数字图像处理图像增强和恢复
怎么把模糊的图像处理的清晰
怎么把模糊的图像处理的清晰导言:在数字图像处理中,模糊的图像是一种常见的问题,不论是由于摄影设备或者手抖等原因所导致的模糊图像都会影响我们对图像的观感以及信息的获取。
但是,幸运的是,通过一些简单的技术和工具,我们可以将模糊的图像处理得更加清晰。
本文将介绍几种常用的方法和技巧,帮助读者处理模糊的图像。
一、基于滤波的方法1.1 均值滤波均值滤波是一种常见的图像处理方法,它通过取一个像素点周围区域的像素值的平均值来减小图像的噪声。
对于模糊的图像,可以尝试应用均值滤波来提高图像的清晰度。
这可以通过图像处理软件或者编程语言提供的函数来实现。
1.2 高斯滤波高斯滤波是另一种常见的图像处理方法,它利用高斯函数对图像进行滤波,以减小图像中的噪声并提高图像的清晰度。
与均值滤波相比,高斯滤波能更加准确地处理图像,因为它考虑了像素点之间的权重关系。
二、基于图像增强的方法2.1 图像锐化图像锐化是一种常见的图像增强技术,它通过强调图像中的边缘和细节来增加图像的清晰度。
对于模糊的图像,可以尝试应用图像锐化算法来使边缘更加清晰,从而提高整体图像的清晰度。
2.2 噪声去除噪声是导致图像模糊的主要原因之一。
通过应用噪声去除算法,可以有效地减小图像中的噪声,从而提高图像的清晰度。
常见的噪声去除算法有中值滤波、小波去噪等。
三、基于图像复原的方法3.1 盲复原盲复原是一种利用模糊图像的统计信息恢复原始清晰图像的方法。
它假设模糊过程是已知的,但是模糊参数未知,通过估计模糊参数的值以及应用逆滤波器来复原清晰图像。
盲复原方法对于处理一些特定类型的模糊图像非常有效。
3.2 反卷积反卷积是一种常见的图像复原技术,它可以通过估计模糊核函数的频谱信息,对模糊图像进行逆滤波以复原清晰图像。
然而,反卷积可能会引入一些其他的噪声,因此需要结合其他方法来进一步处理。
四、其他注意事项4.1 图像格式选择在处理模糊图像时,选择合适的图像格式是非常重要的。
对于某些图像格式来说,可能会存在信息损失的情况,这会对图像处理产生一定的影响。
如何通过计算机视觉技术进行图像增强和恢复
如何通过计算机视觉技术进行图像增强和恢复计算机视觉技术在图像处理领域有着广泛的应用,其中之一就是图像增强和恢复。
通过计算机视觉技术,可以提高图像的质量,恢复受损的图像细节,使图像更加清晰、鲜明。
本文将介绍如何通过计算机视觉技术进行图像增强和恢复的方法和技术。
在进行图像增强和恢复之前,首先需要了解图像的特性和问题。
图像通常由像素组成,每个像素包含有关颜色和亮度的信息。
当图像受到噪声、模糊、失真或其他问题的影响时,图像的质量和细节会受到损害。
针对不同的问题,可以选择不同的计算机视觉技术进行图像增强和恢复。
下面将介绍几种常见的方法:1. 增强对比度:通过调整图像中像素的亮度值,可以改善图像的对比度。
常见的方法包括直方图均衡化和自适应直方图均衡化。
直方图均衡化通过重新分配像素值来扩展图像的动态范围,从而增强对比度。
自适应直方图均衡化在不同区域应用不同的亮度变换,以适应图像的局部特点。
2. 降噪:图像中的噪声会影响图像的清晰度和细节。
常见的降噪方法包括均值滤波、中值滤波和小波去噪。
均值滤波通过计算像素周围区域的平均值来减少噪声。
中值滤波通过计算像素周围区域的中值来去除椒盐噪声等噪声。
小波去噪利用小波变换将图像分解为不同频率的子图像,在不同频率上进行噪声的建模与抑制。
3. 图像复原:当图像受到模糊或失真影响时,可以使用图像复原方法进行恢复。
经典的图像复原方法包括逆滤波和约束最小二乘法。
逆滤波通过分析图像的模糊过程,推导出一个滤波器来逆向处理图像以恢复其细节和清晰度。
约束最小二乘法则通过最小化图像的模糊与观测到的图像之间的误差,并应用正则化约束来找到最优解。
4. 超分辨率重建:超分辨率重建是指通过算法和技术将低分辨率图像提升到高分辨率图像的过程。
常见的超分辨率重建方法包括插值法、卷积神经网络和生成对抗网络。
插值法通过对低分辨率图像进行插值来增加图像的细节。
卷积神经网络则通过学习大量高分辨率和低分辨率图像对之间的关系,来实现图像的重建。
遥感数字图像处理主要研究的内容
遥感数字图像处理主要研究的内容有以下几个方面:1、图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4、图像分割图像分割是遥感数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
5、图像描述图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。
对于特殊的纹理图像可采用二维纹理特征描述。
随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
数字图像处理的原理与方法
数字图像处理的原理与方法数字图像处理是一种将数字信号处理技术应用到数字图像上的科学技术,它的出现极大地推动了图像处理技术的发展。
