盐城初级中学2018~2019年下学期初二数学期中考试试卷
2018-2019学年第二学期八年级期中考试数学试卷
2018-2019学年第二学期八年级期中考试数学试卷 (考试时间为100分钟,全卷满分120分。
)一、选择题(每小题3分,共30分)1、9的值等于( ) A .3 B .-3 C .±3 D .32、使13-x 有意义的x 的取值范围是( )A .31>xB .31->x C .31≥x D .31-≥x 3、下列运算错误的是( )A .532=+B .632=∙C .326=÷D .222=-)( 4、下列二次根式中属于最简二次根式的是( )A .14B .48C .ba D .44+a 5、下面的等式总能成立的是( )A . a a =2B .22a a a =C .ab b a =∙D .b a ab ∙=6、下列各组线段中,能够组成直角三角形的是( ) A .6,7,8 B .5,6,7C .4,5,6D . 5,12,13 7、已知命题:如果a =b ,那么|a |=|b |.该命题的逆命题是( )A .如果a =b ,那么|a |=|b |B .如果|a |=|b |,那么a =bC .如果a ≠b ,那么|a |≠|b |D .如果|a |≠|b |,那么a ≠b8、平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cmB.6cm 和8cmC.8cm 和10cmD.10cm 和12cm9、如图1,在直角三角形ABC 中,∠C=90°,AB=10,AC=8,点E,F 分别为AC 和AB 的中点,则EF=( )A.3B.4C.5D.6图1 图2 10、如图2,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了( )步路(假设2步为1米),却踩伤了花草.A .6步B .5步C .4步D .2步二、填空题(每小题4分,共24分)11的整数部分为 .12是整数,则正整数n 的最小值为13、已知:一个正数的两个平方根分别是22-a 和4-a ,则a 的值是 .14、在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 为平行四边形,则应添加的条件是________.(添加一个即可)15、如图,□ABCD 中,AE 平分∠DAB ,∠B =100°,则∠DAE等于16、如右上图,有一块直角三角形纸片,两直角边AC =6 cm ,BC =8 cm ,现将直角边 AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则DE 等于 cm三.解答题(每小题6分,共18分)17、计算19、如图5,已知:如图,平行四边形ABCD中,点E,F分别在CD,AB上,DF∥BE,EF交BD于点O,求证:EO=FO求证:四边形AECF是平行四边形.四.解答题(每小题7分,共21分)20、如图,四边形ABCD是平行四边形(1)用尺规作图作∠ABC的平分线交AD于E(保留作图痕迹,不要求写作法,不要求证明)(2)求证:AB=AE.21、如图,一架云梯长25 m,斜靠在一面墙上,梯子靠墙的一端距地面24 m.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也滑动了4 m吗?为什么?22、如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长五.解答题(每小题9分,共27分)23、为了减少交通事故的发生,“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上行驶速度不得超过70 km/h.如图,一辆小汽车在一条由东向西的城市街道上直道行驶,某一时刻刚好行驶到路边车速监测仪的正前方30 m的C处,过了2 s后,测得小汽车与车速监测仪的距离AB为50 m,问:(1)在这2s内,小汽车走了多远?(2)这辆小汽车超速了吗?24、如图24,已知□ABCD中,E为AD的中点,CE的延长线交BA的延长线于点E.(1)试说明线段CD与FA相等的理由;(2)要使∠F=∠BCF,□ABCD的边长之间还需再添加一个什么条件?请你补上这个条件,并说明你的理由(不要再增添辅助线).25、阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意指两个人合在一起,取长补短,威力无比.在二次根式中也有这样相辅相成的例子.它们的积是有理数,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:象这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫做分母有理化.解决问题的有理化因式是. 分母有理化得.(2)分母有理化:(1) .(3)计算:。
2018-2019学年度下学期八年级期中质量检测数学试题及答案.docx
2018-2019学年度下学期八年级期中质量检测数学试题( 满分 120 分,考试用时 120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,36 分;第Ⅱ卷为非选择题,84 分;共 120分。
2.答卷前务必将自己的姓名、座号和准考证号按要求填写在答题卡上的相应位置。
3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。
4. 第Ⅱ卷必需用0.5 毫米黑色签字笔书写到答题卡题号所指示的答题区域,不得超出预留范围。
5.在草稿纸、试卷上答题均无效。
第Ⅰ卷(选择题36 分)一、选择题(本大题共12 小题,每小题 3 分,满分 36 分.请将正确选项的字母代号填涂在答题卡相应位置上)1.用两个全等的等边三角形可以拼成下列哪种图形().A. 矩形 B .菱形C.正方形D.等腰梯形2.在□ABCD 中,∠ A: ∠B=7: 2,则∠ C、∠ D 的度数分别为().A . 70°和 20°B . 280 °和 80°C. 140 °和 40°D. 105 °和 30°3.函数y=2x5的图象经过().﹣A .第一、三、四象限;B.第一、二、四象限;C.第二、三、四象限;D.第一、二、三象限.4.1112x 2,2x-1 图象上的两个点,且x 1x 2点 P (x,y),点 P (y )是一次函数 y =4< 0<,则 y 1与 y 2的大小关系是().A .y1>y2B .y1>y2> 0C.y1<y2 D .y1=y25 . 在一次射击训练中,甲、乙两人各射击10 次,两人10 次射击成绩的平均数均是9.1 环,方差分别是S2=1.2, S2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定描述正确的是().A .甲比乙 定;B .乙比甲 定 ;C .甲和乙一 定;D .甲、乙 定性没法 比.6. 一次函数 y= 2x+4 的 象是由 y= 2x-2 的 象平移得到的, 移 方法 ( ) .A .向右平移 4 个 位;B .向左平移 4 个 位;C .向上平移 6 个 位;D .向下平移 6 个 位.7. 次 接矩形的各 中点,所得的四 形一定是 () .A .正方形B .菱形C .矩形D .无法判断8.若 数 a 、 b 、 c 足 a + b + c = 0,且 a < b < c , 函数 y =ax + c 的 象可能是 ( ) .9.如 , D 、 E 、 F 分 是△ ABC 各 的中点, AH 是高,如果 ED =5cm ,那么 HF 的 ( ).A . 6cmB .5cmC . 4cmD .不能确定 10. 已知菱形的周 40,一条 角12, 个菱形的面( ) .9A . 24B . 47C . 48D . 9611. 如 ,直 y=kx+b 点 A ( 3, 1)和点 B ( 6,0), 不等 式 0< kx+b < 1x 的解集 ().3A . x < 0B . 0<x < 3C . x > 6D . 3< x <61112.如 ,矩形 ABCD 的面 20cm 2, 角 交于点 O ,以 AB 、 AO 做平行四 形AOC 1B , 角 交于点 O 1,以 AB 、 AO 1做 平 行 四 形 AO 1C 2B ⋯⋯ 依 此 推 , 平 行 四 形AO 2019C 2020B 的面 () cm 2.5555A .22016B.2 2017C.22018D.2 2019第Ⅱ卷(非选择题84 分)二、填空题(本大题共 4 小题;每小题 4 分,共 16 分.把答案写在题中横线上)13. 一组数据35106x的众数是5,则这组数据的中位数是.,,,,14. 若已知方程组2x y bx1的解是y,则直线 y=- 2x+ b 与直线 y= x-a 的交点坐标x y a3是 __________.15. 已知直线y3x3与x轴、y轴分别交于点A B,在坐标轴上找点P,使△ABP为、等腰三角形,则点P 的个数为个.16.如图,在△ABC 中, AB=6, AC=8, BC=10 , P 为边 BC上一动点 (且点 P 不与点 B、 C 重合 ), PE ⊥AB 于 E, PF⊥AC于 F .则 EF 的最小值为 _________.16 题图三、解答题 : 本大题共 6 小题,满分68 分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分 10 分)已知 y k 3 x k28是关于x的正比例函数,(1)写出 y 与 x 之间的函数解析式;(2)求当 x= - 4 时, y 的值.18.(本题满分 8 分)在□ABCD 中,点 E、F 分别在 BC、AD 上,且 BE = DF .求证:四边形 AECF 是平行四边形.19.(本题满分12 分)某中学举行“中国梦?校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的 5 名选手的决赛成绩如图所示.( 1)根据图示填空:19 题图项目平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.20.(本题满分 12 分)如图,直线 l1的解析式为y3x 3 ,且 l1与 x 轴交于点 D,直线l2经过点 A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ ADC 的面积;(3)在直线l2上存在异于点 C 的另一点 P,使得△ADC 与△ ADP 的面积相等,请直接写出点P的坐标...y yl1l2O D 3x 3A( 4,0)B2C20题图21.(本题满分 12 分)材料阅读:小明偶然发现线段 AB 的端点 A 的坐标为( 1 , 2),端点 B 的坐标为( 3 ,4),则线段AB 中点的坐标为( 2 , 3),通过进一步的探究发现在平面直角坐标系中,以任意两点P( x1,y1)、 Q(x2, y2)为端点的线段中点坐标为知识运用:如图 , 矩形 ONEF 的对角线相交于点分别在 x 轴和 y 轴上,O 为坐标原点,点3) ,则点 M 的坐标为 _________.x1x2,y1y2.22M, ON、OFE 的坐标为 (4,能力拓展:21 题图在直角坐标系中,有A(-1, 2)、B(3,1)、 C(1 , 4)三点,另有一点 D 与点 A、 B、 C 构成平行四边形的顶点,求点D的坐标 .22.(本题满分14 分)现有正方形ABCD 和一个以O 为直角顶点的三角板,移动三角板,使三角板两直角边所....在直线分别与直线BC、 CD 交于点 M、N.( 1)如图 1,若点 O 与点 A 重合,则OM 与 ON 的数量关系是 ___________;( 2)如图 2,若点 O 在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;( 3)如图 3,若点 O 在正方形的内部(含边界),当OM=ON 时,请探究点 O 在移动过程中可形成什么图形?( 4)如图 4 是点 O 在正方形外部的一种情况.当OM =ON 时,请你就 “点 O 的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论(不必说理).NA(O)D ADA DODOANO NMN MM BC BCBC图 1图 2图 3BMC图 422 题图2018-2019 学年度下学期八年期中量数学试题评分标准(分 120分,考用 120 分)一、 ( 本大共12 小,每小 3 分,分36 分.在每小所出的四个中,只有一是符合目要求的,将正确的字母代号填涂在答卡相位置上)1~5 BCACA;6~10 CBABD ;11~12 DC.二、填空 ( 本大共 4 小,每小 4 分,分16 分.不需写出解答程,将答案直接写在答卡相位置上.)13. 5 ;14.(-1,3);15.6个;16. 4.8.三、解答( 本大共6 小,分68 分.在答卡指定区域内作答,解答写出必要的文字明、明程或演算步.)17.(本分10 分)解:( 1)∵y是x的正比例函数.∴ k 2-8=1,且k-3≠0,⋯⋯⋯⋯⋯⋯⋯ 3 分∴解得 k=-3∴ y=-6 x.⋯⋯⋯⋯⋯⋯⋯ 6 分( 2)当 x=-4 , y=-6 ×( -4) =24 .⋯⋯⋯⋯⋯10分18.(本分8 分)明 :∵ ABCD是平行四形,∴ AD = BC ,AD∥ BC.⋯⋯⋯⋯⋯⋯⋯ 2 分又∵ BE = DF ,∴ AD-DF = BC- BE,即AF = CE,注意到AF∥ CE,⋯⋯⋯⋯⋯⋯⋯ 6 分因此四形AECF 是平行四形.⋯⋯⋯⋯⋯⋯⋯8 分或通明AE = CF (由△ ABE≌△ CDF )而得或其他方法也可。
2018江苏盐城中学八年级下数学期中试题
