【高考数学】2018-2019学年最新人教版数学高考(文)一轮复习训练:第七章规范练33基本不等式及其应用
2018版高考数学(人教A版文科)一轮复习真题演练集训:第七章 不等式7-1含解析
真题演练集训1.[2016·北京卷]已知x,y∈R,且x>y>0,则( )A。
错误!-错误!>0B.sin x-sin y>0C.错误!x-错误!y<0D.ln x+ln y>0答案:C解析:解法一:因为x〉y〉0,选项A,取x=1,y=错误!,则错误!-错误!=1-2=-1〈0,排除A;选项B,取x=π,y=错误!,则sin x-sin y =sin π-sin 错误!=-1<0,排除B;选项D,取x=2,y=错误!,则ln x+ln y=ln(xy)=ln 1=0,排除D。
故选C.解法二:因为函数y=错误!x在R上单调递减,且x>y〉0,所以错误! x<错误!y,即错误!x-错误!y〈0,故选C。
2.[2016·新课标全国卷Ⅰ]若a>b>1,0<c〈1,则( )A.a c〈b c B.ab c<ba cC.a log b c〈b log a c D.log a c〈log b c答案:C解析:对于选项A,考虑幂函数y=x c,因为c〉0,所以y=x c为增函数,又a〉b〉1,所以a c〉b c,故A错;对于选项B,ab c〈ba c⇔错误!c〈错误!,又y=错误!x是减函数,故B错;对于选项D,由对数函数的性质可知D错,故选C.3.[2014·辽宁卷]当x∈[-2,1]时,不等式ax3-x2+4x +3≥0恒成立,则实数a的取值范围是( )A.[-5,-3]B。
错误!C.[-6,-2]D.[-4,-3]答案:C解析:当x=0时,ax3-x2+4x+3≥0变为3≥0恒成立,即a∈R,当x∈(0,1]时,ax3≥x2-4x-3,a≥错误!,∴a≥错误!max。
设φ(x)=错误!,φ′(x)=错误!=-错误!=-错误!>0,∴φ(x)在(0,1]上递增,φ(x)max=φ(1)=-6.∴a≥-6。
当x∈[-2,0)时,a≤错误!,∴a≤错误!min.仍设φ(x)=错误!,φ′(x)=-x-9x+1x4,当x∈[-2,-1)时,φ′(x)<0;当x∈(-1,0)时,φ′(x)>0。
高考数学一轮复习 第7章 不等式及推理与证明 第2课时 一元二次不等式的解法练习 理-人教版高三全册
第2课时 一元二次不等式的解法1.下列不等式中解集为R 的是( ) A .-x 2+2x +1≥0 B .x 2-25x +5>0 C .x 2+6x +10>0 D .2x 2-3x +4<0答案 C解析 在C 项中,Δ=36-40=-4<0,所以不等式解集为R . 2.函数y =ln (x +1)-x 2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案 C解析 由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,解得-1<x<1.3.若0<m <1,则不等式(x -m)(x -1m )<0的解集为( )A .{x|1m <x <m}B .{x|x >1m 或x <m}C .{x|x >m 或x <1m }D .{x|m <x <1m}答案 D解析 当0<m<1时,m<1m.4.关于x 的不等式x 2+px -2<0的解集是(q ,1),则p +q 的值为( ) A .-2 B .-1 C .1 D .2答案 B解析 依题意得q ,1是方程x 2+px -2=0的两根,q +1=-p ,即p +q =-1,选B. 5.不等式(2x -1)(1-|x|)<0成立的充要条件是( ) A .x>1或x<12B .x>1或-1<x<12C .-1<x<12D .x<-1或x>12答案 B解析 原不等式等价于⎩⎪⎨⎪⎧2x -1>0,1-|x|<0或⎩⎪⎨⎪⎧2x -1<0,1-|x|>0.∴⎩⎪⎨⎪⎧x>12,x>1或x<-1或⎩⎪⎨⎪⎧x<12,-1<x<1.∴x>1或-1<x<12,故选B.6.不等式x 2-x -6x -1>0的解集为( )A.{}x|x<-2或x>3B.{}x|x<-2或1<x<3C.{}x|-2<x<1或x>3D.{}x|-2<x<1或1<x<3答案 C解析 x 2-x -6x -1>0⇒(x -3)(x +2)x -1>0⇒(x +2)·(x-1)(x -3)>0,由数轴标根法,得-2<x<1或x>3.7.已知不等式ax 2+bx +2>0的解集为{x|-1<x<2},则不等式2x 2+bx +a<0的解集为( ) A .{x|-1<x<12}B .{x|x<-1或x>12}C .{x|-2<x<1}D .{x|x<-2或x>1}答案 A解析 由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由韦达定理⎩⎪⎨⎪⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a<0,即2x 2+x -1<0.可知x =-1,x =12是对应方程的根,∴选A.8.(2013·某某,理)已知一元二次不等式f(x)<0的解集为{x|x<-1或x>12},则f(10x)>0的解集为( )A .{x|x<-1或x>lg2}B .{x|-1<x<lg2}C .{x|x>-lg2}D .{x|x<-lg2}答案 D解析 方法一:由题意可知f(x)>0的解集为{x|-1<x<12},故f(10x )>0等价于-1<10x <12.由指数函数的值域为(0,+∞),知一定有10x >-1.而10x <12可化为10x<10lg 12,即10x<10-lg2.由指数函数的单调性可知x<-lg2,故选D.方法二:当x =1时,f(10)<0,排除A ,C 选项.当x =-1时,f(110)>0,排除选项B ,选D.9.(2017·某某模拟)若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值X 围是( ) A .(-235,+∞)B .[-235,1]C .(1,+∞)D .(-∞,-235]答案 A解析 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解,只需满足f(5)>0, 即a>-235.10.(2017·某某质检)不等式f(x)=ax 2-x -c>0的解集为{x|-2<x<1},则函数y =f(-x)的图像为( )答案 C解析 由题意得⎩⎪⎨⎪⎧a<0,-2+1=1a ,-2×1=-ca,解得a =-1,c =-2. 则函数y =f(-x)=-x 2+x +2.11.已知a 1>a 2>a 3>0,则使得(1-a i x)2<1(i =1,2,3)都成立的x 的取值X 围是( ) A .(0,1a 1)B .(0,2a 1)C .(0,1a 3)D .(0,2a 3)答案 B12.(2018·某某一模)在关于x 的不等式x 2-(a +1)x +a<0的解集中恰有两个整数,则a 的取值X 围是( ) A .(3,4) B .(-2,-1)∪(3,4) C .(3,4] D .[-2,-1)∪(3,4]答案 D解析 由题意得,原不等式化为(x -1)(x -a)<0,当a>1时,解得1<x<a ,此时解集中的整数为2,3,则3<a≤4;当a<1时,解得a<x<1,此时解集中的整数为0,-1,则-2≤a<-1,故a∈[-2,-1)∪(3,4].13.(2018·某某某某质检)已知g(x)是R 上的奇函数,当x<0时,g(x)=-ln(1-x),且f(x)=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x>0.若f(2-x 2)<f(x),则实数x 的取值X 围是( ) A .(-1,2) B .(1,2) C .(-2,-1) D .(-2,1)答案 D解析 若x>0,则-x<0,因为g(x)是R 上的奇函数,所以g(x)=-g(-x)=ln(x +1),所以f(x)=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x>0,则函数f(x)是R 上的增函数,所以当f(2-x 2)>f(x)时,2-x 2>x ,解得-2<x<1,故选D.14.不等式2x 2-3|x|-35>0的解集为________. 答案 {x|x<-5或x>5}解析 2x 2-3|x|-35>0⇔2|x|2-3|x|-35>0⇔(|x|-5)(2|x|+7)>0⇔|x|>5或|x|<-72(舍)⇔x>5或x<-5.15.已知-12<1x <2,则实数x 的取值X 围是________.答案 x<-2或x>12解析 当x>0时,x>12;当x<0时,x<-2.所以x 的取值X 围是x<-2或x>12.16.若不等式a·4x-2x+1>0对一切x∈R 恒成立,则实数a 的取值X 围是________. 答案 a>14解析 不等式可变形为a>2x-14x =(12)x -(14)x,令(12)x=t ,则t>0. ∴y =(12)x -(14)x =t -t 2=-(t -12)2+14,因此当t =12时,y 取最大值14,故实数a 的取值X 围是a>14.17.(2017·某某毛坦厂中学月考)已知关于x 的不等式kx 2-2x +6k<0(k≠0). (1)若不等式的解集为{x|x<-3或x>-2},求k 的值; (2)若不等式的解集为{x|x∈R ,x ≠1k },求k 的值;(3)若不等式的解集为R ,求k 的取值X 围; (4)若不等式的解集为∅,求k 的取值X 围.答案 (1)k =-25 (2)k =-66 (3)k<-66 (4)k≥66解析 (1)因为不等式的解集为{x|x<-3或x>-2}, 所以k<0,且-3与-2是方程kx 2-2x +6k =0的两根, 所以(-3)+(-2)=2k ,解得k =-25.(2)因为不等式的解集为{x|x∈R ,x ≠1k},所以⎩⎪⎨⎪⎧k<0,Δ=4-24k 2=0,解得k =-66. (3)由题意,得⎩⎪⎨⎪⎧k<0,Δ=4-24k 2<0,解得k<-66. (4)由题意,得⎩⎪⎨⎪⎧k>0,Δ=4-24k 2≤0,解得k≥66.18.(2017·某某中学调研卷)已知不等式组⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0的解集是不等式2x 2-9x +a <0的解集的子集,某某数a 的取值X 围. 答案 (-∞,9]解析 不等式组⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0的解集为(2,3),令g(x)=2x 2-9x +a ,其对称轴为x =94,∴只需g(3)=-9+a≤0,∴a ≤9.1.设一元二次不等式ax 2+bx +1>0的解集为(-1,13),则ab 的值为( )A .-6B .-5C .6D .5答案 C解析 方程ax 2+bx +1=0的两根为-1,13,由根与系数的关系,得⎩⎪⎨⎪⎧-1+13=-b a ,-1×13=1a ,解得⎩⎪⎨⎪⎧a =-3,b =-2.∴ab =6,故选C.2.不等式(a -2)x 2+2(a -2)x -4<0,对一切x∈R 恒成立,则实数a 的取值X 围是( ) A .(-∞,2] B .(-2,2] C .(-2,2) D .(-∞,2)答案 B解析 ∵⎩⎪⎨⎪⎧a -2<0,Δ<0,∴-2<a<2,另a =2时,原式化为-4<0,恒成立,∴-2<a≤2.故选B.3.已知x 1,x 2是二次方程f(x)=0的两个不同实根,x 3,x 4是二次方程g(x)=0的两个不同实根,若g(x 1)g(x 2)<0,则( )A .x 1,x 2介于x 3,x 4之间B .x 3,x 4介于x 1,x 2之间C .x 1,x 2相邻,x 3,x 4相邻D .x 1,x 2与x 3,x 4间隔排列答案 D解析 画图知,选D.4.(2017·某某外国语学校月考)已知函数f(x)=x 2+ax +b(a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f(x)<c 的解集为(m ,m +6),则实数c 的值为________. 答案 9解析 由值域为[0,+∞),当x 2+ax +b =0时有Δ=a 2-4b =0,即b =a 24,∴f(x)=x 2+ax +b =x 2+ax +a 24=(x +a 2)2,∴f(x)=(x +a 2)2<c 解得-c<x +a 2<c ,-c -a 2<x<c -a 2.∵不等式f(x)<c 的解集为(m ,m +6),∴(c -a 2)-(-c -a2)=2c =6,解得c =9.5.已知(ax -1)(x -1)≥0的解集为R ,则实数a 的值为________. 答案 1解析 原不等式为ax 2-(a +1)x +1≥0,∴⎩⎪⎨⎪⎧a>0,Δ=(a +1)2-4a≤0⇒a =1. 6.不等式log 2(x +1x +6)≤3的解集为________.答案 (-3-22,-3+22)∪{1}解析 原不等式⇔0<x +1x+6≤8⇔①⎩⎪⎨⎪⎧x>0,x 2+6x +1>0,x 2-2x +1≤0或②⎩⎪⎨⎪⎧x<0,x 2+6x +1<0,x 2-2x +1≥0.解①得x =1,解②得-3-22<x<-3+2 2. ∴原不等式的解集为(-3-22,-3+22)∪{1}.7.若不等式x 2+ax +1≥0对x∈(0,12]恒成立,求a 的最小值.答案 -52解析 方法一:(1)Δ=a 2-4≤0,即-2≤a≤2成立. (2)a<-2时,-a2>1,只需(12)2+a·12+1≥0,即a≥-52,此时-52≤a<-2.(3)a>2时,-a2<-1恒成立.综上所述,a ≥-52.∴a 的最小值为-52.方法二:由x 2+ax +1≥0,得a≥-x -1x ,x ∈(0,12].令f(x)=-x -1x (x∈(0,12])=-(x +1x ),是增函数.当x =12时,f(12)=-52,∴f(x)max =-52.要使原命题成立,则a≥-52.∴a 的最小值为-52.。
高考数学二轮复习第2部分专题篇素养提升文理专题7选修部分第1讲选修44坐标系与参数方程课件新人教版
典例3 (2020·南平三模)在平面直角坐标系 xOy 中,以原点
O 为极点,以 x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为
ρ=1-c2os
θ,直线
l1
的参数方程为xy==ttcsions
α α
(t 为参数),π2<α<π,点 A
为直线 l1 与曲线 C 在第二象限的交点,过 O 点的直线 l2 与直线 l1 互相垂 直,点 B 为直线 l2 与曲线 C 在第三象限的交点.