数字图像处理不仅可以用于医学图像处理、卫星图像处理、工业检测等领域,还可以应用于数字影像娱乐等方面。
数字图像处理的核心内容就是图像增强、图像恢复、图像分割、图像识别等,本文将主要探讨数字图像处理的原理与方法。
一、图像增强处理图像增强处理是对原始图像进行改善的过程,也是数字图像处理中最普遍的操作类型。
通过增强处理,可以使图像局部特征更加明显,以便进行更高级的图像分析。
常见的图像增强方法包括灰度线性变换、灰度非线性变换、空域滤波增强、频域滤波增强等。
其中,空域滤波增强是最常见的一种方法。
通过对原始图像进行高斯滤波、中值滤波等操作,可以有效去除图像中的噪声。
二、图像恢复处理图像恢复处理是指从已知的图像信息中恢复出原始图像的过程,也是数字图像处理中一种重要的方法。
在数字图像处理中,图像的失真比如模糊、噪声等是不可避免的。
而图像恢复就是通过各种手段找到原始图像中所保留的信息,以恢复图像失真前的形态。
常见的图像恢复处理方法包括逆滤波、维纳滤波、约束最小二乘滤波等。
三、图像分割处理图像分割处理是将图像分割成若干具有独立意义的子区域的过程。
图像分割处理是数字图像处理中一种热门的研究领域,其主要应用于目标提取、图像分析和模式识别等方面。
常用的图像分割方法包括基于像素的算法、基于区域的算法、边缘检测算法等。
其中,基于区域的算法应用最广。
通过对相似区域进行聚类,可以将图像分割成若干子区域,从而实现目标提取等功能。
四、图像识别处理图像识别处理是指对图像进行自动识别的过程。
图像识别处理是数字图像处理中的一大领域,它的技术含量非常高。
常见的图像识别处理方法包括特征提取、模式匹配、神经网络等。
其中,特征提取是一种重要的处理方式。
通过对图像进行特征提取,可以将图像转化为数字特征,从而实现对图像的自动识别和分类。
数字像处理的原理
数字像处理的原理数字图像处理的原理数字图像处理是一门涉及对数字图像进行各种操作与处理的技术,它在多个领域中得到广泛应用,包括计算机视觉、医学影像、遥感图像等。
数字图像处理的原理主要包括图像获取、图像预处理、图像增强、图像复原、图像分割与识别等步骤。
一、图像获取图像获取是指通过光学、电子设备或传感器等手段将物理世界的信息转化为数字信号。
常见的图像获取设备包括数码相机、扫描仪、摄像机等,通过捕捉光的强度、颜色和位置等信息,将图像转化为数字形式。
二、图像预处理图像预处理主要用于对原始图像进行一系列的预处理操作,以提高后续处理的效果。
常见的图像预处理操作包括去噪、平滑、增强对比度、图像空间变换等。
去噪操作可以去除图像中的噪声干扰,平滑操作可以降低图像的细节信息,增强对比度可以提升图像的清晰度和可视性。
三、图像增强图像增强是指对图像进行一系列的操作,以增强图像的某些特性或凸显图像中的重要信息。
常见的图像增强方法包括直方图均衡化、滤波、锐化等。
直方图均衡化可以使得图像的灰度分布更加均匀,从而提高图像的对比度;滤波操作可以去除图像中的噪声或平滑图像;锐化操作可以增强图像的边缘或纹理。
四、图像复原图像复原是指恢复被损坏或受到噪声污染的图像,使其尽可能接近原始图像。
常见的图像复原方法包括去模糊、去噪、修复等。
去模糊可以恢复由于摄影过程或传感器引起的图像模糊,去噪可以降低由于传感器或传输过程引起的噪声干扰,修复操作可以填补图像中缺失的信息。
五、图像分割与识别图像分割是指将图像划分为不同的区域或对象,图像识别是指通过对已分割的图像区域进行分析与分类,以实现对图像中目标的自动识别。
常见的图像分割与识别方法包括阈值分割、边缘检测、特征提取与分类等。
阈值分割可以通过设定一个或多个阈值将图像分割为不同的区域;边缘检测可以提取图像中的边缘特征;特征提取与分类可以通过对分割后的图像区域进行特征提取与分类,实现目标的识别与分类。
综上所述,数字图像处理的原理主要包括图像获取、图像预处理、图像增强、图像复原、图像分割与识别等步骤。
数字图像处理第04章图像增强ppt课件
归一化的直方图(histogram)定义为灰度级出 现的相对频率。即
Pr(k)nk /N
(4.13)
式中,N表示像素的总数;nk表示灰度级为k的
像素的数目。
Slide 25
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.线性变换
灰度g与灰度f之间的关系为
gaba[f a] ba
(1)变换使得图像灰度范围增 大,即对比度增大,图像会变得 清晰;
(2)变换使得图像灰度范围缩 图4.4 线性变换 小,即对比度减小。
Slide 16
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
图4.7 三段线性变换实例
(a)原始图像
(b)增强效果
Slide 21
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3.非线性灰度变换