江苏省盐城市初级中学2017——2018年第二学期初二数学期中试卷一、选择题:本大题共10小题,每小题3分,共30分 1.下列计算正确的是( )A .2)4(-=—4 B .(a 2)3=a 5 C .a •a 3=a 4D .2a —a =22.函数y =42-x 中自变量x 的取值范围是( ) A .x ≥2 B .x >2 C .x ≤2D .x ≠23.如图,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且AB =CD =4,则OP 的长为( ) A .1B .2C .2D .224.如图,在直角∠O 的内部有一滑动杆AB ,当端点A 沿直线AO 向下滑动时,端点B 会随之自动地沿直线OB 向左滑动,如果滑动杆从图中AB 处滑动到A ′B ′处,那么滑动杆的中点C 所经过的路径是( )A .直线的一部分B .圆的一部分C .双曲线的一部分D .抛物线的一部分第3题 第4题 第6题 第7题5.关于x 的方程1+x ax —1=12+x 的解为非正数,且关于x 的不等式组⎪⎩⎪⎨⎧≥+≤+33522x x a 无解,那么满足条件的所有整数a 的和是( )A .—19B .—15C .—13D .—96.二次函数y =ax 2+bx +c 的图象如图所示,Q (n ,2)是图象上的一点,且AQ ⊥BQ ,则a 的值为( )A .—31B .—21C .—1D .—27.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上60°刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数为( )A .60°B .65°C .70°D .75°8.如图,在四边形ABCD 中,一组对边AB =CD ,另一组对边AD ≠BC ,分别取AD 、BC 的中点M 、N ,连接MN .则AB 与MN 的关系是( )A .AB =MN B .AB >MNC .AB <MND .上述三种情况均可能出现9.如图,直线m ⊥n .在平面直角坐标系xOy 中,x 轴∥m ,y轴∥n .如果以O 1为原点,点A 的坐标为(1,1).将点O 1平移22个单位长度到点O 2,点A 的位置不变,如果以O 2为原点,那么点A 的坐标可能是( ) A .(3,—1)B .(1,—3)C .(—2,—1)D .(22+1,22+1)10.如图,四边形AOBC 和四边形CDEF 都是正方形,边OA 在x 轴上,边OB 在y 轴上,点D 在边CB 上,反比例函数y =—x8在第二象限的图象经过点E ,则正方形AOBC 和正方形CDEF 的面积之差为( ) A .12 B .10 C .8 D .6 二、填空题:每小题3分,共24分 11.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是 .2+bx +c (a ≠0)中,函数值y 与自变量x 的部分对应值如下表:的根是 .第10题 第11题 第13题 第15题 13.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,E 为BC 边上的一点,以A 为圆心,AE 为半径的圆弧交AB 于点D ,交AC 的延长于点F ,若图中两个阴影部分的面积相等,则AF 的长为 (结果保留根号).14.如果实数x 满足(x +x 1)2—(x +x 1)—2=0,那么x +x1的值是 . 15.等腰Rt △ABC 中,D 为斜边AB 的中点,E 、F 分别为腰AC 、BC 上(异于端点)的点,DE ⊥DF ,AB =10,设x =DE +DF ,则x 的取值范围为 .16.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向向右平移,得到△A ′B ′C ′,当两个三角形重叠部分的面积为32时,它移动的距离AA ′等于_______.第16题 第18题17.对于函数y =x n +x m ,我们定义y ′=nx n —1+mx m —1(n m 、为常数). 例如y =x 4+x 2,则y ′=4x 3+2x . 已知: y =31x 3+(m —1)x 2+m 2x .若方程y ′=m —41有两个正数根,则m 的取值范围为__________.18. 赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1、C 1、C 2、C 3、…、C n 在直线y =—21x +27上,顶点D 1、D 2、D 3、…、D n 在x 轴上,则第n 个阴影小正方形的面积为 . 三、解答题,共96分. 19.(6分)计算:4+(21)—1—2cos60°+(2—π)0. 20.(6分)先化简代数式1—x x 1-÷xx x 2122+-,并从—1,0,1,3中选取一个合适的代入求值21.(8分)如图,小明站在看台上的A 处,测得旗杆顶端D 的仰角为15°,当旗杆顶端D的影子刚好落在看台底部B 处时,太阳光与地面成60°角.已知∠ABC =60°,AB =4米,求旗杆的高度.(点A 与旗杆DE 及其影子在同一平面内,C 、B 、E 三点共线且旗杆与地面垂直,不考虑小明的身高)22.(10分)有这样一个问题:探究函数y =22x —21x 的图象与性质. 小东根据学习函数的经验,对函数y =22x—21x 的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:(1)函数y =22x—21x 的自变量x 的取值范围是 ;的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(—2,23),结合函数的图象,写出该函数的其它性质(一条即可) .(5)根据函数图象估算方程22x —21x =2的根为 .(精确到0.1)23.(8分).一工人在定期内要制造出一定数量的同样零件,若他每天多做10个,则提前421天完成,若他每天少做5个,则要误期3天.问他要做多少个零件?定期是多少天?24.(8分)宁波轨道交通4号线已开工建设,计划2020年通车试运营.为了了解镇民对4号线地铁票的定价意向,某镇某校数学兴趣小组开展了“你认为宁波4号地铁起步价定为多少合适”的问卷调查,并将调查结果整理后制成了如下统计图,根据图中所给出的信息解答下列问题:(1)求本次调查中该兴趣小组随机调查的人数; (2)请你把条形统计图补充完整;(3)如果在该镇随机咨询一位居民,那么该居民支持“起步价为2元或3元”的概率是 (4)假设该镇有3万人,请估计该镇支持“起步价为3元”的居民大约有多少人?25.(12分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t . ①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?26.(12分)如图,在△ABC 中,∠C =90°,D 、F 是AB 边上的两点,以DF 为直径的⊙O 与BC 相交于点E ,连接EF ,过F 作FG ⊥BC 于点G ,其中∠OFE =21∠A .(1)求证:BC 是⊙O 的切线;(2)若sin B =53,⊙O 的半径为r ,求△EHG 的面积(用含r 的代数式表示).27.(12分)已知:如图,在矩形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连接FC .(AB >AE ).(1)△AEF 与△ECF 是否相似?若相似,证明你的结论;若不相似,请说明理由;(2)设BCAB=K ,是否存在这样的k 值,使得△AEF 与△BFC 相似?若存在,证明你的结论并求出k 的值;若不存在,说明理由.28.(14分)已知:如图一,抛物线y =ax 2+bx +c 与x 轴正半轴交于A 、B 两点,与y 轴交于点C ,直线y =x —2经过A 、C 两点,且AB =2. (1)求抛物线的解析式;(2)若直线DE 平行于x 轴并从C 点开始以每秒1个单位的速度沿y 轴正方向平移,且分别交y 轴、线段BC 于点E ,D ,同时动点P 从点B 出发,沿BO 方向以每秒2个单位速度运动,(如图2);当点P 运动到原点O 时,直线DE 与点P 都停止运动,连DP ,若点P 运动时间为t 秒;设s =OPED OPED ∙+,当t 为何值时,s 有最小值,并求出最小值.(3)在(2)的条件下,是否存在t 的值,使以P 、B 、D 为顶点的三角形与△ABC 相似;若存在,求t 的值;若不存在,请说明理由.。
2018-2019学年度八年级(下)期中考试数学试卷(五四学制)含答案解析
2018-2019学年度八年级(下)期中数学试卷(五四学制)一、选择题(本大题共10小题,共30.0分)1.下列各式:,,,(a>0),其中是二次根式的有()A. 1个B. 2个C. 3个D. 4个2.将-a中的a移到根号内,结果是()A. B. C. D.3.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A. B. C. D.4.若关于x的一元二次方程(m-1)x2+5x+m2-5m+4=0有一个根为0,则m的值等于()A. 1B. 4C. 1或4D. 05.若方程ax2+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a-b+c=0,则方程的根是()A. 1,0B. ,0C. 1,D. 无法确定6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C. 5D. 47.用因式分解法解方程,下列方法中正确的是()A. ,或B. ,或C. ,或D. ,8.菱形ABCD的一条对角线长为6,边AB的长为方程y2-7y+10=0的一个根,则菱形ABCD的周长为()A. 8B. 20C. 8或20D. 109.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A. B. C. D. b10.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A. 12厘米B. 16厘米C. 20厘米D. 28厘米二、填空题(本大题共10小题,共30.0分)11.计算()=______.12.以正方形ABCD的边BC为边做等边△BCE,则∠AED的度数为______.13.若|b-1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是______.14.化简的结果为______.15.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为______.16.观察下列各式:,,…请你将发现的规律用含自然数n(n≥1)的代数式表达出来______.17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为______.18.如果二次三项式x2-2(m+1)x+16是一个完全平方式,那么m的值是______.19.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为______.20.如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为______度.三、计算题(本大题共2小题,共10.0分)21.计算(1)(-)2+2•3;(2)(5-6+4)÷.22.解方程(1)2x2-4x-5=0.(公式法)(2)x2-4x+1=0.(配方法)(3)(y-1)2+2y(1-y)=0.(因式分解法)四、解答题(本大题共4小题,共30.0分)23.如下表,方程1、方程2、方程3…是按照一定的规律排列的一列方程,解方程3,(2)用你探究的规律解方程x2-8x-20=0.24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.25.在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:.26.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.答案和解析1.【答案】B【解析】解:是三次根式;,符合二次根式的定义,所以它们是二次根式;∵a>0,-6a<0,(a>0)不是二次根式.综上所述,二次根式的个数是2个.故选:B.二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.本题考查了二次根式的定义.注意,二次根式的被开方数是非负数.2.【答案】B【解析】解:由题意得a<0,原式==故选:B.根据二次根式的运算即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.3.【答案】B【解析】解:A、∵四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当 ∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,当 ∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,当 ∠ABC=90°时,平行四边形ABCD是矩形,当AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.4.【答案】B【解析】解:把x=0代入方程得m2-5m+4=0,解得m1=4,m2=1,而a-1≠0,所以m=4.故选:B.先把x=0代入方程求出m的值,然后根据一元二次方程的定义确定满足条件的m的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.5.【答案】C【解析】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是-1.则方程的根是1,-1.故选:C.本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.6.【答案】A【解析】【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.