城市道路纵断面设计

合集下载

城市道路设计规范平面与纵断面设计道路与道路交叉

城市道路设计规范平面与纵断面设计道路与道路交叉
四、当平曲线与竖曲线半径均大时,平、竖曲线宜重合,但平曲线与竖曲线半径均小时,不得重合。
五、平曲线与竖曲线适当与不适当的组合见图5.3.2。
第5.3.3条 平曲线与竖曲线应避免下列几种组合:
一、在凸形竖曲线的顶部或凹形竖曲线的底部插入急转的平曲线或反向曲线。
二、在一个长平曲线内设两上和两个以上的竖曲线;或在一个长竖曲线内设有两个或两个以上的平曲线。
三、在长直线段内,插入小于一般最小半径的凹形竖曲线。
第六章 道路与道路交叉
第一节 设计原则与规定
第6.1.1条 城市道路交叉口应按城市规划道路网设置。道路相交时宜采用正交,必须斜交时交叉角应大于或等于45°,不宜采用错位交叉,多路交叉和畸形交叉。
第6.1.2条 道路与道路交叉分为平面交叉和立体交叉两种,应根据技术、经济及环境效益的分析,合理确定。
非机动车车行道的竖曲线的最小半径为500m。
第5.2.7条 桥梁引道设竖曲线时,竖曲线切点距桥端应保持适当距离,大、中桥为10~15m,工程困难地段可减为5m。
隧道洞口外应保持一段与隧道内相同的纵坡,其长度见表5.1.16。
第三节 平面线形与纵断面线形的组合
第5.3.1条 道路线形组合应满足行车安全、舒适以及与沿线环境、景观协调的要求,并保持平面、纵断面两种线形的均衡,保证路面排水通畅。
三、经综合分析认为设置爬坡车道比降低纵坡经济合理时。
第5.1.13条 设置分隔带及缘石断口应符合下列规定:
一、快速路上无信号灯管制交叉口的中间分隔带不应设断口。
快速路上两侧分隔带的断口间距应大于或等于400m。主干路上两侧分隔带断口间距宜大于或等于300m。
断口最小长度宜采用6m。
二、应严格控制快速路、主干路的路侧带缘石断口。两侧建筑物出入口宜设在支路或街坊内部路上。缘石断口位置应离开交叉口,间距应大于60m。

第4章纵断面设计

第4章纵断面设计

(三)凹形竖曲线最小半径和最小长度
设置凹竖曲线的主要目的是缓和行车时的离心力
Lmin
2.当L>ST:
h1
d12 2R
,则d1
2Rh1
h2
d
2 2
2R
,则d
2
2Rh2
ST d1 d2 2R ( h1 h2 )
R
ST2
2( h1 h2 )
最小长度:
Lmin 2(
S 2
S 2
h1 h2 )2 4
最小半径:
Rmin
Lmin
凸形竖曲线最小半径和最小长度 :
竖曲线最小长度相当于各级道路计算行车速度 的3秒行程 。
山区公路可缩短里程,降低造价。
各级公路最大纵坡的规定(表4-3)
设计速度 (km/h)
120 100 80 60 40 30 20
最大纵坡(%)
345
6
7
8
9
城市道路最大纵坡约为按公路设计速度计算的最大纵坡 减少1%
1. 设计速度为120km/h、l00km/h、80km/h 的高速公路受地形条件或其他特殊情况限制时, 经技术经济论证,最大纵坡值可增加1%。
最小合成坡度不宜小于0.5%。
当合成坡度小于0.5时,应采取综合排水措施,以 保证路面排水畅通。
3. 合成坡度指标的控制作用 : 控制陡坡与急弯的重合; 平坡与设超高平曲线的配合问题。
当陡坡与小半径平曲线重合时,在条件许可的情 况下,以采用较小的合成坡度为宜。
▪ 特别是下述情况,其合成坡度必须小于8%。
一、纵坡设计的一般要求
1.纵坡设计必须满足《标准》的各项规定。 2.为保证车辆能以一定速度安全顺适地行驶,纵 坡应具有一定的平顺性,起伏不宜过大和过于频繁。

《道路纵断面》课件

《道路纵断面》课件

设计软件介绍
AutoCAD
AutoCAD是一款常用的道路设计 软件,它具有强大的绘图和编辑 功能,可以方便地绘制道路纵断
面图。
MicroStation
MicroStation是一款专业的道路设 计软件,它提供了丰富的道路设计 工具和插件,可以满足各种道路设 计需求。
SketchUp
SketchUp是一款易于使用的三维建 模软件,它也可以用于道路纵断面 设计。使用SketchUp可以方便地创 建三维模型并进行渲染。
人性化设计
人性化设计
未来的道路纵断面设计将更加注重人性化,以满足人们的需求和舒适度为首要目标。通过优化道路线形、增加绿 化带、设置休息区等方式,提高道路的舒适性和安全性。
人性化设计的意义
人性化设计能够提高道路的使用价值和舒适度,增强行车的安全感和愉悦感,同时能够提升城市的形象和品质。
绿色化设计
绿色化设计
03
道路纵断面的设计方法
设计步骤
绘制设计图和说明书
根据最终确定的方案,绘制道路纵断面设 计图,并编写相应的说明书。
Hale Waihona Puke 确定设计范围和目标首先需要明确设计范围,包括道路的起点 、终点、长度、宽度等,以及设计目标, 如满足交通需求、提高行车安全性等。
收集和分析资料
收集相关资料,如地形图、交通流量、车 辆类型等,并对资料进行分析,以便了解 道路所在地的地形、地质、环境等条件。
04
道路纵断面的实践应用
城市道路纵断面设计
城市道路纵断面设计是城市道路设计的重要组成部分,它涉 及到城市交通、排水、景观等多个方面。在进行城市道路纵 断面设计时,需要考虑地形、地质、排水、安全、景观等因 素,以确保设计方案的合理性和可行性。