当用某些非线性函数如对数、指数函数等作为 映射函数时,可实现灰度的非线性变换。
J = imadjust(I,[0.3 0.7],[]); %使用imadjust函数进行灰度的线性变换
figure,imshow(J); figure,imhist(J)
%显示变换后图像的直方图
Slide 17
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
【例4.1】采用线性变换进行图像增强。
数字图像处理实验报告——图像增强实验
实验报告课程名称数字图像处理导论专业班级_______________姓名_______________学号_______________电气与信息学院和谐勤奋求是创新2.编写函数w = genlap lacia n(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 14.采用不同的梯度算子对b lurry_moon.tif进行锐化滤波,并比较其效果。
[I,m ap]=im read('trees.tif');I=double(I);subplo t(2,3,1)imshow(I,m ap);title(' Original Im age');[Gx,Gy]=gradie nt(I); % gradie n t calcul ationG=sqrt(Gx.*Gx+Gy.*Gy); % matrixJ1=G; % gradie nt1subplo t(2,3,2)imshow(J1,m ap);title(' Operator1 Im age');J2=I; % gradie nt2 K=find(G>=7);J2(K)=G(K);subplo t(2,3,3)im show(J2,m ap);title(' Operator2 Im age');J3=I; % gradie n t3 K=find(G>=7);J3(K)=255;subplo t(2,3,4)im show(J3,m ap);title(' Operator3 Im age');J4=I; % gradie n t4 K=find(G<=7);J4(K)=255;subplo t(2,3,5)im show(J4,m ap);title(' Operator4 Im age');J5=I; % gradie nt5 K=find(G<=7);J5(K)=0;Q=find(G>=7);J5(Q)=255;subplo t(2,3,6)im show(J5,m ap);title(' Operator5 Im age');5.自己设计锐化空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;附录:可能用到的函数和参考结果**************报告里不能用参考结果中的图像1)采用3×3的拉普拉斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]滤波I=im read('moon.tif');T=double(I);subplo t(1,2,1),im show(T,[]);title('Origin al Im age');w =[1,1,1;1,-8,1;1,1,1];K=conv2(T,w,'sam e');subplo t(1,2,2)im show(K);title('Laplacian Transf orm ation');图2.9 初始图像与拉普拉斯算子锐化图像2)编写函数w = genlap lacia n(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子:w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]functi on w = genlap lacia n(5)%Com put es the Laplac ian operat orw = ones(n);x = ceil(n/2);w(x, x) = -1 * (n * n - 1);3)分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_mo on.tif进行锐化滤波,并利用式完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。
数字图像处理技术_图像增强
4.3.2 直方图的用途
1、直方图性质
1) ∫D H(D)dD = 物 体 的 面 积
1
∞
2)如果一图像由两个不连接的区域组成,且每个区域 的直方图已知,则整幅图像的直方图是该两个区域的 直方图之和。
4.3.2 直方图的用途
2、边界阈值的选择
T
双峰直方图
4.3.2 直方图的用途
• 要点
1.直方图表明在每一灰度级有多少个像素 2.观察直方图可以看出不合适的数字化