本题考查了勾股定理和菱形的性质的应用,能根据菱形=是解此题的关键.的性质得出S菱形ABCD【解答】解:∵四边形ABCD是菱形,AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S=,菱形ABCD,DH=,故选:A.7.【答案】A【解析】解:用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.所以第一个正确.故选:A.用因式分解法时,方程的右边为0,才可以达到化为两个一次方程的目的.因此第二、第三个不对,第四个漏了一个一次方程,应该是x=0,x+2=0.此题考查了学生对因式分解方法应用的条件的理解,提高了学生学以致用的能力.8.【答案】B【解析】解:∵解方程y2-7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;菱形的边长为5.菱形ABCD的周长为4×5=20.故选:B.边AB的长是方程y2-7y+10=0的一个根,解方程求得y的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.9.【答案】A【解析】解:由图可知:a<0,a-b<0,则|a|+=-a-(a-b)=-2a+b.故选:A.直接利用数轴上a,b的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.10.【答案】C【解析】解:设斜线上两个点分别为P、Q,∵P点是B点对折过去的,∠EPH为直角,△AEH≌△PEH,∠HEA=∠PEH,同理∠PEF=∠BEF,∠PEH+∠PEF=90°,四边形EFGH是矩形,△DHG≌△BFE,HEF是直角三角形,BF=DH=PF,∵AH=HP,AD=HF,∵EH=12cm,EF=16cm,FH===20cm,FH=AD=20cm.故选:C.先求出△EFH是直角三角形,再根据勾股定理求出FH=20,再利用全等三角形的性质解答即可.本题考查的是翻折变换及勾股定理、全等三角形的判定与性质,解答此题的关键是作出辅助线,构造出全等三角形,再根据直角三角形及全等三角形的性质解答.11.【答案】【解析】解:原式=÷(+)=÷=×=,故答案为:先计算括号内的加法,再计算除法即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.12.【答案】150°或30°【解析】解:如图(1)∠ABE=90°+60°=150°,AB=BE, ∠AEB=15°=∠DEC, ∠AED=30°如图(2)BE=BA,∠ABE=30°, ∠BEA=75°=∠CED∠AED=360°-75°-75°-60°=150°.故答案为30或150.等边△BCE可能在正方形,外如图(1),也可在正方形内如图(2),应分情况讨论.本题考查了正方形的性质及等边三角形的性质.13.【答案】k≤4且k≠0【解析】解:∵|b-1|+=0,b-1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,△=a2-4kb≥0且k≠0,即16-4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.14.【答案】2-【解析】解:原式=[(-2)(+2)]2015•(-2)=(3-4)2015•(-2)=-(-2)=2-.故答案为2-.先利用积的乘方得到原式=[(-2)(+2)]2015•(-2),然后根据平方差公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【答案】(0,-)【解析】解:由折叠的性质可知,∠B′AC=∠BAC,∵四边形OABC为矩形,OC∥AB,∠BAC=∠DCA,∠B′AC=∠DCA,AD=CD,设OD=x,则DC=6-x,在Rt△AOD中,由勾股定理得,OA2+OD2=AD2,即9+x2=(6-x)2,解得:x=,点D的坐标为:(0,),故答案为:(0,-).由折叠的性质可知,∠B′AC=∠BAC,∠BAC=∠DCA,易得DC=DA,设OD=x,则DC=6-x,在Rt△AOD中,由勾股定理得OD,得OD的坐标.本题主要考查了翻折变换的性质及其应用问题,灵活运用有关定理来分析、判断、推理或解答是解题的关键.16.【答案】(n≥1)【解析】解:∵=(1+1);=(2+1);=(n+1)(n≥1).故答案为:=(n+1)(n≥1).观察分析可得:=(1+1);=(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n+1)(n≥1).17.【答案】4.8【解析】解:∵Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,连接CP,∵PD⊥AC于点D,PE⊥CB于点E,四边形DPEC是矩形,DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,DE=CP==4.8,故答案为:4.8.连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE的最小值转化为其相等线段CP的最小值.18.【答案】3或-5【解析】解:中间一项为加上或减去x和4积的2倍,故-2(m+1)=±8,解得m=3或-5,故答案为:3或-5.这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故-2(m+1)=±8,求解即可.本题考查了完全平方式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.19.【答案】【解析】解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°AB=AD,∠A=60°,∵BM=AE,AD=ME,∵△DEF为等边三角形,∠DAE=∠DFE=60°,DE=EF=FD,∠MEF+∠DEA═120°,∠ADE+∠DEA=180°-∠A=120°,∠MEF=∠ADE,在△DAE和△EMF中,△DAE≌EMF(SAS),AE=MF,∠M=∠A=60°,又∵BM=AE,△BMF是等边三角形,BF=AE,∵AE=t,CF=2t,BC=CF+BF=2t+t=3t,∵BC=4,3t=4,t=故答案为:.或连接BD.根据SAS证明△ADE≌△BDF,得到AE=BF,列出方程即可.延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.本题主要考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质等知识,解题的关键是运用三角形全等得出△BMF是等边三角形.20.【答案】32【解析】解:∵∠ABC=∠ADC=90°,点A,B,C,D在以E为圆心,AC为直径的同一个圆上,∵∠BAD=58°,∠DEB=116°,∵DE=BE=AC,∠EBD=∠EDB=32°,故答案为:32.根据已知条件得到点A,B,C,D在以E为圆心,AC为直径的同一个圆上,根据圆周角定理得到∠DEB=116°,根据直角三角形的性质得到DE=BE=AC,根据等腰三角形的性质即可得到结论.本题考查了直角三角形斜边上的中线的性质,圆周角定理,推出A,B,C,D 四点共圆是解题的关键.21.【答案】解:(1)原式=2-2+3+×3=5-2+2=5;(2)原式=(20-18+4)÷=(2+4)÷=2+4.【解析】(1)先利用完全平方公式和二次根式的乘法法则运算,然后把各二次根式化简为最简二次根式后合并即可;(2)先把各二次根式化简为最简二次根式,然后把括号内合并后进行二次根式的除法运算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】解:(1)2x2-4x-5=0,a=2,b=-4,c=-5,△=b2-4ac=(-4)2-4×2×(-5)=16+40=56,x===,x1=,x2=,(2)x2-4x+1=0,x2-4x+4=3,(x-2)2=3,x=2,x1=2+,x2=2-,(3)(y-1)2+2y(1-y)=0,y2-1=0,(y+1)(y-1)=0,y1=1,y2=-1.【解析】本题考查的是一元二次方程的解法,掌握公式法、配方法、因式分解法解一元二次方程的一般步骤是解题的关键.(1)先确定a、b、c的值,根据公式法解方程;(2)根据配方法解方程;(3)先化为一般式,根据平方差公式分解因式后解方程.23.【答案】3;-9【解析】解:x2+6x-27=0,(x-3)(x+9)=0,所以,x1=3,x2=-9.故答案为:3,-9;(1)第m个方程为:x2+2mx-3•m2=0,方程的解是x1=m,x2=-3m;(2)∵x2-8x-20=0可化为(x-10)(x+2)=0,方程的解是x1=10,x2=-2.利用因式分解法将方程3变形为(x-3)(x+9)=0,进而求解即可;(1)观察图表,一次项系数为从2开始的连续偶数,常数项是从1开始的连续自然数的平方的3倍的相反数,然后写方程,再根据方程的第一个解是连续自然数,第二个解是3的倍数的相反数写出即可;(2)利用因式分解法将方程3变形为(x-10)(x+2)=0,进而求解即可.本题考查了因式分解法解一元二次方程,读懂图表信息,理解一元二次方程的解与一次项系数和常数项的关系是解题的关键.24.【答案】(1)证明:∵AF∥BC,∠AFE=∠DBE,∵E是AD的中点,AE=DE,在△AFE和△DBE中,∠ ∠∠ ∠△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线DB=DC,AF=CD.∵AF∥BC,四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,AD=DC=BC,四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,四边形ABDF是平行四边形,DF=AB=5,∵四边形ADCF是菱形,S菱形ADCF=AC▪DF=×4×5=10.【解析】(1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.25.【答案】解:(1).(2)原式==.【解析】(1)分式的分子和分母都乘以-,即可求出答案;把2看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.本题考查了分母有理化,平方差公式的应用,主要考查学生的计算和化简能力.26.【答案】①证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵正方形ABCD∠BCD=90°,∠ECN=45°∠EMC=∠ENC=∠BCD=90°且NE=NC,四边形EMCN为正方形∵四边形DEFG是矩形,EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°∠DEN=∠MEF,又∠DNE=∠FME=90°,∠ ∠在△DEN和△FEM中,,∠ ∠△DEN≌△FEM(ASA),ED=EF,矩形DEFG为正方形,②解:CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,DE=DG,∠EDC+∠CDG=90°∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°∠ADE=∠CDG,在△ADE和△CDG中,∠ ∠ ,△ADE≌△CDG(SAS),AE=CGAC=AE+CE=AB=×2=4,CE+CG=4 是定值.【解析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=4即可.此题是四边形综合题,主要考查了正方形的性质,矩形的性质,矩形的判定,三角形的全等的性质和判定,勾股定理,解本题的关键是作出辅助线,判断三角形全等.。
精选盐城市盐都区2018-2019学年八年级下期中考试数学试题含答案
