平面上放着等距离的10个点,把这些点作为三角形的顶点,•可作_____个等边三角形.
5.如图10所示,AB∥CD,AD∥BC,∠1=65°,∠2=55°,求∠C的度数.(11)(12)(13)
6.如图11所示,将一幅直角三角板叠在一起,使直角顶点重合于点O,使∠AOB+∠DOC=_______.
7.已知在Rt△ABC中,∠C=90°,∠BAC=30°,AB=10,那么BC=_______.
8.在△ABC中,∠A:∠B=5:7,∠C-∠A=10°,则∠C=________.
9.若一个三角形的两边长是2和9,则第三边长a的取值范围是_______.
10.已知等腰三角形的一边长为4cm,另一边长为7cm,求三角形的周长.
11.如图12所示,以点A为顶点的三角形有_______个,它们分别是__________.
12.如图13所示,以AE为边的三角形有________个,它们分别是________.
(14) (15) (16)
13.如图14所示,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB的中线,•将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于_______.
14.若一个三角形三条高线的交点在这个三角形的一个顶点上,•则这个三角形是__________三角形.
15.如图15所示,△ABC中,BD=DE=EC,则AD,AE分别是________的中线.
16.如图16所示,若∠ACB=90°,CD⊥AB于D,则AC边上的高是______,CD是____边上的高.
三、解答题(32’)
1、如图, 在△ABC中, 请作图:(保留作图痕迹,不
写画法)(6’)
①画出△ABC的一条角平分线;
②画出△ABC中AC边上的中线;
③画出△ABC中BC边上的高。
2.如图所示,AB⊥BC,DC⊥BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.(8’)
3.已知,如图所示,在△ABC中,AD⊥BC于D,AE平分∠BAC,若∠B=28°,•∠DAE=16°,求∠C的度数.(8’)
4.如图, △ABC 中, ABC ∠的平分线与ACE ∠的平分线相交于
点D 。
(10’)
(1) 若60,40ABC ACB ∠=∠=, 求A ∠和D ∠度数.
(2) 由第(1)小题的计算, 发现A ∠和D ∠有什么关系 D
E C B
A。