灰度反转公式:f (x,y) = 255 - g(x,y)
4.2.1 灰度线性变换
• 线性变换特例
g(x,y) 255
255 f(x,y)
g ( x, y ) = − f ( x, y ) + 255
4.2.1 灰度线性变换
• 1)对比度扩展
增强原图各部分的反差。也即增强原图里某两个灰度 值间的动态范围来实现突出感兴趣的区间,相对抑制 不感兴趣的灰度区域 非线性变换往往以牺牲某些灰度范围的图像信息(灰 度压缩),来换取其它灰度范围的图像信息的改善 (灰度拉伸)。
4.3.2 直方图的用途
动态范围宽了,对比度增强了
4.3.3 直方图均衡化
• 直方图均衡(Histogram equalization) 把原始图的直方图变换为均匀分布的形 式,增加像素灰度值的动态范围,提高图 像对比度。 • 点处理增强:可用g=EH(f) 表示。
4.3.3 直方图均衡化
• g=EH(f) 需满足:
4.3.4 直方图规定化
• 直方图规定化或直方图匹配:实际中有时要求突出图 像中人们感兴趣的灰度范 围,这时,可以变换直方图 使之成为所要求的形状,从而有选择地增强某个灰度 值范围内的 对比度,这种方法称为直方图规定化或直 方图匹配。
PS几种处理模糊照片变清晰的方法
PS几种处理模糊照片变清晰的方法在数字图像处理中,模糊是指图像中的细节和清晰度受到损失或缺失,而变清晰则是通过一系列算法和方法来恢复或增强图像的细节和清晰度。
以下是几种常见的处理模糊照片的方法:1.图像复原图像复原是一种通过数学模型来恢复图像本质的方法。
其主要原理是假设图像损失是由于模糊过程引起的并通过逆过程将原始图像恢复出来。
图像复原的方法包括盲复原、非盲复原和统计复原等。
其中,非盲复原需要预先知道模糊函数和噪声的统计特性,而盲复原则是在不知道这些信息的情况下进行复原。
2.图像增强图像增强是指通过算法和方法提高图像的视觉质量,以便更好地观察和分析图像。
模糊图像可以通过图像增强来增强其细节和清晰度。
常用的图像增强方法包括直方图均衡化、对比度增强、锐化增强和自适应滤波等。
直方图均衡化可以通过分布像素的亮度来增强图像对比度,从而提高图像的清晰度;对比度增强则可以通过增加图像中不同区域之间的灰度差异来增强图像的细节;锐化增强则是通过增加图像中的高频成分来增强图像的细节和轮廓;自适应滤波则可以根据图像的局部特征来选择合适的滤波器进行滤波操作,从而提高图像的清晰度。
3.图像去模糊图像去模糊是一种通过算法和方法从模糊图像中恢复出尽可能多的图像细节的方法。
常见的去模糊方法包括基于盲复原算法的去模糊、基于边缘保持的去模糊和基于深度学习的去模糊等。
基于盲复原算法的去模糊可以通过建立图像复原的数学模型来恢复图像的细节和清晰度;基于边缘保持的去模糊则是通过保持图像中的边缘信息来增强图像的细节和清晰度;基于深度学习的去模糊则是通过训练神经网络来学习并恢复图像的细节和清晰度。
4.图像超分辨率重建图像超分辨率重建是一种通过算法和方法从低分辨率图像中恢复出高分辨率图像的方法。
它利用图像中的统计特性和先验知识来恢复图像的细节和清晰度。
常见的超分辨率重建方法包括基于插值的超分辨率重建、基于边缘保持的超分辨率重建、基于深度学习的超分辨率重建和基于生成对抗网络的超分辨率重建等。
数字图像处理名词解释
数字图像处理名词解释数字图像是由像素组成的二维矩阵,每个小块区域称为像素(pixel)。
数字图像处理是指利用数字计算机及其它数字技术,对图像进行某种运算和处理,从而达到某种预期目的的技术。
8-连通是指对于具有值V的像素p和q,如果q在集合N8(p)中,则称这两个像素是8-连通的。
灰度直方图反映了一幅图像中各灰度级像元出现的频率,是灰度级的函数,描述的是图像中该灰度级的像素个数。
直方图只反映该图像中不同灰度值出现的次数,而未反映某一灰度值像素所在位置。
直方图可用于判断图像量化是否恰当,给出了一个简单可见的指示,用来判断一幅图象是否合理的利用了全部被允许的灰度级范围。
数字图像通常有两种表示形式:位图和矢量图。
点位图由像素构成,包含不同色彩信息的像素的矩阵组合构成了千变万化的图像。
矢量图形指由代数方程定义的线条或曲线构成的图形,由许多矢量图形元素构成,这些图形元素称为“对象”。
两种图像的构成方式不同,其绘画方式也存在差别。
点位图是通过改变像素的色彩实现绘画和画面的修改,而矢量图操纵的是基本的图形(对象)。
在矢量图中,以Corel Draw为例,选择贝赛尔曲线工具,用鼠标在页面上定出一些节点,节点之间有线段,构成一个封闭图形。
用修改工具把这个图形调整圆滑。
傅里叶变换是一种将空间域中复杂的卷积运算转化为频率域中简单的乘积运算的方法,其应用主要有以下三方面:简化计算、处理空间域中难以处理或处理起来比较复杂的问题、以及实现特殊目的的应用需求。
通过傅里叶变换,可以将图像从空间域变换到频率域,利用频率域滤波或频域分析方法对其进行处理和分析,然后再将处理后的图像变换回空间域,从而实现图像的增强、特征提取、数据压缩、纹理分析、水印嵌入等效果。