城市道路的平面与纵断面设计

城市道路的平面与纵断面设计
(4)锯齿形街沟的设计:在道路纵坡<0.3%时,其街沟的 纵向排水能力很差,为此,需要人为调整加大街沟沟底纵坡, 锯齿形街沟(或称齿形街沟)便是一种好的办法;
(5)平面及纵断面组合设计。
38
6.3.4 纵坡度及坡长 1. 纵坡度 道路纵坡度的设计包括最大纵坡和最小纵坡两个方面。为
保证车辆能以适当的车速在道路上安全行驶而确定的纵坡最大 值称为最大纵坡,其数值大小与设计车型的动力性能有关。最 小纵坡是针对城市道路的特殊排水方式而确定的。城市道路的 雨水是通过道路范围内的街沟(或称偏沟)排除的,而一般情 况下,街沟沟底纵坡与道路平行,倘若道路纵坡为零或者很小, 则街沟水的纵向流动就会很缓慢,从而影响道路雨水的迅速排 除。为此,《城市道路设计规范》规定城市道路最小纵坡为0.5 %,困难地方为0.3%。
为了减小离心力的作用,弯道上的路面通常做成外侧高、内侧低呈单向 横坡的形式,这就是所谓的“弯道超高”。
13
14
15
3)圆曲线长度的确定 对于直线与圆曲线直接切向连接的平面线形来说,圆曲线起 着改变行车方向,缓和折线突变的作用,因此其长度不能太短。 参照国外和国内的经验,圆曲线最小长度为车辆在设计车速状 态下的3s行程(见表6-8)。 简单的换算公式如下:
③ 沿线桥梁、隧道、道口、平面交叉口、广场和停车场等 的平面布设,还有分隔带及其断口的平面布置、路侧带缘石断 口的平面布置、公交站点的平面布置等。
④ 道路照明及道路绿化的平面布置。
5
6.2.2 平面线形设计 平面线形是指道路中心线在水平面上的投影线形,一般由
直线和平面曲线(简称平曲线)组成。当道路设计车速不高 (<40km/h)时,平曲线主要是圆曲线,此时道路的平面线形可 分解为一系列的直线和圆曲线;当车速较高时,由于车辆从直 线路段向圆曲线段过渡时,其轨迹很难适应与圆曲线直接相切 的方式,而产生行车轨迹与路线的偏离,车速越高、圆曲线半 径越小,这种偏离就越大。因此,就需要有一种在直线与圆曲 线之间连接过渡的曲线,也称缓和曲线,这种缓和曲线在不同 半径曲线之间的衔接时也是必要的。这时,道路平面线形就是 一系列的直线、缓和曲线和圆曲线了。平面线形设计就是关于 这些线形及其组合关系的设计,同时兼顾纵断面与之组合的效 果。

城市道路设计规范平面与纵断面设计

城市道路设计规范平面与纵断面设计

城市道路设计规范平⾯与纵断⾯设计城市道路设计规范平⾯与纵断⾯设计热★★★浏览: 809 更新时间:2010-5-26 10:04:21平⾯设计应符合下列原则:⼀、道路平⾯位置应按城市总体规划道路⽹布设。

⼆、道路平⾯线形应与地形、地质、⽔⽂等结合,并符合各级道路的技术指标。

三、道路平⾯设计应处理好直线与平曲线的衔接,合理地设置缓和曲线、超⾼、加宽等。

四、道路平⾯设计应根据道路等级合理地设置交叉⼝、沿线建筑物出⼊⼝、停车场出⼊⼝、分隔带断⼝、公共交通停靠站位置等。

五、平⾯线形标准需分期实施时,应满⾜近期使⽤要求,兼顾远期发展,减少废弃⼯程。

第5.1.2条直线、平曲线的布设与连接宜符合下列规定:⼀、计算⾏车速度⼤于或等于60km/h时,直线长度宜满⾜下列要求:1.同向曲线间的最⼩直线长度(m)宜⼤于或等于计算⾏车速度(km/h)数值的六倍。

2.反向曲线间的最⼩直线长度(m)宜⼤于或等于计算⾏车速度(km/h)数值的⼆倍。

当计算⾏车速度⼩于60km/h,地形条件困难时,直线段长度可不受上述限制,但应满⾜设置缓和曲线最⼩长度的要求。

⼆、计算⾏车速度⼤于或等于40km/h时,半径不同的同向圆曲线连接处应设置缓和曲线。

受地形限制并符合下述条件之⼀时,可采⽤复曲线。

1.⼩圆半径⼤于或等于不设缓和曲线的最⼩圆曲线半径;2.⼩圆半径⼩于不设缓和曲线的最⼩圆曲线半径,但⼤圆与⼩圆的内移值之差⼩于或等于0.1m;3.⼤圆半径与⼩圆半径之⽐值⼩于或等于1.5。