盐城市盐都区2018-2019学年八年级下期中考试八年级数学试卷注意事项:1.本次考试时间为100分钟,卷面总分为120分.考试形式为闭卷.2.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分. 3.答题前,务必将姓名、准考证号用0.5毫米黑色签字笔填写在试卷及答题卡上.一、选择题(本大题共6小题,每小题3分,共18分. 在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 下列图形是中心对称图形的是 ··························································· 【 ▲ 】2. 若分式23x x --有意义,则x 满足的条件是 ·············································· 【 ▲ 】 A .x ≠0B .x ≠2C .x ≠3D .x ≥33. 下列事件中,是必然事件的是 ··························································· 【 ▲ 】A .两条线段可以组成一个三角形B .400人中有两个人的生日在同一天C .早上的太阳从西方升起D .打开电视机,它正在播放动画片4. 下列调查中,最适宜采用普查方式的是 ··············································· 【 ▲ 】A .对我国初中学生视力状况的调查B .对量子通信卫星上某种零部件的调查C .对一批节能灯管使用寿命的调查D .对“最强大脑”节目收视率的调查5. 下列等式成立的是 ·········································································· 【 ▲ 】A .23a b +=5ab B .33a b +=1a b + C .2ab ab b -=aa b-D .a ab -+=aa b-+6. 如图,在四边形ABCD 中,∠A =90°,AB =3,AD =7,点M 、N 分别为线段BC 、AB 上的动点,点E 、F 分别为DM 、MN 的中点,则EF 长度的最大值为 ······························· 【 ▲ 】 A .7B .4C .3D .2二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请将答案直接写在答题卡相应ABCD第6题图CDE FA BNM位置上) 7. 若分式1xx-的值为0,则x = ▲ . 8. 分式3212x y 、213x y的最简公分母是 ▲ . 9. 在一个不透明的盒子里装有40个黑、白两种颜色的球,这些球除颜色外完全相同.小丽做摸球实验,搅匀后她从盒子里随机摸出一个球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1 000 3 000 摸到白球的次数m 65 124 178 302 481 599 1803 摸到白球的频率mn0.650.620.5930.6040.6010.5990.601若从盒子里随机摸出一个球,则摸到白球的概率的估计值为 ▲ .(精确到0.1) 10.菱形ABCD 中,对角线AC =6,BD =8,则菱形ABCD 的面积是 ▲ .11.一只不透明的袋子中装有白、红、黑三种不同颜色的球,其中白球有3个,红球有8个,黑球有m 个,这些球除颜色外完全相同.若从袋子中任意取一个球,摸到黑球的可能性最小,则m 的值是 ▲ . 12.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠AOD =120°,AB =4,则AC 长为 ▲ .13.如图,□ABCD 的对角线AC 、BD 相交于点O ,点E 、F 分别是线段AO 、BO 的中点.若AC +BD =22 cm ,△OAB 的周长是16 cm ,则EF 的长为 ▲ cm . 14.已知245x x --=0,则分式265xx x --的值是 ▲ .15.如图,菱形ABCD 的边长为6,M 、N 分别是边BC 、CD 的上点,且MC =2MB ,ND =2NC .点P 是对角线上BD 上一点,则PM +PN 的最小值是 ▲ .16.如图,点P 为正方形ABCD 的对角线BD 上任一点,过点P 作PE ⊥BC ,PF ⊥CD ,垂足分别为点E 、F ,连接EF .下列结论:①△FPD 是等腰直角三角形;②AP =EF ;③AD =PD ;④∠PFE =∠BAP .其中正确的结论是 ▲ .(请填序号)三、解答题(本大题共10小题,共82分,请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分8分)计算.(1)22b a b a b -++;(2)221112a a a a a a --÷+++.第13题图CDE FABO第16题图CDEF A BP C DAB NPM 第15题图第12题图A BCD O18.(本题满分6分)如图,□ABCD中,点F是BC边的中点,连接DF并延长交AB的延长线于点E.求证:AB=BE.19.(本题满分7分)先化简:22111()21x xxx xx x-+÷⋅--+,然后在-1,0,1,2四个数中找一个你认为合适的x代入求值.20.(本题满分10分)某校在“6·26国际禁毒日”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作了频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:分数段(x表示分数)频数频率50≤x<60 4 0.160≤x<70 a0.270≤x<80 12 b80≤x<90 10 0.2590≤x<100 6 0.15(1)表中a=▲,b=▲,并补全直方图;(2)若用扇形统计图描述此成绩统计分布情况,则分数段80≤x<100对应扇形的圆心角度数是▲;(3)请估计该年级分数在60≤x<70的学生有多少人?21.(本题满分6分)如图,点A、C是□DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.22.(本题满分8分)观察等式:①112´=112-;②123´=1123-;③134´=1134-;④145´=1145-,……(1)试用含字母n的等式表示出你发现的规律,并证明该等式成立;(2)111112233420162017++++创创=________.(直接写出结果)506810241260708090100成绩/频数CDEFA B第21题图第18题图CDEFA B23.(本题满分7分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy 的原点O 在格点上,x 轴、y 轴都在网格线上.线段AB 的端点A 、B 在格点上. (1)将线段AB 绕点O 逆时针90°得到线段A 1B 1,请在图中画出线段A 1B 1;(2)在(1)的条件下,线段A 2B 2与线段A 1B 1关于原点O 成中心对称,请在图中画出线段A 2B 2;(3)在(1)、(2)的条件下,点P 是此平面直角坐标系内的一点,当以点A 、B 、B 2、P 为顶点的四边形是平行四边形时,请直接写出点P 的坐标: ▲ .24.(本题满分8分)在□ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF . (1)求证:四边形DEBF 是矩形;(2)若AF 平分∠DAB ,AE =3,BF =4,求□ABCD 的面积.25.(本题满分10分)如图1,正方形ABCD 中,点O 是对角线AC 的中点,点P 是线段AO 上(不与A 、O 重合)的一个动点,过点P 作PE ⊥PB 且PE 交边CD 于点E .(1)求证:PB =PE ;(2)过点E 作EF ⊥AC 于点F ,如图2.若正方形ABCD 的边长为2,则在点P 运动的过程中,PF 的长度是否发生变化?若不变,请直接写出这个不变的值;若变化,请说明理由.26.(本题满分12分)把一张矩形纸片ABCD 按如图方式折叠,使顶点B 落在边AD 上(记为点B ′),点A落在点A ′处,折痕分别与边AD 、BC 交于点E 、F . (1)试在图中连接BE ,求证:四边形BFB ′E 是菱形; (2)若AB =8,BC =16,求线段BF 长能取到的整数值.O y xAB第23题图 第26题图C D EA BA 'FB '备用图C D A B备用图CDA B第24题图 CDEFAB C DEABOP图1CDEA BOP图2F第25题图八年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误!)一、选择题(每小题3分,共18分)题号 1 2 3 4 5 6 答案ACBBCD二、填空题(每小题2分,共20分) 7. 0. 8. 326x y . 9. 0.6. 10.24. 11.1或2. 12.8.13.2.5.14.2.15.6.16.①②④.三、解答题17.(1)原式=2()()2a b a b b a b-+++ ···································································· 2分=22a b a b++. ··············································································· 4分(2)原式=2(1)1(1)1a a a a a -+×+- ·········································································· 2分=1aa +. ·················································································· 4分 18.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD . ············································································ 2分 ∴∠CDF =∠E ,∠C =∠CBE . ∵点F 是BC 边的中点, ∴FC =FB . ∴△CDF ≌△BEF .∴CD =BE . ·························································································· 5分 ∴AB =BE . ··························································································· 6分 19.解:原式=22(1)(1)1(1)1x x x x x x x+--鬃-+ ···························································· 4分=1x +. ··················································································· 5分取x =2. ······························································································ 6分 ∴原式=2+1=3. ················································································· 7分 (注:x 只能取2.)20.(1)a =8. ··························································································· 2分b =0.3. ························································································· 4分补全直方图如下: ············································································· 6分(2)144°. ···························································································· 8分 (3)0.2×320=64(人).答:该年级分数在60≤x <70的学生有64人. ········· 10分 21.证明:连接DB 交EF 于点O .∵四边形DEBF 是平行四边形,∴OD =OB ,OE =OF . ··········································································· 2分 ∵AE =CF ,∴OE +AE =OF +CF ,即OA =OC . ·························································· 4分 ∴四边形ABCD 是平行四边形. ································································ 6分 (注:证明出一个条件给2分,其它证法类似给分.) 22.(1)1(1)n n +=111n n -+(n 为正整数). ······················································ 3分证明:∵111n n -+=1(1)(1)n n n n n n +-++=1(1)n n n n +-+=1(1)n n +. ······················ 6分 ∴1(1)n n +=111n n -+.(2)20162017. ·························································································· 8分 (注:第(1)问答案不注明“n 为正整数”不扣分.)23.(1)线段A 1B 1如图所示. ········································································· 2分(2)线段A 2B 2如图所示. ········································································· 4分5068010241260708090100成绩/分频数O yxAB第23题图1B 1A 2A 2B(3)(3,0),(1,4),(1,-4). ······························································ 7分(注:第(1)、(2)小问中,图形画对就给满分,字母没有标注不扣分;第(3)小问写对一个给1分) 24.(1)∵四边形ABCD 是平行四边形,∴DC ∥AB ,即DF ∥EB . 又∵DF =BE ,∴四边形DEBF 是平行四边形. ··························································· 2分 ∵DE ⊥AB , ∴∠EDB =90°.