对于M*N的图像f(x,y),其基矩阵的大小为M*N,也即及图像由M*N块组成。
当(x,y)取遍所有可能的值(x=0,1,2….m-1;y=0,1…n-1)时,就可得到由(M*N)*(M*N)块组成的基图像,所以其基图像大小为M平方*N平方。
数字图像处理的主要研究内容有哪些
数字图像处理的主要研究内容有哪些?并简要说明。
主要研究内容有:图像增强、图像编码、图像复原、图像分割、图像分类和图像重建。
图像增强用于改善图像视觉质量;图像复原是尽可能地恢复图像本来面目;图像编码是在保证图像质量的前提下压缩数据,使图像便于存储和传输;图像分割就是把图像按其灰度或集合特性分割成区域的过程;图像分类是在将图像经过某些预处理(压缩、增强和复原)后,再将图像中有用物体的特征进行分割,特征提取,进而进行分类;图像重建是指从数据到图像的处理,即输入的是某种数据,而经过处理后得到的结果是图像。
图像可以分为哪几类,常见位图有哪些?图像有许多分类方法,按照图像的动态特性,可以分为静止图像和运动图像;按照图像的色彩,可以分为灰度图像和彩色图像;按照图像的维数,可以分为二维图像、三维图像和多维图像等。
位图通过许多像素点来表示一幅图像,每个像素具有颜色属性和位置属性。
位图分为四种,即二值图像、亮度图像、索引图像和RGB图像。
请用MATLAB程序实现灰度图像camera.jpg的二值化处理,阈值取0.7,并显示原图和处理后的图像。
A=imread('camera.jpg');B=im2bw(A,0.7);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(B);一帧256灰度级图像由1280X1024个像素构成,那么该帧图像的数据量有多大?数据量为1280X1024X8=10485760bit=1310720Byte=1280KB=1.25MB已知某个像素点p的坐标为(x,y),请指出N4(p)、N D(p)和N8(p)。
N4(p):(x+1,y),(x-1,y),(x,y+1),(x,y-1)N D(p):(x+1,y+1)、(x+1,y-1)、(x-1,y+1)、(x-1,y-1)N8(p):N4(p)+ N D(p)灰度级插值用在什么情况下,有哪些插值处理方法?变换后所产生的图像中的像素在原图像中没有相对应的像素点时,就需要进行灰度级的插值运算,此时可以采用不同复杂程度的线性插值法填充放大后多出来的相关像素点的灰度值。
数字图像处理技术及其应用
数字图像处理技术及其应用随着数字化时代的到来,数字图像处理技术也相应的得到了极大的发展与应用。
数字图像处理技术主要是指通过计算机和相关技术对数字图像进行处理、分析和输出的一种技术体系。
数字图像处理技术可以广泛应用于医学图像、地质图像、工业检测等领域。
本文将从数字图像处理技术的基础知识、图像处理的步骤和主要技术等方面来探讨数字图像处理技术的应用。
数字图像处理的基础知识数字图像通常由一个像素阵列(Pixel Array)表示,也就是由一个个长度和宽度都为1的小方块构成的矩阵。
每个像素都代表一个灰度值或者RGB(红、绿、蓝)三元组表示颜色的数值。
数字图像的大小通常由像素数目来衡量,例如800x800。
数字图像处理的步骤数字图像处理一般包括如下步骤:采集、预处理、分割、特征提取、识别等。
采集是将光学或者电子学设备产生的信号转化为数字信号的过程。
数字摄像机和扫描仪是数字图像采集过程中经常使用的设备之一。
采集到的图像往往需要进行预处理来提高图像质量。
预处理包括去噪、平滑、锐化等处理。
去噪是为了消除图像采集过程中所产生的噪声,使图像更加清晰。
图像平滑处理可以在保证图像边缘清晰的情况下消除图像的细节节,使得图像更加具有可视化效果。
锐化处理可以使图像更加清晰。
分割是将图像分成多个部分的过程。
分割的目的是提取出需要处理的物体,进而进行下一步的处理。
分割的方法可以是基于阈值、基于边缘、基于区域或者基于神经网络等等。
特征提取是根据图像的特征进行处理的过程。
通常可以提取图像的边缘、灰度、形状等特征信息。
提取的特征信息是后面的识别过程的一项重要的依据。
识别是根据特征信息以及处理算法来判断图像是否符合某种条件的过程。
识别的方法可以是基于模板匹配、基于统计分析、基于人工神经网络等等。
识别的结果通常是进行分类、定量分析、计算等处理。
数字图像处理的主要技术数字图像处理技术包括基本处理、图像分析、图像增强、图像编码和压缩、图像恢复和重建等方面。
数字图像处理方法-图像增强2
求出:k1和k2 求出:l1和l2
第五章 图像增强
23
空域处理—彩色图像增强
彩色平衡实现的算法
9 分别对R、G、B图像实施变换:
*=
+
R(x, y) k1*R(x, y) k 2
B(x, y)* = l1*B(x, y) + l2
G(x, y)* = G(x, y)
9 得到彩色平衡图像
第五章 图像增强
直方图均衡化的技术要点:
公理:直方图p(rk ),为常数的图像对比度最好