19
1.(2020·中原区校级模拟)在平面直角坐标系 xOy 中,以坐标原点为 极点,x 轴正半轴为极轴建立极坐标系,曲线 C1:ρ=4sin θ,曲线 C2:ρ =4cos θ.
(1)求曲线 C1 与 C2 的直角坐标方程; (2)若直线 C3 的极坐标方程为 θ=π3(ρ∈R),设 C3 与 C1 和 C2 的交点 分别为 M,N,求|MN|.
25
典例2 (2020·河南模拟)在平面直角坐标系 xOy 中,曲线 C
的
参
数
方
程
为
x=2cos α y= 3sin α
(α
为参数),直线
l 的参数方程为
x=1+tcos α y=tsin α
(t 为参数).
(1)求曲线 C 和直线 l 的一般方程;
(2)已知点 P(1,0),直线 l 和曲线 C 交于 A,B 两点,若|PA|·|PB|=152,
14
典例1 (2020·沙坪坝区校级模拟)在平面直角坐标系 xOy 中, 以原点 O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线 C1 的极坐标
方程为
ρ=2acosθ,曲线
C2
的极坐标方程为
高考数学一轮复习全程复习构想数学(文)【统考版】第七节 抛物线(课件)
答案:B
答案:(1)D
答案:A
反思感悟 1.求抛物线的标准方程的方法 (1)先定位:根据焦点或准线的位置. (2)再定形:即根据条件求p. 2.抛物线性质的应用技巧 (1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方 程化成标准方程. (2)要结合图形分析,灵活运用平面图形的性质简化运算.
解析:当焦点在x轴上时,根据y=0,x-2y-4=0可得焦点坐标为(4,0),所 以抛物线的标准方程为y2=16x;当焦点在y轴上时,根据x=0,x-2y-4=0可得 焦点坐标为(0,-2),所以抛物线的标准方程为x2=-8y.
答案:B
关键能力—考点突破
答案:(1)A
(2)设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2), 则|PB|+|PF|的最小值为__4______.
3.[选修1-1·P64A组T4(2)题改编]顶点在原点,且过点P(-2,3)的抛 物线的标准方程是__________________.
答案:D
5.(忽视焦点的位置致误)若抛物线的焦点在直线x-2y-4=0上, 则此抛物的标准方程为___y_2=__1_6_x或__x_2_=_-__8_y__.
(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系 数的关系采用“设而不求”“整体代入”等解法.
[提醒] 涉及弦的中点、斜率时一般用“点差法”求解.
答案:B
微专题35 活用抛物线焦点弦的几个结论
数学抽象素养水平表现为能够在得到的数学结论的基础上形成新命 题,能够针对具体的问题运用数学方法解决问题,而新命题、新结论 有助于数学运算,两者相辅相成,本课时抛物线的焦点弦问题的四个 常用结论即为具体表现之一.
向右 |PF|=
精编2018版高考数学人教A版理一轮复习真题集训第七章不等式72和答案
真题演练集训1.若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12答案:C解析:作出不等式组所表示的平面区域如图中阴影部分所示,设P (x ,y )为平面区域内任意一点,则x 2+y 2表示|OP |2.显然,当点P 与点A 重合时,x 2+y 2取得最大值,由⎩⎪⎨⎪⎧ x +y =2,2x -3y =9, 解得⎩⎪⎨⎪⎧x =3,y =-1,故A (3,-1).所以x 2+y 2的最大值为32+(-1)2=10.故选C.2.若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5答案:C解析:不等式组⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0表示的可行域如图中阴影部分所示,由⎩⎪⎨⎪⎧ 2x -y =0,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,故当目标函数z =2x +y 经过点A (1,2)时,z 取得最大值,z max =2×1+2=4.故选C.3.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 C .17万元 D .18万元答案:D解析:设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有 ⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为z =3x +4y ,作出可行域如图中阴影部分所示,由图形可知,当直线z =3x +4y 经过点A (2,3)时,z 取最大值,最大值为3×2+4×3=18(万元).4.不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3答案:C解析:作出不等式组表示的可行域,如图中阴影部分所示.由⎩⎪⎨⎪⎧x +y =1,x -2y =4,得交点A (2,-1). 目标函数的斜率k =-12>-1,观察直线x +y =1与直线x +2y =0的倾斜程度,可知u =x +2y 过点A 时取得最小值0⎝ ⎛⎭⎪⎫y =-x 2+u 2,u 2表示纵截距.结合题意知p 1,p 2正确.5.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.答案:32解析:约束条件对应的平面区域是以点⎝ ⎛⎭⎪⎫1,12,(0,1)和(-2,-1)为顶点的三角形,当目标函数y =-x +z 经过点⎝ ⎛⎭⎪⎫1,12时,z 取得最大值32.课外拓展阅读 非线性目标函数最值的求解类型1 斜率型非线性规划问题的最值(值域)目标函数形式一般为z =ay +bcx d(ac ≠0),求解步骤为(1)需先弄清其几何意义,z =a c ·y -⎝ ⎛⎭⎪⎫-b a x -⎝ ⎛⎭⎪⎫-d c 表示的是可行域内的点(x ,y )与点⎝ ⎛⎭⎪⎫-dc,-b a 所连直线的斜率的a c 倍.(2)数形结合,确定定点⎝ ⎛⎭⎪⎫-dc,-b a ,观察可行域的范围.(3)确定可行域内的点(x ,y ),看(x ,y )取何值时,斜率最大(注意若可行域不含边界点,有可能取不到最大值);(x ,y )取何值时,斜率最小(注意若可行域不含边界点,有可能取不到最小值);通常在三角形或四边形的边界交点处取得最值.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -4≥0,x -y +2≥0,2x -y -5≤0,则f (x ,y )=x +2y2x +y的取值范围是________.作出不等式组表示的平面区域,如图中阴影部分所示,f(x,y)=x+2y2x+y=1+2·yx 2+yx.令yx=k,则g(k)=1+2k2+k=2-32+k.而k=yx表示可行域内的点P(x,y)与坐标原点O的连线的斜率,观察图形可知,kOA≤k≤k OB,而k OA=1-03-0=13,k OB=3-01-0=3,所以13≤k≤3,即57≤f(x,y)≤75. ⎣⎢⎡⎦⎥⎤57,75类型2 距离型非线性规划问题的最值(值域)1.目标函数形式为z=(x-a)2+(y-b)2时,求解步骤为:(1)其表示的是可行域内的点(x,y)与点(a,b)之间的距离的平方.(2)数形结合,确定定点(a,b),观察可行域的范围.(3)确定可行域内的点(x,y),看(x,y)取何值时,距离最大(注意若可行域不含边界点,有可能取不到最大值);(x,y)取何值时,距离最小(注意若可行域不含边界点,有可能取不到最小值);通常在三角形、四边形的边界交点处或定点(a,b)到可行域边界直线的垂足处取得.2.目标函数形如z =|Ax +By +C |时,一般步骤为:(1)将z =|Ax +By +C |=A 2+B 2·|Ax +By +C |A 2+B 2,问题转化为求可行域内的点(x ,y )到直线Ax +By +C =0的距离的A 2+B 2倍的最值.(2)确定可行域,通过数形结合的方法求出所求的最值.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,则z =(x +1)2+y 2的最大值为( )A .80B .4 5C .25 D.172作出可行域→结合目标函数的几何意义:两点间距离的平方→数形结合,求得z 的最大值作出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,如图中阴影部分所示.(x +1)2+y 2可看作点(x ,y )到点P (-1,0)的距离的平方,由图可知,可行域内的点A 到点P (-1,0)的距离最大.解方程组⎩⎪⎨⎪⎧x =3,x -y +5=0,得点A 的坐标为(3,8),代入z =(x +1)2+y 2,得z max =(3+1)2+82=80. A实数x ,y满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.解法一:作出不等式组表示的平面区域,如图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何意义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得点B 的坐标为(7,9), 显然点B 到直线x +2y -4=0的距离最大, 此时z max =21.解法二:由图可知,阴影区域内的点都在直线x +2y -4=0的上方,显然此时有x +2y -4>0,于是目标函数等价于z =x +2y -4,即转化为简单的线性规划问题,显然当直线经过点B 时,目标函数取得最大值,z max =21.21 技巧点拨解决这类问题时,需充分把握好目标函数的几何意义,在几何意义的基础上加以处理.。
2018版高考数学(人教A版文科)一轮复习真题演练集训第七章不等式7-1Word版含解析
真题演练集训1.[2016·北京卷]已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y >0B .sin x -sin y >0C.⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0 D .ln x +ln y >0答案:C解析:解法一:因为x >y >0,选项A ,取x =1,y =12,则1x -1y =1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sinπ-sin π2=-1<0,排除B ;选项D ,取x =2,y =12,则ln x +ln y =ln(xy )=ln 1=0,排除D.故选C.解法二:因为函数y =⎝ ⎛⎭⎪⎫12x 在R 上单调递减,且x >y >0,所以⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y ,即⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0,故选C. 2.[2016·新课标全国卷Ⅰ]若a >b >1,0<c <1,则( )A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c 答案:C解析:对于选项A ,考虑幂函数y =x c ,因为c >0,所以y =x c 为增函数,又a >b >1,所以a c >b c ,故A 错;对于选项B ,ab c <ba c⇔⎝ ⎛⎭⎪⎫b a c <b a ,又y =⎝ ⎛⎭⎪⎫b a x 是减函数,故B 错;对于选项D ,由对数函数的性质可知D 错,故选C.3.[2014·辽宁卷]当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a∈R ,当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,∴a ≥⎣⎢⎡⎦⎥⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0,∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6.∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎢⎡⎦⎥⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4,当x ∈[-2,-1)时,φ′(x )<0;当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2, ∴a ≤-2.综上可知a 的取值范围为[-6,-2].4.[2015·辽宁卷]不等式2x 2-x <4的解集为________. 答案:{x |-1<x <2}(或(-1,2))解析:∵<4,∴<22,∴ x 2-x <2,即x 2-x -2<0,∴ -1<x <2.5.[2014·江苏卷]已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-22,0 解析:由题可得,f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0, 解得-22<m <0.。
高考数学一轮复习 第七章 数列 7.5.3 数列建模问题课件
即 a12a22a32 =aa222002109,
a2 019
故 a12a22a32 是斐a22波019那契数列中的第2 020项.
a2 019
(方法二:归纳法)
a12 a22 a2
=122 =11a23,
a 1 2 a a 2 2 3 a 3 2 1 2 1 2 2 2 2 3 a 4 , a 1 2 a 2 2 a 4 a 3 2 a 4 2 1 2 1 2 3 2 2 3 2 5 a 5 ,
猜测 a12 a22 =aan2n+1.由此可知,
) a
.
的等比数列,{bn}是首项为
12/11/2021
所以经过n年,该市被更换的公交车总数为
S(n)=Sn+Tn=25[ ( 632 ) n- 1 ]
+400n+n
(
n
-1
) a
.
2
(2)若计划7年内完成全部更换,
则S(7)≥10 000,
所以256[ ( 3 ) 7-+1 ]400×7+
2
7 a6≥10 000,
利润率bn= 这 n 天 第 的 n 天 投 的 入 利 资 润 金 总 和 .例 如 , b 3 = 8 1 a a 1 3 a 2 . (1)求b1,b2的值. (2)求第n天的利润率bn.
12/11/2021
【解题导思】
12/11/2021
12/11/2021
【解析】(1)当n=1时,b1=8 1 1 ; 当n=2时,b2=8 1 2 .