三、计算⾏车速度⼤于或等于40km/h时,长直线下坡尽头的平曲线半径应⼤于或等于不设超⾼的最⼩半径。

在难以实施地段,应采取防护措施。

四、计算⾏车速度⼩于40km/h,且两圆半径都⼤于不设超⾼最⼩半径,可不设缓和曲线⽽构成复曲线。

第5.1.3条道路的圆曲线半径应采⽤⼤于或等于表5.1.3规定的不设超⾼最⼩半径值。

当受地形条件限制时,可采⽤设超⾼推荐半径值。

地形条件特别困难时,可采⽤设超⾼最⼩半径值。

城市道路纵断面设计

城市道路纵断面设计
• 隧道内纵坡不应大于3%,并不小于0.3% 。
7
公路最大合成坡度
公路等 级
高速公路




计算行车速 度(km∕h) 120 100 80 60 100 60 80 40 60 30 40 20
合成坡度 (%) 10.0 10.0 10.5 10.5 10.0 10.5 9.0 10.0 9.5 10.0 9.5 10.0
12
3)暗弯、明弯与凸、凹竖曲线 • 暗弯与凸形竖曲线及明弯与凹形竖曲线的组合是
合理的组合。 • 对暗与凹、明与凸的组合,当坡差较大时,会给
人以错觉:舍弃平坦坡道及近路不走,而故意爬 坡、绕弯的感觉。此种组合在山区难以避免,只 要坡差不大,矛盾也不很突出。
13
4)平、竖曲线应避免的组合
• 设计车速≥40km/h的公路,凸形竖曲线的顶部和 凹形竖曲线的底部,不得插入小半径平曲线。
• 对于等级较高的道路应尽量做到这种组合,并使 平、竖曲线半径都大一些才显得协调,特别是凹 形竖曲线处车速较高,二者半径更应该大一些。
10
平曲线与竖曲线的组合
11
2)平曲线与竖曲线大小应保持均衡 • 所谓均衡,是指平、竖曲线几何要素要大体平衡
、匀称、协调,不要把过缓与过急、过长与过短 的平曲线和竖曲线组合在一起。 • 根据德国计算统计,若平曲线半径小于1000m, 竖曲线半径大约为平曲线半径的10~20倍时,便 可达到均衡的目的。
27
• 道路的纵坡设计是在全面掌握设计资料的基础上 经过多次方案比较,精心设计才能完成。除以上 提到的设计要求外,纵坡设计还要注意:
• ①与平面线形的合理组合,以得到较佳的空间组 合线形;
• ②回头曲线路段纵坡的特殊要求; • ③大中桥上不宜设置竖曲线,即不宜设变坡点; • ④注意交叉口、大中桥、隧道等地段路线纵坡的

城市道路设计规范平面与纵断面设计

城市道路设计规范平面与纵断面设计

城市道路设计规范平面与纵断面设计★ ★★一、道路平面位宜应按城市总体规划道路网布设。

二、道路平面线形应与地形.地质、水文等结合.并符合各级道路的技术指标。

三、道路平面设il•应处理好直线与平曲线的衔接.合理地设宜缓和曲线.超纵加宽等。

I川、道路平面设计应根据道路等级合理地设宜交叉口.沿线建筑物出入口.停乍场出入口.分隔帯断口.公共交通停畀站位宜等。

五、平面线形标准需分期实施时.应满足近期使用要求,兼顾远期发展,减少废弃工程。

第5・1. 2条直线、平曲线的布设与连接宜符合下列规定:一.计算行车速度大于或等干6 0 km/h时,直线长度宜满足下列要求:1 •同向曲线间的最小直线长度(m)宜大于或等干计算行车速度(km/h)数值的八倍。

2・反向曲线间的最小直线长度(m)宜大于或等于计算行车速度(km/h)数值的二倍。

Til•算行牟速度小于6 0 km/h.地形条件困难时,直线段长度可不受上述限制,但应满足设宜缓和曲线战小长度的要求。

二汁算行午速度大于或等于4 0 km/h时,半径不同的同向恻曲线连接处应设宜缓和曲线。

受地形限制并符合下述条件之一时,可采用复曲线。

1・小圆半径大于或等于不设缓和曲线的最小恻曲线半径:2・小圆半径小于不设缓和曲线的最小圆曲线半径•但大圆与小闘的内移值之差小于或等于0・lm:3・大圆半径与小圆半径之比值小于或等干1・5。

三、讣算行午速度大于或等于4 0 km/h lit,长直线下坡尽头的平曲线半径应大干或等于不设超高的最小半径。

在难以实施地段.应采取防护措施。

四、讣算行乍速度小于4 0 km/h,且两圆半径都大于不设超商锻小半径,可不设缓和曲线而构成复曲线。

第5・1・3条道路的圆曲线半径应采用大于或等于表5・1・3规定的不设超岛最小半径值。

十受地形条件限制时, 可采用设超岛推荐半径值。

地形条件特别困难时,可采用设超商最小半径值。

圆曲线半径表第5・1・4条平曲线由圆曲线及两端缓和曲线组成。

第四章纵断面设计

第四章纵断面设计

第四章纵断面设计第一节概述沿着道路中线竖直剖开,然后在展开即为路线纵断面,见图4-1。

由于自然因素的影响以及经济性的要求,路线纵断面总是一条有起伏的空间线。

一、纵断面设计主要任务与目的纵断面设计主要任务就是根据汽车的动力特性、道路等级、当地的自然地理条件以及工程经济性等,研究起伏空间线的几何构成与要素,以便达到行车安全迅速、运输经济合理及乘客舒适的目的。