目标:寻找一个灰度变换函数T(r),使结果图像 的直方图p(sk )为一个常数
第五章 图像增强
3
空域处理—直方图增强
直方图均衡—灰度变换函数
1) 求出原图 f 的灰度直方图,设为h。h为一个256维的向 量。
2) 求出图像 f 的总体像素个数, Nf=m ×n
第五章 图像增强
32
空域处理—彩色图像增强
伪彩色增强
人类可以分辨比灰度层次更多的颜色种类 将灰度图像变换为彩色图像——伪彩色图像 方法:伪彩色变换,密度分割
伪彩色变换法—独立映射表变换法
9对灰度图像 f(x, y),建立颜色映射表:
IR
=
T (I ) R
IG
=
T (I ) G
I = T (I )
B
B
9形成RGB图像各分量为: R (x , y ) = T R ( f (x , y
))
第五章 图像增强
G (x, y ) = TG( f (x, y ))
B(x, y) = TB( f (x, y
33
))
空域处理—彩色图像增强
伪彩色变换流程
如何进行MATLAB图像增强和修复
如何进行MATLAB图像增强和修复图像增强和修复是数字图像处理的两个重要方面,其目的在于改善图像的质量、清晰度和可视化效果。
在本文中,我们将探讨如何使用MATLAB进行图像增强和修复的方法和技巧。
1. 图像增强图像增强是通过一系列的处理方法来改善图像的视觉质量和增强图像的细节。
MATLAB提供了多种图像增强的函数和工具包,以下是一些常用的方法:灰度拉伸:通过对图像的像素值进行线性变换,将像素值映射到一个更大的范围,从而增加图像的对比度和动态范围。
例如,可以使用imadjust函数来调整图像的灰度级别。
直方图均衡化:该方法通过重新分配图像的像素值,使得图像的直方图在整个灰度级范围内更均衡。
使用histeq函数可以实现直方图均衡化。
滤波:图像中的噪声会降低图像的质量和细节。
通过应用不同的滤波方法,可以去除噪声和平滑图像。
MATLAB提供了多种滤波函数,如均值滤波、中值滤波和高斯滤波。
增强算法:一些特定的图像增强算法,如锐化、边缘增强和局部对比度增强等,可以提高图像的细节和清晰度。
你可以使用imsharpen、edge和adapthisteq等函数来实现这些算法。
2. 图像修复图像修复是通过一系列的处理方法来修复、恢复损坏或退化图像的细节和完整性。
这种损坏可能是由噪声、模糊、运动模糊或其他因素引起的。
以下是一些常用的图像修复方法:去噪:噪声在图像中是常见的问题,因为它会导致图像细节的丢失。
MATLAB 提供了一些函数如wiener2、medfilt2和imnoise等,可以用来去除不同类型的噪声。
模糊去除:运动模糊是由运动物体或相机移动引起的,可以使用维纳滤波器或修复算法来恢复模糊图像的细节。
MATLAB提供了deconvwnr和deconvlucy等函数来实现运动模糊的去除。
图像修复算法:一些先进的图像修复算法,如总变分(Total Variation)和去除重复块(Inpainting)算法,可以从严重损坏的图像中恢复丢失的细节。
数字图像处理-位图基础知识
第一章位图的基础知识现代计算机和其他电子设备进行和完成的一系列工作为图像采集、获取、编码、存储、和传输,图像的合成和产生、图像的显示、绘制、和输出,图像变换、增强、恢复和重建,特征的提取和测量,目标的检测、表达和描述,序列图像的校正,图像数据库的建立、索引、查询和抽取,图像的分类、表示和识别,3D景物的重建复原,图像模型的建立,图像知识的利用和匹配,图像场景的解释和理解,以及基于它们的推理、判断、决策和行为规划。
图像增强图像增强是用以改善供人观看的图像的主观质量,而不一定追究图像降质的原因。
图像复原找出图像降质的原因,并尽可能消除它,使图像恢复本来面目。
常用的恢复有纠正几何失真、从已知图像信号和噪声信号的统计入手,用Wiener滤波等方法来改善信噪比。
图像变换图像处理的方法可以分为两大类空域法和频域法。
常用的图像变换有傅里叶变换、DCT变换、小波变换等。
图像编码根据香农的率失真真理,在传输和存储时,都可对数字图像进行一定方式编码,删除其中冗余信息,实现不失真压缩,或在容许失真限度内的进行有失真压缩,以换取更大的压缩率。
图像配准可以近似的看成匹配的过程,简单地说就是根据图像的某系区域或者特征,在另一幅图中找到对应的区域或者特征。
图像配准在图像识别、图像拼接、三维图像的重建等方面有着重要的应用。
图像分析和特征提取图像分析的内容分为特征提取、符号描述、目标检测、今晚匹配和识别等几个部分。
图像特征和指图像场中可用作标志的属性,其中有些是视觉直接感受到自然特征,如区域的亮度、彩色、纹理、或轮廓等有些事需要通过变换或测量才可得到的人为特征,如各种变换频谱、直方图、矩等。
图像特征提取就是从图像中提取出某些可能涉及到高层语义信息的图像特征。
目标和运动检测自动目标检测和交互目标检测。
图像分割人能方便地佛纳甘一副图像中找出感性趣的物体和区域,而要让计算机做到这一点需要他客观的测度,使之能按照灰度、颜色或几何特征性质等把一些物体或区域加以分离。