12/11/2021
命题角度3 递推关系模型 【典例】意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样的数 列:1,1,2,3,5,8,…,该数列的特点是:从第3个数起,每一个数都等于它前面两 个数的和,人们把这样的一列数所组成的数列{an}称为“斐波那契数列”, 则 a12a22a32a22019 是斐波那契数列中的第________项. 世纪金榜导学号
高中数学一轮复习课件:第七章 不等式、推理与证明(必修5、选修1-2)7-4
2.数列 2,5,11,20,x,47,…中的 x 等于( ) A.28 B.32 C.33 D.27
[解析] 从第 2 项起每一项与前一项的差构成公差为 3 的等 差数列,所以 x=20+12=32.故选 B.
[答案] B
3.(选修 1-2P30 练习 T1 改编)已知数列{an}中,a1=1,n≥2 时,an=an-1+2n-1,依次计算 a2,a3,a4 后,猜想 an 的表达式 是( )
[对点训练] 1.(2019·山东日照模拟)对于实数 x,[x]表示不超过 x 的最大 整数,观察下列等式: [ 1 ]+[ 2 ]+[ 3 ]=3; [ 4 ]+[ 5 ]+[ 6 ]+[ 7 ]+[ 8 ]=10; [ 9 ]+[ 10 ]+[ 11 ]+[ 12 ]+[ 13 ]+[ 14 ]+[ 15 ] =21; … 按照此规律第 n 个等式的等号右边的结果为________.
主干知识梳理 Z
主干梳理 精要归纳
1.合情推理
[知识梳理]
2.演绎推理 (1)定义:从一般性的原理出发,推出某个特殊情况下的结论, 我们把这种推理称为演绎推理.简言之,演绎推理是由一般到 特殊 的推理. (2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况; ③结论——根据一般原理,对特殊情况作出的判断.
[解析] 根据题图(1)所示的分形规律,可知 1 个白圈分形为 2
个白圈 1 个黑圈,1 个黑圈分形为 1 个白圈 2 个黑圈,把题图(2)
中的树形图的第 1 行记为(1,0),第 2 行记为(2,1),第 3 行记为(5,4),
第 4 行的白圈数为 2×5+4=14,黑圈数为 5+2×4=13,所以第
高考数学一轮复习 第七章 不等式 7.1 不等式及其解法课件 理
D.a2>ab>b2
答案 D 选项A,∵c为实数,∴取c=0,得ac2=0,bc2=0,此时ac2=bc2,故选项A不正确;选项B, 1 - 1 =
ab
b ,a∵a<b<0,∴b-a>0,ab>0,∴ b>0a,即 >1 ,1故选项B不正确;选项C,∵a<b<0,∴取a=-2,b=-1,
ab
ab
ab
12/11/2021
2.(2014江苏,10,5分)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的
取值范围是
.
答案
2 2
,0
解析 要满足f(x)=x2+mx-1<0对于任意x∈[m,m+1]恒成立,
只需
f f
(即m ) 0,解得-
(m 1) 0,
∵0<log0.20.3<log0.20.2=1,log20.3<log20.5=-1,即0<a<1,b<-1,∴a+b<0,排除D.
∵ b =l o g 2=0 . 3 =llgo0g.220.2,∴b- =logb 20.3-log20.2=log2
a lo g 0.2 0 .3 l g 2
a
解法二:易知0<a<1,b<-1,∴ab<0,a+b<0,
<1,∴3 b<1+
2
⇒ab b<a+b,排除A.故选B.
a
∵ 1 +1 =log0.30.2+log0.32=log0.30.4<1,
核按钮(新课标)高考数学一轮复习 第七章 不等式训练 文
第七章不等式考纲链接1.不等关系了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际问题的情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:ab≤a+b2(a≥0,b≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.§7.1 不等关系与不等式1.两个实数大小的比较(1)a>b⇔a-b________;(2)a=b⇔a-b________;(3)a<b⇔a-b________.2.不等式的性质(1)对称性:a>b⇔__________;(2)传递性:a>b,b>c⇒__________;(3)不等式加等量:a>b⇔a+c______b+c;(4)不等式乘正量:a>b,c>0⇒__________,不等式乘负量:a>b,c<0⇒__________;(5)同向不等式相加:a>b,c>d⇒__________;※(6)异向不等式相减:a>b,c<d⇒a-c>b-d;(7)同向不等式相乘:a>b>0,c>d>0⇒__________;※(8)异向不等式相除:a>b>0,0<c<d⇒ac>bd;※(9)不等式取倒数:a>b,ab>0⇒1a<1b;(10)不等式的乘方:a>b>0⇒______________;(11)不等式的开方:a>b>0⇒______________.※注:1.(5)(6)说明,同向不等式可相加,但不可相减,而异向不等式可相减;2.(7)(8)说明,都是正数的同向不等式可相乘,但不可相除,而都是正数的异向不等式可相除.自查自纠:1.>0 =0 <02.(1)b<a(2)a>c(3)> (4)ac>bc ac<bc(5)a+c>b+d(7)ac>bd(10)a n>b n(n∈N且n≥2)(11)na>nb(n∈N且n≥2)(2014·山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是( ) A.1x2+1>1y2+1B.ln(x2+1)>ln(y2+1) C.sin x>sin y D.x3>y3解:根据指数函数的性质得x>y,此时x2,y2的大小不确定,故选项A,B中的不等式不恒成立;根据三角函数的性质,选项C中的不等式也不恒成立;根据不等式的性质知,选项D中的不等式恒成立.故选D.(2015·烟台模拟)设a,b∈(-∞,0),则“a>b”是“a-1a>b-1b”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:∵⎝⎛⎭⎪⎫a-1a-⎝⎛⎭⎪⎫b-1b=(a-b)⎝⎛⎭⎪⎫1+1ab,又1+1ab>0,若a>b,则(a-b)⎝⎛⎭⎪⎫1+1ab>0,∴a-1a>b-1b成立;反之,若(a -b )⎝ ⎛⎭⎪⎫1+1ab >0,则a >b 成立.故选C.已知a >0,b >0,则a a b b与a b b a的大小关系为( )A .a a b b ≥a b b aB .a a b b <a b b aC .a a b b ≤a b b aD .与a ,b 的大小有关解:不妨设a ≥b >0,则a b ≥1,a -b ≥0.a a b ba b ba =⎝ ⎛⎭⎪⎫a b a -b ≥1,即a a b b ≥a b b a.同理当b >a >0时,亦有a a b b ≥a b b a.故选A.已知a =27,b =6+22,则a ,b 的大小关系是a b.解:由于a =27,b =6+22,平方作差得a 2-b 2=28-14-83=14-83=8⎝ ⎛⎭⎪⎫74-3>0,从而a >b.故填>.(2015·济南模拟)若a >0>b >-a ,c <d<0,则下列结论:①ad >bc ;②a d +b c<0;③a -c >b -d ;④a (d -c )>b (d -c )中成立的是________(填序号).解:∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④正确.故填②③④.类型一 建立不等关系(2015·湖北)设x ∈R ,[x ]表示不超过x 的最大整数.若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n]=n 同时成立....,则正整数n 的最大值是( )A .3B .4C .5D .6解:因为[x ]表示不超过x 的最大整数.由[t ]=1得1≤t <2,由[t 2]=2得2≤t 2<3,由[t 4]=4得4≤t 4<5,所以2≤t 2<5,由[t 3]=3得3≤t 3<4,所以6≤t 5<45,由[t 5]=5得5≤t 5<6,与6≤t 5<45矛盾,故正整数n 的最大值是4.故选B.点拨:解决有关不等关系的实际问题,应抓住关键字词,例如“要”“必须”“不少于”“大于”等,从而建立相应的方程或不等式模型.本例[x ]表示不超过x 的最大整数,故由[x ]=k ,可得k ≤x <k +1,再由多个不等式结合不等式的性质找到正整数n 的最大值.用锤子以均匀的力敲击铁钉进入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度为前一次的1k(k ∈N *),已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,试从中提炼出一个不等式组.(钉帽厚度不计) 解:假设钉长为1,第一次受击后,进入木板部分的铁钉长度是47;第二次受击后,该次铁钉进入木板部分的长度为47k,此时进入木板部分的铁钉的总长度为47+47k ,有47+47k<1;第三次受击后,该次钉入木板部分的长度为47k 2,此时应有47+47k +47k2,有47+47k +47k2≥1. 所以可从中提炼出一个不等式组:⎩⎪⎨⎪⎧47+47k<1,47+47k +47k2≥1.类型二 不等式的性质已知下列三个不等式①ab >0;②ca>d b;③bc >ad.以其中两个作为条件,余下一个作结论,则可组成几个正确命题?解:(1)对②变形c a >d b ⇔bc -adab>0,由ab >0,bc >ad 得②成立,∴①③⇒②.(2)若ab >0,bc -adab>0,则bc >ad ,∴①②⇒③.(3)若bc >ad ,bc -adab>0,则ab >0,∴②③⇒①.综上所述可组成3个正确命题.点拨:运用比较法及不等式性质进行比较时要注意不等式需满足的条件,如比较ac 与bc 的大小关系应注意从c >0,c =0,c <0三个方面讨论.(2014·四川)若a >b >0,c <d <0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <b c解:由c <d <0⇒-1d >-1c>0,又a >b >0,故由不等式性质,得-a d >-b c >0,所以a d <b c.故选D.类型三 不等式性质的应用(1)若1<α<3,-4<β<2,则α2-β的取值范围是________.解:由1<α<3得12<α2<32,由-4<β<2得-2<-β<4,所以α2-β的取值范围是⎝ ⎛⎭⎪⎫-32,112.故填⎝ ⎛⎭⎪⎫-32,112.点拨:①需要注意的是,两同向不等式可以相加但不可以相减,所以不能直接由12<α2<32和-4<β<2两式相减来得到α2-β的范围.②此类题目用线性规划也可解.(2)已知-1<a +b <3且2<a -b <4,则2a +3b 的取值范围是________.解:设2a +3b =x (a +b )+y (a -b ),∴⎩⎪⎨⎪⎧x +y =2,x -y =3.解得⎩⎪⎨⎪⎧x =52,y =-12.∴-52<52(a +b )<152,-2<-12(a -b )<-1.∴-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.故填⎝ ⎛⎭⎪⎫-92,132.点拨:由于a +b ,a -b 的范围已知,所以要求2a +3b 的取值范围,只需将2a +3b 用已知量a +b ,a -b 表示出来,可设2a +3b =x (a +b )+y (a -b ),用待定系数法求出x ,y ,再利用同向不等式的可加性求解.(1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________.解:∵-π2<α<β<π2,∴-π2<α<π2,-π2<β<π2,-π2<-β<π2,而α<β,∴-π<α-β<0,∴2α-β=(α-β)+α∈⎝ ⎛⎭⎪⎫-3π2,π2.故填⎝ ⎛⎭⎪⎫-3π2,π2.(2)设f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围为________.解法一:由已知⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4.①②f (-2)=4a -2b.设4a -2b =m (a -b )+n (a +b )(m ,n 为待定系数),即4a -2b =(m +n )a -(m -n )b ,于是得⎩⎪⎨⎪⎧m +n =4,m -n =2.解得⎩⎪⎨⎪⎧m =3,n =1.由①×3+②×1得5≤4a -2b ≤10,即5≤f (-2)≤10.解法二:由⎩⎪⎨⎪⎧a -b =f (-1),a +b =f (1)得⎩⎪⎨⎪⎧a =12[f (1)+f (-1)],b =12[f (1)-f (-1)].∴f (-2)=4a -2b =3f (-1)+f (1),后面同解法一.故填[5,10].类型四 比较大小实数b >a >0,实数m >0,比较a +mb +m与a b 的大小,则a +m b +m ________a b. 解法一:(作差比较):a +mb +m -a b =b (a +m )-a (b +m )b (b +m )=m (b -a )b (b +m ),∵b >a >0,m >0,∴m (b -a )b (b +m )>0,∴a +mb +m>a b. 解法二(作商比较):∵b >a >0,m >0, ∴bm >am ⇒ab +bm >ab +am >0, ∴ab +bm ab +am >1,即a +m b +m ·b a >1⇒a +m b +m >a b.故填>.点拨:本题思路是作差整理,定符号,所得结论也称作真分数性质.作差(商)比较法的步骤是:①作差(商);②变形:配方、因式分解、通分、分母(分子)有理化等;③判断符号(判断商和“1”的大小关系);④作出结论.(2015·福建月考)已知a ,b ,c ∈R +,且a 2+b 2=c 2,当n ∈N ,n >2时,比较c n 与a n +bn的大小,则a n +b n ________c n.解:∵a ,b ,c ∈R +,∴a n ,b n ,c n>0,而a n +b n cn=⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n .∵a 2+b 2=c 2,∴⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,∴0<a c <1,0<b c <1.当n ∈N ,n >2时,⎝ ⎛⎭⎪⎫a c n <⎝ ⎛⎭⎪⎫a c 2,⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫b c 2,∴a n +b n c n =⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n <a 2+b 2c 2=1,∴a n +b n <c n .故填<.1.理解不等关系的意义、实数运算的符号法则、不等式的性质,是解不等式和证明不等式的依据和基础.2.一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.3.不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.4.利用几个不等式来确定某个代数式的范围时要注意:“同向(异向)不等式的两边可相加(相减)”这种变形不是等价变形,若多次使用,则有可能使取值范围扩大,解决这一问题的方法是:先建立待求范围的整体与已知范围的整体的等量关系,再一次性的运用这种变形,即可求得正确的待求整体的范围.5.比较两个实数的大小,有作差法和作商法两种方法.一般多用作差法,注意当这两个数都是正数时,才可以用作商法.作差法是比较作差后的式子与“0”的大小关系;作商法是比较作商后的式子与“1”的大小关系.6.对于实际问题中的不等量关系,还要注意实际问题对各个参变数的限制.1.(2015·厦门模拟) “a +c >b +d ”是“a >b 且c >d ”的( )A .充分不必要条件B .既不充分也不必要条件C .充分必要条件D .必要不充分条件 解:由“a +c >b +d ”不能得知“a >b 且c >d ”,反过来,由“a >b 且c >d ”可得知“a +c >b +d ”,因此“a +c >b +d ”是“a >b 且c >d ”的必要不充分条件.故选D.2.已知a ,b 为正数,a ≠b ,n 为正整数,则a nb +ab n -a n +1-b n +1的正负情况为 ( )A .恒为正B .恒为负C .与n 的奇偶性有关D .与a ,b 的大小有关解:a n b +ab n -a n +1-b n +1=a n (b -a )+b n(a -b )=-(a -b )(a n -b n),因为(a -b )与(a n -b n )同号,所以a n b +ab n -a n +1-b n +1<0恒成立.