∴四边形DEBF 是矩形. ···································································· 4分 (2)∵四边形DEBF 是矩形,∴DE =BF =4,BD =DF . ∵DE ⊥AB ,∴AD =22AE DE +=2234+=5. ···················································· 5分 ∵DC ∥AB , ∴∠DF A =∠F AB . ∵AF 平分∠DAB , ∴∠DAF =∠F AB . ∴∠DAF =∠DF A .∴DF =AD =5. ··············································································· 7分 ∴BE =5.∴AB =AE +BE =3+5=8.∴S □ABCD =AB ·BF =8×4=32.. ························································ 8分25.(1)如图1,连接PD .∵四边形ABCD 是正方形,∴BC =DC ,∠BCA =∠DCA ,∠BCD =90°. 又∵PC =PC , ∴△BCP ≌△DCP .∴PB =PD ,∠PBC =∠PDC . ···························································· 3分 ∵PB ⊥PE , ∴∠BPE =90°.∴在四边形BCEP 中,∠PBC +∠PEC =360°-∠BPE -∠BCE =180°. 又∵∠PED +∠PEC =180°, ∴∠PBC =∠PED . ∴∠PDC =∠PDE .∴PD =PE . ···················································································· 6分 ∴PB =PE . ····················································································· 7分(说明:如图2过点P 作AB 边的垂线,如图3过点P 分别作BC 、CD 边的垂线证明类似给分.)(2)PE 的长度不发生变化,PF =2. ····················································· 10分(提示:连接OB ,证明△PEF ≌△BPO .说明:答案写成182、22等没有化简的形式均不扣分) 26.(1)连接BB ′.由折叠知点B 、B ′关于EF 对称.∴EF 是线段BB ′的垂直平分线.∴BE =B ′E ,BF =B ′F . ······································································ 2分 ∵四边形ABCD 是矩形, ∴AD ∥BC . ∴∠B ′EF =∠BFE . 由折叠得B ′FE =∠BFE . ∴∠B ′EF =B ′FE .∴B ′E =B ′F . ··················································································· 4分 ∴BE =B ′E =B ′F =BF .∴四边形BFB ′E 是菱形. ··································································· 5分 (2)如图1,当点E 与点A 重合时,四边形ABFB ′是正方形,此时BF 最小. ··· 6分∵四边形ABFB ′是正方形,∴BF =AB =8,即BF 最小为8. ························································· 7分 如图2,当点B 与点D 重合时,BF 最大. ············································· 8分 设BF =x ,则CF =16x -,DF =BF =x . 在Rt △CDF 中,由勾股定理得CF 2+CD 2=DF 2.∴22(16)8x -+=2x ,解得x =10,即BF =10. ····································· 10分 ∴8≤BF ≤10.∴线段BF 长能取到的整数值为8,9,10. ··········································· 12分CD EAB OP图1CD EAB OP图2 CDEAB OP图3第25题图C DA BF()E A 、'B 'CD ABB ()'F EA '。
2018-2019年八年级第二学期期中考试数学试卷
2019~2019学年度第二学期期中考试八年级数学(考试时间:120分钟 满分:150分)一、选择题(本大题共8题,每小题3分,共24分.)1.当b a >时,下列不等式中正确的是 ( )A .22ba < B .11-<-b a C .c b c a +>+22 D .b a ->- 2.若式子||22x x -+的值为0,则x 的值是 ( )A .2B .-2C .±2D .0 3.把分式ba ab+中的a 、b 都扩大2倍,则分式的值 ( ) A .扩大8倍 B .扩大4倍 C .扩大2倍 D .不变4.若反比例函数3my x-=的图象在第一、第三象限内,则m 的取值范围是 ( ) A .3m ≤ B .3m ≥ C .3m < D .3m > 5.不等式组⎩⎨⎧<-≥+02312x x 的解集在数轴上表示为 ( )6.如图,点P 是反比例函数ky x=图象上一点,过点P 分别作x 轴、y 轴的垂线,如果构 成的矩形面积是4,那么反比例函数的解析式是 ( ) A.2y x =- B. 2y x = C. 4y x = D. 4y x=-12A . 12B .12C . 12D .O PABxy 第6题OB ACDE xy第8题班级 姓名 考试号……………………………………………… 装…… 订…… 线…………………………………………………7.反比例函数xy 2=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是 ( ) A. 321y y y << B .312y y y << C .213y y y << D .123y y y <<8.如图,平行四边形ABCD 的顶点A 的坐标为(—2,0),顶点D 在双曲线xky =(0>x )上,AD 交y 轴于点E (0,25),且四边形BCDE 的面积是△ABE 面积的3倍,则k 的值 为 ( ) A .5 B .10 C .12 D .15 二、填空题(本大题共10题,每小题3分,共30分.) 9.不等式23≥-x 的解集为 . 10.若分式32-x 有意义,则实数x 的取值范围是___________. 11.当2013=x 时,分式242--x x 的值为 .12.化简:=-+-ab bb a a . 13.若分式11-m 的值为整数,则整数m = . 14.反比例函数xky =的图象经过点P (3,-2),则k = . 15.当m = 时,关于x 的方程xmx x -+=-3132会产生增根. 16.在同一坐标系中,正比例函数kx y =与反比例函数xmy =的图象交于点A 、B ,若交点A 的坐标为(-2,1),则交 点B 的坐标为 .17.当x 、y 满足条件 时,分式xyx --1的值为0. OA Bxy第16题18.若不等式组⎩⎨⎧><-ax x 312的解集中含有3个整数,则a 的取值范围是 .三、解答题(本大题共10题,共96分.) 19.(本题满分8分)解不等式:(1)0)2(3)1(2<--+x x (2)312621-≤--x x20.(本题满分8分)计算或化简:(1)b a a bc cb a ÷-⋅)2(222 (2))2(424x x x x ----21.(本题满分8分)解分式方程:12112-=--x x x22.(本题满分8分)先化简:1)11(22-÷+-+a aa a a ,再从1,1-,2中选一个你认为合适的数作为a 的值代入求值.23.(本题满分10分)反比例函数xky =的图象经过点A (2,—3). (1)求这个函数的解析式;(2)请判断点B (—5,1)是否在这个反比例函数的图象上,并说明理由.24.(本题满分10分)函数x y 2=与3-=x y 的图象有一个交点的坐标为(a ,b ),求aab b bab a ---+2232的值.25.(本题满分10分)一辆汽车匀速通过某段公路,所需时间t (h )与行驶速度v (km/h )满足函数关系:vkt =,其图象为如图所示的一段曲线且端点为A (20,1)和 B (m ,0.5). (1)求k 和m 的值;(2)若行驶速度不得超过30km/h ,则汽车 通过该路段最少需要多少时间?第25题26.(本题满分10分)一项工程,如果甲、乙两公司合做,12天完成;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍.问:甲、乙两公司单独完成此项工程,各需多少天?27.(本题满分12分)为了保护环境,某企业决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:A 型B 型 价格(万元/台) 12 10 处理污水量(吨/月) 240 200 年消耗费(万元/台)11经预算,该企业购买设备的资金不高于105万元. (1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案? (3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)班级 姓名 考试号……………………………………………… 装…… 订…… 线…………………………………………………OABxy第28题28.(本题满分12分)如图,已知反比例函数xk y 11=的图象与一次函数b x k y +=22的图象交于A ,B 两点,A (1,n ),B (21-,2-). (1)求反比例函数和一次函数的解析式; (2)观察图象,直接写出不等式021≥--b x k xk 的解集; (3)若点P 在x 轴上,则在平面直角坐标系内是否存在点Q ,使以A 、O 、P 、Q 为顶点的四边形是菱形?若存在,请你直接写出所有符合条件的Q 点的坐标;若不存在,请说明理由.。
盐城市八年级下学期数学期中考试试卷(五四制)
盐城市八年级下学期数学期中考试试卷(五四制)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019九上·无锡期中) 下列方程是一元二次方程的是()A . 3x2-6x+2B . x2-y+1=0C . x2=0D . + x=22. (2分) (2019九上·龙江期中) 若1是关于x的一元二次方程的一个根,则m值为()A . -1B . 0C . 1D . 33. (2分)把方程x2-8x+3=0化成(x-m)2=n的形式,则m、n的值是()A . -4,13B . -4, 19C . 4, 13D . 4, 194. (2分) (2019八下·温州期中) 关于x的一元二次方程 x2+2019x+m=0 和有且只有一个公共根,m的值为()A . 2019B . -2019C . 2020D . -20205. (2分) (2018八上·龙岗期末) 已知点P(x,y),且,则点P在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)如图,在正方形网格上,若使△ABC与△PBD相似,则点P应在A . P1处B . P2处C . P3处D . P4处7. (2分)(2019·大渡口模拟) 沿一张矩形纸较长两边中点将纸一分为二,所得两张矩形纸与原来的矩形纸相似,那么原来那张纸的长和宽的比是()A .B .C . 2:1D . 3:18. (2分)若关于x一元二次方程x2﹣10x+k+1=0有两个相等的实数根,则k的值为()A . 8B . 9C . 12D . 249. (2分)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降。