数字图像处理技术在遥感中的应用
数字图像处理技术在遥感中的应用随着数字化时代的到来,遥感技术从传统的航空摄影演变为数字遥感,数字图像处理技术的应用也越来越广泛。
在遥感领域,数字图像处理技术可以分为三类:图像增强、特征提取和目标识别。
下面将详细介绍数字图像处理技术在遥感中的应用。
一、图像增强图像增强是指通过一些数字图像处理方法使图像的质量得到提升或者说让人类更容易观察和分析图像。
在遥感领域,由于航拍或卫星拍摄的图像不可避免地存在一些噪声或者扭曲形变,因此图像增强成为了一项关键技术。
一般来说,图像增强可以分为两类:空域滤波和频域滤波。
空域滤波是通过改变像素之间的数值来调整图像的像素值,如中值滤波、均值滤波等。
而频域滤波则是通过改变图像的傅里叶变换谱来调整图像的像素值,比如高通滤波、低通滤波等。
一般而言,频域滤波的效果更好,但是空域滤波的速度更快。
除了常见的滤波方法,还有一些特殊的图像增强方法。
比如,波尔多(Bordeaux)大学曾经提出了一种基于小波变换的图像增强方法,可以在直通波束和散射波束中实现噪声过滤和反射率估计。
二、特征提取特征提取是指从图像中提取出更具信息含量和区分力的特征。
例如,提取植被指数(NDVI)、离散点(blight)指数、道路网图及车辆一系列特征等。
遥感图像的特征提取常常是复杂且繁琐的,可以通过数字图像处理方法简化和优化。
特征提取大致分为两步:一是预处理,二是特征计算。
预处理包括图像分割、去噪等操作。
特征计算则是对分割后的图像进行特征计算,例如感兴趣区域(ROIs)内的植被覆盖率、沙漠化率、土地变化率、道路交通状况等。
特征提取常常是其他应用的基础,例如在目标识别任务中,特征提取就是提高分类正确率的关键。
因此特征提取技术的改进是遥感图像分析技术发展的核心任务。
三、目标识别目标识别是指利用遥感图像中的信息来识别特定的目标,例如建筑物、水体、植被覆盖等。
通过数字图像处理技术的应用,可以提高遥感图像目标识别任务的准确率和自动化水平。
数字图像处理 第四章图像增强
Pr(rk) 0.19 0.25 0.21 0.16 0.08 0.06
0.03
0.02
计算每个sk对应的像素数目 计算均衡化后的直方图
Tr
Sk并
sk
nsk Ps(sk)
0.19
1/7
0.44
3/7
S0=1/7 S1=3/7 S2=5/7
790 0.19 1023 0.25 850 0.21
0.65
✓ 校正后的原始图像 f (i, j) C g(i, j) gc(i, j)
9
灰度级校正注意问题:
对降质图像进行逐点灰度级校正所获得的图像, 其中某些像素的灰度级值有可能要超出记录器 件或显示器输入灰度级的动态范围,在输出时 还要采用其他方法来修正才能保证不失真地输 出。
降质图像在数字化时,各像素灰度级都被量化 在离散集合中的离散值上,但经校正后的图像 各像素灰度极值并不一定都在这些离散值上, 因此必须对校正后的图像进行量化。
),使得结果图像s的直方图Ps(s)为一个常数
Pr(r)
Ps(s)
直方图均衡化 T(r)
r
s
26
直方图均衡化理论基础
-1 由概率论可知,若Pr(r)和变换函数s=T(r)已知,r=T (s)是单 调增长函数,则变换后的概率密度函数Ps(s)可由Pr(r)得到:
分 布 函 数 Fs(s)sp( s s) ds=rp( r r) dr
✓ 计算均衡后的直方图
s k 计
T( rk)
k
=
i 0
P(r
r
)
i
k i 0
ni n
s k并
round( sk计 * (L L 1
1))
j
dip的基本规则
dip的基本规则DIP的基本规则数字图像处理(Digital Image Processing,DIP)是指利用计算机对数字图像进行各种操作和处理的技术。
DIP的基本规则是指在进行数字图像处理时需要遵循的一些原则和准则。
本文将介绍DIP的基本规则,包括图像增强、图像恢复、图像压缩等方面的规则。
一、图像增强的基本规则1. 增强前要理解图像特点:在进行图像增强之前,应该先了解图像的特点,包括亮度、对比度、颜色等方面的特征,并根据具体情况选择合适的增强方法。
2. 选择合适的增强方法:根据图像的特点选择合适的增强方法,如直方图均衡化、灰度变换、空域滤波等。
不同的图像可能需要不同的增强方法,要根据实际情况进行选择。
3. 尽量避免过度增强:在进行图像增强时,要注意避免过度增强,以免使图像失真或产生其他不良效果。
适度的增强可以提高图像质量,但过度增强则会破坏图像的细节和结构。
二、图像恢复的基本规则1. 理解图像损失的原因:在进行图像恢复之前,需要先了解图像损失的原因,如噪声、模糊、运动模糊等。
只有了解损失原因,才能选择合适的恢复方法。
2. 选择合适的恢复方法:根据图像损失的原因选择合适的恢复方法,如滤波、去噪、反卷积等。
不同的损失原因可能需要不同的恢复方法,要根据实际情况进行选择。