故选B.3.(2015·云南模拟)若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( )A .a +c ≥b -cB .(a -b )c 2≥0 C .ac >bcD.c 2a -b>0解:A 项:当c <0时,不等式a +c <b -c 可能成立;B 项:a >b ⇒a -b >0,c 2≥0,故(a -b )c 2≥0;C 项:当c =0时,ac =bc ;D 项:当c =0时,c 2a -b=0.故选B.4.(2014·湖南)已知命题p :若x >y ,则-x<-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④解:当x >y 时,两边乘以-1可得-x <-y ,∴命题p 为真命题;当x =1,y =-2时,显然x 2<y 2,∴命题q 为假命题,∴②③为真命题.故选C.5.(2014·浙江)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c≤6C .6<c≤9D .c >9解:由f (-1)=f (-2)=f (-3)得,-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ,消去c 得⎩⎪⎨⎪⎧3a -b =7,5a -b =19, 解得⎩⎪⎨⎪⎧a =6,b =11,于是0<c -6≤3,即6<c ≤9.故选C.6.如果0<m <b <a ,则( )A .cos b +m a +m <cos b a <cos b -m a -mB .cos b a <cos b -m a -m <cos b +m a +mC .cos b -m a -m <cos b a <cos b +m a +mD .cos b +m a +m <cos b -m a -m <cos b a解:作商比较:b +m a +m ÷b a =ab +amab +bm>1,所以1>b +m a +m >b a >0,同理,0<b -m a -m <b a <1,∴1>b +m a +m >b a >b -m a -m >0.而y =cos x 在⎝⎛⎭⎪⎫0,π2上单调递减,所以cos b +m a +m <cos b a <cos b -ma -m(也可取特殊值判断).故选A.7.(2015·江西模拟)设a =lg e ,b =(lg e )2,c =lg e ,则a ,b ,c 的大小关系为________.解:∵e <10,∴lg e <lg 10=12,∴(lg e )2<12·lg e =lg e ,即b <c.又∵e <e ,∴lg e <lg e ,即c <a.故填b <c <a.8.(2015·安徽模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b.已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c =________.(结果用a ,b ,c 表示)解:∵log 30.3<0<0.33<1<30.3,∴c <b <a ,∴(a *b )*c =b *c =c.故填c.9.设实数a ,b ,c 满足①b +c =6-4a +3a 2,②c -b =4-4a +a 2.试确定a ,b ,c 的大小关系.解:∵c -b =(a -2)2≥0,∴c ≥b ,又2b =2+2a 2,∴b =1+a 2,∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,从而c ≥b >a.10.某企业去年年底给全部的800名员工共发放1 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加30万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过1.5万元?(2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人?解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元.则y =1 000+30x 800+ax(a ∈N *,1≤x ≤10).假设会超过1.5万元,则当a =10时有1 000+30x 800+10x >1.5,解得x >403>10.所以,10年内该企业的人均年终奖不会超过1.5万元.(2)设1≤x 1<x 2≤10,y =f (x )=1 000+30x800+ax,则f (x 2)-f (x 1)=1 000+30x 2800+ax 2-1 000+30x 1800+ax 1=(30×800-1 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以30×800-1 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.11.(2015·云南模拟改编)已知a +b +c =0,且a >b >c ,求ca的取值范围.解:∵a +b +c =0,∴b =-(a +c ).又a >b >c , ∴a >-(a +c )>c ,且3a >a +b +c =0>3c ,则a >0,c <0,∴1>-a +c a >ca,即1>-1-c a >c a ,∴⎩⎪⎨⎪⎧2c a <-1,ca >-2, 解得-2<ca <-12.故c a 的取值范围是⎝⎛⎭⎪⎫-2,-12. 设a >b >1,c <0,给出下列三个结论:①c a >cb;②a c<b c;③log b ()a -c >log a ()b -c .其中所有正确结论的序号是( ) A .① B .①② C .②③ D .①②③解:①∵a >b >1,∴0<1a <1b<1,又c <0,∴c a >cb ,①正确;②由于a >b >1,可设f (x )=a x,g (x )=b x,当x =c <0时,根据指数函数的性质,得a c <b c,②正确;③∵a >b >1,c <0,即a -c >b -c >1,∴log a (a -c )>log a (b -c ),又由对数函数的性质知log b (a -c )>log a (a -c ),∴log b (a -c )>log a (b -c ),③正确.故选D.§7.2 一元二次不等式及其解法1.解不等式的有关理论(1)若两个不等式的解集相同,则称它们是;(2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的;(3)解不等式变形时应进行同解变形;解不等式的结果,一般用集合表示.2.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.若关于x的不等式ax>b的解集是R,则实数a,b满足的条件是.3.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)若一元二次不等式经过同解变形后,化为一元二次不等式ax2+bx+c>0(或ax2+bx+c<0)(其中a>0)的形式,其对应的方程ax2+bx+c=0有两个不相等的实根x1,x2,且x1<x2(此时Δ=b2-4ac>0),则可根据“大于号取,小于号取”求解集.(4)一元二次不等式的解:函数与不等式Δ>0 Δ=0 Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a无实根ax2+bx+c>0(a>0)的解集①②Rax2+bx+c<0 (a>0)的解{x|x1<x<x2}∅③集4.分式不等式解法(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f(x)g(x)的形式.(2)将分式不等式转化为整式不等式求解,如:f(x)g(x)>0⇔f(x)g(x)>0;f(x)g(x)<0 ⇔f(x)g(x)<0;f(x)g(x)≥0 ⇔⎩⎪⎨⎪⎧f(x)g(x)≥0,g(x)≠0;f(x)g(x)≤0 ⇔⎩⎪⎨⎪⎧f(x)g(x)≤0,g(x)≠0.自查自纠:1.(1)同解不等式(2)同解变形2.⎩⎨⎧⎭⎬⎫x|x>ba⎩⎨⎧⎭⎬⎫x|x<baa=0,b<03.(1)一元二次(2)解集(3)两边中间(4)①{}x|x<x1或x>x2②⎩⎨⎧⎭⎬⎫x⎪⎪⎪x≠-b2a③∅(2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[-2,-1] B.[-1,2)C.[-1,1] D.[1,2)解:∵A={x|x≥3或x≤-1},B={x|-2≤x<2},∴A∩B={x|-2≤x≤-1}=[-2,-1].故选A.设f(x)=x2+bx+1且f(-1)=f(3),则f(x)>0的解集为( )A.{x|x∈R} B.{x|x≠1,x∈R}C.{x|x≥1} D.{x|x≤1}解:f(-1)=1-b+1=2-b,f(3)=9+3b+1=10+3b,由f(-1)=f(3),得2-b=10+3b,解出b=-2,代入原函数,f(x)>0即x2-2x+1>0,x的取值范围是x≠1.故选B.已知-12<1x<2,则x 的取值范围是( )A .(-2,0)∪⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫-12,2 C.⎝⎛⎭⎪⎫-∞,-12∪(2,+∞) D .(-∞,-2)∪⎝ ⎛⎭⎪⎫12,+∞ 解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,故选D.不等式2x 2-x <4的解集为____________.解:由2x 2-x <4得x 2-x <2,解得-1<x <2,即不等式2x 2-x <4的解集为{x |-1<x <2}.故填{x |-1<x <2}.(2014·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为________.解:显然k ≠0.则⎩⎪⎨⎪⎧2k <0,Δ<0, 解得k ∈(-3,0).故填(-3,0).类型一 一元一次不等式的解法已知关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎪⎫-∞,-13,则关于x 的不等式(a -3b )x +b -2a >0的解集为________.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎪⎫-∞,-13, 得a +b >0,且3b -2a a +b =-13,从而a =2b ,则a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故填{x |x <-3}.点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2aa +b=-13是解本题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时,①当m =-2时,原不等式的解集为∅, ②当m =2时,原不等式的解集为R .(2)当m 2-4>0,即m <-2或m >2时,x <1m -2.(3)当m 2-4<0,即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解下列不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0;(3)x 2-2x +1<0; (4)x 2-2x +2>0.解:(1)方程x 2-7x +12=0的解为x 1=3,x 2=4.而y =x 2-7x +12的图象开口向上,可得原不等式x 2-7x +12>0的解集是{x |x <3或x >4}.(2)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0.方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(3)方程x 2-2x +1=0有两个相同的解x 1=x 2=1.而y =x 2-2x +1的图象开口向上,可得原不等式x 2-2x +1<0的解集为∅.(4)因为Δ<0,所以方程x 2-2x +2=0无实数解,而y =x 2-2x +2的图象开口向上,可得原不等式x 2-2x +2>0的解集为R .点拨:解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.(2015·贵州模拟)关于x 的不等式x2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是________.解:原不等式可化为(x -1)(x -a )<0,当a >1时,得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5;当a <1时,得a <x <1,此时解集中的整数为-2,-1,0.则-3≤a <-2,故a ∈[-3,-2)∪(4,5].故填[-3,-2)∪(4,5].类型三 二次不等式、二次函数及二次方程的关系(2015·贵州模拟)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫xx <-1或x >12B.⎩⎨⎧⎭⎬⎫x |-1<x <12C .{x |-2<x <1}D .{x |x <-2或x >1}解:由题意知x =-1,x =2是方程ax 2+bx +2=0的两根,且a <0.由韦达定理得⎩⎪⎨⎪⎧-1+2=-b a ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a <0,即2x 2+x -1<0.解得-1<x <12.故选B.点拨:已知一元二次不等式的解集,就能够得到相应的一元二次方程的两根,由根与系数的关系,可以求出相应的系数.注意结合不等式解集的形式判断二次项系数的正负.已知不等式ax 2+bx +c >0的解集为{x |2<x <3},则不等式cx 2-bx +a >0的解集为________.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba=2+3,ca =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0).即6x 2+5x +1<0,解得-12<x <-13.故填⎩⎨⎧⎭⎬⎫x |-12<x <-13. 类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)当m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1};(2)当m ≠0时,不等式为m ⎝ ⎛⎭⎪⎫x -1m (x -1)<0.①当m <0,不等式为⎝ ⎛⎭⎪⎫x -1m (x -1)>0, ∵1m<1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m或x >1.②当m >0,不等式为⎝⎛⎭⎪⎫x -1m (x -1)<0.(Ⅰ)若1m<1,即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m<x <1;(Ⅱ)若1m>1,即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)若1m=1,即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m与1大小的不确定性,对m <1、m >1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1]. 当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a,所以当a >0时,解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞;当-2<a <0时,解集为⎣⎢⎡⎦⎥⎤2a,-1;当a =-2时,解集为{x |x =-1};当a <-2时,解集为⎣⎢⎡⎦⎥⎤-1,2a .类型五 分式不等式的解法(1)不等式x -12x +1≤1的解集为________.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0⇔ x +22x +1≥0. 解法一:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧(x +2)(2x +1)≥0,2x +1≠0.得{xx >-12或x ≤-2}.解法二:x +22x +1≥0 ⇔⎩⎪⎨⎪⎧x +2≥0,2x +1>0 或⎩⎪⎨⎪⎧x +2≤0,2x +1<0. 得{x |x >-12或x ≤-2}.故填{x |x >-12或x ≤-2}.(2)不等式x -2x 2+3x +2>0的解集为.解:x -2x 2+3x +2>0⇔x -2(x +2)(x +1)>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}.点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,则要注意分式的分母不能为零.※用“数轴标根法”解不等式的步骤:(1)移项:根据不等式的性质对不等式进行移项,使得右端为0,化为不等式的标准形式(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根.①若是整式不等式,将其分解因式,求出所有根;②若是分式不等式,用积和商的符号法则,将其转化为整式不等式,再求出所有根.(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根”的右上方向左下方画线,穿过此根,再往左上方穿过“次右根”,一上一下依次穿过各根.但画线时遇偶重根不穿过(即线画至此根时,不穿过此根,而向左依次穿过其余的根),遇奇重根要穿过,可用口诀:“奇穿偶不穿”来记忆.(5)写出不等式的解集:若不等号为“>”,则取数轴上方穿根线以内的范围;若不等号为“<”,则取数轴下方穿根线以内的范围;若不等式中含有“=”号,就连根一同取,但若是分式不等式,写解集时要考虑分母不能为零.(1)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2} D .{x |0≤x ≤1} 解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x (x -2)≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.故选B.(2)不等式x -12x +1≤0的解集为( )A.⎝ ⎛⎦⎥⎤-12,1B.⎣⎢⎡⎦⎥⎤-12,1 C.⎝⎛⎭⎪⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎥⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0得-12<x ≤1.故选A.类型六 和一元二次不等式有关的恒成立问题(1)若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎥⎤0,12成立,则实数a 的最小值为( )A .0B .-2C .-52D .-3解法一:不等式可化为ax ≥-x 2-1,由于x ∈⎝ ⎛⎦⎥⎤0,12, ∴a ≥-⎝⎛⎭⎪⎫x +1x .∵f (x )=x +1x 在⎝ ⎛⎦⎥⎤0,12上是减函数,∴⎝⎛⎭⎪⎫-x -1x max =-52.∴a ≥-52. 解法二:令f (x )=x 2+ax +1,对称轴为x =-a 2.①⎩⎪⎨⎪⎧-a 2≤0,f (0)≥0 ⇒a ≥0.(如图1) ②⎩⎪⎨⎪⎧0<-a 2<12,f ⎝ ⎛⎭⎪⎫-a 2≥0⇒-1<a <0.(如图2)③⎩⎪⎨⎪⎧-a 2≥12,f ⎝ ⎛⎭⎪⎫12≥0 ⇒-52≤a ≤-1.(如图3)图1 图2 图3综上 ①②③,a ≥-52.故选C.(2)已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g (1)>0,g (-1)>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,故选B.点拨:(1)一元二次不等式恒成立问题,对于x 变化的情形,解法一利用参变量分离法,化成a >f (x )(a <f (x ))型恒成立问题,再利用a >f (x )max (a <f (x )min ),求出参数范围.解法二化归为二次函数,由于是轴动区间定,结合二次函数对称轴与定义域的位置关系、单调性等相关知识,求出参数范围.(2)对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.(1)(2015·甘肃模拟)若不等式a ·4x-2x+1>0对一切x ∈R 恒成立,则实数a 的取值范围是________.解:不等式可变形为a >2x-14x =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x,令⎝ ⎛⎭⎪⎫12x =t ,则t >0.∴y =⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫14x=t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a >14.故填⎝ ⎛⎭⎪⎫14,+∞.(2)对于满足|a |≤2的所有实数a ,使不等式x 2+ax +1>2x +a 成立的x 的取值范围为________.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,则f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f (-2)>0,f (2)>0, 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0, 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1. ∴x <-1或x >3.故填(-∞,-1)∪(3,+∞).类型七 二次方程根的讨论若方程2ax 2-x -1=0在(0,1)内有且仅有一解,则a 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .[0,1)解法一:令f (x )=2ax 2-x -1,则f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1.解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.故选B.点拨:本题考查一元二次方程的根的分布与系数的关系,画出相应函数的图象后“看图说话”,主要从以下四个方面分析:①开口方向;②判别式;③区间端点函数值的正负;④对称轴x =-b2a与区间端点的关系.本书2.4节有较详细的讨论,可参看.(2015·贵州模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为________.解:根据题意有f (-2)f (-1)<0,∴(6a +5)(2a +3)<0.∴-32<a <-56.又a ∈Z ,∴a =-1.检验知合要求.不等式f (x )>1即为-x 2-x +1>1,解得-1<x <0.∴故填{x |-1<x <0}.类型八 一元二次不等式的应用(2013·上海)甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1)根据题意,200⎝ ⎛⎭⎪⎫5x +1-3x ≥3 000⇒5x-14-3x≥0⇒5x 2-14x -3≥0⇒(5x +1)(x -3)≥0,又1≤x ≤10,可解得3≤x ≤10.(2)设利润为y 元,则y =900x·100⎝⎛⎭⎪⎫5x +1-3x =9×104⎝ ⎛⎭⎪⎫-3x 2+1x +5=9×104⎣⎢⎡⎦⎥⎤-3⎝ ⎛⎭⎪⎫1x -162+6112. 故x =6时,y max =457 500元.点拨:和一元二次不等式有关的实际应用题是高考考查的重点,这类题目往往与实际生活结合紧密,应予以重视.(2015·河南模拟)某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解: (1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . ∵售价不能低于成本价,∴100⎝ ⎛⎭⎪⎫1-x 10-80≥0.∴y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0.解得12≤x ≤134.∴x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.1.一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的解集的确定,受二次项系数a 的符号及判别式Δ=b 2-4ac 的符号制约,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a ≠0)的图象,数形结合求得不等式的解集;二次函数y =ax 2+bx +c 的值恒大于0的条件是a >0且Δ<0;若恒大于或等于0,则a >0且Δ≤0.若二次项系数中含参数且未指明该函数是二次函数时,必须考虑二次项系数为0这一特殊情形.2.解分式不等式要使一边为零;求解非严格分式不等式时,要注意分母不等于0,转化为不等式组.(注:形如f (x )g (x )≥0或f (x )g (x )≤0的不等式称为非严格分式不等式)3.解含参数的不等式的基本途径是分类讨论,能避免讨论的应设法避免讨论.对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.4.解不等式的过程,实质上是不等式等价转化的过程.因此保持同解变形是解不等式应遵循的基本原则.5.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.6.对给定的一元二次不等式,求解的程序框图是:1.不等式x -2x +1≤0的解集是( ) A .(-∞,-1)∪(-1,2] B .[-1,2] C .(-∞,-1)∪[2,+∞) D .(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],故选D.2.(2015·湖北模拟)不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为( )解:由题意得⎩⎪⎨⎪⎧-2+1=1a ,-2×1=-c a, 解得⎩⎪⎨⎪⎧a =-1,c =-2.则f (x )=-x 2-x +2,∴f (-x )=-x 2+x +2.故选C.3.(2013·安徽)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x)>0的解集为( )A .{x |x <-1或x >lg2}B .{x |-1<x <lg2}C .{x |x >-lg2}D .{x |x <-lg2}解:可设f (x )=a (x +1)⎝ ⎛⎭⎪⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎪⎫10x -12<0,从而10x <12,解得x <-lg2,故选D.4.(2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m )的取值范围是( )A .[15,20]B .[12,25]C .[10,30]D .[20,30] 解:设矩形的另一边为y m ,依题意得x40=40-y40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.故选C.5.若关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,则实数a 的取值范围是( )A .(-∞,-12)B .(-4,+∞)C .(-12,+∞)D .(-∞,-4)解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,则a <-4.故选D.6.若关于x 的方程3x 2-5x +a =0的一个根大于-2且小于0,另一个根大于1且小于3,则实数a 的取值范围是( )A .(-∞,2)B .(-12,+∞)C .(-22,0)D .(-12,0)解:设f (x )=3x 2-5x +a ,则由题意有 ⎩⎪⎨⎪⎧f (-2)>0,f (0)<0,f (1)<0,f (3)>0.即⎩⎪⎨⎪⎧22+a >0,a <0,-2+a <0,12+a >0.解得-12<a <0.故选D.7.(2015·浙江模拟)不等式log 2⎝⎛⎭⎪⎫x +1x+6≤3的解集为________.解:log 2⎝⎛⎭⎪⎫x +1x+6≤3⇔log 2⎝⎛⎭⎪⎫x +1x+6≤log 28⇔0<x +1x +6≤8⇔-6<x +1x ≤2.当x >0时,x +1x≥2,此时x =1;当x <0时,x +1x≤-2,此时x+1x>-6,解得-3-22<x <-3+22.故填(-3-22,-3+22)∪{1}. 8.(2015·昆明模拟)已知a 为正的常数,若不等式1+x ≥1+x 2-x 2a对一切非负实数x 恒成立,则a 的最大值是______________.解:原不等式可化为x 2a ≥1+x2-1+x (*),令1+x =t ,t ≥1,则x =t 2-1,所以(*)即(t 2-1)2a≥1+t 2-12-t =t 2-2t +12=(t -1)22,对t ≥1恒成立,所以(t +1)2a ≥12对t ≥1恒成立,又a 为正的常数,所以a ≤[2(t +1)2]min =8,故a 的最大值是8.故填8.9.若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围.解法一:设f (x )=x 2-ax -a.则关于x 的不等式x 2-ax -a ≤-3的解集不是空集⇔f (x )min ≤-3,即f ⎝ ⎛⎭⎪⎫a 2=-4a +a 24≤-3,解得a ≤-6或a ≥2.解法二:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.10.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40 km /h 的弯道上,甲、乙两辆车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m ,又知甲、乙两种车型的刹车距离s (m )与车速x (km /h )之间分别有如下关系:s 甲=0.1x +0.01x 2, s 乙=0.05x +0.005x 2. 问甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1x +0.01x 2>12,即x 2+10x -1200>0,解得x >30或x <-40(舍去).这表明甲车的车速超过30 km /h ,又由甲车刹车距离略超12 m ,可判断甲车车速不会超过限速40 km /h.对于乙车有0.05x +0.005x 2>10,即x 2+10x -2000>0,解得x >40或x <-50(舍去).这表明乙车超过40 km /h ,超过规定限速. 11.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;(2)若f (x )的最大值为正数,求a 的取值范围. 解:(1)∵f (x )+2x >0的解集为(1,3), ∴f (x )+2x =a (x -1)(x -3),且a <0. 因而f (x )=a (x -1)(x -3)-2x=ax 2-(2+4a )x +3a.①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15.由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式f (x )=-15x 2-65x -35.(2)由f (x )=ax 2-2(1+2a )x +3a=a ⎝ ⎛⎭⎪⎫x -1+2a a 2-a 2+4a +1a, 及a <0,可得f (x )的最大值为-a 2+4a +1a.由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0.故当f (x )的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).解关于x 的不等式:a (x -1)x -2>1(a<1).解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0,若a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1}; 若a -2a -1=2,即a =0时,解集为∅; 若a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.§7.3 二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据________ (即画出不等式组所表示的公共区域).②设________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出条件,确定________函数.然后,用图解法求得数学模型的解,即________,在可行域内求得使目标函数________.自查自纠:1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解不等式x-2y+6>0表示的区域在直线x -2y+6=0的( )A.左下方 B.左上方C.右下方 D.右上方解:画出直线并取原点代入知C正确.故选C.(2015·北京)若x,y满足⎩⎪⎨⎪⎧x-y≤0,x+y≤1,x≥0,则z =x+2y的最大值为( )A.0 B.1 C.32D.2解:由题意作出可行域如图中阴影部分所示,当z=x+2y经过点A(0,1)时取最大值,即z max =2.故选D.(2015·湖南)若变量x,y满足约束条件⎩⎪⎨⎪⎧x+y≥-1,2x-y≤1,y≤1,则z=3x-y的最小值为( ) A.-7 B.-1 C.1 D.2解:作出不等式组⎩⎪⎨⎪⎧x+y≥-1,2x-y≤1,y≤1表示的可行域。
2019版高考数学(理)一轮复习精选练习:第7章立体几何7-6a
[基础送分 提速狂刷练]一、选择题1.已知点O ,A ,B ,C 为空间不共面的四点,且向量a =OA →+OB →+OC →,向量b =OA →+OB →-OC →,则与a ,b 不能构成空间基底的向量是( )A.OA →B.OB →C.OC →D.OA →或OB →答案 C解析 根据题意得OC →=12(a -b ),所以OC →,a ,b 共面.故选C. 2.有4个命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P ,M ,A ,B 共面; ④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 答案 B解析 ①正确;②中,若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立;③正确;④中,若M ,A ,B 共线,点P 不在此直线上,则MP →=xMA →+yMB →不正确.故选B.3.在平行六面体ABCD -A ′B ′C ′D ′中,若AC ′→=xAB →+2yBC →-3zCC ′→,则x +y +z =( )A .1 B.76 C.56 D.23答案 B解析 ∵AC ′→=AC →+CC ′→=AD →+AB →+CC ′→=AB →+BC →+CC ′→=xAB →+2yBC →-3zCC ′→,∴x =1,y =12,z =-13, ∴x +y +z =1+12-13=76.故选B.4.已知四边形ABCD 满足AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB →>0,则该四边形为( )A .平行四边形B .梯形C .平面四边形D .空间四边形答案 D解析 由已知条件得四边形的四个外角均为锐角,但在平面四边形中任一四边形的外角和都是360°,这与已知条件矛盾,所以该四边形是一个空间四边形.故选D.5. (2018·北京东城模拟)如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则|PC →|等于()A .6 2B .6C .12D .144答案 C解析 ∵PC →=P A →+AB →+BC →, ∴PC →2=P A →2+AB →2+BC →2+2AB →·BC →, ∴|PC →|2=36+36+36+2×36cos60°=144, ∴|PC →|=12.故选C.6.(2017·舟山模拟)平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8答案 A解析 设AB →=a ,AD →=b ,AA 1→=c ,则AC 1→=a +b +c ,|AC 1→|2=a 2+b 2+c 2+2a ·b +2b ·c +2c ·a =25,因此|AC 1→|=5.故选A.7.(2017·南充三模)已知正方体ABCD -A 1B 1C 1D 1,下列命题: ①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2; ②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角为60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|, 其中正确命题的序号是( ) A .①② B .①②③ C .①④ D .①②④答案A解析 设正方体边长为单位长为1,建立空间直角坐标系,如图. A 1A →=(0,0,1),A 1D 1→=(1,0,0),A 1B 1→=(0,1,0),A 1C →=(1,1,1),AD 1→=(1,0,-1),所以对于①,(A 1A →+A 1D 1→+A 1B 1→)2=(1,1,1)·(1,1,1)=3=3A 1B 1→2,故①正确;对于②,A 1C →·(A 1B 1→-A 1A →)=(1,1,1)·(0,1,-1)=0,故②正确; 对于③,因为AD 1→·A 1B →=(1,0,-1)·(0,1,1)=-1,向量AD 1→与向量A 1B →的夹角为120°,故③错误;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →||AA 1→|·|AD →|,但是|AB →·AA 1→·AD →|=0,故④错误.故选A.8.对于空间任意一点O 和不共线的三点A ,B ,C ,且有OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则x =2,y =-3,z =2是P ,A ,B ,C 四点共面的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件答案 B解析 当x =2,y =-3,z =2时, 即OP →=2OA →-3OB →+2OC →,则AP →-AO →=2OA →-3(AB →-AO →)+2(AC →-AO →),即AP →=-3AB →+2AC →,根据共面向量定理,知P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理AP →=mAB →+nAC →,即OP →-OA →=m (OB →-OA →)+n (OC →-OA →), 即OP →=(1-m -n )OA →+mOB →+nOC →,即x =1-m -n ,y =m ,z =n ,这组数显然不止2,-3,2. 故是充分不必要条件.故选B.9.(2018·福州质检)正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M在AC 1上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( )A.216aB.66aC.156aD.153a答案 A解析 以D 为原点建立如图所示的空间直角坐标系Dxyz ,则A (a,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2. 设M (x ,y ,z ),∵点M 在AC 1上且AM →=12MC 1→, ∴(x -a ,y ,z )=12(-x ,a -y ,a -z ), ∴x =23a ,y =a 3,z =a 3.∴M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN →|=⎝⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a .故选A.10.已知矩形ABCD ,AB =1,BC =2,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直答案 B解析 如图所示,在图1中,易知AE =CF =63,BE =EF =FD =33.在图2中,设AE →=a ,EF →=b ,FC →=c , 则〈a ,b 〉=〈b ,c 〉=90°,设〈a ,c 〉=θ, 则AC →=a +b +c ,BD →=3b , 故AC →·BD →=3b 2=1≠0,故AC 与BD 不垂直,A 不正确;AB →=AE →+EB →=a -b ,CD →=CF →+FD →=b -c , 所以AB →·CD →=-a ·c -b 2=-23cos θ-13.当cos θ=-12,即θ=2π3时,AB →·CD →=0,故B 正确,D 不正确; AD →=AE →+ED →=a +2b ,BC →=BF →+FC →=2b +c , 所以AD →·BC →=a ·c +4b 2=23cos θ+43=23(cos θ+2), 故无论θ为何值,AD →·BC →≠0,故C 不正确.故选B. 二、填空题11.(2017·银川模拟)已知点A (1,2,1),B (-1,3,4),D (1,1,1),若AP →=2PB →,则|PD →|的值是________.答案773解析 设P (x ,y ,z ),∴AP →=(x -1,y -2,z -1).PB →=(-1-x ,3-y ,4-z ),由AP →=2PB →,得点P 坐标为⎝ ⎛⎭⎪⎫-13,83,3,又D (1,1,1),∴|PD →|=773. 12.如图,已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形的中心O ,Q 是CD 的中点,若P A →=xPO →+yPQ →+PD →,则x +y =________.答案 0解析 P A →-PD →=DA →=OA →-OD →=-OC →-OD →=-(OC →+OD →)=-2OQ →=-2(PQ →-PO →)=2PO →-2PQ →.∵P A →=xPO →+yPQ →+PD →,∴P A →-PD →=xPO →+yPQ →, ∴2PO →-2PQ →=xPO →+yPQ →.∵PQ →与PO →不共线,∴x =2,y =-2,∴x +y =0.13.已知O (0,0,0),A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________.答案 ⎝ ⎛⎭⎪⎫43,43,83解析 由题意,设OQ →=λOP →,即OQ →=(λ,λ,2λ), 则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ), ∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝ ⎛⎭⎪⎫λ-432-23,当λ=43时有最小值,此时Q 点坐标为⎝ ⎛⎭⎪⎫43,43,83. 14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________.答案 25解析 以A 为坐标原点,射线AB ,AD ,AQ 分别为x 轴,y 轴,z 轴的正半轴,建立如图所示的空间直角坐标系.设正方形ABCD 和ADPQ 的边长为2,则E (1,0,0),F (2,1,0),M (0,y,2)(0≤y ≤2).所以AF →=(2,1,0),EM →=(-1,y,2).所以AF →·EM →=-2+y ,|AF →|=5,|EM →|=5+y 2. 所以cos θ=|AF →·EM →||AF →||EM →|=|-2+y |5·5+y 2=2-y 5·5+y2. 令2-y =t ,则y =2-t ,且t ∈[0,2].所以cos θ=t 5·5+(2-t )2=t 5·9-4t +t 2. 当t =0时,cos θ=0.当t ≠0时,cos θ=15·9t 2-4t +1=15·9⎝ ⎛⎭⎪⎫1t -292+59, 由t ∈(0,2],得1t ∈⎣⎢⎡⎭⎪⎫12,+∞, 所以 9⎝ ⎛⎭⎪⎫1t -292+59≥ 9×⎝ ⎛⎭⎪⎫12-292+59=52. 所以0<cos θ≤25,即cos θ的最大值为25.三、解答题15.(2018·唐山模拟)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 和b 夹角的余弦值;(2)设|c |=3,c ∥BC →,求c 的坐标.解 (1)因为A B →=(1,1,0),AC →=(-1,0,2),所以a ·b =-1+0+0=-1,|a |=2,|b |= 5. 所以cos 〈a ,b 〉=a ·b |a ||b |=-12×5=-1010. (2)BC →=(-2,-1,2),设c =(x ,y ,z ),因为|c |=3,c ∥BC →,所以x 2+y 2+z 2=3,存在实数λ使得c =λBC →,即⎩⎪⎨⎪⎧ x =-2λ,y =-λ,z =2λ,联立解得⎩⎪⎨⎪⎧ x =-2,y =-1,z =2,λ=1或⎩⎪⎨⎪⎧ x =2,y =1,z =-2,λ=-1,所以c =±(-2,-1,2).16.已知平行六面体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°.(1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值;(3)证明:AA 1⊥BD.解 (1)如图所示,设AB →=a , AD →=b ,AA 1→=c ,则|a |=|b |=1,|c |=2.a ·b =0,a ·c =b ·c =2×1×cos120°=-1. ∵AC 1→=AB →+BC →+CC 1→=a +b +c , ∴|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2a ·b +2a ·c +2b ·c=1+1+22-2-2=2. ∴|AC 1→|= 2.即AC 1长为 2.(2)∵AC 1→=a +b +c ,A 1D →=b -c , ∴AC 1→·A 1D →=(a +b +c )·(b -c ) =a ·b -a ·c +b 2-b ·c +b ·c -c 2 =1+12-22=-2.又|A 1D →|2=(b -c )2=b 2+c 2-2b ·c =1+4+2=7,∴|A 1D →|=7.∴cos 〈AC 1→,A 1D →〉=AC 1→·A 1D →|AC 1→||A 1D →|=-22×7=-147. ∴异面直线AC 1与A 1D 所成角的余弦值为147.(3)证明:∵AA 1→=c ,BD →=b -a , ∴AA 1→·BD →=c ·(b -a )=c ·b -c ·a =-1-(-1)=0. ∴AA 1→⊥BD →,即AA 1⊥BD .。
精编2018版高考数学人教A版理一轮复习真题集训第七章不等式71和答案
真题演练集训1.已知x ,y ∈R ,且x >y >0,则( )A.1x -1y >0 B .sin x -sin y >0C.⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0 D .ln x +ln y >0 答案:C解析:解法一:因为x >y >0,选项A ,取x =1,y =12,则1x -1y=1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sin π-sin π2=-1<0,排除B ;选项D ,取x =2,y =12,则ln x +ln y =ln(xy )=ln 1=0,排除D.故选C. 解法二:因为函数y =⎝ ⎛⎭⎪⎫12x 在R 上单调递减,且x >y >0,所以⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y ,即⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y <0,故选C. 2.若a >b >1,0<c <1,则( )A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c答案:C解析:对于选项A ,考虑幂函数y =x c ,因为c >0,所以y =x c 为增函数,又a >b >1,所以a c >b c ,故A 错;对于选项B ,ab c <ba c ⇔⎝ ⎛⎭⎪⎫b a c <b a ,又y =⎝ ⎛⎭⎪⎫b a x 是减函数,故B 错;对于选项D ,由对数函数的性质可知D 错,故选C.3.不等式2x 2-x <4的解集为________.答案:{x |-1<x <2}解析:∵ 2x 2-x <4,∴ 2x 2-x <22,∴ x 2-x <2,即x 2-x -2<0,∴ -1<x <2.课外拓展阅读转化与化归思想在不等式中的应用已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为 考虑“三个二次”间的关系;(1)由题意知,f (x )=x 2+ax +b =⎝ ⎛⎭⎪⎫x +a 22+b -a 24. ∵f (x )的值域为 9已知函数f (x )=x 2+2x +a x,若对任意x ∈ 将恒成立问题转化为最值问题求解.∵x ∈ {a |a >-3}方法点睛本题的解法充分体现了转化与化归思想:函数的值域和不等式的解集转化为a ,b 满足的条件;不等式恒成立可以分离常数,转化为函数值域问题.。
2019届高考数学一轮复习 第七章 不等式 推理与证明 7-4 基本不等式及其应用讲义 文
4.已知 a≥0,b≥0,且 a+b=2,则( )
A.ab≤12
B.ab≥12
C.a2+b2≥2 D.a2+b2≤3
[解析] 由 a+b=2 得,ab≤a+2 b2=1,排除 A. 当 a=0,b=2,ab=0 排除 B. 又a2+2 b2≥a+2 b2,可得 a2+b2≥2. 再由特殊值,排除 D.
(2)在求所列函数的最值时,若用基本不等式时,等号取不到, 可利用函数单调性求解.
[跟踪演练] (2017·安徽安庆三模)随着社会的发展,汽车逐步成为人们的 代步工具,家庭轿车的持有量逐年上升,交通堵塞现象时有发生, 据调查某段公路在某时段内的车流量 y(千辆/时)与汽车的平均速 度 v(千米/时)之间有函数关系:y=v2+89v0+0v1600(v>0). (1)在该时段内,当汽车的平均速度 v 为多少时车流量 y 最 大?最大车流量约为多少?(结果保留两位小数) (2)为保证在该时段内车流量至少为 10 千辆/时,则汽车的平 均速度应控制在什么范围内?
利用均值 不等式证明
[证明] 由 a+b=1,得1a+1b+a1b=21a+1b, ∵a+b=1,a>0,b>0, ∴1a+1b=a+a b+a+b b=2+ab+ba≥2+2=4, ∴1a+1b+a1b≥8当且仅当a=b=12时等号成立.
利用基本不等式证明不等式的技巧 利用基本不等式证明不等式时,首先要观察题中要证明的不 等式的形式,若不能直接使用基本不等式,则考虑利用拆项、配 凑等方法对不等式进行变形,使之达到能使用基本不等式的条 件;若题目中还有已知条件,则首先观察已知条件和所证不等式 之间的联系,当已知条件中含有 1 时,要注意 1 的代换.另外, 解题中要时刻注意等号能否取到.
此时 m=12x+34+5x0≥2 2x·5x0+34=443, 当且仅当12x=5x0,即 x=10 时,取“=”. 故销售量至少应达到443万件时,才能使技术革新后的销售收 入等于原销售收入与总投入之和.
2023年高考数学一轮复习(新高考1) 第7章 §7
则点O到平面ABC1D1的距离
—→ —→ 1
d2=|
DA1 ·C1O —→
|=
| DA1 |
22=
42,故
B
正确;
—A1→B =(1,0,-1),—A1→D =(0,1,-1),
A—1→D1=(0,1,0).
设平面A1BD的法向量为n=(x,y,z), 则nn··——AA11→→DB = =00, ,
设点N到直线AB的距离为d1,
则 d1=
|A→N|2-
A→A→NB·A→B 2=
20-4=4.
(2)求点C1到平面ABN的距离.
设平面ABN的一个法向量为n=(x,y,z),
则由 n⊥A→B,n⊥A→N,
得nn··AA→→NB==24y+3x2+z=2y0=,0,
令 z=2,则 y=-1,x= 易知—C1→N =(0,0,-2),
得xy= =0z,, 令y=z=1,
所以n=(0,1,1). 因为O→F=(0, 3,0),
设点O到平面PBC的距离为d,
则 d=O→|Fn·|n=
3= 2
6 2.
因为点O在直线DE上,
所以直线
DE
到平面
PBC
的距离等于
6 2.
思维升华
点到直线的距离 (1)设过点 P 的直线 l 的单位方向向量为 n,A 为直线 l 外一点, 点 A 到直线 l 的距离 d= |P→A|2-P→A·n2.
如图,设DE的中点为O,BC的中点为F,连接OP,OF,OB, 因为平面PDE⊥平面BCDE, 平面PDE∩平面BCDE=DE, 所以OP⊥平面BCDE. 因为在△ABC中,点D,E分别为AC,AB边的中点, 所以DE∥BC. 因为DE⊄平面PBC,BC⊂平面PBC, 所以DE∥平面PBC. 又OF⊥DE,
高考数学一轮复习讲练测(新教材新高考)专题7-1数列的概念与简单表示-学生版
专题7.1数列的概念与简单表示练基础1.(2021·全国高二课时练习)已知数列{a n }的第1项是1,第2项是2,以后各项由a n =a n-1+a n-2(n>2)给出,则该数列的第5项等于()A .6B .7C .8D .92.(2021·全国高二课时练习)下列说法错误的是()A .递推公式也是数列的一种表示方法B .a n =a n-1,a 1=1(n ≥2)是递推公式C .给出数列的方法只有图象法、列表法、通项公式法D .a n =2a n-1,a 1=2(n ≥2)是递推公式3.(2019·绥德中学高二月考)数列{}n a 的通项公式cos 2n n a n π=,其前n 项和为n S ,则2015S =A .1008B .2015C .1008-D .504-4.(2021·浙江杭州市·杭州高级中学高三其他模拟)在数列{}n x 中,212n n n x x x +++≤,1n ≥,设其前n 项和为n S ,则下列命题正确的是()A .()1012110x x x x -≥-B .1101011099x x S x x +≤≤+C .122kk x x x +≤D .若11n n n x x n +-=+,则1(1)2n n n n S nx ++>-5.(2021·四川省绵阳南山中学高一期中)数列{}n a 的首项13a =,且122n n a a -=-()2n ≥,则2021a =()A .3B .43C .12D .2-6.(2021·河南高二三模(理))分形几何学是数学家伯努瓦·曼德尔布罗特在20世纪70年代创立的一门新的数学学科,它的创立为解决众多传统科学领域的难题提供了全新的思路.按照如图1所示的分形规律可得如图2所示的一个树形图.若记图2中第n 行黑圈的个数为n a ,则6a =()A .55B .58C .60D .627.(2021·河南高三其他模拟(文))数列{}n a 满足递推公式21++=+n n n a a a ,且12a a =,201920202020a a ⋅=,则222122019a a a ++⋅⋅⋅+=()A .1010B .2020C .3030D .40408.(2019·浙江高考模拟)已知数列{}n a 满足10a >,114a =,2112n n n a a a +=+,数列{}n b 满足0n b >,112b a =,21112n n n b b b ++=+,*n N ∈若存在正整数(),m n m n ≤,使得14m n b b +=,则()A.10,12m n ==B.9,11m n ==C.4,6m n ==D.1,3m n ==9.(2021·云南曲靖一中高三其他模拟(理))已知数列{}n a 的前n 项和为n S ,11a =,22a =,21n n n a a a ++=-,则2019S =______.10.(山东省单县第五中学月考)数列{}n a 的通项()()*10111nn a n n N ⎛⎫=+∈ ⎪⎝⎭,试问该数列{}n a 有没有最大项?若有,求出最大项;若没有,说明理由.练提升1.(2021·四川成都市·成都七中高三月考(理))数列{}n a 满足123232nn a a a na ++++= ,则239101229444a a a a a a +++ 的值为()A .710B .1310C .95D .9202.(2020·四川凉山·期末(文))德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数t ,如果t 是偶数,就将它减半(即2t);如果t 是奇数,则将它乘3加1(即31t +),不断重复这样的运算,经过有限步后,一定可以得到1.猜想的数列形式为:0a 为正整数,当*n N ∈时,()()111131,,2n n n n n a a a a a ----⎧+⎪=⎨⎪⎩为奇数为偶数,则数列{}n a 中必存在值为1的项.若01a =,则5a 的值为()A .1B .2C .3D .43.(2021·辽宁高二月考)设函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩,数列{}n a 满足(),n a f n n +=∈N ,且数列{}n a 是递增数列,则实数a 的取值范围是()A .(2,3]B .(1,3)C .()2,3D .3(1,24.(2021·全国高三其他模拟(理))大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其部分项如下:0,2,4,8,12,18,24,32,40,50,…,由此规律得到以下结论正确的是()A .1270a =B .1384a =C .当n 为偶数时,1121n n n S S S n +--+=+D .当n 为奇数时,()1121n n n S S S n n +--+=>5.(2020·四川高一期末(理))已知数列{}n a 满足2*12222()n n a a a n n N +++=∈ ,2211log log n n n b a a +=⋅,n S 为数列{}n b 的前n 项和.若对任意实数λ,都有n S λ<成立,则实数λ的取值范围为()A .[1,)+∞B .(1,)+∞C .1(,)2+∞D .1[,)2+∞6.(2021·四川成都市·树德中学高三其他模拟(理))已知数列{}n a ,{}n b ,其中数列{}n a 满足()*5n n a a n +=∈N ,前n 项和为n S 满足()112nn n n S a =-+()316n n +-≤≤;数列{}n b 满足:11b =,且对任意的m 、*n N ∈都有:n m n m b b b nm +=++,则数列2n n b a +⎧⎫⎨⎬⎩⎭的第47项的值为()A .384B .47C .49D .3767.【多选题】(2021·辽宁高三月考)已知数列{}n a 满足:1n a n=,n S 是数列{}n a 的前n 项和,()ln 1n n n a b a +=,下列命题正确的是()A .11ln n n n a a n ++⎛⎫<<⎪⎝⎭B .数列{}n b 是递增数列C .202120201ln 2021S S ->>D .ln 2ln 3n b ≤<8.【多选题】(2021·福建省福州第一中学高三其他模拟)斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线.它来源于斐波那契数列,又称为黄金分割数列.现将斐波那契数列记为{}n a ,121a a ==,()123n n n a a a n --=+≥,边长为斐波那契数n a 的正方形所对应扇形面积记为()*n b n ∈N ,则()A .()2233n n n a a a n -+=+≥B .123201920211a a a a a +++⋅⋅⋅+=+C .()2020201920182021π4b b a a -=⋅D .123202*********π4b b b b a a +++⋅⋅⋅+=⋅9.(2021·全国高三其他模拟(理))已知数列{}n a 满足()211232222n n n a a a a n n N *+++⋯+⋅∈﹣=.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前项n 和为n S ,若51n n S a λ-≥恒成立,求实数λ的取值范围.10.(2020·湖北宜昌·其他(文))数列{}n a 中,12a =,1(1)()2(1)n n n n a a a n ++-=++.(1)求2a ,3a 的值;(2)已知数列{}n a 的通项公式是1n a n =+,21n a n =+,2n a n n =+中的一个,设数列1{}na 的前n 项和为n S ,1{}n n a a +-的前n 项和为n T ,若360nnT S >,求n 的取值范围.练真题1.(2021·浙江高考真题)已知数列{}n a 满足)111,N 1nn na a n a *+==∈+.记数列{}n a 的前n 项和为n S ,则()A .100332S <<B .10034S <<C .100942S <<D .100952S <<2.(2019·浙江高考真题)设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈,则()A.当101,102b a =>B.当101,104b a =>C.当102,10b a =->D.当104,10b a =->3.(2017·全国高考真题(理))(2017新课标全国I 理科)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(2020·全国高考真题(理))0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是()A.11010 B.11011C.10001D.110015.(2020·全国高考真题(文))数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a =______________.6.(2021·全国高考真题)已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.。
2019届高考数学一轮复习 第二章 函数、导数及其应用 课堂达标7 指数、指数函数 文 新人教版
课堂达标(七) 指数、指数函数[A 基础巩固练]1.化简4a 23·b -13÷⎝ ⎛⎭⎪⎫-23a -13b 23的结果为( )A .-2a3bB .-8abC .-6abD .-6ab[解析] 原式=⎣⎢⎡⎦⎥⎤4÷⎝ ⎛⎭⎪⎫-23a 23-⎝ ⎛⎭⎪⎫-13b -13-23=-6ab -1=-6a b ,故选C.[答案] C2.已知a =40.2,b =0.40.2,c =0.40.8,则( ) A .a >b >c B .a >c >b C .c >a >bD .b >c >a[解析] 由0.2<0.8,底数0.4<1知,y =0.4x在R 上为减函数,所以0.40.2>0.40.8,即b >c .又a =40.2>40=1,b =0.40.2<1,所以a >b .综上,a >b >c .[答案] A3.函数y =⎝ ⎛⎭⎪⎫12-x 2+2x 的值域是( )A .RB .(0,+∞)C .(2,+∞) D.⎣⎢⎡⎭⎪⎫12,+∞ [解析] ∵-x 2+2x =-(x -1)2+1≤1, ∴⎝ ⎛⎭⎪⎫12-x 2+2x ≥12,故选D.[答案] D4.函数y =xa x|x |(0<a <1)图象的大致形状是( )[解析] 函数定义域为{x |x ∈R ,x ≠0},且y =xa x |x |=⎩⎪⎨⎪⎧a x,x >0-a x,x <0.当x >0时,函数是一个指数函数,因为0<a <1,所以函数在(0,+∞)上是减函数;当x <0时,函数图象与指数函数y =a x(x <0,0<a <1)的图象关于x 轴对称,在(-∞,0)上是增函数.[答案] D5.若函数f (x )=⎩⎪⎨⎪⎧a x, x >1,-3a x +1,x ≤1是R 上的减函数,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫23,1B.⎝ ⎛⎭⎪⎫34,1C.⎝ ⎛⎦⎥⎤23,34D.⎝ ⎛⎭⎪⎫23,+∞ [解析] 依题意,a 应满足⎩⎪⎨⎪⎧0<a <1,2-3a <0,-3a +1≥a 1,解得23<a ≤34.[答案] C6.(2018·安徽阜阳第二次质检)已知函数f (x )=⎩⎪⎨⎪⎧2e x,x <0log 2x ++2,x ≥0(e 为自然对数的底数),则不等式f (x )>4的解集为( )A .(-ln 2,0)∪(3,+∞)B .(-ln 2,+∞)C .(3,+∞)D .(-ln 2,0)[解析] 当x <0时,2e x>4,解得:x >ln 2,不合题意; 当x ≥0时,log 2(x +1)+2>4,解得:x >3,综上可得:不等式的解集为:(3,+∞).本题选择C 选项. [答案] C7.(2018·合肥质检)不等式2-x 2+2x >⎝ ⎛⎭⎪⎫12x +4的解集为 ________ .[解析] 原不等式等价为2-x 2+2x >2-x -4,又函数y =2x为增函数,∴-x 2+2x >-x -4, 即x 2-3x -4<0,∴-1<x <4. [答案] (-1,4)8.(2018·衡水模拟)若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是______.[解析] 曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].[答案] [-1,1]9.设a >0且a ≠1,函数y =a 2x+2a x-1在[-1,1]上的最大值是14,则a 的值为 ________ .[解析] 令t =a x(a >0且a ≠1), 则原函数化为y =(t +1)2-2(t >0).①当0<a <1时,x ∈[-1,1],t =a x∈⎣⎢⎡⎦⎥⎤a ,1a ,此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a 上为增函数.所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝⎛⎭⎪⎫1a+12-2=14.所以⎝ ⎛⎭⎪⎫1a +12=16,所以a =-15或a =13.又因为a >0,所以a =13.②当a >1时,x ∈[-1,1],t =a x∈⎣⎢⎡⎦⎥⎤1a,a ,此时f (t )在⎣⎢⎡⎦⎥⎤1a,a 上是增函数.所以f (t )max =f (a )=(a +1)2-2=14, 解得a =3(a =-5舍去).综上得a =13或3.[答案] 13或310.(2018·上海松江区期末)已知函数f (x )=a |x +b |(a >0,b ∈R ).(1)若f (x )为偶函数,求b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求a ,b 应满足的条件. [解析] (1)∵f (x )为偶函数, ∴对任意的x ∈R ,都有f (-x )=f (x ). 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间[2,+∞)上是增函数. 即h (x )在区间[2,+∞)上是增函数,∴-b ≤2,b ≥-2. ②当0<a <1时,f (x )在区间[2,+∞)上是增函数.即h (x )在区间[2,+∞)上是减函数但h (x )在区间[-b ,+∞)上是增函数, 故不存在a ,b 的值,使f (x )在区间[2,+∞)上是增函数.∴f (x )在区间[2,+∞)上是增函数时,a ,b 应满足的条件为a >1且b ≥-2.[B 能力提升练]1.(2018·丽水模拟)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)[解析] 原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x ,因为函数y =⎝ ⎛⎭⎪⎫12x 在(-∞,-1]上是减函数,所以⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立,等价于m 2-m <2,解得-1<m <2. [答案] C2.(2018·安徽合肥一模)已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <0⎪⎪⎪⎪⎪⎪12x 2-2x +1,x ≥0.方程f 2(x )-af (x )+b =0(b ≠0)有六个不同的实数解,则3a +b 的取值范围是( )A .[6,11]B .[3,11]C .(6,11)D .(3,11)[解析] 令t =f (x ),则方程f 2(x )-af (x )+b =0(b ≠0)可化为t 2-at +b =0(b ≠0),作出函数y =f (x )的图象如图,结合图象可以看出:方程t 2-at +b =0(b ≠0)在区间(0,1),(1,2)内各有一个解时,方程f 2(x )-af (x )+b =0(b ≠0)有六个实数根,所以问题转化为函数h (t )=t 2-at +b 在区间(0,1),(1,2)内各有一个零点,由此可得不等式组⎩⎪⎨⎪⎧b >01-a +b <04-2a +b >0,在平面直角坐标系中,画出其表示的区域如图,结合图象可以看出:当动直线u =3a +b 经过点A (1,0),B (3,2)时,u 分别取得最小值u min =3·和最大值u max =11,即3<u <11,应选答案D.[答案] D3.(2018·日照模拟)已知函数y =b +ax 2+2x (a ,b 为常数,且a >0,a ≠1)在区间⎣⎢⎡⎦⎥⎤-32,0上有最大值3,最小值52,则a ,b 的值分别为 ________ . [解析] 令t =x 2+2x =(x +1)2-1,∵x ∈⎣⎢⎡⎦⎥⎤-32,0,∴t ∈[-1,0].①若a >1,函数f (x )=a t在[-1,0]上为增函数,∴a t ∈⎣⎢⎡⎦⎥⎤1a ,1,b +ax 2+2x ∈⎣⎢⎡⎦⎥⎤b +1a,b +1,依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧a =2,b =2.②若0<a <1,函数f (x )在a t在[-1,0]上为减函数, ∴a t ∈⎣⎢⎡⎦⎥⎤1,1a ,则b +ax 2+2x ∈⎣⎢⎡⎦⎥⎤b +1,b +1a ,依题意得⎩⎪⎨⎪⎧b +1a=3,b +1=52,解得⎩⎪⎨⎪⎧a =23,b =32.综上①②,所求a ,b 的值为⎩⎪⎨⎪⎧a =2b =2,或⎩⎪⎨⎪⎧a =23,b =32.[答案] 2,2或23,324.(2018·北京朝阳4月模拟)记x 2-x 1为区间[x 1,x 2]的长度,已知函数y =2|x |,x ∈[-2,a ](a ≥0),其值域为[m ,n ],则区间[m ,n ]的长度的最小值是______.[解析] 令f (x )=y =2|x |,则f (x )=⎩⎪⎨⎪⎧2xx ≤a ,2-x-2≤x <(1)当a =0时,f (x )=2-x在[-2,0]上为减函数,值域为[1,4]. (2)当a >0时,f (x )在[-2,0)上递减,在[0,a ]上递增, ①当0<a ≤2时,f (x )max =f (-2)=4,值域为[1,4]; ②当a >2时,f (x )max =f (a )=2a>4,值域为[1,2a]. 结合(1)(2),可知[m ,n ]的长度的最小值为3. [答案] 3 5.已知f (x )=aa 2-1(a x -a -x)(a >0,且a ≠1).(1)判断f (x )的奇偶性; (2)讨论f (x )的单调性;(3)当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围. [解] (1)函数f (x )的定义域为R .又f (-x )=aa 2-1(a -x -a x)=-f (x ),所以f (x )为奇函数.(2)当a >1时,a 2-1>0,y =a x 为增函数,y =a -x 为减函数,从而y =a x -a -x为增函数.所以f (x )为增函数.当0<a <1时,a 2-1<0,y =a x 为减函数,y =a -x 为增函数,从而y =a x -a -x为减函数. 所以f (x )为增函数.故当a >0且a ≠1时,f (x )在定义域内单调递增. (3)由(2)知f (x )在R 上是增函数, 所以在区间[-1,1]上为增函数. 所以f (-1)≤f (x )≤f (1). 所以f (x )min =f (-1)=aa 2-1(a -1-a )=aa 2-1·1-a2a=-1.所以要使f (x )≥b 在[-1,1]上恒成立,只需b ≤-1. 故b 的取值范围是(-∞,-1].[C 尖子生专练]已知函数f (x )=3x-13|x |. (1)若f (x )=2,求x 的值; (2)判断x >0时,f (x )的单调性;(3)若3tf (2t )+mf (t )≥0对于t ∈⎣⎢⎡⎦⎥⎤12,1恒成立,求m 的取值范围.[解] (1)当x ≤0时,f (x )=3x -3x =0,∴f (x )=2无解.当x >0时,f (x )=3x-13x ,令3x-13x =2.∴(3x )2-2·3x -1=0,解得3x=1± 2. ∵3x >0,∴3x=1+ 2.∴x =log 3(1+2).(2)∵y =3x 在(0,+∞)上单调递增,y =13x 在(0,+∞)上单调递减,∴f (x )=3x-13x 在(0,+∞)上单调递增.(3)∵t ∈⎣⎢⎡⎦⎥⎤12,1,∴f (t )=3t-13t >0.∴3t f (2t )+mf (t )≥0化为3t ⎝ ⎛⎭⎪⎫32t -132t +m ⎝ ⎛⎭⎪⎫3t -13t ≥0,即(32t -1)(32t+1+m )≥0,∵32t-1>0,∴32t+1+m ≥0,即m ≥-32t-1.令g (t )=-32t-1,则g (t )在⎣⎢⎡⎦⎥⎤12,1上递减,∴g (x )max =-4.∴所求实数m 的取值范围是[-4,+∞).。
高三数学(理)一轮复习(课件)第七章 立体几何7-5
因为 SA=SB,所以△SAB 为等腰三角形, 所以 SE⊥AB。 又 SE∩DE=E,所以 AB⊥平面 SDE。 又 SD⊂平面 SDE,所以 AB⊥SD。 在△SAC 中,SA=SC,D 为 AC 的中点, 所以 SD⊥AC。 又 AC∩AB=A,所以 SD⊥平面 ABC。 (2)由于 AB=BC,则 BD⊥AC, 由(1)可知,SD⊥平面 ABC,又 BD⊂平面 ABC, 所以 SD⊥BD, 又 SD∩AC=D,所以 BD⊥平面 SAC。
1.证明面面垂直的常用方法:(1)利用面面垂直的定义;(2)利用面面 垂直的判定定理,转化为从现有直线中(或作辅助线)寻找平面的垂线,即 证明线面垂直。
2.两个平面垂直问题,通常是通过“线线垂直→线面垂直→面面垂 直”的过程来实现的。
【变式训练】 (2019·唐山市摸底考试)如图,在四棱锥 P-ABCD 中, PC⊥底面 ABCD,ABCD 是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD =2,E 是 PB 的中点。
考点三 开放型问题 【例 3】如图所示,在直四棱柱 ABCD-A1B1C1D1 中,DB=BC, DB⊥AC,点 M 是棱 BB1 上一点。
(1)求证:B1D1∥平面 A1BD。 (2)求证:MD⊥AC。 (3)试确定点 M 的位置,使得平面 DMC1⊥平面 CC1D1D。
解 (1)证明:由直四棱柱,得 BB1∥DD1,且 BB1=DD1,
(1)如图,连接 OA,OB,OC,OP,在 Rt△POA,Rt△POB 和 Rt△POC 中,PA=PB=PC,所以 OA=OB=OC,即 O 为△ABC 的外心。
(2)如图,延长 AO,BO,CO 分别交 BC,AC,AB 于 H,D,G。因为 PC⊥PA,PB⊥PC,PA∩PB=P,所以 PC⊥平面 PAB,又 AB⊂平面 PAB, 所以 PC⊥AB,因为 AB⊥PO,PO∩PC=P,所以 AB⊥平面 PGC,又 CG ⊂平面 PGC,所以 AB⊥CG,即 CG 为△ABC 边 AB 上的高。同理可证 BD, AH 分别为△ABC 边 AC,BC 上的高,即 O 为△ABC 的垂心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点规范练33 基本不等式及其应用
基础巩固
1.下列不等式一定成立的是()
A.lg>lg x(x>0)
B.sin x+≥2(x≠kπ,k∈Z)
C.x2+1≥2|x|(x∈R)
D.>1(x∈R)
2.已知a>0,b>0,a,b的等比中项是1,且m=b+,n=a+,则m+n的最小值是()
A.3
B.4
C.5
D.6
3.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()
A.a<v<
B.v=
C.<v<
D.v=
4.(2017山东日照一模)已知圆x2+y2+4x-2y-1=0上存在两点关于直线ax-2by+2=0(a>0,b>0)对称,
则的最小值为()
A.8
B.9
C.16
D.18
5.若正数x,y满足4x2+9y2+3xy=30,则xy的最大值是()
A. B. C.2 D.
6.要制作一个容积为4 m3,高为1 m的无盖长方体容器.已知该容器的底面造价是每平方米20元,
侧面造价是每平方米10元,则该容器的最低总造价是()
A.80元
B.120元
C.160元
D.240元
7.若两个正实数x,y满足=1,且x+2y>m2+2m恒成立,则实数m的取值范围是()
A.(-∞,-2)∪[4,+∞)
B.(-∞,-4]∪[2,+∞)
C.(-2,4)
D.(-4,2)
8.设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2,则的最大值为()
A.2
B.
C.1
D.
9.已知x>1,则log x9+log27x的最小值是.
10.(2017山东,文12)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.
11.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都
提价%,若p>q>0,则提价多的方案是.
12.设a,b均为正实数,求证:+ab≥2.
1。