由原来每斤12元连续两次降价a%后售价下调到每斤5元,下列所列方程中正确的是()A . 12(1+a%)2=5B . 12(1-a%)2=5C . 12(1-2a%)=5D . 12(1+2a%)=510. (2分)关于的一元二次方程有一个根等于 -1,则另一个根等于()A . -2B . 1C . 2D . 311. (2分)骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三视图如图所示.已知图中所标注的是部分面上的数字,则“*”所代表的数是()A . 2B . 4C . 5D . 612. (2分)某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要()A . 450a元B . 225a 元C . 300a元D . 150a元二、填空题 (共7题;共9分)13. (1分)关于x的一元二次方程x2+bx+c=0的两根为x1=﹣1,x2=2,则x2+bx+c可分解为________.14. (2分) (2019九上·宝山月考) 如图,的两条中线、相交于点G,如果,那么 ________.15. (1分)(2017·天水) 如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为________米.16. (1分)如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是________ .17. (2分)(2020·重庆模拟) 我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正六边形数”.设第n个“平行四边形数”和“正六边形数”分别为a和b,若a+b=103,则的值是________.18. (1分)(2017·沭阳模拟) 如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα= .下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8;④0<CE≤6.4.其中正确的结论是________.(把你认为正确结论的序号都填上)19. (1分) (2018九上·新野期中) 感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6 ,CE=4,则DE的长为________.三、解答题 (共9题;共60分)20. (1分)(2020·枣庄) 已知关于x的一元二次方程有一个根为,则a 的值为________.21. (10分)解方程:3x2=6x﹣2.22. (10分) (2018九上·南召期中) 阅读理解:材料.若一元二次方程的两根为,,则,.材料.已知实数,满足,,且,求的值.解:由题知,是方程的两个不相等的实数根,根据材料得,,∴ .解决问题:(1)一元二次方程的两根为,,则 ________,________.(2)已知实数,满足,,且,求的值.(3)已知实数,满足,,且,求的值.23. (2分)如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.24. (2分)(2018·绍兴模拟) 如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1 m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9 m,窗口底边离地面的距离BC=1.2 m,试求窗口的高度(即AB的值).25. (5分) (2018九上·西安期中) 某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一.定的关系。
2018-2019学年度第二学期八年级数学期中考试题及参考答案
学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------2018-2019学年度第二学期期中考试题(卷)八 年 级 数 学(时间:120分钟 满分:100分)一.选择题(共10小题,每小题3分,共30分) 1.下列运算中正确的是( ) A .=﹣2B .﹣24×=2 C .(﹣2)2×(﹣3)2=36 D .=±42.要使式子有意义,则x 的取值范围是( )A .x >﹣2B .x >2C .x ≤2D .x <23.下列根式中是最简二次根式的是( ) A .2B .C .D .4.下列各组数中不能作为直角三角形的三条边的是( ) A .6,8,10B .9,12,15C .1.5,2,3D .7,24,255.一架5m 的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m ,若梯子的顶端下滑1m ,则梯足将滑动( ) A .0mB .1mC .2mD .3m6.如图,在直角△ABC 中,∠C =90°,AC =3,AB =4,则点C 到斜边AB 的距离是( ) A .B .C .5D7.如图,在ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1 cmB .2 cmC .3 cmD .4 cm8.在Rt △ABC 中,斜边上的中线CD =2.5cm ,则斜边AB 的长是( ) A .2.5cmB .5cmC .7.5cmD .10cm9.如图,在ABCD 中,AB ⊥AC ,若AB =4,AC =6,则BD 的长是( ) A .8B .9C .10D .1110.如图,在菱形ABCD 中,∠BAD =120°,点A 坐标是(﹣2,0),则点B 坐标为( ) A .(0,2) B .(0,)C .(0,1)D .(0,2)二.填空题(共10小题,每小题3分,共30分)11.实数a 在数轴上对应的点的位置如图所示,则化简|a ﹣2|﹣= .12.如果最简二次根式与2是同类二次根式,那么a = .13.若ABC 的三边分别是a 、b 、c ,且a 、b 、c 满足a 2+c 2=b 2,则∠ =90°. 14.ABCD 中,∠A +∠C =220°,则∠A = .15.若点A (3,m )在直角坐标系的x 轴上,则点B (m ﹣1,m +2)到原点O 的距离为 . 16.已知菱形的面积为24cm 2,一条对角线长为6cm ,则这个菱形的边长是 厘米. 17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =12,则AB = .18.三角形各边分别是3cm 、5cm 、6cm ,则连接各边中点所围成的三角形的周长是 cm .19.如图,在△ABC 中,∠ACB 为直角,∠A =30°,CD ⊥AB 于点D ,CE 是AB 边上的中线,若BD =2,则CE = .20.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,已知△BOC 与△AOB 的周长之差为3,平行四边形ABCD 的周长为26,则BC 的长度为 .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------三.解答题(共6小题,共40分) 21.(4分)已知a =+2,b =2﹣,求下列各式的值:(1)a 2+2ab +b 2; (2)a 2﹣b 2.22.(5分)如图所示,在四边形ABCD 中,AB =2,AD =,BC =2,∠CAD =30°,∠D =90°,求∠ACB的度数?23.(5分)已知:如图,在ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .猜测DE 和BF 的位置关系和数量关系,并加以证明.24.(8分)如图,在ABCD 中,AD >AB ,AE 平分∠BAD ,交BC 于点E ,过点E 作EF ∥AB 交AD 于点F . (1)求证:四边形ABEF 是菱形;(2)若菱形ABEF 的周长为16,∠EBA =120°,求AE 的大小.25.(8分)如图,已知四边形ABCD 是平行四边形,△AOB 是等边三角形.(1)求证:四边形ABCD 是矩形.(2)若AB =5cm ,求四边形ABCD 的面积.26.(10分)如图1,已知四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF=90°,且EF 交正方形外角∠DCG 的平分线CF 于点F ,(1)若取AB 的中点M ,可证AE=EF ,请写出证明过程.(2)如图2,若点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,那么结论“AE=EF ”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------2018-2019学年度第二学期八年级数学期中考试题参考答案一、选择题(共10小题)C C A C BD B B C D 二、填空题(共8小题)11、 -2a+3 12、 2 13、 B 14、 110° . 1516、 5 17、6 18、7 19、 4 20、 8 三.解答题(共10小题) 21.∵a =+2,b =2﹣,∴a +b =4,a ﹣b =2,(1)a 2+2ab +b 2=(a +b )2=42=16;(2)a 2﹣b 2=(a +b )(a ﹣b )=4×2=8.22、∵在直角△ACD 中,AD =,∠CAD =30°,∠D =90°,∴由勾股定理得AC =2, ∵AB =2,BC =2,∴AC 2+BC 2=4+4=8=(2)2=AB 2,∴∠ACB =90°.23、解:DE ∥BF DE =BF理由如下:∵四边形ABCD 是平行四边形 ∴AD =BC ,AD ∥BC∴∠DAC =∠ACB ,且AE =CF ,AD =BC ∴△ADE ≌△CBF (SAS ) ∴DE =BF ,∠AED =∠BFC ∴∠DEC =∠AFB ∴DE ∥BF24、(1)证明:∵▱ABCD∴BC ∥AD ,即 BE ∥AF ∵EF ∥AB∴四边形ABEF 为平行四边形∵AE 平分∠BAF ∴∠EAB =∠EAF ∵BC ∥AD ∴∠BEA =∠EAF ∴∠BEA =∠BAE ∴AB =BE∴四边形ABEF 是菱形(2)解:连接BF 交AE 于点O ;则BF ⊥AE 于点O∵BA =BE ,∠EBA =120°∴∠BEA =∠BAE =30° ∵菱形ABEF 的周长为16 ∴AB =4在Rt △ABO 中∠BAO =30° ∴由勾股定理可得:AO =∴AE =25、解:(1)平行四边形ABCD 是矩形.理由如下:∵四边形ABCD 是平行四边形(已知),学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线----------------------------------------------- ∴AO =CO ,BO =DO (平行四边形的对角线互相平分), ∵△AOB 是等边三角形(已知), ∴OA =OB =OC =OD (等量代换), ∴AC =BD (等量代换),∴平行四边形ABCD 是矩形(对角线相等的平行四边形是矩形);(2)因为AB =5,在Rt △ABC 中,由题意可知,AC =10,则BC ==5,所以平行四边形ABCD 的面积S =5×5=25(cm 2)26、解:(1)∵四边形ABCD 是正方形 ∴AB=BC ,∠B=∠BCD=∠DCG=90°, ∵取AB 的中点M ,点E 是边BC 的中点, ∴AM=EC=BE , ∴∠BME=∠BEM=45°, ∴∠AME=135°, ∵CF 平分∠DCG , ∴∠DCF=∠FCG=45°, ∴∠ECF=180°-∠FCG=135°, ∴∠AME=∠ECF , ∵∠AEF=90°, ∴∠AEB+∠CEF=90°, 又∠AEB+∠MAE=90°, ∴∠MAE=∠CEF ,即∴△AME ≌△ECF (ASA ),∴AE=EF ,(2)AE=EF 仍然成立,理由如下:在BA 延长线上截取AP=CE ,连接PE ,则BP=BE , ∵∠B=90°,BP=BE , ∴∠P=45°, 又∠FCE=45°, ∴∠P=∠FCE ,∵∠PAE=90°+∠DAE ,∠CEF=90°+∠BEA , ∵AD ∥CB , ∴∠DAE=∠BEA , ∴∠PAE=∠CEF , ∴△APE ≌△ECF , ∴AE=EF .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------。
2018至2019学年度第二学期八年级期中考试数学试卷
2018~2019学年度第二学期期中检测八年级数学试题(全卷共140分,考试时间90分钟)一、选择题(本大题有8小题,每小题3分,共24分)1. 下列电视台的台标,是中心对称图形的是(▲)A B C D2. 下列调查中,适合采用普查方式的是(▲) A. 调查某校八(1)班学生校服的尺码 B. 调查某电视连续剧在全国的收视率 C. 调查一批炮弹的杀伤半径D. 调查长江中现有鱼的种类3. 为了了解某市50000名学生参加初中毕业考试数学成绩,从中抽取了1000名考生的数学成绩进行统计.下列说法错误的是(▲) A. 50000 名学生的数学成绩的全体是总体B. 每个考生是个体C. 从中抽取的1000名考生的数学成绩是总体的一个样本D. 样本容量是10004. 下列选项中,能够显示部分在总体中所占百分比的统计图是(▲)A.扇形统计图B.条形统计图C.折线统计图D.频数分布直方图5. 一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是(▲) A. 摸到红球是必然事件B. 摸到白球是不可能事件C. 摸到白球与摸到红球的可能性相等D. 摸到红球比摸到白球的可能性大6. 下列事件:①东边日出西边雨②抛出的篮球会下落;③没有水分,水稻种子发芽:④367人中至少有2人的生日相同.其中确定事件有(▲) A. 1个B. 2个C. 3个D. 4个7. 如图,矩形ABCD 的对角线AC= 8cm ,∠AOD= 120°,则AB 的长为(▲) A. 2cmB. 4cmC.3cm D. 32cm8. 将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1, A 2, ... An 分别是正方形对角线的交点,则n 个正方形重叠形成的阴影部分面积的和为(▲) A.41cm 2B.41 n cm 2C.4n cm 2 D. n)41(cm 2ODABC二、填空题(本大题共有8小题,每小题4分,共32分)9. 如果分式32-x 有意义, 则x 的值为 . 10.若32=b a ,则a b a +的值为 .11.“平行四边形的对角线互相平分”是 事件. (填“必然”“不可能” 或“随机”)12.在学校“传统文化”考核中,某个班50名学生中有40人达到优秀。
2018-2019学年度第二学期期中质量检测八年级数学试卷及答案
1
求证:DE∥BC,DE= BC.
2
证明:如图 1,延长 DE 到点 F,使得 EF=DE,连接 CF; 请继续完成证明过程:
图1
图2
图3
(2)【问题解决】 如图 2,在矩形 ABCD 中,E 为 AD 的中点,G、F 分别为 AB、CD 边上的点,若 AG=3, DF=7,∠GEF=90°,求 GF 的长.
三、解答题(本大题共有 10 小题,共 72 分.请在答题卡指定区域内作答,解答时应写出文字说
明、推理过程或演算步骤)
17.(本题满分 4 分)
解方程: 2x 2 1. x2 2x
18.(本题满分 5 分)
先化简再求值:
a 2 3ab a2 b2
a
1
b
a
1
b
(1)人均捐赠图书最多的是 ▲ 年级; (2)估计该校九年级学生共捐赠图书多少册? (3)全校大约共捐赠图书多少册?