3. 控制恢复过程中的误差:在进行图像恢复时,要控制恢复过程中的误差,以保证恢复结果的准确性和可靠性。
可以通过调整参数、采用迭代算法等方式来控制误差。
三、图像压缩的基本规则1. 理解图像压缩的原理:在进行图像压缩之前,需要先了解图像压缩的原理,包括有损压缩和无损压缩等方式。
只有了解原理,才能选择合适的压缩方法。
2. 选择合适的压缩方法:根据图像的特点选择合适的压缩方法,如JPEG、PNG、GIF等。
不同的图像可能需要不同的压缩方法,要根据实际情况进行选择。
3. 控制压缩比例和失真:在进行图像压缩时,要控制压缩比例和失真,以保证压缩结果的质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理实验二
图像增强和恢复
一、 实验目的
掌握用空间滤波进行图像增强或恢复的基本方法。
二、 实验要求
所提供的测试图像),(y x g (课本例图Fig5.12(b))中同时含有均值为零的均匀分布噪声和椒盐噪声。
1、 用大小为5×5的算术均值滤波器、几何均值滤波器、几何均值滤波器和Alpha 删减滤波器对图像进行处理,在不同窗口中显示原图像及各处理结果图像。
2、 Alpha 删减滤波器需要参数d ,调整d 的大小,找到合适的值。
3、 几何均值滤波器的效果如何?如果很差,找到其中原因,并对几何滤波器理论公式进行调整。
4、 调整滤波器窗口的大小,比较所得结果,找到你认为合适的窗口大小。
5、 比较不同滤波器所得结果的优劣,并说明原因。
三、 理论知识
各滤波器公式如下:
(a ) 算术均值滤波器 (Arithmetic mean filter)
∑∈=xy
S t s t s g mn y x f ),(),(1),(ˆ (b ) 几何均值滤波器 (Geometric mean filter )
mn
S t s t s g y x f xy 1
),(),(),(ˆ⎥⎦
⎤⎢⎣⎡∏=∈
(c ) 中值滤波器(Median filter )
)},({),(ˆ),(t s g median y x f xy
S t s ∈= (d ) Alpha 删减滤波器 (Alpha-trimmed filter )
∑∈-=xy
S t s r t s g d mn y x f ),(),(1),(ˆ 其中),(t s g r 代表),(t s g 中除去最大的d/2个值和最小的d/2个值后剩下的值。
图像边缘处理
处理图像边缘点时模板会超出图像范围,此时有两种解决方法:
(a ) 不处理图像最边缘的点,只处理模板不会超出图像范围的点。
所得结果图的大小小于原图像。
(b ) 为了输出结果和原图像大小一致,应先将原图像扩展后再进行处理,即生成一个比原图像大一些的矩阵,将原图像置于矩阵的中心位置。
扩展方法可选择直接加零或对称扩展。
具体扩展大小跟模板大小有关。
四、 测试图像
实验文件夹下的Fig5.12(b).jpg
五、 Matlab 相关知识
1、 Matlab 中I (a,b )代表矩阵I 中第a 行第b 列的像素,I (a1:a2, b1:b2)代表矩阵I 中行数从a1到a2, 列数为b1到b2的所有像素 (一个矩形区域)。
T =I (:) 表示将矩阵I 各列相连而成的一个列向量T 。
Reshape (T )跟原矩阵I 相等。
2、利用matlab的矩阵运算功能可以提高程序效率。
本实验中可能用到的函数有mean,prod,median,sort,注意这些函数如果以向量为参数,返回结果为一个标量,如果以一个二维矩阵为参数,则返回一个向量,向量中的值为对每一列(或每一行,可用参数设置)作相应计算的结果。
利用这些函数的矩阵运算功能可用提高程序效率。
例如在求均值滤波器结果时,不需要每次对一个长25的向量作均值计算,而是可以先构造一个行数等于原图像像素个数(假设做边缘扩展),列数为25(5×5模板)的矩阵,用mean 函数一次完成对所有行取均值的计算,返回一个长度等于原图像像素个数的向量,再用reshape 函数将其恢复成一个跟原图像大小相同的矩阵。
这个大矩阵的每一行即为一个领域内的25个像素的值。
构造这个大矩阵的时候,第一行对应图像最左上角的邻域,第二行为下移一个像素位置的邻域,直至到达图像底部后,再从下一列上方开始往下,以此类推。
3、减少matlab中循环的次数可以提高程序效率。
如构造上述的大矩阵时,可以模板中心位置(i,j)为变量进行循环,每循环一次矩阵增加一行。
总循环次数为原图像行数乘以列数。
另一种方法是每次循环构造矩阵的一列。
例如所构造矩阵的第一列为所有邻域的最左上角像素,这些像素在扩展后的图像中所占位置如下图中虚线框所示,只要将虚线框代表的矩阵按行排列成一个列向量,即构成了上述矩阵的第一列。
其他列的构造方法以此类推。
这种方法所用的总循环次数为25,在matlab中效率较高。
六、实验评分
1.当场检查程序内容及结果,程序效率较高的有加分。
2.实验报告,包括实验目的,算法流程,结果分析等。