二、地面线与设计线纵断面图是道路纵断面设计的主要成果,也是道路设计的重要技术文件之一。

把道路纵断面图与平面图结合起来,就能准确地定出道路的空间位置。

在纵断面图上有两条主要的线:一条是地面线,另一条是设计线。

1 地面线它是根据中线上各桩点的高程而点绘的一条不规则的折线,反映了地面的起伏与变化情况。

2 设计线它是综合考虑技术、经济和美学等诸因素之后,人为定出的一条具有规则形状的几何线,反映了道路的起伏变化情况。

纵断面设计线是由直线和竖曲线组成的。

(1)直线(均匀坡度线)直线有上坡和下坡之分,是用高差和水平长度表示的。

105(2)竖曲线在直线的坡度转折处为平顺过渡要设置竖曲线,按坡度转折形式不同,竖曲线有凹有凸,其大小用半径和水平长度表示。

第二节纵坡及坡长设计一、纵坡设计的一般要求为使纵坡设计经济合理,必须在全面掌握勘测资料的基础上,经过综合分析、反复比较定出设计纵坡。

纵坡设计的一般要求为:1纵坡设计必须满足《标准》的各项规定;2应具有一定的平顺性,起伏不宜过大和过于频繁。

为保证车辆能以一定速度安全、顺适地行驶,纵坡应具有一定的平顺性,起伏不宜过大或过于频繁。

尽量避免采用极限纵坡值,合理安排缓和坡段,不宜连续采用极限长度的陡坡夹最短长度的缓坡。

连续上坡和下坡路段,应避免设置反坡段。

3 纵坡设计应对沿线的地形、地下管线、地质、水文、气候、排水等方面综合考虑,视具体情况妥善处理,以保证道路的稳定与畅通。

4 纵坡设计应考虑填挖平衡,减少借方和废方,以降低工程造价和节省用地。

城市交通与道路系统--道路纵断面设计

城市交通与道路系统--道路纵断面设计

3.2.2城市干路网类型城市道路系统是为适应城市发展,满足城市用地和城市交通以及其他需要而形成的。

在不同的社会经济条件、城市自然条件和建设条件下,不同城市的道路系统有不同的发展形态。

从形式上,常见的城市道路网可归纳为四种类型,其中前三类为基本型。

1.方格网式道路系统方格网式又称棋盘式,是最常见的一种道路网类型,适用于地形平坦的城市。

用方格网道路划分的街坊形状整齐,有利于建筑的布置;由于平行方向有多条道路,交通分散,灵活性大,但对角线方向的交通联系不便。

有的城市在方格网的基础上增加若干条放射干线,以利于对角线方向的交通,但因此又将形成三角形街坊和复杂的多路交叉口,既不利于建筑布置,又不利于交叉口的交通组织。

完全方格网的大城市,如果不配合交通管制,容易形成不必要的穿越中心区的交通。

一些大城市的旧城区历史形成的路幅狭窄,间隔均匀,密度较大的方格网,已不能适应现代城市交通的要求,可以采用组织单向交通的方法解决交通拥挤问题。

方格网式的道路也可以顺依地形条件弯曲变化,不一定死板地一律采用直线直角。

2环形放射式道路系统环形放射式道路系统起源于欧洲以广场组织城市的规划手法,最初是几何构日产物,有的是由港口城市或中心城市的对外交通特性所自然形成的,多用于大城市。

这种道系统的放射形主干道有利于市中心同外围市区和郊区的联系,环形道路又有利于中心城区外的市区及郊区的相互联系,在功能上有一定的优点。

但是放射形干路又容易把外围的交通引入市中心地区,引起交通在市中心地区过分的集中,同时会出现许多不规则的街坊,交通灵活性不如方格网道路系统。

环形干路也容易引起城市沿环路的发展,促使城市呈同心圆式不断向外扩张。

为了充分利用环形放射式道路系统的优点,避免缺点,国外一些大城市在原有的环形放射路网基础上部分调整改建形成快速路系统,对缓解城市中心的交通压力,促使城市转向沿放射形交通干线向外发展起了十分重要的作用。