20.(本题满分 5 分) 如图,在ABCD 中,点 E、F 分别在 AD、BC 上, 且 AE=CF. 求证:BE=DF.
21.(本题满分 6 分) 已知△ABC 的三个顶点的坐标分别为 A(-5,0)、B(-2,3)、C(-1,0) (1)画出△ABC 关于坐标原点 O 成中心对称的△A1B1C1; (2)将△ABC 绕坐标原点 O 顺时针旋转 90°, 画出对应的△A'B'C'; (3)若以 A'、B'、C'、D'为顶点的四边形为平行四边 形, 请直接写出在第一象限中的 点 D′的坐标 ▲ .
盐城市八年级下学期数学期中考试试卷
盐城市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2018·大庆) 在同一直角坐标系中,函数y= 和y=kx﹣3的图象大致是()A .B .C .D .2. (2分)下列命题为真命题的是A . 有两边及一角对应相等的两个三角形全等B . 方程x2+2x+3=0有两个不相等的实数根C . 面积之比为1∶2的两个相似三角形的周长之比是1∶4D . 顺次连接任意四边形各边中点得到的四边形是平行四边形3. (2分)下列各式中是二元一次方程的是()A . x+3y=5B . ﹣xy﹣y=1C . 2x﹣y+1D . +=4. (2分)若多边形每个内角都等于150°,则从此多边形一个顶点出发的对角线有()条.A . 7B . 8C . 9D . 105. (2分) (2018八下·道里期末) 三角形两边的长是2和5,第三边的长是方程x2﹣12x+35=0的根,则第三边的长为()A . 2B . 5C . 7D . 5或76. (2分) (2019八下·襄汾期中) 一次函数y=ax+b与反比例函数y= ,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A .B .C .D .二、填空题 (共12题;共12分)7. (1分)(2019·黄浦模拟) 直线的截距是________.8. (1分)若函数是一次函数,则m=________,且随的增大而________9. (1分) (2019七下·监利期末) 已知关于x的方程3a﹣x=x+2的解为2,则代数式a2+1=________10. (1分)当m________时,方程 = 无解.11. (1分)(2020·吉林模拟) 如图,正六边形ABCDEF内接于⊙O , AB=2,则图中阴影部分的面积为________12. (1分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做________件.13. (1分)某学校为了增强学生体质,准备购买一批体育器材,已知A类器材比B类器材的单价低10元,用150元购买A类器材与用300元购买B类器材的数量相同,则B类器材的单价为________ 元.14. (1分) (2019七上·利辛月考) 若a,b互为相反数,c,d互为倒数,m的绝对值是5,则代数式-a+(-cd)2020-b+m的值为________。
江苏省盐城市八年级下学期数学期中考试试卷
江苏省盐城市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·苏州模拟) 函数y= 中自变量x的取值范围是()A . x≥3B . x≥﹣3C . x≠3D . x>0且x≠32. (2分)下列由线段a,b,c组成的三角形不是直角三角形的是()A . a=3,b=4,c=5B . a=2, b=3,c=C . a=12,b=10,c=20D . a=5,b=13,c=123. (2分)下列关于函数的说法中,正确的是()A . 正比例函数是一次函数B . 一次函数是正比例函数C . 正比例函数不是一次函数D . 不是正比例函数的就不是一次函数4. (2分)(2017·浦东模拟) 下列二次根式中,与是同类二次根式的是()A .B .C .D .5. (2分)(2019·南城模拟) P1(x1 , y1),P2(x2 , y2)是函数y= x图象上的两点,则下列判断中正确是()A . y1>y2B . y1<y2C . 当x1<x2时,y1>y2D . 当x1<x2时,y1<y26. (2分)(2017·陕西模拟) 如图,菱形OABC,OC=2,∠AOC=30°,则点B的坐标为()A . (,1)B . (1,)C . (1, +2)D . ( +2,1)7. (2分) (2019八下·乐亭期末) 一次函数y=x+4的图象不经过的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分) (2011八下·建平竞赛) 图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是()A .B .C .D .9. (2分) (2018八上·叶县期中) 如图,已知A,B两地相距4千米,上午11:00,甲从A地出发步行到B 地,11:20乙从B地出发骑自行车到A地,甲乙两人离A地的距离(千米)与甲所用时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()A . 上午11:40B . 上午11:35C . 上午11:45D . 上午11:5010. (2分)如图,□ABCD的周长为16 cm,AC,BD相交于点O,EO⊥BD交AD于点E,则△ABE的周长为()A . 4 cmB . 6 cmC . 8 cmD . 10 cm11. (2分)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF的长为()A .B .C .D .12. (2分) (2015九上·龙岗期末) 在正方形网格中,△ABC的位置如图所示,则cosB的值为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2017八下·东莞期末) 如图,一旗杆被大风刮断,旗杆的顶部着地点到旗杆底部的距离为4m ,折断点离旗杆底部的高度为3m ,则旗杆的高度为________m.14. (1分) (2020七下·甘井子期末) 点到轴的距离是________.15. (1分) (2017八上·济源期中) 如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是________.16. (1分) (2019八下·萝北期末) 已知函数y=-3x的图象经过点A(1,y1),点B(﹣2,y2),则y1________y2(填“>”“<”或“=”)17. (1分) (2020七下·青岛期中) 如下图,长方形ABCD中,动点P从B出发,沿B→C→D→A路径匀速运动至点A处停止,设点p运动的路程为x,△PAB的面积为y,如果y关于x的函数图像如图所示,则长方形ABCD 的面积等于________.18. (1分)(2020·安庆模拟) 如图,矩形ABCD中,AB=4,AD=8,点E为AD上一点,将△ABE沿BE折叠得到△FBE ,点G为CD上一点,将△DEG沿EG折叠得到△HEG ,且E、F、H三点共线,当△CGH为直角三角形时,AE的长为________三、解答题 (共8题;共74分)19. (10分) (2017八下·高密期中) 计算:(1)﹣( + )÷ ×(2)(﹣4 )﹣(3 ﹣2 )(3)(3+ )(3﹣)﹣(﹣1)2(4)(﹣ +1)(﹣1)﹣ + .20. (5分) (2019八下·师宗月考) 若三角形的三边长分别等于,,2,则此三角形的面积为多少?21. (11分)(2018·遵义模拟) 如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.22. (5分)计算.(1);(2);(3),其中a=2.23. (8分)(2020·阿城模拟) 如图,在边长为1的小正方形方格纸中,有线段、,点、、、均在小正方形的顶点上.(1)在图中画一个以线段为斜边的等腰直角三角形,点在小正方形的顶点上,并直接写出的长;(2)在图中画一个钝角三角形,点在小正方形的顶点上,并且三角形的面积为,.24. (10分)(2019·怀化模拟) 设m是不小于﹣1的实数,使得关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x 1 , x2 .(1)若,求的值;(2)求的最大值.25. (10分) (2019七上·哈尔滨月考) 如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE= ∠EOC(1)求∠AOE的度数;(2)将射线OE绕点O逆时针旋转°(0°<α<360°)到OF.①如图1,当OF平分∠BOE时,求∠DOF的度数;②若∠AOF=120°时,直接写出的度数.26. (15分) (2019九上·中期中) 以四边形ABCD的边AB、AD为底边分别作等腰三角形ABE 和等腰三角形ADF.(1)当四边形ABCD为正方形时(如图①),以边AB、AD为斜边分别向外侧作等腰直角△ABE和等腰直角△ADF ,连接BF、ED ,线段BF和ED的数量关系是________;(2)当四边形ABCD为矩形时(如图②),以边AB、AD为斜边分别向矩形内侧、外侧作等腰直角△ABE和等腰直角△ADF ,连接EF、BD ,线段EF和BD具有怎样的数量关系?请说明理由;(3)当四边形ABCD为平行四边形时,以边AB、AD为底边分别向平行四边形内侧、外侧作等腰△ABE和等腰△ADF ,且△ABE和△ADF的顶角均为,连接EF、BD ,交点为G.请用表示出∠FGD ,并说明理由.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共74分)答案:19-1、答案:19-2、答案:19-3、答案:19-4、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。
盐城初级中学2018~2019年下学期初二数学期中考试试卷
二、填空题:(本大题共 10 小题,每小题 2 分,共 20 分,不需写出解答过程,请将答案直接写在试卷相应
位置上)
1
7. 分式 有意义的条件是
.
x-2
1
1
8.
分式
2y
,
3x 2 y
的最简公分母为
.
9. 若函数 y = xm-2 是 y 关于 x 的反比例函数,则 m 的值为
.
第1页共6页
10. 如图,为估计池塘岸边 A、B 两点间的距离,在池塘的一侧选取点 O,分别取 OA、OB 的中点 M、N,
D ()
5. 顺次连接正方形四条边的中点得到的是 A、平行四边形 B、菱形 C、矩形 D、正方形
()
6. 如 图 , 已 知 正 方 形 ABCD 边 长 为 1 , 连 接 AC 、 BD 、 CE 平 分 ∠ACD 交 BD 于 点 E , 则 DE 长 为 ()
A、 2 2 - 2 B、 3 -1 C、 2 -1 D、 2 - 2
【问题解决】李雷同学分析题目后,发现以 PA、PB、PC 的长为边的三角形是直角三角形,他找到了正确
的思路:如图 2,将△BPC 绕点 B 逆时针旋转 60°,得到△BP'A,连接 PP',易得△P'PB 是等边三角形,△P'PA
是直角三角形,则得∠BPP'=
,∠APB=
.