3.自由式道路系统自由式道路常是由于地形起伏变化较大,道路结合自然地形呈不规则状布置形成的。

道路纵断面设计的主要内容

道路纵断面设计的主要内容

道路纵断面设计的主要内容
1. 纵坡设计:确定道路纵坡的变化规律,使道路能够顺利排水和提供合适的水平净空距离,确保车辆安全行驶。

纵坡设计还需要考虑土壤稳定性、便于排水和排泥、降低耕地损失等因素。

2. 纵断面曲线设计:根据道路设计标准和交通要求,设计合适的曲线,以提供行车的平稳度和安全性。

常见的曲线形状包括圆曲线、抛物线、混合曲线等。

3. 纵断面宽度设计:根据道路等级、交通流量和车速等因素,确定道路纵断面的宽度,以满足车辆通过和安全需求。

道路宽度设计还需要考虑路肩、人行道、自行车道等附属设施的需求。

4. 路堤和路基设计:根据地面地形和地质条件,设计合适的路堤和路基高度和形状,以提供道路稳定性和排水功能。

路堤和路基的设计还需要考虑土壤的稳定性和加固措施。

5. 路面结构设计:确定道路的路面结构,包括路基、基层、面层等材料的选择和厚度设计,以满足预期的使用寿命、承载能力和驾驶舒适度。

6. 边坡设计:根据路段的地形和地质条件,设计合适的边坡形状和坡度,以保证边坡的稳定性和防止坡体滑动或塌落。

7. 排水设计:确定道路纵断面的排水系统,包括沟渠、排水管道、坡面排水设施等,以确保道路干燥、无积水,并防止水流对道路结构的破坏。

总之,道路纵断面设计是为了确保道路的交通功能、安全性和持久性,需要综合考虑地形、地质条件、交通需求和环境影响等因素,以制定合理的设计方案。

城市道路纵断面设计的主要步骤与方法

城市道路纵断面设计的主要步骤与方法
16
17
THAT’S IT.
18
4. 土壤地质剖面图、简明路线平面设计图
5. 交叉口范围,平曲线位置
5
6
2 标注控制点高程
1.控制点是指路线起终点、路线交叉口、桥梁顶面或 梁底、沿线重要建筑物地坪以及依据横断面确定的 填挖合理点等,这些点往往在道路设计之前就因其他它
因素而限定了其标高。
2.建筑物前的地坪标高比中心线的设计标高高0.3—0.5m
围地形景观的协调,综合考虑平纵横三各方面试定坡度
线,再对照横断面检查核对,确定纵坡值,定出曲线半
径,计算设计标高,完成纵断面图。
4
1 绘出原有地面线(或待改建道路纵坡线)
1. 坐标计算纸绘制各里程桩标高,各点标高连 线即为原地面线
2. 按照道路中线水准测量资料
3. 比例尺:水平1:500—1:1000; 垂直1: 20—1:100
l——计算桩号与控制点之间的水平距离m
i——横向坡度
14
求出各里程桩挖填高度,并标注在纵断面上
填方高度=设计标高-原地面高(m) 挖方高度=原地面高-设计标高(m) 填方写在设计上面;挖方写在设计下
15
7 绘制纵断面设计图
1比例尺:水平1:500—1:1000; 垂直1: 20—1:100 2两部分书写 图5—18
城市道路纵断面设计的主要 与方法
1
12046118
回顾:城市道路纵断面
通过道路中线的竖向剖面,成为纵断面
——《城市道路设计》P129
2
3
纵断面设计方法与步骤
纵坡设计前,路线位置拟定后,应先根据中桩的桩
号和地面标高汇出纵断面图的地面线及平面工程经济及与与周
2.经济、技术合理

简述纵断面设计的步骤

简述纵断面设计的步骤

简述纵断面设计的步骤
纵断面设计是道路工程设计中的一个重要环节,其步骤主要包括以下几个方面:
1. 调查与分析:首先需要对道路所在区域进行调查和分析,了解地形地貌、土壤条件、水文地质情况等。

还需根据交通流量、车速要求等确定设计标准。

2. 确定纵断面线路:根据调查分析结果,确定道路纵向剖面的线路,包括起点、终点和中间控制点。

3. 建立纵断面模型:在道路设计软件中建立纵断面模型,根据设计标准和线路确定道路的纵向剖面示意图。

根据纵向坡度和弯道半径的要求,设计道路的坡度变化和道路曲线。

4. 设计纵断面要素:在纵断面模型中,根据设计要求设置路床宽度、交叉口、过水管、排水设施、路基坡度等要素,确保交通安全和道路使用的可行性。

5. 优化设计:对纵断面模型进行优化调整,确保道路符合设计要求和交通流量需求。

6. 完成设计报告:根据纵断面模型,编写详细的设计报告,包括纵断面的尺寸、标高、线型等信息,以便后续的施工施工。

总之,纵断面设计是道路工程设计的重要环节,通过调查分析、
线路确定、纵断面模型建立、要素设计、优化调整和报告编写等步骤,确保道路纵断面设计的合理性和可行性。

道路纵断面设计

道路纵断面设计

各级道路的最大纵坡一般是根据以下因素确定的:
汽车的动力特性:按照道路上行驶的车辆的类型及其 动力特性来确定汽车在规定的速度下的爬坡能力;
道路等级:道路等级越高,交通密度越大,行车速度 越高,要求纵坡设计越平缓;对于等级较低的道路, 可以采用较大的纵坡;
自然因素:在纵坡设计时,应充分考虑所在地区的地 形起伏情况、海拔高度、气候条件等对汽车行驶的影 响,如阴湿多雨地区、长期冰冻地区,均应避免过大 的纵坡。
缓和坡段
缓和坡段——当纵坡的设计达到限制坡长时,应设
置一段缓坡,用以恢复在陡坡上降低的速度。 一般缓和坡段的坡度应不大于3%,长度不小于100米; 缓和坡段应设置在直线或较大半径的平曲线上,最大限
度地发挥缓和坡段的作用; 当有必要在较小的平曲线上设置缓和坡段时,应适当增
加缓和坡段的长度,使缓和坡段端部位于平曲线之外。
合成纵坡
合成纵坡——指在设有超高
的平曲线上,路线的纵坡和弯道 超高所组成的坡度。
i i I 2 2 h
I—— 合成坡度(%);
i ——路线设计纵坡坡度(%);
i h——超高横坡度或路拱横坡度(%)。
合成纵坡
各级公路允许的合成纵坡度
公路等级
高速公路




计算行车速 120 100 80 60 100 60 80 40 60 30 40 20 度(km/h)
纵断面图
§3.2 竖曲线
竖曲线——纵断面上两个坡段的转
折处,为了便于行车,用一段曲线 来缓和,称为竖曲线。
竖曲线分凹形和凸形两种
§3.2 竖曲线
形式——抛物线和圆曲线两种。
纵断面只计水平距离和竖直高度,斜线不计角度而计坡度; 竖曲线的切线长与曲线长以其在水平面上的投影长度计,切线支 距是竖直高程差,相邻两坡度线的交角用坡度差表示。

公路工程概论第3章 纵断面设计

公路工程概论第3章  纵断面设计
Ⅱ 公路改建中,利用原有公路的设计速度为40km/h、30km/h、20km/h的
路段,经技术经济论证,最大纵坡可增加1%。
Ⅲ 海拔2000m以上或积雪冰冻地区的四级公路,最大纵坡不应大于8%。 14 2020/11/6
1、最大纵坡
(3)最大纵坡的规定 城市道路
设 计 车 速 ( km∕ h) 80
公路工程概论第3章 纵断面设 计
二、纵断面设计考虑因素
1、道路的性质 2、任务 3、等级 4、地形、地质、水文等因素 5、考虑路基稳定、排水及工程量等的要求 6、对纵坡的大小、长短、前后纵坡情况 7、竖曲线半径大小 8、平面线形的组合关系
4 2020/11/6
三、纵断面设计与选线的关系
纵断面设计是选线工作的继续和深化。
4.高原纵坡折减
在海拔高度较高地区,汽车发动机的功率会因空气稀薄而降低,
相应地降低了汽车的爬坡能力,因此对海拔高度在3000m以上 地区公路最大纵坡应予以折减,折减值见表3-3。经折减后的最大 纵坡如小于4%,则仍用4%。
高原纵坡折减值
表3-3
海 拔 高 度(m)
3000~4000
>4000~5000
(1)作用:
①.衡量纵断面线型质量。
②.可供放坡定线参考。
(3-1)
18 2020/11/6
3.平均纵坡
(2)规定 ①.越岭线高差200~500m时,ip≈5.5%为宜。 ②.越岭线高差>500m时,ip≈5.0%为宜。 ②.任意连续3km内,ip≤5.5%。 ④.要考虑公路等级影响。
19 2020/11/6
22 2020/11/6
2、最小坡长限制
最小坡长是指相邻两个变坡点之间的最小 长度。
1)为什么要做最小坡长限制? (1)若其长度过短,就会使变坡点个数增

关于城市道路平、纵、横设计的几点思考

关于城市道路平、纵、横设计的几点思考

关于城市道路平、纵、横设计的几点思考摘要:城市道路设计是一个繁锁而细致的工程,本文根据笔者20年的设计经验,对城市道路平、纵、横设计常用做法作一个疏理和总结,仅供同行参考。

关键词:平面设计、纵断面设计、横断面及交叉口设计引言:我国基础设施建设于90年代末开始进入了一个高速发展期,作为从事城市道路专业设计的一名工作者,笔者有幸经历并参与了这段道路建设的黄金时期。

本文是根据笔者20年的设计经验,对城市道路平、纵、横设计常用做法作一个疏理和总结。

1平面设计1.1平面设计要点城市道路平面线形设计一般应按照所在片区规划道路网布置,如果道路等级较高或规划路网未最终审定,可适当对规划线形进行优化处理。

在进行平面线形设计的时候,项目应考虑与道路、桥梁、隧道、轨道交通、地下空间、城市景观、交通枢纽等的衔接与协调,处理好与规划、已建构筑物、现状地形地物、待建构筑物以及需要分段、分期设计实施道路之间的关系。

应结合片区综合交通规划进行公共交通、慢行交通、机动车交通等方面交通组织设计。

1.2平面线形设计路线平面线形,通常是直线、圆曲线和缓和曲线3种基本线形要素的组合。

在道路上各要素所占比例难以量化规定,只要各组成要素在满足规范的基础上使用合理、组合得当,可以得到较为舒适的平面线形。

1.2.1最大直线长度设计在公路设计中为避免驾驶员视觉疲劳,最大直线长度通常参照德国的规范,以20倍设计速度的值控制。

但在城市道路里,根据实践经验,长直线不会产生上述弊端,相反,长直线更显大气,也更有利于两厢用地开发。

1.2.2平曲线间最小直线长度设计两平曲线间的直线长度不宜过短。

根据实践经验,同向曲线之间最小直线长度(以米计)控制在设计车速6倍左右;反向曲线之间最小直线长度(以米计)控制在设计车速2倍左右,能获得较满意的效果。

当线形半径小于规范中不设缓和曲线最小值且车速较小时(≤40km/h),缓和曲线可用直线代替,但应满足规范要求最小长度。

城市规划辅导:道路纵断面设计的要求

城市规划辅导:道路纵断面设计的要求

道路纵断⾯设计的要求 1.设计要求 (1)线型平顺。

设计坡度平缓,坡段较长,起伏不宜频繁,在转坡处以较⼤半径的竖曲线衔接。

(2)路基稳定、⼟⽅基本平衡。

(3)尽可能与相交的道路、⼴场和沿路建筑物的出⼊⼝有平顺的衔接。

(4)道路及两侧街坊的排⽔良好。

道路路缘⽯顶⾯应低于街坊地⾯标⾼及道路两侧建筑物的地坪标⾼。

(5)考虑沿线各种控制点的标⾼和坡度的要求。

包括如相交道路的中⼼线标⾼,重要地—⼚建筑物的标⾼,与铁路交叉点的标⾼,河岸坡度和河流⽔位、桥涵⽴交的标⾼等。

2.设计 (1)纵坡考虑因素通⾏的各种车辆的动⼒性能、道路等级、⾃然条件。

在混⾏的道路上,应以⾮机动车的爬坡能⼒确定道路的纵坡。

⾃⾏车道路的纵坡以2.5%为宜。

等级⾼的道路设计车速⾼,需要尽量采⽤平缓的纵坡。

纵坡建议值:快速交通⼲道设计车速为40⼀60km/h,纵坡为3%⼀4%;主要及⼀般交通⼲道设计车速为40~60km/h,纵坡为3%~4%;区⼲道设计车速为30—40km/h,纵坡为4%⼀6%;⽀路设计车速为20~25km/h,纵坡为7%⼀8%。

对于平原城市,机动车道路的纵坡宜控制在5%以下。

(2)最⼩纵坡 最⼩纵坡度与⾬量⼤⼩、路⾯种类有关。

路⾯越粗糙,最⼩纵坡越⼤,反之则可⼩些。

如⽔泥混凝⼟路⾯、⿊⾊路⾯、碎⽯路⾯等道路最⼩纵坡度应⼤于或等于0.3%,在有困难时可⼤于或等于0.3%。

特殊困难路段,纵坡度⼩于0.2%时,应采取设锯齿形街沟或其他排⽔措施。

(3)坡道长度限制 道路坡道的长度与道路的等级要求和车辆的爬坡能⼒有关,不宜太长,但也不宜太⼀般最⼩长度也应不⼩于相邻竖曲线切线长度之和。

竖曲线 为使路线平顺,⾏车平稳,必须在路线竖向转坡点处设置平滑的竖曲线将相邻直线坡段衔接起来。

因纵断⾯上转折坡点处是凹形或凸形不同⽽分为凹形曲线与凸形曲线。

纵坡转折处是否设置凸曲线,取决于转坡⾓⼤⼩尺⼨与要求视距的长度之间的关系。

⼀般规定:当主要及⼀般交通⼲道两相邻纵坡代数差ω>0.5%,区⼲道的(ω>1.0%,其他道路的ω>1.5%时,需设置凸形竖曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安全,应对凸型和凹型竖曲线的最小长度进行限制。 竖曲线最小长度(m)
v l 80 70 60 50 50 40 45 40 40 35 35 30 30 25 25 20 20 20 15 15
竖曲线计算(1)
—— 竖曲线要素计算

相邻坡段坡度差 : i2 i1 竖曲线长度: L R v 竖曲线切线长度: T Lv / 2
合成坡度
路线在平曲线上的最大纵坡与超高横坡组合后形成的最大坡度, 其方向即流水方向。
iH ih
2
iz
2
为防止汽车沿合成坡度方向滑移,应将超高横坡与纵坡的合成 坡度控制在一定的范围之内。尽可能的避免急弯和陡坡的不利组合, 防止因合成坡度过大而引起的横向滑移和行车危险,保证车辆在弯 道安全而顺适的行驶。其限制值见表6-17。
最小纵坡

为使道路上行车快速、安全和通畅,希望道路纵坡设计的小一
些为好。但为保证排水需要,应设置不小于0.3%的最小纵坡, 一般使用0.5%。当必须设置平坡(0%)或小于0.3%的纵坡时, 其街沟应做纵向排水设计。
最大坡长

限制坡段长度,保证车速均衡性。
机动车道最大坡长
V (km/h) 纵坡 (%) 坡长 (m) 6.5 300 40 7 250 8 200
(2)主点桩号计算

竖曲线起点桩号: JD-T=K25+460.00-T=K25+355.00

竖曲线终点桩号: JD+T=K25+460.00+T=K25+565.00
(3)计算竖曲线范围内各桩号的设计标高
桩号 K25+355 K25+400 距切点距离l 0 45 竖距h 0 0.20 切线标高 779.88 780.24 设计标高 779.88 780.44
竖曲线长度:
i2 i1 5% - 0.8% 4.2%

Lv R 5000 4.2% 210(m)

竖曲线切线长度: T Lv / 2 210/ 2 105(m)
2 2 竖曲线中点竖距: E T 105

2R
2 5000
1.1025 m) (
凹型竖曲线表示
圆曲线(左偏)
罗零高程(1860年)
罗基(罗零高程比黄海高程低2.179米)
纵断面设计图
全景透视图
真实感的透视图
五、平纵线型组合设计
平纵线形组合要点(1)

一般竖曲线半径为平曲线半径的10-20倍,可达到均衡的目的。
合理选择道路纵横坡度,保证排水通畅和行车安全,避免过大 的合成坡度。

美国科罗拉多大峡谷
非机动车道最大坡长
纵坡 (%) 坡长 (m)
2.5
3.0
3.5
300
200
150
最小坡长
①行车平顺,避免台阶式起伏。②方便司机换档。
③设置竖曲线要求,线型美观。
最小坡长
V(km/h) 最小坡长 (m)
80 290
60 170
50 140
40 110
30 85
20 60
三、竖曲线设计

变坡点:两相邻纵坡线的交点 。为缓冲汽车行驶在变坡点处
2R
302 0.056(m) 2 8100
(2)主点桩号计算

竖曲线起点桩号: JD-T=K1+550-30=K1+520

竖曲线终点桩号: JD+T=K1+550+30=K1+580
(3)计算竖曲线范围内各桩号的设计标高
桩号 K1+520 K1+540 距切点距离l 0 20 竖距h 0 0.025 切线标高 8.011 8.099 设计标高 8.01 8.07
T2 竖曲线中点竖距: E 2RFra bibliotek
l2 任一点竖距:h 2R
竖曲线计算(2)
—— 主点桩号计算

竖曲线起点桩号: JD-T 竖曲线终点桩号: JD+T
竖曲线计算(3)
—— 计算竖曲线范围内各桩号的设计标高

计算切线标高 计算距切点距离l


计算竖距h
设计标高=切线标高±竖距h
(1)竖曲线要素计算
i2 i1 -0.3%- 0.44% -0.74%

相邻坡段坡度差 :

竖曲线长度: Lv R R 0.74% 2T 2 30 60m 竖曲线半径:
R 8108.11m 8100 m
2


竖曲线中点竖距: E T
纵断面设计步骤(3)

设置竖曲线:根据技术标准、平纵组合均衡等确定竖曲线半径 (应选用较大半径为宜),计算竖曲线要素。

计算设计标高和填挖高度。
纵断面设计步骤(4)
绘制纵断面设计图 。内容包括:原地面线、设计地面线、坡
度、坡长、设计高程、地面高程、填挖高度、桩号、直线平曲

线及
交叉口(桩号和高程);竖曲线设计情况,设计说明。

平纵线形组合要点(2)

如平、竖曲线半径均大时,平、竖曲线宜重合(“平包竖”);平
竖 曲线均小时,不得重合,应分开设置。
平纵线形组合要点(3)
不宜在一个长的平曲线内设两个或两个以上凹凸相邻的竖曲线, 或在一个长竖线内设两个或两个以上反向平曲线。

平纵线形组合要点(3)
不宜在一个长的平曲线内设两个或两个以上凹凸相邻的竖曲线, 或在一个长竖线内设两个或两个以上反向平曲线。
纵断面设计原则

参照规划控制标高,适应建筑物立面布置,堤顶路基 应高于防洪水位0.5m;


纵坡宜缓顺,起伏不宜频繁;
与地形协调,填挖平衡,考虑车辆爬坡能力; 道路最小坡度应≥0.5%,困难时应≥0.3%; 山城道路应控制道路的平均纵坡度。
纵断面设计内容

纵坡设计(坡度、坡长) 竖曲线设计 平面及纵断面组合设计 锯齿形街沟
二、纵坡及坡长设计
最大纵坡
机动车道最大纵坡(%)
V(km/h) 最大纵坡推荐值 最大纵坡限制值 80 4 6 60 5 7 50 5.5 7 40 6 8 30 7 9 20 8 9

非机动车道纵坡:宜小于 2.5%,限制值为3.5%。 机非混合行驶的车行道,宜按非机动车爬坡能力设计纵坡度; 合成坡度应小于限制值。
纵断面设计步骤(2)

拉坡:在已标出“控制点”的纵断面图上,根据技术指标、选 线意图,初定坡度线。综合考虑最大最小纵坡,坡长限制,平 纵组合、土石工程量大致平衡等要求 。

调整和确定纵坡设计线 :调整方法是抬高或降低变坡点标高、 延伸或缩短坡长、改变坡度值。经调整核对无误后,逐段把直 坡线的坡度和坡长值、变坡点桩号和标高确定下来。
第六章(下) 城市道路纵断面设计
一、设计原则和设计内容
纵断面设计
沿着道路中心线竖直剖切然后展开即为道路路线纵断面, 主要反映路线的起伏、纵坡以及与原地面的填挖情况,纵 断面设计就是要根据汽车的动力特性、道路等级和自然地 形,研究道路起伏的坡度和长度,以便达到安全迅速、经 济合理以及舒适的目的。

例1:

已知某城市道路,在道路上有一变坡点,桩号为K25+460.00,
标高为780.72m,相邻坡段的纵坡度分别为i1=0.8%,i2=5%, 竖曲线半径为R=5000m,试设计该变坡点处的竖曲线。 (中间桩号K25+400.00、K25+500.00)
(1)竖曲线要素计算

相邻坡段坡度差 :
K1+550
K1+560 K1+580
30
20 0
0.056
0.025 0
8.143
8.113 8.053
8.09
8.09 8.05
四、纵断面设计步骤
纵断面设计步骤(1)

绘地面线:按比例(横向1:1000,竖向1:100)标注里程桩号 和标高,点绘地面线。

标注控制点:控制点是影响纵坡设计的标高控制点。如路线 起终点,桥涵隧道进出口,平面交叉和立体交叉点,铁路道 口,沿溪线的洪水位,城镇规划控制标高、沿线重要建筑物, 地坪以及依据横断面确定的填挖合理点。
产生的冲击力,及保证行车视距,变坡点处必须设置适当的 竖曲线,改善线型,增加行车安全感和舒适感。
竖曲线半径(凸型、凹型)
① 机动车道竖曲线半径应≥一般最小半径,
特殊困难时,应≥极限最小半径。
② 非机动车道的竖曲线的最小半径为500m。
竖曲线长度

为限制离心力过大和行程时间过短,为保证行车视距和行车
K25+460
K25+500 K25+565
105
65 0
1.01
0.42 0
780.72
782.72 785.97
781.83
783.14 785.97
例2:

已知某城市道路,变坡点桩号为K1+550,标高为8.143m,其
两端纵坡分别为升坡0.44%和降坡0.3%,为水泥混凝土路面, 道路计算行车速度为40km/h,切线长度为30m,试设计该变 坡点处的竖曲线。
相关文档
最新文档