【问题类比】同组得韩梅梅同学突然想起曾经解决过得一个问题:如图 3,点 P 是正方形 ABCD 内一点,PA=1,
位,再向上平移 n 个单位得到;类似地,函数 y=
y= k +n(k≠0,m>0,n>0)的图象是由反比例函数 y= k (k≠0)的图象向右平移 m 个单位,再向上平
江苏省盐城市八年级下学期数学期中考试试卷
江苏省盐城市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·海曙期末) 下列函数中, 是的一次函数是()A . ①②③B . ①③④C . ①②③④D . ②③④2. (2分)要反映某市一周内每天最高气温的变化情况,宜采用()A . 条形统计图B . 扇形统计图C . 折线统计图D . 频数分布直方图3. (2分)如果直线y=(m-2)x+(m-1)经过第一、二、四象限,则m的取值范围是()A . m<2B . m>1C . m≠2D . 1<m<24. (2分)延长等腰梯形的两腰相交,所构成的三角形的中位线恰好是该梯形的上底,则该三角形的中位线与原梯形的中位线的比是()A . 1:2B . 1:3C . 2:1D . 2:35. (2分)矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为()A . 16B .C . 22D . 86. (2分) (2019八下·江阴期中) 下列命题是真命题的是()A . 对角线互相平分的四边形是平行四边形B . 对角线相等的四边形是矩形C . 对角线互相垂直且相等的四边形是正方形D . 对角线互相垂直的四边形是菱形7. (2分)若直线在第二、四象限都无图像,则抛物线()A . 开口向上,对称轴是y轴B . 开口向下,对称轴平行于y轴C . 开口向上,对称轴平行于y轴D . 开口向下,对称轴是y轴8. (2分) (2017九上·怀柔期末) 在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是()A . 1月份B . 2月份C . 5月份D . 7月份9. (2分) (2017八下·海宁开学考) 直线y=﹣x﹣2不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)已知直角三角形的斜边长为,一条直角边为 ,则此直角三角形的面积是……()A . 2B . 4C . 8D .二、填空题 (共8题;共8分)11. (1分) (2017八下·呼伦贝尔期末) 一次函数y= -3x+9的图象与x轴交点坐标是________12. (1分)某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是________分.13. (1分)一次函数y=-2x+4,当函数值为正时,x的取值范围是 ________ .14. (1分) (2019八下·宜兴期中) 如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD 于点E,则DE的长为________.15. (1分) (2016九上·黑龙江月考) 如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则折痕BD的长为________.16. (1分)一次函数y=kx+b的图象经过点(0,2),且与直线y=x平行,则该一次函数的表达式为________17. (1分) (2016九上·独山期中) 如图所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=________度.18. (1分)(2017·盘锦模拟) 如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为________ m(容器厚度忽略不计).三、解答题 (共8题;共102分)19. (15分) (2016九上·无锡期末) 某饰品店以20元/件的价格采购了一批今年新上市的饰品进行了为期30天的销售,销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30);又知前20天的销售价格Q1(元/件)与销售时间x(天)之间有如下关系:Q1= x+30(1≤x≤20),后10天的销售价格Q2则稳定在45元/件.(1)试分别写出该商店前20天的日销售利润R1(元)和后10天的日销售利润R2(元)与销售时间x(天)之间的函数关系式;(2)请问在这30天的销售期中,哪一天的日销售利润最大?并求出这个最大利润值.(注:销售利润=销售收入-购进成本)20. (11分) (2020八上·邛崃期末) 某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为________;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据________来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21. (20分) (2019七下·江门期末) 如图,在直角坐标系中,点是第一象限内的点,直线与轴交于点,过点作轴,垂足为,过点的直线与轴交于点,已知直线上的点的坐标是方程的解,直线上的点的坐标是方程的解(1)求点的坐标(2)证明:(要求写出每一步的推理依据);(3)求点的坐标,并求三角形的面积22. (10分) (2017七上·罗平期末) 如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.(1)求∠DOE的度数;(2)如果∠AOD=51°17′,求∠BOE的度数.23. (10分) (2019七下·重庆期中) 铜梁永辉商场今年二月份以每桶40元的单价购进1000桶甲、乙两种食用油,然后以甲种食用油每桶75元、乙桶食用油每桶60元的价格售完,共获利29000元.(1)求该商场分别购进甲、乙两种食用油多少桶?(2)为了增加销售量,获得最大利润,根据销售情况和市场分析,在进价不变的情况下该经销商决定调整价格,将甲种食用油的价格在二月份的基础上下调20%,乙种食用油的价格上涨 a%,但甲的销售量还是较二月下降了 a%,而乙的销售量却上升了25%,结果三月份的销售额比二月份增加了1000元,求a的值.24. (15分) (2016九上·徐闻期中) 一块三角形材料如图所示,∠A=30°,∠C=90°,AB=12,用这块材料剪出一个矩形CDEF,其中D、E、F分别在BC、AB、AC上.(1)若设AE=x,则AF=________;(用含x的代数式表示)(2)要使剪出的矩形CDEF的面积最大,点E应选在何处?25. (6分)(2019·卫东模拟) 某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是________件,日销售利润是________元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?26. (15分)(2017·大连模拟) 如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.(1)求点C的坐标;(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共102分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)恒温系统在这天保持大棚内温度 20℃的时间有
小时?
(2)求 AD 段及 BC 段函数关系式;
(3)当棚内温度不低于 18℃时,该蔬菜能够快速生长,请问这天该蔬菜能够快速生长多长时间?
第3页共6页
22. (本题满分 8 分)如图,已知正方形 ABCD,E、F 分别为 BC、AD 边上的任意一点,且 BE=DF.
D ()
5. 顺次连接正方形四条边的中点得到的是 A、平行四边形 B、菱形 C、矩形 D、正方形
()
6. 如 图 , 已 知 正 方 形 ABCD 边 长 为 1 , 连 接 AC 、 BD 、 CE 平 分 ∠ACD 交 BD 于 点 E , 则 DE 长 为 ()
A、 2 2 - 2 B、 3 -1 C、 2 -1 D、 2 - 2
1. 下列式子是分式的是
()
A、 1 a
B、 a 2
C、 a²-1
D、 a +b 2
x+2
2. 若分式
的值为零,则
x-3
A、x=3
B、x=-2
C、x=2
D、x=-3
()
3. 函数 y= 2 的图像大致是 x
()
A
B
C
2a
4. 将分式
中的 a、b 都扩大为原来的三倍,则分式的值
a-b
A、不变 B、扩大 3 倍 C、扩大 6 倍 D、扩大 9 倍
(1)求证:△ABE △ADF;
(2)若 M 为 AF 中点,N 为 EF 的中点,连接 MD、MN,求证 DM=MN.
23. (本题满分 8 分)青盐铁路北起青岛北站、南至盐城北站,线路全长 429 千米,于 2018 年 12 月 26 日
竣工运营,从盐城乘“G”字头列车 A 和“D”字头列车 B 都可直达青岛,已知 A 车的平均速度为 B 车的 2 倍,
.
21. (本题满分 8 分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温
度为 20℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度 y(℃)随时
间 x(小时)变化的函数图象,其中 BC 段是双曲线 y= k 的一部分.请根据图中信息解答下列问题: x
2
x
是
.
14. 如图,点 A 为反比例函数 y = k x
( k≠0 ) 图 像 上 一 点 , AB
垂直 x 轴于 B 点,若 S△ AOB =3,则 k 的
值
.
15.
如图,一次函数
y1
ax
b
图像和反比例函数
y2
=
k x
图像交于
A(1,2),B(-2,-1)两点,若
y1<y2
,
则 x 的取值范围是
二、填空题:(本大题共 10 小题,每小题 2 分,共 20 分,不需写出解答过程,请将答案直接写在试卷相应
位置上)
1
7. 分式 有意义的条件是
.
x-2
1
1
8.
分式
2y
,
3x 2 y
的最简公分母为
.
9. 若函数 y = xm-2 是 y 关于 x 的反比例函数,则 m 的值为
.
第1页共6页
10. 如图,为估计池塘岸边 A、B 两点间的距离,在池塘的一侧选取点 O,分别取 OA、OB 的中点 M、N,
x
x 2
1
(1
1 ) ,其中 x=2. x 1
20. (本题满分 6 分)已知反比例函数 y= k (k 为常数,k≠0)的图象经过点 A(2,-3). x
(1)求这个函数的解析式;
1
(2)判断点 B( ,-12)是否在这个函数的图像上,并说明理由;
2
(2)当-2<x<-1 时,直接写出 y 的取值范围
测得 MN=4m,测得 A、B 两点间的距离是
m.
11. 已知反比例函数 y m 2 的图像在第二、四象限,则常数 m 的取值范围是
.
x
第 6 题图
第 10 题图
第 14 题图
第 15 题图
第 16 题图
12. 若关于 x 的分式方程 m = x-4 -7 有增根,则增根是
.
x-3 3-x
13. 已 知 直 线 y 1 x 与 双 曲 线 y = k ( k≠0 ) 的 一 个 交 点 的 横 坐 标 为 2 , 则 另 一 个 交 点 的 横 坐 标
且行驶时间比 B 车少 1.5h.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.
(1)提出问题:
?
(2)解答过程:
第4页共6页
24. (本题满分 10 分)【问题提出】在互动生成的数学课上,某合作小组提出了这样一个问题:如图 1,在
等边三角形 ABC 内有一点 P,且 PA=1,PB=2,PC= 5 .你能求出∠APB 的度数吗?
【问题解决】李雷同学分析题目后,发现以 PA、PB、PC 的长为边的三角形是直角三角形,他找到了正确
的思路:如图 2,将△BPC 绕点 B 逆时针旋转 60°,得到△BP'A,连接 PP',易得△P'PB 是等边三角形,△P'PA
是直角三角形,则得∠BPP'=
,∠APB=
.
【问题类比】同组得韩梅梅同学突然想起曾经解决过得一个问题:如图 3,点 P 是正方形 ABCD 内一点,PA=1,
盐城市初级中学 2018-2019 学年度第二学期期中考试
初二年级数学试题(2019.4)
(考试时间:100 分钟 卷面总分:100 分)
一、 选择题:(本大题共有 6 小题,每小题 2 分,共 12 分,在每小题所给出的四个选项中,只有
一项取值范围是是符合题目要求的,请将正确选项前的字母代号填写在相应位置上)
PB=2,PC=3,则∠APB=
.请你写出解答过程.
【问题延伸】老师留着一个思考题,如图 4,若点 P 是正方形 ABCD 外一点,PA= 5 ,PB=1,PC= 7 ,
则∠APB=
.请你写出解答过程.
.
16. 如图,四边形 AOBC 和四边形 CDEF 都是正方形,边 OA 在 x 轴上,边 OB 在 y 轴上,点 D 在边 CB 上,
反 比 例 函 数 y = - 4 在 第 二 象 限 的 图 像 经 过 点 E , 则 正 方 形 AOBC 和 正 方 形 CDEF 的 面 积 之 差 x
为பைடு நூலகம்
.
三、解答题:(共 68 分,请将解答过程写在试卷相应位置上)
17. (本题满分 6 分)计算:
(1) a b 2b ab ab
(2)
m m
3
2m m2
9
18. (本题满分 6 分)解分式方程:
(1)
3 x
2 x 1
(2)
1 x
x 2
2
2
1
x
第2页共6页
19.
(本题满分 6 分)先化简,再求值: