直线与圆的方程练习题(二)
(完整版)直线与圆的方程测试题(含答案)
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
直线与圆的方程练习题
直线与圆的方程练习题直线与圆是解析几何中的基本概念,掌握它们的方程及其应用是解题的关键。
下面将以几道习题为例,来进行练习。
1. 已知直线L过点A(3,4),斜率为2,求直线L的方程。
解析:由题目可知,直线L经过点A(3,4),斜率为2。
我们可以运用直线的点斜式来求解。
直线的点斜式方程为:y - y₁ = m(x - x₁)其中m为直线的斜率,(x₁, y₁)为直线上的已知点。
代入已知条件,得到直线L的方程为:y - 4 = 2(x - 3)化简得:y - 4 = 2x - 6最终方程为:y = 2x - 22. 已知圆O的圆心为(2,3),半径为5,求圆O的方程。
解析:圆的方程可以通过圆心和半径来确定。
我们可以利用圆的标准方程来求解。
圆的标准方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r为圆的半径。
代入已知条件,得到圆O的方程为:(x - 2)² + (y - 3)² = 5²化简得:(x - 2)² + (y - 3)² = 25最终方程为:x² - 4x + y² - 6y + 5 = 03. 已知直线L的方程为2x - 3y + 7 = 0,圆O的方程为x² + y² - 6x + 4y + 3 = 0,求直线L与圆O的交点坐标。
解析:直线与圆的交点坐标可以通过联立直线与圆的方程求解。
我们可以通过消元法来求解。
将直线L的方程转化为一般形式:2x - 3y = -7代入圆O的方程,得到联立方程组:x² + y² - 6x + 4y + 3 = 02x - 3y = -7通过联立方程组,我们可以求得直线L与圆O的交点坐标。
首先,将直线L的方程中的x表示为y的函数:x = (3y - 7) / 2将x代入圆O的方程中,得到二次方程:(3y - 7)² / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0化简得:(9y² - 42y + 49 + 4y² - 12y - 42 + 16y + 12) / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0整理得:13y² - 36y + 30 = 0通过求解二次方程,我们可以得到y的值,再带入x = (3y - 7) / 2,即可求得直线L与圆O的交点坐标。
第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一
第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。
2.请将答案正确填写在答题卡上。
第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。
A。
$-2$B。
$-1$C。
$1$D。
$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。
A。
$-0.25$B。
$1$C。
$-1$D。
$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。
A。
$(-3,1)$B。
$(3,1)$C。
$(3,-1)$D。
$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。
A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。
A。
$\left[\frac{3}{4},1\right]$B。
$\left[\frac{3}{4},+\infty\right)$C。
$(1,+\infty)$D。
$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。
第二章 直线和圆的方程(基础过关)(原卷版)附答案.pdf
第二章直线和圆的方程基础过关卷班级___________ 姓名___________ 学号____________ 分数____________(考试时间:120分钟试卷满分:150分)一、单项选择题:(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.过三点A(1,﹣1),B(1,4),C(4,﹣2)的圆的方程是( )A.x2+y2﹣7x﹣3y+2=0B.x2+y2+7x﹣3y+2=0C.x2+y2+7x+3y+2=0D.x2+y2﹣7x+3y+2=02.点P,Q在圆x2+y2+kx﹣4y+3=0上(k∈R),且点P,Q关于直线2x+y=0对称,则该圆的半径为( )A.B.C.1D.23.在圆M:x2+y2﹣4x﹣4y﹣1=0中,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )A.6B.12C.24D.364.圆心为M(1,3),且与直线3x﹣4y﹣6=0相切的圆的方程是( )A.(x﹣1)2+(y﹣3)2=9B.(x﹣1)2+(y﹣3)2=3C.(x+1)2+(y+3)2=9D.(x+1)2+(y+3)2=35.直线y=kx+3被圆(x﹣2)2+(y﹣3)2=4截得的弦长为2,则直线的倾斜角为( )A.B.或C.或D.或6.直线l:mx﹣y+1﹣4m=0(m∈R)与圆C:x2+(y﹣1)2=25交于两点P、Q,则弦长|PQ|的取值范围是( )A.[6,10]B.[6,10)C.(6,10]D.(6,10)7.已知点M为直线x+y﹣3=0上的动点,过点M引圆x2+y2=1的两条切线,切点分别为A,B,则点P(0,﹣1)到直线AB的距离的最大值为( )A.B.C.D.8. 已知点P(x,y)是直线kx+y+2=0(k>0)上一动点,PA、PB是圆C:x2+y2﹣2x=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为( )A.2B.C.D.二、多项选择题:(本题共4小题,每小题5分,共20分。
第二章 直线和圆的方程综合练习卷-2021-2022学年高二上学期数学人教A版
第二章直线和圆的方程一、单选题1、直线l 经过原点和(-1,1),则它的倾斜角为()A 、45°B 、135°C 、45°或135°D 、-45°2、若A (3,-2),B (-9,4),C (x ,0)三点共线,则x=()A 、1B 、-1C 、0D 、73.已知直线l 经过点()0,1,其倾斜角与直线410x y -+=的倾斜角互补,则直线l 的方程为()A .440x y +-=B .410x y +-=C .440x y ++=D .410x y ++=4.光线从点()3,5A -射到x 轴上,经反射以后经过点()2,10B ,则光线从A 到B 经过的路程为()A.B.C.D.5.已知点A(-2,-2),B(4,2),点在圆( )A.28B.72C. 25D.56.已知圆22:(3)(3)9C x y -++=,直线:(1)(2)30l m x m y m ++--=,则当圆心C 到直线l 的距离最大时,直线l 被圆C 所截得的弦长为( )A.2B.3C.4D.57.已知圆C :22((1x y +=和两点(,0),(,0),(0)A t B t t ->,若圆C 上存在点P ,使得90APB ∠=︒,则t 的最小值为()A .1B .2C .3D .48.直线20x y +-=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)(1)2x y ++-=上,则ABP △面积的取值范围是()A .[2,6]B .[1,5]C .D .二、多选题9.下列说法正确的是()A .直线21y ax a =-+必过定点(2,1)B .直线3240x y -+=在y 轴上的截距为-2C 10y ++=的倾斜角为120°D .若直线l 沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后,回到原来的位置,则该直线P 224x y +=l 的斜率为23- 10.已知直线1:2310l x y +-=和2:4690l x y +-=,若直线l 到直线1l 的距离与到直线2l 的距离之比为1:2,则直线的方程为()A .2380x y +-=B .4650x y ++=C .69100x y +-=D .1218130x y +-=11.已知圆22:4C x y +=,直线():34330l m x y m ++-+=,(R m ∈).则下列四个命题正确的是()A .直线l 恒过定点()3,3-B .当0m =时,圆C 上有且仅有三个点到直线l 的距离都等于1C .圆C 与曲线22680x y x y m +--+=恰有三条公切线,则16m =D .当13m =时,直线l 上一个动点P 向圆C 引两条切线PA ,PB ,其中A ,B 为切点,则直线AB 经过点164,99⎛⎫-- ⎪⎝⎭12.已知圆1C :2210100x y x y +--=和圆2C :2262400x y x y +-+-=则()A .两圆相交B .公共弦长为C .两圆相离D .公切线长三、填空题13.写出一个圆心在直线340x y +=上,且与x 轴相切的圆的标准方程:___________.14.经过A (18,8),B (4,﹣4)两点的直线的斜率k =__.15.已知点()2,1P -,()3,2Q ,直线l 过点()0,1M -且与线段PQ 相交,则直线l 的斜率k 的取值范围是___________.16.数学家欧拉在1740年提出定理:三角形外心、垂心、重心依次位于同一直线上,且重心到外心距离是重心到垂心距离的一半,这条直线后人称为三角形的欧拉线,ABC 的顶点(2,0)A ,(0,4)B ,AC BC =,ABC 的欧拉线方程为________. 四、解答题17、已知ABC ∆三个顶点是(1,4)A -,(2,1)B --,(2,3)C(1)求BC 边上的垂直平分线的直线方程;(6分)(2)求点A 到BC 边所在直线的距离.(4分)18..从点)4,6(--A 处发出一条光线,与直线1+=x y 相遇于点B 后反射,反射光线恰与圆522=+y x 相切,求线段AB 的长.19.已知圆C 的圆心为原点O ,且与直线0x y ++=相切.(1)求圆C 的方程;(2)点P 在直线8x =上,过P 点引圆C 的两条切线,PA PB ,切点为,A B ,求证:直线AB 恒过定点.20.已知直线:30l x y -+=,一束光线从点()1,2A 处射向x 轴上一点B ,又从点B 反射到l 上的一点C ,最后从点C 反射回点A .(1)试判断由此得到的ABC 的个数;(2)求直线BC 的方程.21.已知圆C 经过坐标原点O ,圆心在x 轴正半轴上,且与直线3480x y +-=相切.(1)求圆C 的标准方程.(2)直线l :2y kx =+与圆C 交于A ,B 两点.(i)求k 的取值范围; (ii)证明:直线OA 与直线OB 的斜率之和为定值.22.已知关于x ,y 的方程C :22+24+=0.x y x y m --(1)若方程C 表示圆,求m 的取值范围;(2)若圆C 与圆22+812+36=0x y x y --外切,求m 的值;(3)若圆C 与直线l :+24=0x y -相交于M ,N 两点,且|MN |5=,求m 的值.。
直线与圆的方程测试题(含答案)
直线与圆的方程测试题(本试卷总分值150分,考试时刻120分钟)一、单项选择题(本大题共18小题,每题4分,共72分)在每题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多项选择或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,那么y=( )B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,那么|AM|=( )B. -5C. 1D. -13. 直线的倾斜角是32π,那么斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的选项是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 通过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0 =0 C. 2x+y+5=0 D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )=0 =0 C.x=2 =27. 直线在y 轴上的截距是-2,倾斜角为0°,那么直线方程是() +2=0 =0 C.y+2=0 =08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.以下命题错误..的是( )A. 斜率互为负倒数的两条直线必然相互垂直B. 相互垂直的两条直线的斜率必然互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0 +y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( ) B.-2 C. 21 D. 21- 13. 直线x=2与直线x-y+2=0的夹角是( )° B. 45° C. 60° D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )B.511 C.53 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交只是圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,那么k 的取值范围是( )<-1或k>4 B. k=-1或k=4 C. -1<k<4 D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,那么△ABC 的面积是( ) .3 C二、填空题(本大题共5小题,每题4分,共20分)请在每题的空格中填上正确答案。
2023-2024学年高二数学单元速记——直线与圆的方程(压轴题专练)(解析版)
第二章直线与圆的方程(压轴题专练)一、选择题1.已知m ∈R ,若过定点A 的动直线1l :20x my m -+-=和过定点B 的动直线2l :240mx y m ++-=交于点P (P 与A ,B 不重合),则以下说法错误的是()A .A 点的坐标为()2,1B .PA PB ⊥C .2225PA PB +=D .2PA PB +的最大值为5【答案】D【分析】根据定点判断方法、直线垂直关系、勾股定理、三角函数辅助角求最值即可得解.【详解】因为1:20l x my m -+-=可以转化为(1)20m y x -+-=,故直线恒过定点A ()2,1,故A 选项正确;又因为2l :240mx y m ++-=即()42y m x -=-+恒过定点B ()2,4-,由1:20l x my m -+-=和2:420l mx y m +-+=,满足()110m m ⨯+-⨯=,所以12l l ⊥,可得PA PB ⊥,故B 选项正确;所以()()22222221425PA PB AB +==++-=,故C 选项正确;因为PA PB ⊥,设,PAB ∠θθ=为锐角,则5cos ,5sin PA PB θθ==,所以()()252cos sin 5PA PB θθθϕ+=+=+,所以当()sin 1θϕ+=时,2PA PB +取最大值,故选项D 错误.故选:D.2.设m R ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值()A .B .C .3D .6【答案】D【分析】根据动直线方程求出定点,A B 的坐标,并判断两动直线互相垂直,进而可得22||||18PA PB +=,最后由基本不等式222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭即可求解.【详解】解:由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以()()22222||||||120318PA PB AB +==--+-=,因为222||||||||22PA PB PA PB ++⎛⎫≥ ⎪⎝⎭,所以6P A PB +≤,当且仅当||||3PA PB ==时取等号.故选:D.3.在平面直角坐标系内,设()11,M x y ,()22,N x y 为不同的两点,直线l 的方程为0ax by c ++=,1122ax by c ax by c δ++=++,下面四个命题中的假命题为()A .存在唯一的实数δ,使点N 在直线l 上B .若1δ=,则过M ,N 两点的直线与直线l 平行C .若1δ=-,则直线经过线段M ,N 的中点;D .若1δ>,则点M ,N 在直线l 的同侧,且直线l 与线段M ,N 的延长线相交;【答案】A【分析】根据题意对δ一一分析,逐一验证.【详解】解:对于A ,1122ax by c ax by cδ++=++化为:112222()0(0)ax by c ax by c ax by c δ++-++=++≠,即点2(N x ,2)y 不在直线l 上,因此A 不正确.对于B ,1δ=,则1212()()0a x x b y y -+-=,即过M ,N 两点的直线与直线l 的斜率相等,又点2(N x ,2)y 不在直线l 上,因此两条直线平行,故B 正确;对于C ,1δ=-,则1122()0ax by c ax by c +++++=,化为1212022x x y y a b c ++++=,因此直线l 经过线段MN 的中点,故C 正确;对于D ,1δ>,则2112222()()()0ax by c ax by c ax by c δ++⨯++=++>,则点M ,N 在直线l 的同侧,故D 正确;故选A【点睛】本题考查了直线系方程的应用、平行直线的判定、点与直线的位置关系,考查了推理能力与计算能力,属于难题.4.我国著名数学家华罗庚曾说“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休.”事转化为点(),x y 与点(),a b 之间的距离的几何问题.已知点()11,M x y 在直线1:2l y x =+,点()22,N x y 在直线2:l y x =上,且1MN l ⊥)A .2B .2C D .5【答案】D【分析】根据两点距离公式将目标函数转化为点()11,M x y 到点()0,4A 的距离与点()22,N x y 到点()5,0B 的距离和,过点A 作1AC l ⊥,垂足为C ,证明AM CN =,由CN NB CB +≥求目标函数最小值.表示点()11,M x y 到点()0,4A 的距离,表示点()22,N x y 到点()5,0B 的距离,MA NB +=+,过点A 作1AC l ⊥,垂足为C ,因为直线1l 的方程为20x y -+=,()0,4A ,所以AC ==又直线1:2l y x =+与直线2:l y x =平行,1MN l ⊥,所以MN =所以//,MN AC MN AC =,所以四边形AMNC 为平行四边形,所以AM CN =,CN NB +=+,又CN NB CB +≥,当且仅当,,C N B 三点共线时等号成立,所以当点N 为线段CB 与直线2l 的交点时,CB ,因为过点()0,4A 与直线1l 垂直的直线的方程为4y x =-+,联立42y x y x =-+⎧⎨=+⎩,可得13x y =⎧⎨=⎩,所以点C 的坐标为()1,3,所以CB =,5,故选:D.将问题转化为两点之间的距离问题.5.已知圆C 是以点(2,M 和点(6,N -为直径的圆,点P 为圆C 上的动点,若点()2,0A ,点()1,1B ,则2PA PB -的最大值为()A B .4C .8+D【答案】A【分析】由题设可知圆C :22(4)16x y -+=,在坐标系中找到(4,0)D -,应用三角线相似将2PA 转化到||PD ,再利用三角形的三边关系确定目标式的最大值即可.【详解】由题设,知:(4,0)C 且||8MN ==,即圆C 的半径为4,∴圆C :22(4)16x y -+=,如上图,坐标系中(4,0)D -则24OD AC CP OC ====,∴12AC PC CP DC ==,即△APC △PCD ,故12PA PD =,∴2||||PA PB PD PB -=-,在△PBD 中||||||PD PB BD -<,∴要使||||PD PB -最大,,,P B D 共线且最大值为||BD 的长度.∴||BD ==故选:A【点睛】关键点点睛:首先求出圆C 方程,找到定点D 使AC PC CP DC =,进而将2PA 转化到其它线段,结合三角形三边关系求目标式的最值.6.过点()8,4A -作抛物线28y x =的两条切线1l ,2l ,设1l ,2l 与y 轴分别交于点B ,C ,则ABC ∆的外接圆方程为()A .2264160x y x y ++--=B .226160x y x ++-=C .2256120x y x y ++--=D .224160x y y +--=【答案】A【解析】设切线方程为l :()84x t y +=-,与抛物线联立,表示线段AB 的中垂线方程,可求解圆心坐标和半径,表示圆的方程即可.【详解】设过点()8,4A -的抛物线2:8E y x =的切线方程为l :()84x t y +=-,即84x ty t =--(*),代入28y x =得288(48)0y ty t -++=,由0∆=得2240t t --=,(1)所以方程(1)有两个不相等的实数根1t ,2t ,且122t t +=,124t t =-,在(*)中令0x =得180,4B t ⎛⎫+ ⎪⎝⎭,280,4C t ⎛⎫+ ⎪⎝⎭,设ABC ∆的外接圆圆心为点()100,O x y ,则()0122B C y y y =+=,下求0x :线段AB 中点横标04x '=-,纵标0144y t '=+,线段AB 的中垂线方程为1144(4)y t x t --=-+,令2y =得211021424t t x t -++=,由(1)知21124t t +=,故03x =-,设ABC ∆的外接圆半径为R ,则229R =,所以ABC ∆的外接圆方程为22(3)(2)29x y ++-=,即2264160x y x y ++--=.故选:A【点睛】本题考查了直线和抛物线的位置关系,圆的方程,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7.已知平面内两个定点A ,B 及动点P ,若PBPA λ=(0λ>且1λ≠),则点P 的轨迹是圆.后世把这种圆称为阿波罗尼斯圆.已知()0,0O,0,2Q ⎛ ⎝⎭,直线1:230l kx y k -++=,直线2:320l x ky k +++=,若P 为1l ,2l 的交点,则32PO PQ +的最小值为()A .B.6-C.9-D.3【答案】A【分析】由直线方程可得12l l ⊥,则点P 的轨迹是以CD 为直径的圆,除去D 点,得到P 的轨迹方程为()()22293x y y ++=≠-,即()22453x y x y ++=≠-,可得)332PQ y =+≠-,取5,02A ⎛⎫ ⎪⎝⎭,则32PQ PA =,结合AQ =()3222PO PQ PA PQ AQ +=+≥,进而求解.【详解】由已知1:230l kx y k -++=过定点()2,3C -,2:320l x ky k +++=过定点()2,3D --,因为1l k k =,21l k k=-,所以121l l k k ⋅=-,即12l l ⊥,所以点P 的轨迹是以CD 为直径的圆,除去D 点,故圆心为()2,0-,半径为3,则P 的轨迹方程为()()22293x y y ++=≠-,即()22453x y x y ++=≠-,易知O 、Q 在该圆内,又32PO =即)332PO y ==≠-,取5,02A ⎛⎫ ⎪⎝⎭,则32PO PA =,又2AQ =,所以()3322222PO PQ PO PQ PA PQ AQ ⎛⎫+=+=+≥= ⎪⎝⎭所以32PO PQ +的最小值为故选:A.8.已知点P 为直线l :20x y +-=上的动点,过点P 作圆C :2220x x y ++=的切线PA ,PB ,切点为,A B ,当PC AB ⋅最小时,直线AB 的方程为()A .3310x y ++=B .3310x y +-=C .2210x y ++=D .2210x y +-=【答案】A【分析】先利用圆切线的性质推得,,,A P B C 四点共圆,AB CP ⊥,从而将PC AB ⋅转化为2PA ,进而确定PC l ⊥时PC AB ⋅取得最小值,再求得以PC 为直径的圆的方程,由此利用两圆相交弦方程的求法即可得解.【详解】因为圆C :2220x x y ++=可化为()2211x y ++=,所以圆心()1,0C -,半径为1r =,因为PA ,PB 是圆C 的两条切线,则,PA AC PB BC ⊥⊥,由圆的知识可知,,,,A P B C 四点共圆,且AB CP ⊥,PA PB =,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⨯= ,又PA =所以当PC 最小,即PC l ⊥时,PC AB ⋅取得最小值,此时PC 的方程为1y x =+,联立120y x x y =+⎧⎨+-=⎩,解得13,22x y ==,即13,22P ⎛⎫ ⎪⎝⎭,故以PC 为直径的圆的方程为13(1)022x x y y ⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭,即,221031222x x y y +-+=-,又圆22:20C x x y ++=,两圆的方程相减即为直线AB 的方程:3310x y ++=.故选:A.【点睛】关键点睛:本题解决的关键是将PC AB ⋅转化为2PA ,从而确定PC AB ⋅最小时P 的坐标,从而利用两圆相减可得相交弦方程的技巧得解.9.(多选)已知O 为坐标原点,()3,1A ,P 为x 轴上一动点,Q 为直线l :y x =上一动点,则()A .APQ △周长的最小值为B .AP AQ +的最小值为1C .AP PQ +的最小值为D OP +的最小值为4【答案】BCD【分析】设A 关于直线l :y x =的对称点为()11,3A ,A 关于x 轴的对称点为()23,1A -,对于A :根据对称性可得1212PQ QA PA PQ QA PA A A ++=++≥,进而可得结果;对于B :根据点到直线的距离分析判断;对于C :因为2AP PQ A P PQ +=+,结合点到直线的距离分析判断;对于D :根据题意分析可得)2OP A P CP+=+,结合点到直线的距离分析判断.【详解】设()3,1A关于直线l:y x=的对称点为()11,3A,()3,1A关于x轴的对称点为()23,1A-,可知12,QA QA PA PA==,对于选项A:可得APQ△周长1212PQ QA PA PQ QA PA A A++=++≥=当且仅当12,,,A P Q A四点共线时,等号成立,所以APQ△周长的最小值为A错误;对于选项B:设()3,1A到x轴,直线l:0x y-=的距离分别为12,d d,则121,d d==,可得121AP AQ d d+≥+=,所以AP AQ+的最小值为1B正确;对于选项C:因为2AP PQ A P PQ+=+,设()23,1A-到直线l:0x y-=的距离为3d=可得23A P PQ d +≥=所以AP PQ +的最小值为C 正确;对于选项D :作PC l ⊥,垂足为C ,因为直线l 的斜率1k =,则45COP ∠=︒,可得CP =,则23AP CP A P CP d +=+≥=,)2234OP A P OP A P CP d ⎫++=⎪⎪⎭,OP +的最小值为4,故D 正确;故选:BCD.二、填空题10.设R m ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值.【答案】9【分析】根据直线方程求出定点,然后根据直线垂直,结合基本不等式求解即可;【详解】由题意,动直线10x my ++=过定点(1,0)A -,直线230mx y m --+=可化为(2)30x m y -+-=,令2030x y -=⎧⎨-=⎩,可得()2,3B ,又1(1)0m m ⨯+⨯-=,所以两动直线互相垂直,且交点为P ,所以22222||||||(12)(03)18PA PB AB +==--+-=,因为2218||2PA PB PA PB =+≥⋅,所以9PA PB ⋅≤,当且仅当||||3PA PB ==时取等号.【点睛】根据直线方程求定点,判断直线垂直,将问题转化为基本不等式是本题的难点和突破点.11.若恰有三组不全为0的实数对(a ,)b满足关系式|1||431|a b a b t ++=-+=t 的所有可能的值为.【答案】52或75t ==,然后对t 进行分类讨论即可求解.【详解】由已知得0t >t ==,看成有且仅有三条直线满足(1,1)A 和(4,3)B -到直线:10l ax by ++=(不过原点)的距离t 相等,又5AB ==,(1)当||522AB t ==,此时易得符合题意的直线l 为线段AB 的垂直平分线68230x y --=以及与直线AB 平行的两条直线86110x y ++=和86390x y +-=;(2)当||522AB t <=时,有4条直线l 会使得点(1,1)A 和(4,3)B -到它们的距离相等,注意到l 不过原点,所以当其中一条直线过原点时,会作为增根被舍去.设点A 到l 的距离为d ,①作为增根被舍去的直线l ,过原点和A ,B 的中点5(,1)2M -,其方程为250x y +=,此时52t d ==,符合;②作为增根被舍去的直线l ,过原点且与AB 平行,其方程为430x y +=,此时7552t d ==<,符合;综上,满足题意的实数t 为52或75故答案为:52或75t ==,将问题转化为有且仅有三条直线满足(1,1)A 和(4,3)B -到直线:10l ax by ++=(不过原点)的距离t 相等,然后分类讨论即得.12.已知P 、Q 分别在直线1:10l x y -+=与直线2:10l x y --=上,且1PQ l ⊥,点()4,4A -,()4,0B ,则AP PQ QB ++的最小值为.【分析】利用线段的等量关系进行转化,找到AP QB +最小值即为所求.【详解】由直线1l 与2l PQ =()4,0B 作直线l 垂直于1:10l x y -+=,如图,则直线l 的方程为:4y x =-+,将()4,0B 沿着直线l B '点,有()3,1B ',连接AB '交直线1l 于点P ,过P 作2⊥PQ l 于Q ,连接BQ ,有//,||||BB PQ BB PQ ''=,即四边形BB PQ '为平行四边形,则||||PB BQ '=,即有||AP QB AP PB AB ''+=+=,显然AB '是直线1l 上的点与点,A B '距离和的最小值,因此AP QB +的最小值,即AP PB '+的最小值AB ',而AB '==,所以AP PQ QB ++的最小值为AB PQ '+【点睛】思路点睛:(1)合理的利用假设可以探究取值的范围,严谨的思维是验证的必要过程.(2)转化与划归思想是解决距离最值问题中一种有效的途径.(3)数形结合使得问题更加具体和形象,从而使得方法清晰与明朗.13.在平面直角坐标互中,给定()()1,2,3,4M N 两点,点P 在x 轴的正半轴上移动,当MPN ∠最大值时,点P 的横坐标为【答案】3【分析】根据条件结合圆的性质,转化为求圆的半径最小,利用数形结合,即可求解.【详解】过点,,M N P 三点的圆的圆心在线段MN 的中垂线5y x =-上,其中MPN ∠为弦MN 所对的圆周角,所以当圆的半径最小时,MPN ∠最大,设圆心坐标为(,5)E a a -,又由点P 在x 轴上移动,当圆和x 轴相切时,MPN ∠取得最大值,设切点为(,0)P a ,圆的半径为5a -,所以圆的方程为222()(5)(5)x a y a a -++-=-,代入点(1,2)M 代入圆的方程,可得222(1)(25)(5)a a a -++-=-,整理得2250a a +-=,解得3a =或5a =-(舍去),所以点P 的横坐标的为3.故答案为:3.14.在平面直角坐标系xOy 中,已知圆()()221:2C x a y a -+-+=,点(0,2)A ,若圆C 上的点M 均满足2210MA MO +>,则实数a 的取值范围是.【答案】a<0或3a >【分析】将条件2210MA MO +>坐标化,先转化为22(1)4x y +->恒成立,即圆C 上所有动点到定点(0,1)B 距离的最小值大于2,再转化为(0,1)B 与圆心C 距离的不等关系求解可得.【详解】设(,)M x y ,由点(0,2)A ,2210MA MO +> 222222(2)2(22)10x y x y x y y ∴+-++=+-+>即点M 满足22(1)4x y +->2,设点(0,1)B ,即2MB >恒成立则min 2MB >,圆上所有点到定点(0,1)B 最小值大于2,又圆(,2)C a a -,半径为1,圆上所有点到定点(0,1)B 最小值即为:1BC -.12BC ∴->.即3BC =,化简得230a a ->,解得a<0或3a >.故答案为:a<0或3a >.15.已知P 为直线60x y ++=上一动点,过点P 作圆22:66140C x y x y +--+=的切线,切点分别为A ,B ,则当四边形PACB 面积最小时,直线AB 的方程为.【答案】6=0x y +【分析】求得四边形PACB 面积最小时P 点的坐标,再根据圆与圆的位置关系求得直线AB 的方程.【详解】圆22:66140C x y x y +--+=,即()()22233=2x y -+-,所以圆心为()3,3C ,半径2r =,1=2=22PACB S PA r PA ⎛⎫⨯⨯ ⎪⎝⎭所以当CP 最小,也即CP 垂直60x y ++=时,四边形PACB 面积最小,直线60x y ++=的斜率为1-,则此时直线CP 的斜率为1,则直线CP 的方程为y x =,由60y xx y =⎧⎪⎨++=⎪⎩,解得3x y ==-即(3P --,对应PC ,=PA PB以P 为圆心,半径为((2233=12x y -++-+,即()()226622x y x y ++++-,由()()2222661406622x y x yx y x y ⎧+--+=⎪⎨++++-⎪⎩,两式相减并化简得26=0x y ++-,也即直线AB 的方程为26=0x y ++-.故答案为:26=0x y ++-【点睛】研究直线和圆的位置关系问题,主要思路是数形结合的数学思想方法,直线和圆有关的相切问题,连接圆心和切点的直线,与切线相互垂直.与四边形面积的最值有关问题,可先求得面积的表达式,再根据表达式来求最值.16.设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 在两坐标轴上的截距相等,则直线l 的方程为;(2)若a >-1,直线l 与x 、y 轴分别交于M 、N 两点,O 为坐标原点,则△OMN 的面积取最小值时,直线l 对应的方程为.【答案】x -y =0或x +y -2=0x +y -2=0【详解】(1)①当直线l 经过坐标原点时,可得a +2=0,解得a =-2.所以直线l 的方程为-x +y =0,即x -y =0;②当直线l 不经过坐标原点,即a ≠-2且a ≠-1时,由条件得221a a a +=++,解得a =0,所以直线l 的方程为x +y -2=0.综上可得直线l 的方程为x -y =0或x +y -2=0.(2)在(a +1)x +y -2-a =0(a >-1)中,令0x =,得2y a =+;令0y =,得21a x a +=+.所以2(,0),(0,2)1a M N a a +++.由于1a >-,得210a a +>+>.所以22121(2)1(1)2(1)1(2)212121OMNa a a a S a a a a ∆++++++=⋅⋅+=⋅=⋅+++111[(1)2][22]2212a a =+++≥=+.当且仅当111a a +=+,即a =0时等号成立.此时直线l 的方程为x +y -2=0.答案:(1)x -y =0或x +y -2=0(2)x +y -2=0【点睛】用基本不等式求最值时,首先要判断是否满足了使用基本不等式的条件,若满足则可直接利用基本不等式求出最值;若不满足,则需要对代数式进行适当的变形,此时要特别注意“拆”、“拼”、“凑”等变形的技巧,通过变形使得代数式满足基本不等式中“正”、“定”、“等”的条件.三、解答题17.现有一组互不相同且从小到大排列的数据:012345,,,,,a a a a a a ,其中00a =.为提取反映数据间差异程度的某种指标,今对其进行如下加工:记()015011,,5n n n n T a a a x y a a a T=+++==+++ ,作函数()y f x =,使其图像为逐点依次连接点(),(0,1,2,,5)n n n P x y n = 的折线.(1)求(0)f 和(1)f 的值;(2)设1n n P P -的斜率为(1,2,3,4,5)n k n =,判断12345,,,,k k k k k 的大小关系;(3)证明:当(0,1)x ∈时,()f x x <;(4)求由函数y x =与()y f x =的图像所围成图形的面积.(用12345,,,,a a a a a 表示)【答案】(1)(0)0f =,(1)1f =(2)12345k k k k k <<<<(3)见解析(4)124512345225()a a a a a a a a a --++++++【分析】(1)运用代入法进行求解即可;(2)根据斜率公式,结合已知进行判断即可;(3)要证明()f x x <,(0,1)x ∈,只需要证明(),(1,2,3,4)n n f x x n <=,根据已知定义,结合放缩法进行证明即可.(4)设1S 为[]0,1上折线()f x 与x 轴及直线1x =所围成图形的面积,求出1S ,再由112S S =-求解即可.【详解】(1)0015(0)0a f a a a ==+++ ,015015(1)1a a a f a a a +++==+++ ;(2)[]01011111()()5155n n n n n n n n a a a a a a y y T k a n n x x T ---+++-+++-===--- (1,2,,5)n = ,因为12345a a a a a <<<<,所以12345k k k k k <<<<;(3)由于()f x 的图像是连接各点(),(0,1,2,,5)n n n P x y n = 的折线要证明()f x x <,(0,1)x ∈,只需要证明(),(1,2,3,4)n n f x x n <=事实上,当1(,)n n x x x -∈时,1111()()()()()n n n n n n f x f x f x x x f x x x -----=-+-11111111()()n n n n n n n n n n n n n n n n x x x x x x x x f x f x x x xx x x x x x x x ------------=+<+=----下面证明(),(1,2,3,4)n n f x x n <=对任何n (1,2,3,4)n =,15()n a a ++ 1[(5)]()n n n a a =+-++ 11()(5)()n n n a a n a a =+++-++ 1()(5)n n n a a n na ≤+++- []1()(5)n n n a a n a =+++-< 115()n n n a a a a nT++++++= 所以1()5n n n a a nf x x T ++=<= ,综上,(),(1,2,3,4)n n f x x n <=(4)设1S 为[]0,1上折线()f x 与x 轴及直线1x =所围成图形的面积则1011012212332111()()()()()()222S y y x x y y x x y y x x =+-++-++-3443455411()()()()22y y x x y y x x ++-++-123451(2222)10y y y y y =++++[]112123123411()()()510a a a a a a a a a a T =++++++++++123411(432)105a a a a T=++++直线y x =与()y f x =的图像所围成图形的面积为1245112345221.25()a a a a S S a a a a a --++=-=++++【点睛】关键点睛:在证明()f x x <,(0,1)x ∈时,关键在于将其转化为证明(),(1,2,3,4)n n f x x n <=,结合题设定义进行证明.18.已知曲线():,0T F x y =,对坐标平面上任意一点(),P x y ,定义[](),=F P F x y ,若两点P ,Q ,满足[][]0F P F Q ⋅>,称点P ,Q 在曲线T 同侧;[][]0F P F Q ⋅<,称点P ,Q 在曲线T 两侧.(1)直线l 过原点,线段AB 上所有点都在直线l 同侧,其中()1,1A -,()2,3B ,求直线l 的倾斜角的取值范围;(2)已知曲线()(,3450F x y x y =+-=,O 为坐标原点,求点集[][]{}0S P F P F O =⋅>的面积;(3)记到点()0,1与到x 轴距离和为5的点的轨迹为曲线C ,曲线()22:,0=+--=T F x y x y y a ,若曲线C 上总存在两点M ,N 在曲线T 两侧,求曲线C 的方程与实数a 的取值范围.【答案】(1)33[0,arctan (,)24ππ ;(2)83S π=(3)()()222480:24120y x x C y x x ⎧=-≥⎪⎨=+<⎪⎩,52⎡⎢⎣⎦.【分析】(1)由题意设出直线方程为y kx =,通过新定义,得到[][](1)(23)0⋅=--->F A F B k k ,求出斜率范围,进而可求出倾斜角范围;(2)先由题意得到点集S 为圆224x y +=在直线3450x y +-=下方内部,设直线与圆的交点为A B 、,求出23AOB π∠=,进而可求出结果;(3)先设曲线C 上的动点为(,)x y5=y ,化简整理,即可得出轨迹方程;再由新定义,将[][]0⋅<F M F N 化为(6)(24)0--<a a ,进而可得出结果.【详解】(1)由题意,显然直线l 斜率存在,设方程为y kx =,则(),0=-=F x y kx y ,因为()1,1A -,()2,3B ,线段AB 上所有点都在直线l 同侧,则[][](1)(23)0⋅=--->F A F B k k ,解得312-<<k ;故倾斜角的范围是33[0,arctan (,)24ππ ;(2)因为[]0<F O ,所以[](345)0=+-F P x y ,故2234504x y x y +-<⎧⎨+<⎩,点集S 为圆224x y +=在直线3450x y +-=下方内部,设直线与圆的交点为A B 、,则O 到AB 的距离为1,故23AOB π∠=,因此,所求面积为:2214182223223ππ=⋅⋅+⋅=S(3)设曲线C 上的动点为(,)x y 5=y ,化简得曲线C 的方程为:228(3),0312(2),20x y y x y y ⎧=-≤≤⎨=+-≤≤⎩,其轨迹为两段抛物线弧;当03≤≤y 时,[]2(,)9246,24=-+-∈--F x y y y a a a ;当20-≤≤y 时,[]2(,)11246,24=++-∈--F x y y y a a a ,故若有[][]0⋅<F M F N ,则(6)(24)0--<a a ,解得624<<a .【点睛】本题主要考查新定义下直线与圆的综合,熟记直线与圆位置关系,以及直线斜率与倾斜角的概念等即可,属于常考题型.19.如图,已知A ,(0,0)B,(12,0)C ,直线:(20l k x y k --=.(1)证明直线l 经过某一定点,并求此定点坐标;(2)若直线l 等分ABC 的面积,求直线l 的一般式方程;(3)若P ,李老师站在点P 用激光笔照出一束光线,依次由BC (反射点为K )、AC (反射点为I )反射后,光斑落在P 点,求入射光线PK 的直线方程.【答案】(1)证明见解析,定点坐标为(2,;170y +-=;(3)2100x +-=.【分析】(1)整理得到(2))0k x y -+-=,从而得到方程组,求出定点坐标;(2)求出定点P 在直线AB 上,且||8AM =,由12AMD ABC S S = 得到3||||94AD AC ==,设出00(,)D x y ,由向量比例关系得到D(3)作出辅助线,确定P 关于BC 和AC 的对称点1,P 2P ,得到123P P k =,由对称性得3PK k =-,写成直线方程.【详解】(1)直线:(20l k x y k --=可化为(2))0k x y -+-=,令200xy -=⎧⎪-=,解得2x y =⎧⎪⎨=⎪⎩l 经过的定点坐标为(2,;(2)因为A ,(0,0)B ,(12,0)C ,所以||||||12AB AC BC ===,由题意得直线AB 方程为y =,故直线l 经过的定点M 在直线AB 上,所以||8AM =,设直线l 与AC 交于点D ,所以12AMD ABC S S =,即111||||sin ||||sin 222AM AD A AB AC A =⨯⨯,所以3||||94AD AC ==,设00(,)D x y ,所以34AD AC =,即003(6,(6,4x y --=-,所以0212x =,0y =21(2D ,将D 点坐标代入直线l的方程,解得k =所以直线l170y +-=;(3)设P 关于BC的对称点1(2,P -,关于AC 的对称点2(,)P m n ,直线AC12612x -=-,即)12y x =-,直线AC的方程为12)y x =-,所以(1221222n m n m ⎧-⋅=-⎪-⎪⎨++⎫⎪=-⎪⎪⎭⎩,解得14,m n ==2P ,由题意得12,,,P K I P四点共线,123P P k =,由对称性得3PK k =-,所以入射光线PK的直线方程为2)y x ---,即2100x -=.20.在平面直角坐标系xOy 中,已知圆M 过坐标原点O 且圆心在曲线y x =上.(1)设直线l :43y x =+与圆M 交于C ,D 两点,且OC OD =,求圆M 的方程;(2)设直线y =与(1)中所求圆M 交于E ,F 两点,点P 为直线5x =上的动点,直线PE ,PF 与圆M 的另一个交点分别为G ,H ,且G ,H 在直线EF 两侧,求证:直线GH 过定点,并求出定点坐标.【答案】(1)22(1)(4x y -+=(2)证明见解析【分析】(1)由||||OC OD =,知OM l ⊥,运用两直线垂直的条件:斜率之积为1-,解方程可得t ,讨论t 的取值,求得圆心到直线的距离,即可得到所求圆的方程;(2)设0(5,)P y ,11(,)G x y ,22(,)H x y ,求得E ,F 的坐标,PE 和PF 的方程,联立圆的方程,运用韦达定理,3PE PF k k =.设PE k m =,则3PF k m =.设直线GH 的方程为y kx b =+,代入圆的方程,运用韦达定理,可得k ,b 的关系,即可得到所求定点.(1)圆M 过坐标原点O 且圆心在曲线y x =上,设M t ⎛ ⎝⎭由||||OC OD =,知OM l ⊥.所以2OM k t =1t =±.当1t =时,圆心M 到直线:4l y =+的距离1)d =小于半径,符合题意;当1t =-时,圆心(1,M -到直线:4l y =+的距离1)d =大于半径,不符合题意.所以,所求圆M 的方程为22(1)(4x y -+-=.(2)设0(5,)P y ,11(,)G x y ,22(,)H x y ,又知(E -,F ,所以06PE y k =,02PF y k =.显然3PE PF k k =,设PE k m =,则3PF k m =.从而直线PE 方程为:(1)y m x +,与圆M 的方程22(1)(4x y -+=联立,消去y ,可得:2222(1)(22)30m x m x m ++-+-=,所以212311m x m --⨯=+,即21231m x m -=+;同理直线PF 方程为:3(3)y m x -,与圆M 的方程22(1)(4x y -+=联立,消去y ,可得:2222(19)(542)8130m x m x m +-++-=,所以222813319m x m -⨯=+,即22227119m x m -=+.所以22212224232713221199101m m m x x m m m m --+=+=+++++;222122242327111231199101m m m x x m m m m --=⋅=-+++⋅++.消去参数m 整理得121227()200x x x x -++=.①设直线GH 的方程为y kx b =+,代入22(1)(4x y -+=,整理得222(1)(22)0k x kb x b ++--+-=.所以122221kb x x k --+=-+,21221b x x k -⋅=+.代入①式,并整理得22(71030b k b k +-+-+=,即(250b k b k ++-=,解得2b k =或5b k -.当2b k =时,直线GH 的方程为(2)y k x =-;当5b k =时,直线GH 的方程为(5)y k x =-,过定点第二种情况不合题意(因为G ,H 在直径EF 的异侧),舍去.所以,直线GH 过定点.21.如图所示,已知圆222:()0O x y r r +=>上点(1,)a 处切线的斜率为圆O 与y 轴的交点分别为A B 、,与x 轴正半轴的交点为D ,P 为圆O 的第一象限内的任意一点,直线BD 与AP 相交于点M ,直线DP 与y 轴相交于点N .(1)求圆O 的方程;(2)试问:直线MN 是否经过定点?若经过定点,求出此定点坐标;若不经过,请说明理由.【答案】(1)224x y +=;(2)(2,2).【分析】(1)根据切线斜率得切点与圆心连线斜率,解得a,再代入圆方程得r,即得结果,(2)先设直线AP 方程,分别解得P 坐标,M 坐标,以及N 坐标,再求出直线MN 方程,最后根据方程求定点.【详解】(1)由题意得2211413a a r ⋅=-∴==+=∴22:4O x y += (2)设:2(10)AP y kx k =+-<<()222221404y kx k x kx x y =+⎧⇒++=⎨+=⎩222422,11k k P k k ⎛⎫-+⇒- ⎪++⎝⎭()()0,2,2,0B D - ∴直线:2BD y x =-2422,211y x k M y kx k k =-⎧---⎛⎫⇒⎨ ⎪=+--⎝⎭⎩由,,D P N 三点共线得:2222222002222140221121N N k y k k k y k k k k k -+---+-++=⇒==--+++-+∴21MN kk k =+直线MN 为:22211k k y x k k -+=+++即:()()2220y x k y -++-=由2022202y x y x y -==⎧⎧⇒⎨⎨-+==⎩⎩∴直线MN 过定点()2,2.【点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.22.已知圆C 经过()0,1A ,()()4,0B a a >两点.(1)如果AB 是圆C 的直径,证明:无论a 取何正实数,圆C 恒经过除A 外的另一个定点,求出这个定点坐标.(2)已知点A 关于直线3y x =-的对称点A '也在圆C 上,且过点B 的直线l 与两坐标轴分别交于不同两点M 和N ,当圆C 的面积最小时,试求BM BN ⋅的最小值.【答案】(1)证明见解析,定点为()4,1(2)min 8BM BN ⋅=【分析】(1)设点(),P x y 是圆C 上任意一点,由AB 是圆C 的直径,得0AP BP ⋅= ,从而可求出圆C 的方程,即可得出结论;(2)根据题意可得点C 在直线3y x =-上,要使圆C 的面积最小,则圆C 是以AA '为直径的圆,从而可求出圆C 的方程,进而可求得B 点的坐标,设出直线l 的方程,分别求出,M N 的坐标,再根据两点间距离公式结合基本不等式即可得解.【详解】(1)设点(),P x y 是圆C 上任意一点,因为AB 是圆C 的直径,所以0AP BP ⋅= ,即()()()()(),14,410x y x y a x x y y a -⋅--=-+--=,所以圆C 的方程为:()()()410x x y y a -+--=,则4x =,1y =时等式恒成立,故定点为()4,1,所以无论a 取何正实数,圆C 恒经过除A 外的另一个定点,定点坐标为()4,1;(2)因点A 关于直线3y x =-的对称点A '也在圆C 上,所以点C 在直线3y x =-上,又圆C 的面积最小,所以圆C 是以AA '直径的圆,设过点A 与直线3y x =-垂直的直线方程为1y x =-+,由方程组31y x y x =-⎧⎨=-+⎩得()2,1C -,则AC =所以圆C 的方程为()()22218x y -++=,当4x =时,1a =或3a =-,又0a >,所以1a =,即()4,1B ,由题意知直线l 斜率存在且不为零,设直线l 的方程为()14y k x -=-,当0x =时14y k =-,当0y =,时14x k =-,所以||||448BM BN ⋅=,(当且仅当221k k =,即1k =±时取等号)则当1k =±时,min 8BM BN ⋅=。
第二章 直线和圆的方程【压轴题专项训练】(解析版)
第二章直线和圆的方程【压轴题专项训练】一、单选题1.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP△面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A 【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB =点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABPSAB d ==∈故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.2.已知点()()2,3,3,2A B ---,直线:10l mx y m +--=与线段AB 相交,则直线l 的斜率k 的取值范围是()A .34k ≥或4k ≤-B .344k -≤≤C .15k <-D .344k -≤≤【答案】A 【详解】()()110m x y -+-=,所以直线l 过定点()1,1P ,所以34PB k =,4PA k =-,直线在PB 到PA 之间,所以34k ≥或4k ≤-,故选A .3.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若,a R b R ∈∈且0ab ≠,则2211a b +的最小值为A .1B .3C .19D .49【答案】A 【详解】试题分析:由题意得两圆22()4x a y ++=与22(2)1x y b y +-=相外切,即222149a b =+⇒+=,所以22222222221111(4)141()[5][5]1999a b a b a b a b b a ++=+=++≥+=,当且仅当22224=a b b a 时取等号,所以选A.考点:两圆位置关系,基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4.过圆22:1O x y +=内一点11,42⎛⎫⎪⎝⎭作直线交圆O 于A ,B 两点,过A ,B 分别作圆的切线交于点P ,则点P 的坐标满足方程()A .240x y +-=B .240x y -+=C .240x y --=D .240x y ++=【答案】A 【分析】设出P 点坐标,求解出以OP 为直径的圆M 的方程,将圆M 的方程与圆O 的方程作差可得公共弦AB 的方程,结合点11,42⎛⎫⎪⎝⎭在AB 上可得点P 的坐标满足的方程.【详解】设()00,P x y ,则以OP 为直径的圆()()00:0M x x x y y y -+-=,即22000x y x x y y +--=①因为,PA PB 是圆O 的切线,所以,OA PA OB PB ⊥⊥,所以A ,B 在圆M 上,所以AB 是圆O 与圆M 的公共弦,又因为圆22:1O x y +=②,所以由①-②得直线AB 的方程为:0010x x y y +-=,又点11,42⎛⎫⎪⎝⎭满足直线AB 方程,所以00111042x y +-=,即240x y +-=.故选:A.5.在平面直角坐标系中,已知点(),P a b 满足1a b +=,记d 为点P 到直线20x my --=的距离.当,,a b m 变化时,d 的最大值为()A .1B .2C .3D .4【答案】C 【分析】根据直线:20l x my --=过定点A 确定出对于给定的一点P ,d 取最大值时PA l ⊥且max d PA =,然后根据点P 为正方形上任意一点求解出max PA ,由此可知max d .【详解】直线:20l x my --=过定点()2,0A ,对于任意确定的点P ,当PA l ⊥时,此时d PA =,当PA 不垂直l 时,过点P 作PB l ⊥,此时d PB =,如图所示:因为PB AB ⊥,所以PA PB >,所以max d PA =,由上可知:当P 确定时,max d 即为PA ,且此时PA l ⊥;又因为P 在如图所示的正方形上运动,所以max max d PA =,当PA 取最大值时,P 点与()1,0M -重合,此时()213PA =--=,所以max 3d =,故选:C.【点睛】关键点点睛:解答本题的关键在于利用图像分析d 取最大值时PA 与直线l 的位置关系,通过位置关系的分析可将问题转化为点到点的距离问题,根据图像可直观求解.6.若实数,x y 满足x -=x 最大值是()A .4B .18C .20D .24【答案】C 【分析】当0x =时,解得0y =;当0x >,令t =22x t -+=,设()22x f t t =-+,()g t =()f t 和()g t 有公共点,观察图形可求解.【详解】当0x =时,解得0y =,符合题意;当0x >时,令t =0t ≥,又0x y -≥,则t ≤,即t ⎡∈⎣,则原方程可化为22xt -+=,设()22xf t t =-+,()g t =t ⎡∈⎣,则()f t 表示斜率为2-的直线,()g t则问题等价于()f t 和()g t有公共点,观察图形可知,=20x =,当直线过点(时,2x=4x =,因此,要使直线与圆有公共点,[]4,20x ∈,综上,[]{}4,200x ∈⋃,故x 的最大值为20.故选:C.【点睛】关键点睛:解题得关键是令t =()22xf t t =-+与圆有公共点.7.已知圆222:()(21)2C x m y m m -+-+=,有下列四个命题:①一定存在与所有圆都相切的直线;②有无数条直线与所有的圆都相交;③存在与所有圆都没有公共点的直线;④所有的圆都不过原点.其中正确的命题个数是A .1B .2C .3D .4【答案】C 【分析】①可先设出切线方程,利用圆心到直线距离等于半径建立等式求解.②③根据直线与两条切线的相对位置,可找出与圆相交和相离的直线④假设过原点,有解【详解】由圆222:()(21)2C x m y m m -+-+=知圆心坐标为(),21m m -,半径|r m =,圆心在直线21y x =-上,①假设存在直线与所有圆均相切,设为y kx b =+则(),21m m -到y kx b =+的距离为|r m =可得|r m ==直线与所有圆均相切,故切线应与m 无关,可取1b =-=解得2k =-±即(21y x -±=-所以,存在与所有圆均相切的直线,故①正确;过点()0,1-介于两相切直线之间的直线,均与所有圆相交,故②正确;过点()0,1-在两相切直线之外部区域的直线,与所有圆均没有交点,故③正确;假设过原点,则222()(21)2m m m -+-+=,得1m =或13m =,故④错误.故选:C 【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8.已知,x y R ∈)AB .3C.D .6【答案】C 【分析】将问题转化为“点()0,y 到点()2,1的距离加上点(),0x 到点()2,1的距离加上点(),0x 到点()0,y 的距离之和的最小值”,采用分类讨论的方法并画出辅助图示求解出最小值.【详解】()0,y 到点()2,1(),0x 到点()2,1的距离,表示点(),0x 到点()0,y 的距离,设()()()2,1,,0,0,A B x C y ,表示AB BC AC ++的长度和,显然当点(),0x 与点()0,y 在,x y 轴的非负半轴上,对应原式的结果更小,当()(),0,0,x y 均不在坐标原点,如下图所示:考虑到求解最小值,所以2,1x y ≤≤,设,B A 关于原点的对称点为,B A '',所以AB BC AC AC B C A B AB A B AA '''''''++=++≥+>==当()(),0,0,x y 其中一个在坐标原点,如下图所示:此时分别有2AC BC AB AC AC AC ++>+==2AC BC AB AB AB AB ++>+==,所以AC BC AB ++>当()(),0,0,x y 都在坐标原点时,AB AC BC ++==的最小值为故选:C.【点睛】(1)先将问题转化为点到点的距离之和问题;(2)画出图示,必要时借助点关于直线的对称点知识进行分析;(3)根据距离之和的最小值得到原式的最小值.二、多选题9.下列说法正确的是()A .直线21y ax a =-+必过定点(2,1)B .直线3240x y -+=在y 轴上的截距为-2C10y ++=的倾斜角为120°D .若直线l 沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后,回到原来的位置,则该直线l 的斜率为23-【答案】ACD 【分析】代入点的坐标判断A ,求出纵截距判断B ,求出斜率得倾斜角,判断C ,写出平移直线后的方程,与原方程一致,由此求得ba-,判断D .【详解】2211z a -+=,所以点(2,1)在直线上,A 正确;对3240x y -+=,令0x =,得2y =,直线3240x y -+=在y 轴上截距为2,B 错误;10y ++=的斜率为120︒,C 正确;设直线l 方程为0ax by c ++=,沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后得(3)(2)0a x b y c ++-+=,即320ax by c a b +++-=它就是0ax by c ++=,所以320a b -=,所以23a kb =-=-,D 正确.故选:ACD .【点睛】关键点点睛:本题考查直线方程,利用直线方程研究直线的性质是解析几何的基本方法.掌握直线的概念与特征是解题关键.10.已知点P 是直线3450x y -+=上的动点,定点()1,1Q ,则下列说法正确的是()A .线段PQ 的长度的最小值为45B .当PQ 最短时,直线PQ 的方程是3470x y +-=C .当PQ 最短时P 的坐标为1341,2525⎛⎫⎪⎝⎭D .线段PQ 的长度可能是23【答案】AC 【分析】当PQ 垂直直线3450x y -+=时,PQ 最短,即可判断A 、D ,设出P 坐标,根据最短使PQ 与直线垂直求解P 坐标,即可判断C ,由两点式求出直线方程,即可判断B .【详解】解:当PQ 垂直直线3450x y -+=时,PQ 最短,Q 到直线的距离为223454534-+=+,故A 正确;故PQ 的长度范围为4,5⎡⎫+∞⎪⎢⎣⎭,2435<,故D 错误;设35,4m P m +⎛⎫ ⎪⎝⎭,则3514413PQ m k m +-==--,解得1325m =,故P 为1341,2525⎛⎫⎪⎝⎭,故C 正确;此时直线PQ 的方程是114113112525y x --=--,即4370x y +-=,故B 错误,故选:AC .11.(2021•佛山模拟)已知圆2221:C x y r +=,圆2222:()()C x a y b r -+-=,(0r >,且a ,b 不同时为0)交于不同的两点1(A x ,1)y ,2(B x ,2)y ,下列结论正确的是A .221122ax by a b +=+B .1212()()0a x x b y y -+-=C .12x x a +=,12y y b+=D .M ,N 为圆2C 上的两动点,且||3MN r =,则||OM ON +的最大值为22a b r ++【答案】ABC【解析】根据题意,圆2221:C x y r +=和圆2222:(?)(?)(0)C x a y b r r +=>交于不同的两点A ,B ,∴两圆方程相减可得直线AB 的方程为:22220a b ax by +--=,即22220ax by a b +--=,分别把点1(A x ,1)y ,2(B x ,2)y 两点坐标代入22220ax by a b +--=得:221122??0ax by a b +=,222222??0ax by a b +=,所以选项A 正确,上面两式相减得:12122()2()0a x x b y y -+-=,即1212()()0a x x b y y -+-=,所以选项B 正确,两圆的半径相等,∴由圆的性质可知,线段AB 与线段12C C 互相平分,则有120222x x a a++==,12022y y bb ++==,变形可得12x x a +=,12y y b +=,C 正确;M ,N 为圆2C 上的两动点,且||3MN r =,设MN 的中点为D ,则2C D MN ⊥,所以22231()22C D r r r =-=,所以MN 的中点D 的轨迹为以2(,)C a b 为圆心,12r 为半径的圆,所以MN 的中点D 的轨迹方程为2221()()4x a y b r -+-=,又||2||OM ON OD +=,所以||OM ON +的最大值为222212()22a b r a b r +=+,故D 错误.故选ABC .三、填空题12.已知C 为圆:()2211x y -+=上一动点,点B 坐标为(3,点A 坐标为()4,0,则3AC BC +的最小值为_________.【答案】27【分析】设圆心为M ,由圆的方程得到圆心和半径,取4,03D ⎛⎫⎪⎝⎭,可证得CMDAMC ,得到3AC CD =,可知()333AC BC CD BC BD +=+≥,利用两点间距离公式可求得最小值.【详解】设圆:()2211x y -+=的圆心为M ,则()1,0M ,半径1MC =,取4,03D ⎛⎫ ⎪⎝⎭,13MD MC MCMA==,CMD CMA ∠=∠,CMD AMC ∴,3AC CD ∴=,()333AC BC CD BC BD ∴+=+≥(当且仅当,,B C D 三点共线且C 在线段BD 上时取等号),BD =,3AC BC ∴+≥即3AC BC +的最小值为故答案为:【点睛】关键点点睛:本题考查圆部分的最值问题的求解,解题关键是能够利用三角形相似将问题转化为三角形两边之和大于第三边的问题,由此确定三点共线时取得最小值.13.已知函数()f x ax b =--,其中a ,b R ∈,()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为___________.【答案】12【分析】数形结合分析可知(,)M a b 的最小值为()[]0,1g x x =∈与()h x ax b x =+=-纵向距离,从而可以求出结果.【详解】函数()(),f x ax b M a b =-≤,即四分之一圆[]0,1y x =∈上的点到直线1x y +=上的最大距离为12-,此时圆上的点记为P ,如图:只有过PN 的中点且平行于直线1x y +=的直线才满足条件,所以当211,2a b =-=时,(,)M a b 的最小值为()[]0,1g x x =∈与()212h x ax b x +=+=-的纵向距离,即(,)M a b 的最小值为1⎛- ⎝⎭故答案为:212.【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.14.已知直线()()()11410a x a y a -++-+=(其中a 为实数)过定点P ,点Q 在函数1y x x=+的图像上,则PQ 连线的斜率的取值范围是___________.【答案】[3)-+∞,【分析】把直线方程整理成a 的多项式,根据恒等式的知识求出定点P 的坐标,【详解】由()()()11410a x a y a -++-+=得(4)40x y a x y -+-++-=∴4040x y x y -+-=⎧⎨+-=⎩,解得0,4x y =⎧⎨=⎩,∴(0,4)P 。
直线与圆的练习题
直线与圆的练习题一、选择题1. 已知直线l与圆O相交于A、B两点,圆的半径为r,线段AB的长度为d,若d=r,则直线l与圆O的位置关系是?A. 相切B. 相交C. 相离D. 包含2. 直线y=kx+b与圆x^2+y^2=r^2相交,圆心到直线的距离d满足什么条件时,直线与圆相交?A. d<rB. d≤rC. d>rD. d≥r3. 圆的方程为(x-a)^2+(y-b)^2=r^2,直线的方程为Ax+By+C=0,若直线经过圆心(a,b),则A和B的关系是?A. A=BB. A=-BC. A+B=0D. A-B=0二、填空题4. 若直线2x-3y+6=0与圆x^2+y^2=9相交,求圆心到直线的距离d。
5. 已知圆的方程为(x-1)^2+(y+2)^2=25,直线方程为3x-4y+12=0,求直线与圆的交点坐标。
三、解答题6. 已知圆的半径为5,圆心在(1,1),求过点(2,3)的直线方程,使得该直线与圆相切。
7. 已知直线l1: x-2y-1=0与l2: 3x+y+2=0相交于点P,求点P的坐标,并判断点P与圆x^2+y^2=10的位置关系。
四、证明题8. 证明:如果两条直线都与一个圆相切,那么这两条直线的斜率互为相反数。
9. 已知圆的方程为x^2+y^2=25,直线l的方程为y=x+3,求证直线l 与圆相切。
五、计算题10. 已知圆的方程为(x-3)^2+(y+1)^2=9,直线l的方程为2x-y-5=0。
求直线l被圆所截的弦长。
11. 已知圆的方程为x^2+y^2=r^2,直线l的方程为Ax+By+C=0,若直线l与圆相交于A、B两点,且AB的中点为M,求M的坐标。
六、综合题12. 在平面直角坐标系中,圆C的方程为(x-3)^2+(y+2)^2=20,直线l 的方程为2x-3y-6=0。
求直线l与圆C的交点A、B的坐标,并计算AB 的长度。
13. 已知圆的方程为x^2+y^2=25,直线l的方程为y=-x+5。
新人教版高中数学选修一第二单元《直线和圆的方程》检测卷(答案解析)
一、选择题1.如图一所示,在平面内,点P 为圆O 的直径AB 的延长线上一点,2AB BP ==,过动点Q 作圆的切线QR ,满足2PQ QR =,则QAP 的面积的最大值为( )A .83B 83C .163D 1632.已知圆22:3C x y +=,从点()2,0A -观察点()2,B a ,要使视线不被圆C 挡住,则a 的取值范围是 ( ) A .4433,33⎛⎫-∞⋃+∞ ⎪⎝⎭B .()(),22,-∞-+∞C .((),2323,-∞-+∞D .((),4343,-∞-⋃+∞3.若圆222(3)(5)x y r -+-=上有且只有四个点到直线432x y +=的距离等于1,则半径r 的取值范围是( ) A .(4,6)B .[4,6]C .(,4)-∞D .(6,)+∞4.已知(1,1)P ,(2,3)Q --,点P ,Q 到直线l 的距离分别为2和4,则满足条件的直线l 的条数是( ) A .1B .2C .3D .45.111222(,),(,)P a b P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( )A .无论12,,k P P 如何,总是无解B .无论12,,k P P 如何,总有唯一解C .存在12,,k P P ,使12x y =⎧⎨=⎩是方程组的一组解 D .存在12,,k P P ,使之有无穷多解6.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC 的周长为423+k 的值为( )A .32B .32-C .32±D .12±7.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-8.一艘海监船上配有雷达,其监测范围是半径为26 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10 km/h 这艘外籍轮船能被海监船监测到且持续时间长约为( ) 小时 A .1B .2C .3D .49.过点(0,2)P 的直线l 与以(1,1)A ,(2,3)B -为端点的线段有公共点,则直线l 的斜率k的取值范围是( ) A .5[,3]2- B .5(,][3,)2-∞-⋃+∞ C .3[,1]2-D .1(,1][,)2-∞-⋃-+∞ 10.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-11.设点()0,1M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ︒∠=,则0x 的取值范围是( )A .[0,1]B .[1,1]-C .22⎡-⎢⎣⎦D .2⎡⎢⎣⎦12.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B .)1- C .()1-D .()1二、填空题13.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.14.已知圆()222:2400C x y mx y m m +--+=>被直线:30l x y -+=截得的弦长为,则m =______.15.已知直线y x b =+与曲线x =恰有两个交点,则实数b 的取值范围为______. 16.与两圆22(2)1x y ++=,22(2)1x y -+=都相切,且半径为3的圆一共有________个17.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.18.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab≠0,则2211a b +的最小值为___________ 19.直线l 过点()2,3P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,则直线l 的方程为_________.20.已知圆C :222x y +=,点P 为直线136x y+=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则原点O 到直线AB 距离的最大值是______.三、解答题21.已知斜率为k 且过点()0,1M 的直线与圆()222(3)1x y -+-=相交于不同两点,A B(1)求实数k 的取值范围; (2)求证:MA MB ⋅为定值;(3)若O 为坐标原点,且12OA OB ⋅=,求直线l 的方程. 22.已知动点P 到两个定点(0,0),(3,0)O A 的距离之比为12. (1)求动点P 的轨迹C 的方程;(2)若过点()1,3B 的直线l 与曲线相切,求直线l 的方程;(3)已知圆Q 的圆心为(,)(0)Q t t t >,且圆Q 与x 轴相切,若圆Q 与曲线C 有公共点,求实数t 的取值范围.23.已知圆C :222430x y x y ++-+=(1)若圆C 的切线在x 轴和y 轴上的截距相等,且截距不为零,求此切线的方程; (2)若从圆C 外一点()1,2P -向该圆引切线PA 和PB (A ,B 为切点),求弦长AB 的大小.24.已知直线l 过点(2,1)M ,且分别与x 轴正半轴、y 轴正半轴交于点A 、B ,(O 为坐标原点)(1)当ABO 的面积为4时,求直线l 的一般式方程; (2)当MA MB ⋅取最小时,求直线l 的一般式方程.25.已知点(1,0)M -,(1,0)N ,曲线E 上任意一点到点M 的距离均是到点N 3倍.(1)求曲线E 的方程:(2)已知0m ≠,设直线1l :10x my --=交曲线E 于A 、C 两点,直线2l :0mx y m +-=交曲线E 于B 、D 两点,C 、D 两点均在x 轴下方.当CD 的斜率为1-时,求线段AB 的长.26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为23,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系,利用两点间距离公式推导出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,由此能求出QAP 的面积的最大值. 【详解】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系, 因为2AB BP ==,所以()3,0P,设(),Q x y因为过动点Q 作圆的切线QR ,满足2PQ QR =,()2224PQ QO OR =-所以()()2222341x y x y -+=+-,整理得:()221613x y ++=, 所以点Q 的轨迹是以()1,0-3所以当点Q 在直线1x =-上时,3y =±此时点Q 到AP 距离最大,QAP 的面积的最大,所QAP的面积最大为11834223333QAPS AP =⨯⨯=⨯⨯==, 故选:B 【点睛】关键点点睛:本题的关键点是建立直角坐标系,设(),Q x y ,利用()222244PQ QR OQ OR ==-,即可求出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,即为三角形高最大,从而QAP 的面积最大.2.D解析:D 【分析】设过点与圆相切的直线为()2y k x =+,则圆心到直线的距离解得3k =±,可得切线方程为()32y x =±+,由A 点向圆C 引2条切线,只要点B 在切线之外,那么就不会被遮挡,即a 大于B 点在x 轴上方的纵坐标或者小于B 点在x 轴上方的纵坐标即可. 【详解】设过点()2,0A -与圆22:3C x y +=相切的直线为()2y k x =+,则圆心()0,0到直线的距离为2231k k=+,解得3k =±,∴切线方程为()32y x =±+,由A 点向圆C 引2条切线,只要点B 在切线之外,那么就不会被遮挡,B 在2x =的直线上,在()32y x =±+中,取2x =,得43y =±,从A 点观察B 点,要使视线不被圆C 挡住,需43a >或43a <-, ∴a 的取值范围是()(),4343,-∞-⋃+∞, 故选:D.【点睛】本题主要考查直线与圆的位置关系,关键点是求过A 点且与圆相切时的直线方程,考查分析问题解决问题的能力.3.D解析:D 【分析】首先求圆心到直线的距离d ,再根据条件,列式1d +和半径r 比较大小,求r 的取值范围. 【详解】圆心()3,5到直线432x y +=的距离5d ==,若圆上有四个点到直线432x y +=的距离等于1,则51r >+,即6r >. 故选:D 【点睛】思路点睛:本题考查直线与圆的位置关系,与直线432x y +=距离为1的两条直线与圆有4个交点,根据点到直线的距离,建立不等式求解.4.B解析:B 【分析】以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q ,利用圆P 与圆Q 相交,两圆有两条公切线,可得结果.【详解】||5PQ ==,以P 为圆心,以2为半径的圆记为圆P ,以Q 为圆心,以4为半径的圆记为圆Q , 因为42-<524<+,所以圆P 与圆Q 相交,所以两圆有两条公切线, 所以满足条件的直线l 的条数是2. 故选:B 【点睛】关键点点睛:转化为判断两个圆的公切线的条数是解题关键.5.B解析:B 【分析】由点在直线上,点的坐标代入直线方程,确定1221a b a b -是否为0,不为0,方程组有唯一解,为0时,再讨论是否有无数解. 【详解】由题意112211b ka b ka =+⎧⎨=+⎩,则1221122112(1)(1)a b a b a ka a ka a a -=+-+=-,∵直线1y kx =+的斜率存在,∴12a a ≠,120a a -≠,∴方程组112211a x b y a x b y +=⎧⎨+=⎩总有唯一解.A ,D 错误,B 正确;若12x y =⎧⎨=⎩是方程组的一组解,则11222121a b a b +=⎧⎨+=⎩,则点1122(,),(,)a b a b 在直线21x y +=,即1122y x =-+上,但已知这两个在直线1y kx =+上,这两条直线不是同一条直线,∴12x y =⎧⎨=⎩不可能是方程组的一组解,C 错误. 故选:B . 【点睛】本题考查直线方程,考查方程组解的个数的判断.掌握直线方程是解题关键.6.A解析:A 【分析】先根据半径和周长计算弦长AB =即可. 【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC的周长为4+24r AB +=+AB =又直线与圆相交后的弦心距d ==,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.7.D解析:D 【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()001,322mm d -+==∈,解得322m -<<-或232m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.8.B解析:B 【分析】根据题意建立合适平面直角坐标系,将问题转化为求直线被圆所截得的弦长问题,然后根据弦长对应的距离求解出监测时间. 【详解】根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴, 所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束, 所以:14030AB x y l +=,即:341200AB l x y +-=, 因为O 到:341200AB l x y +-=的距离为221202434OO -'==+,所以22220MN MO OO '=-=,所以监测时间持续2010=2小时, 故选:B.【点睛】思路点睛:建立平面直角坐标系求解直线与圆的有关问题的思路:(1)选择合适坐标原点(方便求解直线、圆的方程),建立平面直角坐标系; (2)根据题意写出直线与圆的方程;(3)根据直线与圆的位置关系,采用几何法计算相关长度,完成问题的求解.9.D解析:D 【分析】画出图形,设直线l 的斜率为k ,求出PA k 和PB k ,由直线l 与线段AB 有交点,可知PA k k ≤或PB k k ≥,即可得出答案.【详解】直线过定点(0,2)P ,设直线l 的斜率为k , ∵12110PA k -==--,321202PB k -==---, ∴要使直线l 与线段AB 有交点,则k 的取值范围是1k ≤-或12k ≥-, 即1(,1][,)2k ∈-∞-⋃-+∞.故选:D. 【点睛】方法点睛:求直线的斜率(或取值范围)的方法:(1)定义法:已知直线的倾斜角为α,且90α︒≠,则斜率tan k α=; (2)公式法:若直线过两点()11,A x y ,()22,B x y ,且12x x ≠,则斜率2121y y k x x -=-; (3)数形结合方法:该法常用于解决下面一种题型:已知线段AB 的两端点及线段外一点P ,求过点P 且与线段AB 有交点的直线l 斜率的取值范围.若直线,PA PB 的斜率都存在,解题步骤如下: ①连接,PA PB ; ②由2121y y k x x -=-,求出PA k 和PB k ; ③结合图形写出满足条件的直线l 斜率的取值范围.10.D解析:D 【分析】已知点(1,3)--在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程. 【详解】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-; 当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-; 故选:D. 【点睛】本题主要考查了求曲线切线方程,解题关键是掌握根据导数求切线的方法,考查了分析能力和计算能力,属于中档题.11.B解析:B 【分析】首先根据题中条件,可以判断出直线MN 与圆O 有公共点即可,从而可以断定圆心O 到直线MN 的距离小于等于半径,列出对应的不等关系式,求得结果. 【详解】依题意,直线MN 与圆O 有公共点即可, 即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A , 在Rt OMA ∆中,因为OMA ∠045=, 故02sin 452OA OM ==1≤, 所以2OM ≤2012x +≤,解得011x -≤≤.故选:B. 【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,解直角三角形,属于简单题目.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2 【分析】根据切线的性质可将面积转化为21PACBS PC =-,求出PC 的最小值即()0,1C -到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,212212PACB PACS SPA AC PA PC ==⨯⨯⨯==-则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,()min 222014521PC ⨯++∴==+-()min 512PACB S ∴=-=.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为21PACB S PC =-PC 的最小值即可.14.1【分析】根据题意求出圆的圆心与半径由直线与圆的位置关系可得圆心到直线l 的距离d 利用点到直线的距离公式可得解可得m 的值即可得答案【详解】根据题意圆即其圆心C 为半径若圆C 被直线截得的弦长为则圆心到直线解析:1 【分析】根据题意,求出圆的圆心与半径,由直线与圆的位置关系可得圆心到直线l 的距离d ,利用点到直线的距离公式可得d ==m 的值,即可得答案.【详解】根据题意,圆()222:2400C x y mx y m m +--+=>,即()()2224-+-=x m y ,其圆心C 为()m,2,半径2r,若圆C 被直线:30l x y -+=截得的弦长为则圆心到直线l 的距离d ==圆心到直线l 的距离d ==,则有=1m =或-3(舍),故1m =,故答案为:1. 【点睛】思路点睛:涉及直线与圆相交的弦长问题,主要是利用垂径定理,即圆心到直线的距离、弦长的一半以及圆的半径构成直角三角形来解.15.【分析】由曲线方程可知其曲线为半圆进而画出曲线来要使直线与曲线恰有两个交点可以通过数形结合分析得解【详解】曲线有即表示一个半圆(单位圆左半部分)如图当直线经过点点时求得;当直线和半圆相切时由圆心到直解析:⎡⎣【分析】由曲线方程可知其曲线为半圆,进而画出曲线来,要使直线与曲线恰有两个交点,可以通过数形结合分析得解. 【详解】曲线x =有即221x y +=(0)x ,表示一个半圆(单位圆左半部分).如图,(0,1)A 、(1,0)B -、(0,1)C -,当直线y x b =+经过点B 、点A 时,01b =-+,求得1b =; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得1=b =b =(舍去),故要求的实数b 的范围为12b <,故答案为:⎡⎣【点睛】易错点睛:本题在把方程2x 1y =--化简找其对应的曲线时,容易漏掉0x ≤,从而把曲线的范围扩大为整个单位圆,导致结果出错.在把方程转化时,一定要注意变量范围的等价性.16.7【分析】根据两圆相离可以判定出与两圆都相切且半径为3的圆有7个【详解】解:因为两圆是相离的所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个是以原点为圆心即;与两圆都外切的有2个设切点解析:7 【分析】根据两圆相离,可以判定出与两圆都相切且半径为3的圆有7个. 【详解】解:因为两圆221:(2)1O x y ++=,222:(2)1O x y -+=是相离的,所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个,是以原点为圆心,即229x y +=;与两圆都外切的有2个,设切点为(0,)b 22(02)423b b -+=⇒=±∴22(23)9x y +±=,同理,利用圆与圆的圆心距和半径的关系可得:与圆1O 外切于圆2O 内切的圆有2个;与圆1O 内切于圆2O 外切的圆有2个;分别为22315()()92x y ++±=和22315()()92x y -+=,共7个, 故答案为:7. 【点睛】由圆心距判断两圆的位置关系相离,再利用直观想象可得与两圆都相切的情况,包括内切和外切两类.17.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13 【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B -- 联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:PA =PB =2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.18.9【分析】圆C1C2只有一条公切线则两圆的位置关系为内切由此可以得到ab 的等量关系然后利用均值不等式求的最小值【详解】圆C1:x2+y2+4ax +4a2-4=0标准方程:圆C2:x2+y2-2by +解析:9 【分析】圆C 1、C 2只有一条公切线,则两圆的位置关系为内切,由此可以得到a 、b 的等量关系,然后利用均值不等式求2211a b +的最小值 【详解】圆C 1:x 2+y 2+4ax +4a 2-4=0 标准方程:22x 2a y 4++=() 圆C 2:x 2+y 2-2by +b 2-1=0标准方程:22x y b 1+-=() 因为圆C 1 、C 2内切,1=, 即224a b 1+=, (2211a b +)=2222114a b a b++()() =2222b 4a 59a b++≥()当且仅当224a b =时等号成立. 【点睛】本题考查了两圆的位置关系和均值不等式求最值;两圆位置关系有:内含、内切、相交、外切、外离,圆与圆的位置关系也决定了切线的条数,两圆相内切只有一条切线,圆心距和两圆半径的关系是解题的关键,利用该关系可以构造出均值不等式所需要的等式;均值不等式求最值要注意:一正二定三相等.19.3x ﹣2y+12=0【详解】设A (x0)B (0y )由中点坐标公式得:解得:x=﹣4y=6由直线过点(﹣23)(﹣40)∴直线的方程为:即3x ﹣2y+12=0故答案为3x ﹣2y+12=0解析:3x ﹣2y+12=0 【详解】设A (x ,0)、B (0,y ),由中点坐标公式得:002322x y++=-=, 解得:x=﹣4,y=6,由直线l 过点(﹣2,3)、(﹣4,0),∴直线l 的方程为:320342y x -+=--+, 即3x ﹣2y+12=0. 故答案为3x ﹣2y+12=020.【分析】为使原点到直线距离的最大则应当最小于是应当最小进而得到应当最小然后利用点到直线的距离公式求得的最小值利用直角三角形相似求得原点到直线距离的最大值【详解】为使原点到直线距离的最大则应当最小于是【分析】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,进而得到OP 应当最小,然后利用点到直线的距离公式求得OP 的最小值,利用直角三角形相似求得原点O 到直线AB 距离的最大值. 【详解】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,∴OA OP应当最大,∴OP 应当最小,当且仅当OP 与直线136x y+=垂直时OP最小,OP 的最小值为O 到直线136x y +=,即260x y +-=的距离2266521d ==+,设OP 与AB 交于点,Q 则2~,||Rt OQA Rt OAP OQ OP OA ∴⨯=, ∴max 5||,365OQ ==故答案为:53. 【点睛】本题考查与圆有关的最值问题,属中等难度的题目,关键在于转化为OP 最小,同时注意利用三角形相似进行计算.三、解答题21.(1)4747()33+;(2)证明见解析;(3)1y x =+. 【分析】(1)设直线l 的方程为1y kx =+,结合直线与圆的交点个数与点到直线的距离公式,可得解;(2)设11(,)A x y ,22(,)B x y ,联立直线与圆的方程,利用韦达定理,结合平面向量的坐标运算,可得证;(3)由121212OA OB x x y y ⋅=+=,列出关于k 的方程,解之即可. 【详解】(1)设直线l 的方程为1y kx =+,因为直线l 与圆有两个不同交点,1<,解得4433k <<,所以实数k的取值范围为; (2)证明:设11(,)A x y ,22(,)B x y ,联立()()221231y kx x y =+⎧⎪⎨-+-=⎪⎩,得22(1)(44)70k x k x +-++=, 所以122441k x x k ++=+,12271x x k=+, 所以11221122(,1)(,1)(,)(,)MA MB x y x y x kx x kx ⋅=-⋅-=⋅22212121227(1)(1)71x x k x x k x x k k=+=+=+⋅=+,为定值; (3)因为12OA OB ⋅=,所以12121212(1)(1)OA OB x x y y x x kx kx ⋅=+=+++22121222744(1)()1(1)11211kk x x k x x k k k k +=++++=+⋅+⋅+=++, 整理解得1k =,所以直线l 的方程为:1y x =+. 【点睛】思路点睛:该题考查的是有关直线与圆的问题,解题思路如下:(1)根据直线与圆有两个交点,得到直线与圆相交,利用圆心到直线的距离小于半径,得到对应的不等关系,解不等式求得结果;(2)设出两点坐标,将直线与圆的方程联立,消元,利用韦达定理得到两根关系,利用向量数量积坐标公式求其数量积,结合韦达定理,证得结果;(3)利用向量数量积坐标公式得到k 所满足的等量关系式,求得k 的值,进而求得直线方程.22.(1)22(1)4x y ++=;(2)1x =或12530x y -+=;(3)[3-+. 【分析】(1)设(,)P x y ,由||2||AP PO =结合两点间距离公式可求;(2)可得斜率不存在时满足,当斜率存在时,设出直线方程,利用圆心到直线的距离等于半径求出斜率即可;(3)设出圆Q 方程,利用|2|||2t CQ t -+可求出.【详解】解:(1)由题意知:设(,)P x y , 由||2||AP PO =,得22||4||AP PO =,∴()2222(3)4x y x y-+=+,整理得22(1)4x y ++=.故动点P 的轨迹C 的方程为22(1)4x y ++=;(2)由(1)知道,曲线C 为以(1,0)-为圆心,2为半径的圆, ①若直线l 斜率不存在,则直线l 为 1x =;②若直线l 斜率存在,设为k ,则直线l 方程为3(1)y k x -=-,即3y kx k =-+, 此时圆心C 到直线l 的距离2d ==,化简得:125k =.综上,直线l 方程为1x =或12530x y -+=.(3)∵点Q 的坐标为(,)(0)t t t >,且圆Q 与x 轴相切, ∴圆Q 的半径为t ,∴圆Q 的方程为222()()x t y t t -+-=,∴圆Q 与圆C 的两圆心距离为||CQ == ∵圆Q 与圆C 有公共点,∴|2|||2t CQ t -+,即222(2)221(2)t t t t -+++,解得:33t -+,实数t 的取值范围是[3-+. 【点睛】本题考查圆的切线方程的求解,注意需要讨论斜率不存在的情况,考查圆与圆的位置关系,解题的关键是根据圆心距和半径之间的关系判断.23.(1)30x y +-=或10x y ++=;(2)5. 【分析】(1)先把圆的方程化为标准形式,求出圆心和半径,再利用已知条件设切线l 的方程为0x y m ++=,利用圆心到直线的距离公式求解即可得解;(2)设A ,B 中点为D ,在APC △以及ACD △中,求出cos ACP ∠,得到CD ,最后利用勾股定理求解即可. 【详解】解:(1)圆C 的标准方程为()()22122x y ++-=,圆心()1,2C -,半径r =因为圆C 的切线在x 轴和y 轴上的截距相等,且截距不为零, 所以可设切线l 的方程为0x y m ++=,于是圆心C 到直线l 的距离d r ===,解得3m =-或1,所以切线方程为30x y +-=或10x y ++= (2)如图,设A ,B 中点为D ,在APC △中,2AC =25CP =所以2cos 25ACP ∠=, 在ACD △中,cos 2CD ACP CA ∠== 2225=, 解得55CD =, 所以22295AD AC CD =-=, 于是652AB AD == 【点睛】方法点睛:圆的弦长的求法:(1)几何法,设圆的半径为r ,弦心距为d ,弦长为L ,则2222L r d ⎛⎫=- ⎪⎝⎭; (2)代数法,设直线与圆相交于()11,A x y ,()22,B x y ,联立直线与圆的方程()()222y kx mx a y b r=+⎧⎪⎨-+-=⎪⎩,消去y 得到一个关于x 的一元二次方程,从而可求出12x x +,12x x ,根据弦长公式()22121214AB k x x x x =++-.24.(1)240x y +-=;(2)30x y +-=. 【分析】(1)设直线的截距式方程,结合三角形面积公式即可得解;(2)设直线l 的方程为()12y k x -=-,表示出点A 、B ,进而可得,MA MB ,表示出MA MB ⋅后结合基本不等式即可得解. 【详解】(1)由题意,设直线l 的方程为()1,0,0x y a b a b +=>>, 则142ABO S ab ==△,所以8ab =, 又直线l 过点(2,1)M ,所以211a b +=,所以42a b =⎧⎨=⎩, 所以直线l 的方程为142x y +=即240x y +-=; (2)设直线l 的方程为()12y k x -=-,则12,0A k ⎛⎫-+ ⎪⎝⎭,()0,21B k -+,所以MA =MB ,所以4MA MB ⋅=, 当且仅当21k =时,等号成立, 所以当MA MB ⋅取最小时,1k =-(正值舍去),此时直线方程为12y x -=-+即30x y +-=.【点睛】关键点点睛:解决本题的关键是设出合理的直线方程,结合两点间距离公式及基本不等式运算即可得解.25.(1)22(2)3x y -+=;(2)【分析】(1)设动点坐标为(,)x y ,由两点间距离公式得等式,化简后可得轨迹方程; (2)由题意知12l l ⊥,且两条直线均过定点(1,0)N ,设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线:2EP y x =-,设直线:CD y x t =-+,可得22(,)22t t P +-,利用圆的几何性质得12NP CD ==0t =或3t =,确定直线:CD y x =-,可得,C D 坐标,然后求得,A B 两点坐标,得弦长AB .【详解】解:(1)设曲线E 上任意一点坐标为(,)x y ,=,整理得22410x y x +-+=,即22(2)3x y -+=.(2)由题意知12l l ⊥,且两条直线均过定点(1,0)N ,设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线:2EP y x =-,设直线:CD y x t =-+,由2y x y x t =-⎧⎨=-+⎩得点22(,)22t t P +-,由圆的几何性质得12NP CD ==而22222222(1)(),3,22t t NP ED EP +-=-+==, 解得0t =或3t =,又,C D 两点均在x 轴下方,所以直线:CD y x =-,由22410x y x y x ⎧+-+=⎨=-⎩,解得1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩或1212x y ⎧=+⎪⎪⎨⎪=--⎪⎩,不失一般性,设(11),(11)2222C D --+--, 由22410(1)x y x y u x ⎧+-+=⎨=-⎩,消去y 得2222(1)2(2)10u x u x u +-+++=① 方程①的两根之积为1,所以点A的横坐标2A x =又因为点C (11)在直线1:10l x my --=上,解得1m ,直线1:1)(1)l y x =-,所以(2A +,同理可得(2B -,所以线段AB的长为【点睛】关键点点睛:本题考查求圆的轨迹方程,考查求圆中弦长.本题求弦长方程是求出交点坐标,再得弦长,而解题关键是由直线12l l ⊥,且交点为定点(1,0)N ,设出CD 方程,CD 中点P,由圆的性质得12NP CD ==求得CD 方程,得出,C D 两点坐标,再得,A B 两点坐标,得弦长.26.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=.【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程.【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4x y -++=. 所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =,此时直线l 被圆C截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k = ∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】 易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.。
最新人教版高中数学选修一第二单元《直线和圆的方程》检测题(含答案解析)(2)
一、选择题1.若过直线3420x y +-=上一点M 向圆C :()()22234x y +++=作一条切线切于点T ,则MT 的最小值为( )A B .4C .D .2.若P 是直线l :260x y ++=上一动点,过P 作圆C :22230x y x ++-=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( ) A .1B .2C .3D .43.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是( ) A .()()22211x y -++= B .()()22214x y -++= C .()()22421x y ++-=D .()()22211x y ++-=4.已知圆221:4420C x y x y +---=,圆222:2880C x y x y +++-=,则圆1C 与圆2C 的位置关系是( )A .内切B .外切C .相交D .相离5.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .46.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=7.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条B .2条C .3条D .4条8.一艘海监船上配有雷达,其监测范围是半径为26 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10 km/h 这艘外籍轮船能被海监船监测到且持续时间长约为( ) 小时 A .1B .2C .3D .49.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点()20A ,处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A 1B .1C .D10.圆心为1,32C ⎛⎫-⎪⎝⎭的圆与直线:230l x y +-=交于P 、Q 两点,O 为坐标原点,且满足0OP OQ ⋅=,则圆C 的方程为( ) A .2215()(3)22x y -+-= B .2215()(3)22x y -++= C .22125()(3)24x y ++-=D .22125()(3)24x y +++=11.抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是( ) A .()2,4B .11,24⎛⎫ ⎪⎝⎭C .39,24⎛⎫⎪⎝⎭D .()1,112.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( ) A .()21,++∞B .()21,21-+ C .()0,21-D .()0,21+二、填空题13.已知圆O :221x y +=,圆M :22()(2)2x a y -+-=.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得PA PB ⊥,则实数a 的取值范围为______.14.如图,已知圆22:16,,O x y A B +=是圆O 上两个动点,点(2,0)P ,则矩形PACB 的顶点C 的轨迹方程是___________.15.已知圆()222:2400C x y mx y m m +--+=>被直线:30l x y -+=截得的弦长为2 ,则m =______.16.直线()130m x my m ++++=被圆2225x y +=所截的弦长的最小值为________. 17.若P 为直线40x y -+=上一个动点,从点P 引圆2240y x C x +-=:的两条切线PM ,PN (切点为M ,N ),则MN的最小值是________.18.已知点P 是直线:3120l x y +-=上的一点,过P 作圆22(2)1x y -+=的切线,切点为A ,则切线长||PA 的最小值为__________.19.已知等腰三角形的底边所在直线过点()2,1P ,两腰所在的直线为20x y +-=与740x y -+=,则底边所在的直线方程是_____________.20.曲线1y =与直线()35y k x =-+有两个交点,则实数k 的取值范围是______.三、解答题21.已知圆C 经过点A (0,2)和B (2,-2),且圆心C 在直线l :x-y +1=0上. (1)求圆C 的方程;(2)若直线m 过点(1,4),且被圆C 截得的弦长为6,求直线m 的方程.22.已知一个动点M 在圆2216x y +=上运动,它与定点()8,0Q 所连线段的中点为P . (1)求点P 的轨迹方程;(2)若点P 的轨迹的切线在两坐标轴上有相等的截距,求此切线方程.23.设函数()f z 对一切实数m ,n 都有()()(21)f m n f n m m n +-=++成立,且(1)0f =,(0)f c =,圆C 的方程是22(1)()9x y c +++=.(1)求实数c 的值和()f z 的解析式;(2)若直线220ax by -+=(0a >,0b >)被圆C 截得的弦长为6,求4a bab+的最小值.24.已知在平面直角坐标系xOy 中,点()0,3A ,直线l :24y x =-.圆C 的半径为1,圆心C 在直线l 上.(1)若直线34120x y +-=与圆C 相切,求圆C 的标准方程;(2)已知动点(),M x y ,满足2=MA MO ,说明M 的轨迹是什么?若点M 同时在圆C 上,求圆心C 的横坐标a 的取值范围.25.已知点(1,0)M -,(1,0)N ,曲线E 上任意一点到点M 的距离均是到点N 倍.(1)求曲线E 的方程:(2)已知0m ≠,设直线1l :10x my --=交曲线E 于A 、C 两点,直线2l :0mx y m +-=交曲线E 于B 、D 两点,C 、D 两点均在x 轴下方.当CD 的斜率为1-时,求线段AB 的长.26.已知圆C :220x y ax ++=过点,22⎛-⎝⎭. (1)求圆C 的标准方程及其圆心、半径;(2)若直线0x y ++=分别与x 轴,y 轴交于M 、N 两点,点P 为圆C 上任意一点,求MNP △面积的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,求出圆的圆心与半径,由切线长公式可得||MT =||MC 取得最小值时,||MT 的值最小,由点到直线的距离分析||MC 的最小值,进而计算可得答案. 【详解】根据题意,圆22:(2)(3)4C x y +++=,其圆心为(2,3)--,半径2r m =,过点M 向圆C 作一条切线切于点T ,则||MT == 当||MC 取得最小值时,||MT 的值最小,而||MC 的最小值为点C 到直线3420x y +-=的距离,则||4min MC ==,则||MT = 故选:D 【点睛】方法点睛:解析几何中的最值问题,常用的方法有:(1)函数单调性法;(2)导数法;(3)数形结合法;(4)基本不等式法.要结合已知条件灵活选择合适的方法求解.本题利用的是数形结合的方法求最值的.2.B解析:B 【分析】根据题意得要使四边形PACB 面积的最小值,只需PC 取最小即可,再根据几何关系求解即可. 【详解】解:根据题意:要使四边形PACB 面积的最小值,则只需切线长,PA PB 最小, 进而只需PC 取最小即可.由于()2214x y ++=,故圆心为()1,0-,2r,由于P 是直线l :260x y ++=上一动点,所以过圆心作直线l 的垂线,垂足即为P ,此时CP ==此时切线长1PA PB ===,此时四边形PACB 面积为122S =⨯=. 即四边形PACB 面积的最小值为2. 故选:B.【点睛】本题考查直线与圆的位置关系,考查化归转化思想和运算求解能力,是中档题.解题的关键是将问题转化为求PC 取最小值,再结合点到线的距离即可解答.3.A解析:A 【分析】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,由此得解轨迹方程.【详解】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,112422x x y y =-⎧⎨=+⎩代入224x y +=得()()2224224x y -++=,化简得()()22211x y -++=.故选:A . 4.C解析:C 【分析】把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距,大于半径之差,而小于半径之和,可得两个圆位置关系. 【详解】解:圆221:4420C x y x y +---=,22(2)(2)10-+-=x y ,()12,2C,1r =, 圆222:2880C x y x y +++-=,22(1)(4)25x y +++=,()21,4C --,25r =,125r r +=,215r r -=12C C ==55-<<+,∴两圆相交.故选:C. 【点睛】方法点睛:先把圆的一般方程化为标准方程,求出圆心和半径,再求出两圆的圆心距、半径之和、半径之差,根据三者之间的大小关系即可得到两圆的位置关系.5.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上 代入得:12022m c+-+= 整理可得:3m c +=本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.6.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.7.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.8.B解析:B 【分析】根据题意建立合适平面直角坐标系,将问题转化为求直线被圆所截得的弦长问题,然后根据弦长对应的距离求解出监测时间. 【详解】根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴, 所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束, 所以:14030AB x y l +=,即:341200AB l x y +-=, 因为O 到:341200AB l x y +-=的距离为221202434OO -'==+,所以22220MN MO OO '=-=,所以监测时间持续2010=2小时, 故选:B.【点睛】思路点睛:建立平面直角坐标系求解直线与圆的有关问题的思路:(1)选择合适坐标原点(方便求解直线、圆的方程),建立平面直角坐标系; (2)根据题意写出直线与圆的方程;(3)根据直线与圆的位置关系,采用几何法计算相关长度,完成问题的求解.9.B解析:B 【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短. 【详解】解:设点A 关于直线4x y +=的对称点(,)A a b ','2AA bk a =-, AA '的中点为2,22a b +⎛⎫⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =, 要使从点A 到军营总路程最短,即为点f A 到军营最短的距离, 即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径, “将军饮马”的最短总路程为4161251+-=-,故选:B 【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.10.C解析:C 【分析】根据题中所给的圆心坐标,设出圆的标准方程,根据题中所给的条件,求得2r 的值,得出结果. 【详解】因为圆心为1,32C ⎛⎫- ⎪⎝⎭, 所以设圆的方程为:2221()(3)2x y r ++-=, 将直线方程代入圆的方程,得到228552004y y r -+-=,设1122(,),(,)P x y Q x y ,则有21212174,45r y y y y +=⋅=-,因为0OP OQ ⋅=,所以12120x x y y +=, 所以1212(32)(32)0y y y y -⋅-+=,整理得121296()50y y y y -++=,即2179645()045r -⨯+⨯-=,求得2254r =, 所以圆C 的方程为:22125()(3)24x y ++-=, 故选:C. 【点睛】该题考查的是有关圆的方程的求解,涉及到的知识点有圆的标准方程,关于垂直条件的转化,属于简单题目.11.D解析:D 【分析】设抛物线y=x 2上一点为A (x 0,x 02),点A (x 0,x 02)到直线2x-y-4=0的距离d ==由此能求出抛物线y=x 2上一点到直线2x-y-4=0的距离最短的点的坐标. 【详解】设抛物线y=x 2上一点为A (x 0,x 02), 点A (x 0,x 02)到直线2x-y-4=0的距离d ==∴当x 0=1时,即当A (1,1)时,抛物线y=x 2上一点到直线2x-y-4=0的距离最短. 故选D . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题.解题时要认真审题,仔细解答.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.【分析】将转化为由圆与圆:有公共点可解得结果【详解】因为所以所以所以圆与圆:有公共点所以所以得所以故答案为:【点睛】关键点点睛:转化为圆与圆:有公共点求解是解题关键 解析:22a -≤≤【分析】将PA PB ⊥转化为2PO =,由圆222x y +=与圆M :22()(2)2x a y -+-=有公共点可解得结果. 【详解】因为PA PB ⊥,所以4APO BPO π∠=∠=,所以1PA PB ==,2PO =,所以圆222x y +=与圆M :22()(2)2x a y -+-=有公共点,所以22OM PO PM ≤+=+22=,所以2422a +≤,得24a ≤,所以22a -≤≤. 故答案为:22a -≤≤ 【点睛】关键点点睛:转化为圆222x y +=与圆M :22()(2)2x a y -+-=有公共点求解是解题关键.14.【分析】设点连接交于可写出的坐标再在直角中利用勾股定理列方程可得xy 的关系式即顶点的轨迹方程【详解】设点如图连接交于由矩形可知为的中点连接在直角中则即整理得所以顶点的轨迹方程是故答案为:【点睛】关键 解析:2228x y +=【分析】设点(,)C x y ,连接,AB PC 交于M ,可写出M 的坐标,再在直角OMB △中,OM MB ⊥,利用勾股定理列方程可得x, y 的关系式,即顶点C 的轨迹方程. 【详解】设点(,)C x y ,如图连接,AB PC 交于M ,由矩形PACB 可知M 为PC 的中点,2,22x y M +⎛⎫⎪⎝⎭,PM MB = 连接,OB OM ,在直角OMB △中,OM MB ⊥,则22222OB OM BM OM MP =+=+即2222221622222x y x y +++⎛⎫⎛⎫⎛⎫⎛⎫=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,整理得2228x y +=, 所以顶点C 的轨迹方程是2228x y += 故答案为:2228x y +=【点睛】关键点睛:本题考查求轨迹方程,解题的关键是求谁设谁,设点(,)C x y ,然后再利用图像的几何关系找到x, y 的关系式,即求得轨迹方程,考查学生的直观想象能力与运算求解能力,属于中档题.15.1【分析】根据题意求出圆的圆心与半径由直线与圆的位置关系可得圆心到直线l 的距离d 利用点到直线的距离公式可得解可得m 的值即可得答案【详解】根据题意圆即其圆心C 为半径若圆C 被直线截得的弦长为则圆心到直线解析:1 【分析】根据题意,求出圆的圆心与半径,由直线与圆的位置关系可得圆心到直线l 的距离d ,利用点到直线的距离公式可得d ==m 的值,即可得答案.【详解】根据题意,圆()222:2400C x y mx y m m +--+=>,即()()2224-+-=x m y ,其圆心C 为()m,2,半径2r,若圆C 被直线:30l x y -+=截得的弦长为则圆心到直线l 的距离d ==圆心到直线l 的距离d ==,则有=1m =或-3(舍),故1m =,故答案为:1. 【点睛】思路点睛:涉及直线与圆相交的弦长问题,主要是利用垂径定理,即圆心到直线的距离、弦长的一半以及圆的半径构成直角三角形来解.16.【分析】转化条件为直线过结合垂径定理可得当直线与直线垂直时弦长最小即可得解【详解】直线可变为由可得所以直线过定点又圆的圆心为半径所以点在圆内所以当直线与直线垂直时弦长最小此时弦长为故答案为:【点睛】解析:【分析】转化条件为直线过()3,2A -,结合垂径定理可得当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,即可得解.【详解】直线()130m x my m ++++=可变为()130x y m x ++++=,由1030x y x ++=⎧⎨+=⎩可得32x y =-⎧⎨=⎩,所以直线()130m x my m ++++=过定点()3,2A -, 又圆2225x y +=的圆心为()0,0O ,半径=5r ,所以213AO =,点()3,2A -在圆内,所以当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,此时弦长为2222251343r AO -=-=.故答案为:43. 【点睛】关键点点睛:解决本题的关键是找到直线经过的定点,再利用几何法转化出弦长.17.【分析】根据题意得当的长度最小时取最小值进而根据几何关系求解即可【详解】如图由题可知圆C 的圆心为半径要使的长度最小即要最小则最小因为所以当最小时最小因为所以当最小时最小因为所以所以由于所以故答案为: 解析:473【分析】根据题意得当||MN 的长度最小时,||PC 取最小值,进而根据几何关系求解即可. 【详解】如图,由题可知圆C 的圆心为(2,0)C ,半径2r.要使||MN 的长度最小,即要MCN ∠最小,则MCP ∠最小. 因为||||tan 2PM PM MCP r ∠==, 所以当||PM 最小时,||MN 最小因为2||4PM PC =-∣, 所以当||PC 最小时,||MN 最小. 因为min ||3211PC ==+, 所以2cos 332MCP ∠==, 所以7sin MCP ∠=由于1in 2s 2MCP MN∠=所以min ||MN =.. 【点睛】本题解题的关键是根据已知当||MN 的长度最小,即要MCN ∠最小,进而得当||PC 最小时,||MN 最小.由于||PC 的最小值为C 点到直线40x y -+=,故min ||PC =.考查化归转化思想和运算能力,是中档题.18.【分析】利用切线长最短时取最小值找点:即过圆心作直线的垂线求出垂足点就切线的斜率是否存在分类讨论结合圆心到切线的距离等于半径得出切线的方程【详解】设切线长为则所以当切线长取最小值时取最小值过圆心作直 解析:3【分析】利用切线长最短时,PC 取最小值找点P :即过圆心C 作直线l 的垂线,求出垂足点()3,3P .就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程. 【详解】设切线长为L ,则L =,所以当切线长L 取最小值时,PC 取最小值,过圆心()2,0C 作直线l 的垂线,则点P 为垂足点,此时,直线PC 的方程为360x y --=,联立3120360x y x y +-=⎧⎨--=⎩,得33x y =⎧⎨=⎩,点P 的坐标为()3,3.此时PC ==,此时,3L ==故答案为:3 【点睛】关键点睛:解题的关键是利用过点的圆的切线方程的求解,在过点引圆的切线问题时, 将直线与圆相切转化为圆心到直线的距离等于半径长,即设切线长为L ,则L =,问题转变为求PC 的最小值,主要考查学生分析问题与解决问题的能力,属于中等题.19.或【分析】在等腰三角形顶角角平分线上任取一点利用点到两腰所在直线的距离相等可求得顶角角平分线方程再由底边所在直线过点且与顶角角平分线垂直可求得所求直线的方程【详解】在等腰三角形顶角角平分线上任取一点解析:370x y +-=或310x y -+= 【分析】在等腰三角形顶角角平分线上任取一点(),M x y ,利用点M 到两腰所在直线的距离相等可求得顶角角平分线方程,再由底边所在直线过点P 且与顶角角平分线垂直可求得所求直线的方程. 【详解】在等腰三角形顶角角平分线上任取一点(),M x y , 则点M 到直线20x y +-=与740x y -+=的距离相等,=7452x y x y -+=+-.所以,()7452x y x y -+=+-或()7452x y x y -+=-+-,所以,该等腰三角形顶角角平分线所在直线的方程为370x y -+=或6230x y +-=. 由于底边与顶角角平分线垂直.当底边与直线370x y -+=垂直时,且直线370x y -+=的斜率为13, 此时底边所在直线方程为()132y x -=--,即370x y +-=;当底边与直线6230x y +-=垂直时,且直线6230x y +-=的斜率为3-,此时底边所在直线方程为()1123y x -=-,即310x y -+=. 故答案为:370x y +-=或310x y -+=.【点睛】本题考查等腰三角形底边所在直线方程的求解,考查了等腰三角形三线合一的性质以及点到直线距离公式的应用,考查计算能力,属于中等题.20.【分析】化简式子可得作出图形然后求出直线与该半圆相切时的依据图形简单计算和判断可得结果【详解】由题可知:所以如图又直线即过定点当直线与半圆相切时则当直线过点时所以故答案为:【点睛】本题考查直线与圆的解析:72,243⎛⎤⎥⎝⎦【分析】化简式子可得()()22191+-=≥x y y ,作出图形,然后求出直线与该半圆相切时的k ,依据图形,简单计算和判断可得结果. 【详解】由题可知:1y =,所以()()22191+-=≥x y y 如图又直线()35y k x =-+,即350kx y k 过定点()A 3,5213573241--+=⇒=+k k k 当直线过点()3,1B -时,()512333-==--k所以72,243⎛⎤∈⎥⎝⎦k 故答案为:72,243⎛⎤⎥⎝⎦【点睛】本题考查直线与圆的应用,数形结合形象直观,考查分析能力以及计算能力,属中档题.三、解答题21.(1)()()223225x y +++=;(2)x =1或512430x y -+= 【分析】(1)根据圆心C 在直线l :x-y +1=0上,设圆心为:(),1a a +,再根据圆C 经过点A (0,2)和B (2,-2),由()()()2222123a a a a +-=-++求解.(2)当直线m 的斜率不存在时,方程为x =1,验证即可,当直线m 的斜率存在时,设方程为()41y k x -=-2425941kx y kk-+-=-+求解.【详解】(1)因为圆心C 在直线l :x-y +1=0上. 设圆心为:(),1a a +又圆C 经过点A (0,2)和B (2,-2), 所以()()()2222123a a a a +-=-++, 解得3a =-,所以圆心为 ()3,2--, ()222125r a a =+-=,所以圆的方程为:()()223225x y +++=;(2)若直线m 的斜率不存在时,方程为x =1,被圆C截得的弦长为6,符合, 若直线m 的斜率存在时,方程为()41y k x -=-,即 40kx y k -+-=,4=,解得512k =, 所以直线方程为512430x y -+=,综上:直线m 的方程为x =1或512430x y -+=. 【点睛】方法点睛:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.22.(1)22(4)4x y -+=;(2)y x =或4x y +=± 【分析】(1)设(),P x y ,()00,M x y ,用,x y 表示出00,x y ,把00(,)x y 代入已知圆方程化简后可得P 点轨迹方程;(2)截距均为0时,设切线y kx =,截距相等且不为0时,设切线(0)x y a a +=≠,由圆心到切线的距离等于半径求出参数即得切线方程. 【详解】解:(1)设(),P x y ,()00,M x y ,根据中点公式得008202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得00282x x y y =-⎧⎨=⎩.由220016x y +=,得22(28)(2)16x y -+=∴点P 的轨迹方程是22(4)4x y -+=.(2)当切线在两坐标轴上截距均为0时,设切线y kx =2=∴k =,所以切线方程为y x =,当切线在两坐标轴上截距相等且不为0时,设切线(0)x y a a +=≠2=,∴4a =±4x y +=±综上:切线方程为y x =或4x y +=± 【点睛】关键点点睛:求动点轨迹方程的方法:直接法:设曲线上动点坐标为(,)x y 后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。
《第二章 直线和圆的方程》单元检测试卷与答案解析(共四套)
《第二章 直线和圆的方程》单元检测试卷(一)第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1 C .0 D .12.直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1 C .-1 D .1或-13.直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1) C .(3,1)- D .(3,1)-- 4.设a R ∈,则“a=1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件,5.若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦ B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3] 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( ) A .4 B .289 C .329D .3277.若两平行直线20,(0)x y m m ++=>与30x ny --=则m+n =( ) A .0 B .1 C .1- D .2-8.过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( )A .30°B .45°C .60°D .90°二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+ 10.已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m=-1或m=3B .若12l l //,则m=3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m = 11.已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( )A .1B .2C .3D .4 12.下列说法正确的是( )A .直线32()y ax a a R =-+∈必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=第II 卷(非选择题)三、填空题(每题5分,共20分)13.圆C 的圆心为(21),-,且圆C 与直线3450x y --=相切,则圆C 的方程为_______. 14.经过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,当△AOB 面积最小时,直线l 的方程为_____.15.在圆22420x y x y +-+=内,过点1,0()M 的最短弦的弦长为_____;16.圆()()221:29C x m y -++=与圆()()222:14C x y m ++-=内切,则m 的值为____.四、解答题(17题10分,其余12分,共70分) 17.已知圆C 的方程为()()22215x y -+-=. (1)写出圆心C 的坐标与半径长;(2)若直线l 过点()0,1P ,试判断与圆C 的位置关系,并说明理由.18.已知圆C :(x+2)2+y 2=5,直线l :mx ﹣y+1+2m =0,m ∈R. (1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程.19.已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=.(1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点; (2)求直线被圆 C 截得的弦长最小时直线l 的方程;(3)已知点P (,x y )在圆C 上,求22x y +的最大值.20.在平面直角坐标系中,直线=0与圆C 相切,圆心C 的坐标为(1,-1). (1)求圆C 的方程;(2)设直线y =kx+2与圆C 没有公共点,求k 的取值范围; (3)设直线y =x+m 与圆C 交于M ,N 两点,且OM ⊥ON ,求m 的值.21.已知圆C :2240x y mx ny ++++=关于直线10x y ++=对称,圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.22.平面直角坐标系xOy 中,已知点()2,4P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程; (2)若过点P 的直线2l 与圆O 交于不同的两点A ,B . ①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由. 答案解析第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1 C .0 D .1 【答案】D【解析】已知直线1l :2y x =-,2l :y kx =,因为12//l l ,所以1k =故选:D2.直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1 C .-1 D .1或-1 【答案】D【解析】当10a +=时,1a =-,此时14:3l x =,2:9l y =-,显然两直线垂直, 当0a =时,此时1:240l x y -++=,2:9l x =,显然两直线不垂直, 当10a +≠且0a ≠时,因为12l l ⊥,所以()()()2110a a a a -+++=,解得:1a =,综上可知:1a =或1-.故选D.3.直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1) C .(3,1)- D .(3,1)-- 【答案】B【解析】根据直线(1)230m x my m ---+=得()230m x y x ---+=, 故直线过定点为直线20x y --=和30x -+=的交点,联立方程得2030x y x --=⎧⎨-+=⎩,解得31x y =⎧⎨=⎩ ,所以定点A 的坐标为()3,1A .故选:B.4.设a R ∈,则“a=1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件, 【答案】C【解析】若直线ax+y-1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C5.若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦ B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3] 【答案】A【解析】作出曲线y 的图像,直线y =k (x ﹣2)+4恒过定点()2,4,当直线与曲线相切时,原点到直线240kx y k --+=的距离等于22=,解得34k =, 由图可知, ()3401422k -<≤=--,故选:A 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( ) A .4 B .289 C .329D .327【答案】C【解析】因为()2222x y t tt R +=-∈表示圆,所以220->t t ,解得02t <<,因为直线x y t +=与圆()2222x y t tt R +=-∈有公共点,所以圆心到直线的距离d r ≤,即≤403t ≤≤,此时403t ≤≤, 因为()()()224424=-=-+=--+f t t t t t t ,在40,3⎡⎤⎢⎥⎣⎦递增,所以()4t t -的最大值34329⎛⎫= ⎪⎝⎭f . 故选:C7.若两平行直线20,(0)x y m m ++=>与30x ny --=则m+n =( ) A .0 B .1 C .1- D .2- 【答案】A【解析】由直线20,(0)x y m m ++=>与30x ny --=平行可得2n -=即2n =-, 则直线20,(0)x y m m ++=>与230x y +-=,=2m =或8m =-(舍去),所以()220m n +=+-=.故选:A.8.过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( )A .30°B .45°C .60°D .90° 【答案】C【解析】如图所示,过圆心C 作CP 垂直直线y x =于点P ,直线,PA PB 分别与圆:C 22(5)(1)2x y -+-=相切,切点分别为,A B ,根据几何知识可知,直线12,l l 也关于直线CP对称,所以直线12,l l 的夹角为APB ∠(或其补角).在Rt CBP 中,BC =CP ==所以1sin 2BPC ∠=,而BPC ∠为锐角,即有30BPC ∠=,60APB ∠=. 故选:C .二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+ 【答案】ABD【解析】对于A ,由圆221:20x y x O +-=与圆222:240O x y x y ++-=的交点为A ,B ,两式作差可得440x y -=,即公共弦AB 所在直线方程为0x y -=,故A 正确;对于B ,圆221:20x y x O +-=的圆心为()1,0,1AB k =,则线段AB 中垂线斜率为1-,即线段AB 中垂线方程为:()011y x -=-⨯-,整理可得10x y +-=,故B 正确; 对于C ,圆221:20x y x O +-=,圆心1O ()1,0到0x y -=的距离为2d ==,半径1r =所以AB ==C 不正确;对于D ,P 为圆1O 上一动点,圆心1O ()1,0到0x y-=的距离为2d =,半径1r =,即P到直线AB 1+,故D 正确.故选:ABD10.已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m=-1或m=3B .若12l l //,则m=3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m = 【答案】BD【解析】直线12l l //,则3(2)0m m --=,解得3m =或1m =-,但1m =-时,两直线方程分别为10x y --=,3330x y -++=即30x y --=,两直线重合,只有3m =时两直线平行,A 错,B 正确;12l l ⊥,则230m m -+=,12m =,C 错,D 正确. 故选:BD .11.已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( )A .1B .2C .3D .4 【答案】AB【解析】圆C 的标准方程为:()()22125x y a ++-=-,故5a <.又因为弦AB 的中点为()0,1M ,故M 点在圆内,所以()()2201125a ++-<-即3a <. 综上,3a <. 故选:AB.12.下列说法正确的是( )A .直线32()y ax a a R =-+∈必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y += 【答案】ABD【解析】32()y ax a a R =-+∈可化为()23y a x -=-,则直线32()y ax a a R =-+∈必过定点(3,2),故A 正确;令0x =,则2y =-,即直线32y x =-在y 轴上的截距为2-,故B 正确;10y ++=可化为1y =-,则该直线的斜率为,即倾斜角为120︒,故C 错误;设过点(1,2)-且垂直于直线230x y -+=的直线的斜率为k 因为直线230x y -+=的斜率为12,所以112k ⋅=-,解得2k =- 则过点(1,2)-且垂直于直线230x y -+=的直线的方程为22(1)y x -=-+,即20x y +=,故D 正确; 故选:ABD第II 卷(非选择题)三、填空题(每题5分,共20分)13.圆C 的圆心为(21),-,且圆C 与直线3450x y --=相切,则圆C 的方程为_______.【答案】22(2)(1)1x y -++=【解析】圆C 的圆心为(2,1)-,与直线:3450l x y --=相切, 圆心到直线的距离等于半径,即1r d ===,∴圆C 的方程为22(2)(1)1x y -++=.故答案为:22(2)(1)1x y -++=.14.经过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,当△AOB 面积最小时,直线l 的方程为_____. 【答案】x+2y ﹣4=0;【解析】由题意可知,直线的斜率一定存在,故设直线方程y ﹣1=k (x ﹣2),k <0, 令x =0可得,y =1﹣2k ,令y =0可得x =2﹣1k, 则11121222AOBSOA OB k k =⋅=⨯--=()1114444422k k ⎛⎫--+≥+= ⎪⎝⎭, 当且仅当﹣4k =﹣1k即k =﹣12时取等号,此时直线方程y ﹣1=﹣12(x ﹣2),即x+2y ﹣4=0. 故答案为:x+2y ﹣4=0.15.在圆22420x y x y +-+=内,过点1,0()M 的最短弦的弦长为_____;【答案】【解析】圆22420x y x y +-+=化简得:()()22215x y -++=,点M 在圆内部,记圆心为()2,1C -,根据几何性质知过M 且与OM 垂直的弦最短,CM =由垂径定理得弦长为==故答案为:16.圆()()221:29C x m y -++=与圆()()222:14C x y m ++-=内切,则m 的值为______.【答案】2-或1-【解析】圆1C 的圆心为(),2m -,半径为13r =,圆2C 的圆心为()1,m -,半径为22r =,所以两圆的圆心距d =,1=,解得2m =-或1m =-.故答案为:2-或1-.四、解答题(17题10分,其余12分,共70分)17.已知圆C 的方程为()()22215x y -+-=.(1)写出圆心C 的坐标与半径长;(2)若直线l 过点()0,1P ,试判断与圆C 的位置关系,并说明理由.【答案】(1)圆心C 的坐标为()2,1,半径长r =(2)相交,理由见解析.【解析】(1)圆心C 的坐标为()2,1,半径长r =(2)当直线l 垂直于x 轴时,直线方程为0x =,与圆有2个交点;当直线l 不垂直于x 轴时,设直线l 的方程为1y kx =+,将1y kx =+代入()()22215x y -+-=整理,得()221410kx x +--=, 因为210k +≠,且()216410k∆=++>恒成立,所以直线l 与圆C 相交.综上所述,直线l 与圆C 相交.18.已知圆C :(x+2)2+y 2=5,直线l :mx ﹣y+1+2m =0,m ∈R.(1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程. 【答案】(1)相交,理由见解析;(2)()2211224x y ⎛⎫++-= ⎪⎝⎭ 【解析】(1)直线l :120mx y m -++=,也即()12y m x -=+,故直线恒过定点()2,1-,又()222215-++<,故点()2,1-在圆C 内,此时直线l 一定与圆C 相交.(2)设点(),M x y ,当直线AB 斜率存在时,12AB y k x -=+, 又2MC y k x =+,1AB MC k k ⨯=-, 即1122y y x x -⨯=-++, 化简可得:()()22112,224x y x ⎛⎫++-=≠- ⎪⎝⎭; 当直线AB 斜率不存在时,显然中点M 的坐标为()2,1-也满足上述方程.故M 点的轨迹方程为:()2211224x y ⎛⎫++-= ⎪⎝⎭. 19.已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=. (1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点;(2)求直线被圆 C 截得的弦长最小时直线l 的方程;(3)已知点P ( ,x y )在圆C 上,求22x y +的最大值.【答案】(1)证明见解析;(2)250x y --=;(3)30+【解析】(1)因为()():211740l m x m y m +++--=所以()()2740x y m x y +-++-=令27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩ 所以直线l 过定点()3,1.而()()22311225-+-<,即点()3,1在圆内部. 所以直线l 与恒交于两点.(2).过圆心()1,2与点()3,1的直线1l 的方程为1522y x =-+, 被圆 C 截得的弦长最小时,直线l 必与直线1l 垂直,所以直线l 的斜率2k =,所以直线l 的方程为()123y x -=-,即250x y --=.(3)因为2222(0)(0)x y x y +-+-=,表示圆上的点(),x y 到()0,0的距离的平方,因为圆心到原点的距离d ==所以2a 2m x 2)(530(+==+x y 20.在平面直角坐标系中,直线=0与圆C 相切,圆心C 的坐标为(1,-1).(1)求圆C 的方程;(2)设直线y =kx+2与圆C 没有公共点,求k 的取值范围;(3)设直线y =x+m 与圆C 交于M ,N 两点,且OM ⊥ON ,求m 的值.【答案】(1)22()(11)9x y -++=;(2)30,4⎛⎫ ⎪⎝⎭;(3)1m =-±【解析】(1)∵直线0x y ++=与圆C 相切,且圆心C 的坐标为(1,1)-,∴圆C的半径3r ==, 则圆C 的方程为22()(11)9x y -++=;(2)∵直线y =kx+2与圆C 没有公共点,∴点(1,1)C -3>,解得304k <<, ∴k 的取值范围为30,4⎛⎫ ⎪⎝⎭; (3)联立22(1)(1)9y x m x y =+⎧⎨-++=⎩,得2222270x mx m m +++-=, 由()2248270m m m ∆=-+->,解得22m --<<-+设()()1122,,,M x y N x y , 则2121227,2m m x x m x x +-+=-=, ∵OM ON ⊥,∴12120OM ON x x y y ⋅=+=,即()()()21212121220x x x m x m x x m x x m +++=+++=,∴2270m m +-=,解得1m =-±∴1m =-±21.已知圆C :2240x y mx ny ++++=关于直线10x y ++=对称,圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.【答案】(1)()()22121x y -++=;(2)存在,34y x =-或1y x =--±【解析】(1)将圆C 化为标准方程,得222216()()224m n m n x y +-+++= ∴ 圆心C (,22m n --),半径r =由已知得10222412m n m n ⎧--+=⎪=-⎧⎪⇒⎨=⎩=⎩或42m n =⎧⎨=-⎩ 又C 在第四象限, ∴()1,2C -∴圆C 的标准方程为22(1)(2)1x y -++=(2)当直线过原点时,l 斜率存在,则设:l y kx =314k =⇒=- 此时直线方程为34y x =-; 当直线不过原点时,设:0l x y t +-=1= 解得1t =-10x y +++=或10x y ++= 综上,所求直线的方程为:34y x =-或1y x =--±22.平面直角坐标系xOy 中,已知点()2,4P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程;(2)若过点P 的直线2l 与圆O 交于不同的两点A ,B .①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由.【答案】(1)2x =和34100x y -+=;(2)①2 ②是定值,1-.【解析】(1)圆22:4O x y +=的圆心为()0,0,半径为2, 若过点()2,4P 直线1l 垂直于x 轴,则方程为2x =,与圆相切,符合题意;若过点()2,4P 直线1l 不垂直于x 轴,设直线1l 的斜率与k ,则直线1l 方程为()42y k x -=-,即240kx y k --+=,因为直线1l 与圆22:4O x y +=相切,所以圆心到直线1l的距离2d ==,解得34k =, 所以切线方程为34100x y -+=;综上得:切线1l 的方程为2x =和34100x y -+=;(2)①设点(),M x y ,因为M 为弦AB 中点,所以MO MP ⊥,又因为(),OM x y =,()2,4PM x y =--,所以由OM PM ⊥得(2)(4)0x x y y -+-=化简得22240x y x y +--=.联立22224240x y x y x y ⎧+=⎨+--=⎩得20x y =⎧⎨=⎩或6585x y ⎧=-⎪⎪⎨⎪=⎪⎩; 又因为点M 在圆22:4O x y +=内部,所以点M 的轨迹是圆22240x y x y +--=中以点68,55⎛⎫- ⎪⎝⎭和()2,0为端点的一段劣弧(不包括端点),由22240x y x y +--=即()()22125x y -+-=,令1x =得2y =±根据点(1,2在22:4O x y +=内部,所以点M纵坐标的最小值是2-; ②由题意点()2,0Q ,联立224(2)4y k x x y -=-⎧⎨+=⎩得()22214(2)(24)40k x k k x k +--+--=, 设()()1122,,,A x y B x y ,则12221224(2)1(24)410k k x x k k x x k -⎧+=⎪+⎪--⎪=⎨+⎪∆>⎪⎪⎩, 所以()()121212121224242222k x k x y k k x x x y x -+-++=+=+---- ()()121212214444222224x x k k x x x x x x +-=++=+---++ 22224(2)444(84)1221(24)44(2)162411k k k k k k k k k k k -⎡⎤⋅-⎢⎥++⎣⎦=+=-=-----⋅+++. 所以12k k +是定值,定值为1-.《第二章 直线和圆的方程》单元检测试卷(二)一、单选题1.直线:的倾斜角为( )A .B .C .D .2.圆心为,且过原点的圆的方程是( )A .B .C .D .3.如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-24.圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定5.从点向圆引切线,则切线长的最小值( )A ..5 C.6.已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或17.若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .8.过点且倾斜角为的直线被圆所截得的弦长为( ) A.1 C.9.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B . x y +-0=30︒45︒60︒135︒()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=22(1)5x y +-=120mx y m -+-=(,3)P m 22(2)(2)1x y +++=420ax y a +-+=(a =)1-2-(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=()1,030()2221x y -+=20kx y -+=()3,2M -()2,5N 32k ≤32k ≥C .D .或 10.已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A . BC .二、多选题11.在同一直角坐标系中,直线与圆的位置不可能是( ) A . B . C .D . 12.已知点是直线上一定点,点、是圆上的动点,若的最大值为,则点的坐标可以是( )A .B .C .D . 13.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .三、填空题14.直线过定点______;若与直线平行,则______.15.已知以为圆心的圆与圆相内切,则圆C 的方程是______. 16.圆关于直线的对称圆的标准方程为__________.17.已知、为正实数,直线截圆所得的弦长为,则的最大值为__________. 4332k -≤≤43k ≤-32k ≥()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+42y ax a =+222()x a y a ++=A :0l x y +=P Q 221x y +=PAQ ∠90A (()1))1,1ABC ∆()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-()1:20l m x y m +--=()m R ∈1l 2:310l x my --=m =()4,3C -22:1O x y +=22230x y y ++-=10x y +-=a b 10x y ++=()()224x a y b -+-=ab四、解答题18.求圆上与直线的距离最小的点的坐标. 19.已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.20.在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.21.如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.224x y +=43120x y +-=l (2,1)P -O l 2l O l l ABC ∆(1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC 22:(2)1C x y -+=P :4l x =P C ,AB AB Q ,PA PB y ,M N QMN22.已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.23.已知点,点在圆上运动. (1)求过点且被圆截得的弦长为(2)求的最值.答案解析一、单选题1.直线:的倾斜角为( )A .B .C .D .【答案】D【解析】直线的斜率,设直线的倾斜角为, 则,所以.故选:D.2.圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A【解析】根据题意. (4,4)A (0,3)B l 1y x =-C 1C l C 37y x =-A C C M 2MB MO =O C a (2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++x y +-0=30︒45︒60︒135︒0x y +-=1k =-0x y +-=1(080)a a ︒≤<︒tan 1α=-135α=︒()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=故选:.3.如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C【解析】(2a +5)(2-a)+(a -2)(a +3)=0,所以a =2或a =-2.4.圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】C【解析】 直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.从点向圆引切线,则切线长的最小值( )A ..5 C.【答案】A【解析】设切线长为,则,故选:A.6.已知直线在两坐标轴上的截距相等,则实数 )A .1B .C .或1D .2或1【答案】D【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意; A 22(1)5x y +-=120mx y m -+-=120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4d 2222(2)51(2)24d m m =++-=++min d ∴=20ax y a +-+=(a =1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得; 综上所述,实数或.故选:D .7.若点为圆的弦的中点,则弦所在直线的方程为( ) A . B .C .D .【答案】B【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.过点且倾斜角为的直线被圆所截得的弦长为( )A .B .1 C.【答案】C【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,2a 0-+≠a 2≠ax y 2a 0+-+=122x y a a a+=--2a 2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030()2221x y -+=2()1,030l ()tan301y x =-)13y x =-10x -=()2221x y -+=()2,01r =设直线与圆交于点,圆心到直线的距离, 则C. 9.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B .C .D .或 【答案】C【解析】 因为直线恒过定点,又因为,,所以直线的斜率k 的范围为. 故选:C . 10.已知圆,圆,、分别是圆、l AB 12d ==2AB ==20kx y -+=()3,2M -()2,5N 32k ≤32k ≥4332k -≤≤43k ≤-32k ≥20kx y -+=()0,2A 43AM k =-32AN k =4332k -≤≤()()221:231C x y -+-=()()222:349C x y -+-=M N 1C上动点,是轴上动点,则的最大值是( )A . BC .【答案】D【解析】如下图所示:圆的圆心,半径为,圆的圆心,半径为, ,由圆的几何性质可得,, ,当且仅当、、三点共线时,.故选:D.二、多选题11.在同一直角坐标系中,直线与圆的位置不可能是()A .B .C .D . 2C P x PN PM -4+41C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC ≤+=+1111PM PC r PC ≥-=-2112444PN PM PC PC C C -≤-+≤+=1C P 2C PN PM -42y ax a =+222()x a y a ++=【答案】ABD【解析】直线经过圆的圆心,且斜率为. 故选项满足题意.故选:.12.已知点是直线上一定点,点、是圆上的动点,若的最大值为,则点的坐标可以是( )A .B .C .D . 【答案】AC【解析】如下图所示:原点到直线的距离为,则直线与圆相切, 由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,, 则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或. 故选:AC. 2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=PAQ ∠90A (()1))1,1l 1d ==l 221x y +=AP AQ 221x y +=PAQ ∠OP OQ PAQ ∠9090APO AQO ∠=∠=1OP OQ ==APOQ OA ==OA ==220t -=0t =A ()13.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .【答案】AD【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为, 代入欧拉线方程,得,②由 ①②可得或 .故选:AD三、填空题14.直线过定点______;若与直线平行,则______.【答案】【解析】(1),故. 即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故. ABC ∆()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-(,),C x y AB y x =-ABC ∆20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y ∴==∴++-=()4,0A -()0,4B ABC ∆44(,)33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R ∈1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=⇒-+-=101202x x x y y -==⎧⎧⇒⎨⎨-==⎩⎩()1,21l 2:310l x my --=()()()()()2310130m m m m +---=⇒-+=1m =3m =-1m =1l 2l 3m =-故答案为:(1) ; (2)15.已知以为圆心的圆与圆相内切,则圆C 的方程是______. 【答案】(x -4)2+(y +3)2=36.【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.圆关于直线的对称圆的标准方程为________.【答案】【解析】 ,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】 【解析】因为直线截圆所得的弦长为,且圆的半径为2. 故圆心到直线的距离()1,23-()4,3C -22:1O x y +=5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=2222230(41)x y y x y ++-=⇒+=+∴(0,1)-210x y +-=(,)x y ∴1(1)1,2,1.110,22y x x y x y +⎧⨯-=-⎪=⎧⎪⇒⎨⎨=-⎩⎪+-=⎪⎩∴22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=()()224x a y b -+-=(),a b d ==,因为、为正实数,故,所以. 当且仅当时取等号. 故答案为: 四、解答题18.求圆上与直线的距离最小的点的坐标. 【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,, 又因为与直线的距离最小,所以. 19.已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)=a b 1a b +=2124a b ab +⎛⎫≤= ⎪⎝⎭12a b ==14224x y +=43120x y +-=86,55P ⎛⎫ ⎪⎝⎭43120x y +-=340x y -=224340x y x y ⎧+=⎨-=⎩86,55⎛⎫ ⎪⎝⎭86,55⎛⎫-- ⎪⎝⎭43120x y +-=86,55P ⎛⎫ ⎪⎝⎭l (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=【解析】(1)①当直线的斜率不存在时,方程符合题意;②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为 故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率 所以其方程为,即20.在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2) 【解析】(1)边上的高为,故的斜率为, 所以的方程为, 即,因为的方程为 l 2x =l k ()12y k x +=-210.kx y k ---=2=34k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ⊥011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC ∆(1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=解得 所以. (2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为 即的方程为.21.如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程:21154047180x y x y -+=⎧⎨-+=⎩,,66x y =⎧⎨=⎩()66C ,()00,B x y M AB M 0012,22x y -+⎛⎫ ⎪⎝⎭0000122115402274460x y x y -+⎧-+=⎪⎨⎪+-=⎩0028x y =⎧⎨=⎩()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A B AB Q ,PA PB y ,M N QMN 5,02Q ⎛⎫⎪⎝⎭(4,)P t CP, 与圆,两式相减得:,所以直线恒过定点. (2)设直线与的斜率分别为,与圆,即.所以,,所以面积的最小值为22.已知点,,直线:,设圆的半径为,圆心在直线上. (1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)或.【解析】()22232t x y ⎛⎫-+-= ⎪⎝⎭⎪⎝⎭22:(2)1C x y -+=:2(2)1AB l x ty -+=5,02Q ⎛⎫ ⎪⎝⎭AP BP 12,k k (4)y t kx -=-C1=223410k tk t -+-=2121241,33-+=⋅=t t k k k k 14M y t k =-24N y t k =-12||44=-==≥MN k k ()min 152323MNQ S ∆=⨯⨯=3(4,4)A (0,3)B l 1y x =-C 1C l C 37y x =-A C C M 2MB MO =O C a 4x =3440x y -+=22a -≤≤-22a ≤≤(1)由得:,所以圆C :..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足 所以切线方程为:或. (2)由圆心在直线l :上,设设点,由化简得:,所以点M 在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:或. 23.已知点,点在圆上运动. (1)求过点且被圆截得的弦长为(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72. 【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为所以圆心到直线的,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.137y x y x =-⎧⎨=-⎩()3,2C 22(3)(2)1x y -+-=4(4)y k x -=-1d ==34k =4x =4x =3440x y -+=C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ≤≤13≤22a -≤≤-22a ≤≤(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y =+-+=-因为,所以,即的最大值为88,最小值为72.《第二章 直线和圆的方程》单元检测试卷(三)一、选择题1.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-=2.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 ( )A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0 3.平行于直线2x+y+1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x+y+5=0或2x+y ﹣5=0 B .2x+y+=0或2x+y ﹣=0C .2x ﹣y+5=0或2x ﹣y ﹣5=0D .2x ﹣y+=0或2x ﹣y ﹣=04.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分又不必要条件 5.(多选题)下列说法中正确的是( ) A .若两条直线互相平行,那么它们的斜率相等B .方程()()()()211211x x y y y y x x --=--能表示平面内的任何直线C .圆22240x y x y ++-=的圆心为()1,2-D .若直线()2320t x y t -++=不经过第二象限,则t 的取值范围是30,2⎡⎤⎢⎥⎣⎦6.(多选题)已知圆O :224x y +=和圆M :224240x y x y +-++=相交于A 、B 两22y -≤≤7280488y ≤-≤222||||||PA PB PC ++点,下列说法正确的是( ) A .两圆有两条公切线B .直线AB 的方程为24y x =+C .线段ABD .所有过点A 、B 的圆系的方程可以记为()()()222244240,1xy x y x y R λλλ+-++-++=∈≠-二、填空题7.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a = . 8.如图,已知圆C 与x 轴相切于点,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.9.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 .10.已知,AC BD 为圆O :224x y +=的两条互相垂直的弦,且垂足为M ,则四边形ABCD 的面积的最大值为______. 三、解答题11.在平面直角坐标系中,曲线与162+-=x x y 坐标轴的交点都在圆C 上, (1)求圆C 的方程;(2)如果圆C 与直线0=+-a y x 交于A,B 两点,且OB OA ⊥,求a 的值。
(完整版)直线与圆练习题(带答案解析)
..直线方程、直线与圆练习1.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23【答案】B 【解析】试题分析:两条直线平行需满足12211221A B A B A C A C =⎧⎨≠⎩即122112211A B A B a AC A C =⎧⇒=-⎨≠⎩,故选择B考点:两条直线位置关系2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】试题分析:由题意可得:AB 中点C 坐标为()2,2,且31131AB k -==-,所以线段AB 的垂直平分线的斜率为-1,所以直线方程为:()244y x y x -=--⇒=-+,故选择A考点:求直线方程3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D 【解析】试题分析:由图形可知0b a c >>>,由010ax by c x y ++=⎧⎨+-=⎩得0b c x b a a c y b a +⎧=>⎪⎪-⎨--⎪=<⎪-⎩所以交点在第四象限考点:圆的方程及直线的交点4.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点 A .(1,2)- B .(1,2) C .(1,2)- D .(1,2)-- 【答案】A 【解析】试卷第2页,总48页试题分析:由中点坐标公式可得2k b +=-,所以直线y kx b =+化为()212y kx k k x y =--∴-=+,令10,201,2x y x y -=+=∴==-,定点(1,2)-考点:1.中点坐标公式;2.直线方程5.过点(1,3)P -且平行于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x【答案】D 【解析】试题分析:设直线方程:02=+-c y x ,将点(1,3)P -代入方程,06-1-=+c ,解得7=c ,所以方程是072=+-y x ,故选D . 考点:直线方程 6.设(),P x y 是曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)上任意一点,则y x 的取值范围是()A .3,3⎡⎤-⎣⎦B .(),33,⎤⎡-∞-⋃+∞⎦⎣C .33,33⎡⎤-⎢⎥⎣⎦ D .33,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【答案】C 【解析】试题分析:曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)的普通方程为:()()2221,,x y P x y ++=是曲线()22:21C x y ++=上任意一点,则yx 的几何意义就是圆上的点与坐标原点连线的斜率, 如图:33,33y x ⎡⎤∈-⎢⎥⎣⎦.故选C .考点:1.直线与圆的位置关系;2.直线的斜率;3.圆的参数方程.7.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +..(A )最小值为15 (B )最小值为55 (C )最大值为15 (D )最大值为55【答案】A【解析】试题分析:直线ax+by=1与线段AB 有一个公共点,则点A(1,0)B(2,1)应分布在直线ax+by-1=0两侧,将(1,0)与(2,1)代入,则(a-1)(2a+b-1)≤0,以a 为横坐标,b 为纵坐标画出区域如下图:则原点到区域内点的最近距离为OA ,即原点到直线2a+b-1=0的距离,OA=55,22a b +表示原点到区域内点的距离的平方,∴22a b +的最小值为15,故选A.考点:线性规划.8.点()11-,到直线10x y -+=的距离是( ). A .21 B .23 C .22D .223【答案】D【解析】试题分析:根据点到直线的距离公式,()221(1)132211d --+==+-,故选D 。
新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(包含答案解析)(2)
一、选择题1.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C .3D 2.直线1ax by +=与圆221x y +=有两个公共点,那么点(),a b 与圆22+1x y =的位置关系是( ) A .点在圆外B .点在圆内C .点在圆上D .不能确定3.若圆222(3)(5)x y r -+-=上有且只有四个点到直线432x y +=的距离等于1,则半径r 的取值范围是( ) A .(4,6)B .[4,6]C .(,4)-∞D .(6,)+∞4.若圆22:60,(0,0)M x y ax by ab a b +++--=>>平分圆22:4240N x y x y +--+=的周长,则2a b +的最小值为( )A .8B .9C .16D .205.设P 为直线2x +y +2=0上的动点,过点P 作圆C :x 2+y 2-2x -2y -2=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值时直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=06.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( ) A .1 B .2CD .7.已知圆C :()()22232++-=x y ,从点()1,3P 发出的光线,经直线1y x =+反射后,光线恰好平分圆C 的周长,则入射光线所在直线的斜率为( )A .2-B .12-C .4-D .14- 8.已知直线l :(3)(2)20m x m y m ++---=,点()21A --,,(22)B -,,若直线l 与线段AB 相交,则m 的取值范围为( )A .(4][4)-∞-⋃+∞,, B .(22)-, C .3[8]2-,D .(4)+∞,9.在平面直角坐标系xOy 中,直线240x y +-=与两坐标轴分别交于点A 、B ,圆C 经过A 、B ,且圆心在y 轴上,则圆C 的方程为( ) A .226160x y y ++-= B .226160x y y +--= C .22890x y y ++-=D .22890x y y +--=10.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .411.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-= 12.若圆x 2+y 2+ax -by =0的圆心在第二象限,则直线x +ay -b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.已知过点()4,1P 的直线l 与x 轴,y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当AOB 的面积最小时,直线l 的方程为______.14.已知两条平行直线1:3460l x y -+=与2:340l x y c -+=间的距离为3,则c 的值为______.15.已知圆C 的方程是2220x y y +-=,圆心为点C ,直线:20λλ+-=l x y 与圆C 交于A 、B 两点,当ABC 面积最大时,λ=______.16.已知直线y x b =+与曲线x =恰有两个交点,则实数b 的取值范围为______. 17.将直线:10l x y +-=,20l nx y n +-=:,3:0l x ny n +-=(n *∈N ,2n ≥)围成的三角形面积记为n S ,则n n lim S →∞=___________.18.当直线:(21)(1)740()l m x m y m m R +++--=∈被圆22:(1)(2)25C x y -+-=截得的弦最短时,m 的值为____________.19.直线:20180l x y +-=的倾斜角为__________;20.过点()5,0P -作直线()()()121430m x m y m m R +-+--=∈的垂线,垂足为M ,已知点()3,11N ,则MN 的取值范围是______. 三、解答题21.已知直线l 经过点(2,5)P -,l 的一个方向向量为(4,3)d =-. (1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程. 22.已知圆C 经过点()0,1A ,()2,1B ,()3,4M . (1)求圆C 的方程;(2)设点P 为直线l :210x y --=上一点,过点P 作圆C 的两条切线,切点分别为E ,F .若60EPF ∠=︒,求点P 的坐标.23.如图,圆22():21M x y -+=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为,A B .(1)若1t =,求两条切线所在的直线方程;(2)求直线AB 的方程,并写出直线AB 所经过的定点的坐标.24.已知直线l :x +2y -4=0,圆C 的圆心在x 轴的负半轴上,半径为2,且圆心C 到直线l 的距离为65. (1)求圆C 的方程;(2)由直线l 上一点Q 作圆C 的两条切线,切点分别为M ,N ,若直线MN 的斜率为1,求点Q 的坐标.25.已知圆C :222440x y x y +-+-=,斜率为1的直线l 与圆C 交于A 、B 两点. (1)化圆的方程为标准形式,并指出圆心和半径;(2)是否存在直线l ,使以线段AB 为直径的圆过原点?若存在,求出直线l 的方程,若不存在,说明理由;(3)当直线l 平行移动时,求CAB △面积的最大值. 26.如图,已知ABC 的边AB 所在直线的方程为360x y --=,()2,0M 满足BM MC =,点()1,1T -在AC 边所在直线上且满足0AT AB ⋅=.(1)求AC 边所在直线的方程; (2)求ABC 外接圆的方程;(3)求过()2,0N -的ABC 外接圆的切线方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0,半径为5,yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan α=,y x 5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.2.A解析:A 【分析】直线1ax by +=与圆221x y +=||221a b<+,即为221a b +>,由此可得点与圆的位置关系.【详解】因为直线1ax by +=与圆221x y +=有两个公共点,1<,1>,因为点(,)b a 与221x y += 圆224x y +=的半径为1,所以点P 在圆外. 故选:A. 【点睛】关键点点睛:本题的关键是将直线与圆的位置关系的判断式和点与圆的关系的判断式联系起来.3.D解析:D 【分析】首先求圆心到直线的距离d ,再根据条件,列式1d +和半径r 比较大小,求r 的取值范围. 【详解】圆心()3,5到直线432x y +=的距离5d ==,若圆上有四个点到直线432x y +=的距离等于1,则51r >+,即6r >. 故选:D 【点睛】思路点睛:本题考查直线与圆的位置关系,与直线432x y +=距离为1的两条直线与圆有4个交点,根据点到直线的距离,建立不等式求解.4.A解析:A 【分析】由两圆的相交弦是圆N 的直径得出,a b 的关系,然后由基本不等式求得最小值. 【详解】两圆方程相减得,(4)(2)100a x b y ab +++--=,此为相交弦所在直线方程, 圆N 的标准方程是22(2)(1)1x y -+-=,圆心为(2,1)N , ∴2(4)2100a b ab +++--=,121a b+=, ∵0,0a b >>,∴1242(2)()448b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =即2,4a b ==时等号成立.故选:A .本题考查圆的方程,考查基本不等式求最值.圆的性质:(1)圆的直径平分圆;(2)相交两圆方程相减所得一次方程是两圆公共弦所在直线方程.5.D解析:D 【分析】根据圆的切线性质可知四边形PACB 的面积转化为直角三角形的面积,结合最小值可求直线AB 的方程. 【详解】由于,PA PB 是圆()()22:114C x y -+-=的两条切线,,A B 是切点,所以2||||2||PACB PAC S S PA AC PA ∆==⋅=== 当||PC 最小时,四边形PACB 的面积最小, 此时PC :11(x 1)2y -=-,即210.y x --= 联立210,220y x x y --=⎧⎨++=⎩得1,,(1,0),0x P y =-⎧-⎨=⎩PC 的中点为1(0,),||2PC ==以PC 为直径的圆的方程为2215(),24x y +-=即2210x y y +--=,两圆方程相减可得直线AB 的方程210,x y ++=故选:D.6.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.7.C【分析】根据光路可逆,易知圆心()2,3C -关于直线1y x =+的对称点M ,在入射光线上,由此可求得结果. 【详解】圆C :()()22232++-=x y ,圆心为()2,3C -,由已知,反射光线经过()2,3C -,故C 点关于直线1y x =+的对称点M 在入射光线上.设(),M a b ,则31232122b a b a -⎧=-⎪⎪+⎨+-⎪=+⎪⎩,解得21a b =⎧⎨=-⎩,即()2,1M -,且光源()1,3P ,所以入射光线的斜率13421k --==--, 故选:C. 【点睛】 关键点点睛:(1)由光线恰好平分圆C 的周长,得出所在直线经过圆心; (2)入(反)射光线关于反射面的对称直线即为反(入)射光线.8.C解析:C 【分析】根据题意得直线l 恒过点4155C ⎛⎫ ⎪⎝⎭,,进而得直线l 的斜率k 的取值范围为:116k ≤-或37k ≥,再根据32m k m +=--,解不等式即可得答案. 【详解】直线l 方程变形得:(1)(322)0x y m x y +-+--=. 由103220x y x y +-=⎧⎨--=⎩得4515x y ⎧=⎪⎪⎨⎪=⎪⎩,∴直线l 恒过点4155C ⎛⎫ ⎪⎝⎭,,11354725ACk +==+,121154625BC k +==--,由图可知直线l 的斜率k 的取值范围为:116k ≤-或37k ≥,又32m k m +=--, ∴11263m m ≤--+-或3273m m -≥+-,即28m <≤或322m -≤<,又2m =时直线的方程为45x =,仍与线段AB 相交, ∴m 的取值范围为382⎡⎤-⎢⎥⎣⎦,. 故选:C.【点睛】本题解题的关键在于根据直线系方程(1)(322)0x y m x y +-+--=得直线l 恒过点4155C ⎛⎫⎪⎝⎭,.考查数形结合思想,运算求解能力,是中档题. 9.A解析:A 【分析】求出点A 、B 的坐标,设圆心坐标为()0,b ,由AC BC =可求出圆心C 的坐标,并求出圆的半径,由此可求得圆C 的方程. 【详解】易知,直线240x y +-=交x 轴于点()4,0A ,交y 轴于点()0,2B ,设圆心C 的坐标为()0,b ,由AC BC =2242b b +=-,解得3b =-, 所以,圆C 的半径为325BC =--=,因此,圆C 的方程为()22325x y ++=,即为226160x y y ++-=.故选:A. 【点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线;(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.10.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上代入得:12022m c+-+= 整理可得:3m c += 本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.11.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.12.C解析:C【分析】由圆心位置确定a ,b 的正负,再结合一次函数图像即可判断出结果. 【详解】因为圆22+0x y ax by +-=的圆心坐标为,22a b ⎛⎫- ⎪⎝⎭, 由圆心在第二象限可得0,0a b >>,所以直线0x ay b +-=的斜率10a -<,y 轴上的截距为0b a>,所以直线不过第三象限. 故选:C二、填空题13.【分析】由题意可知直线的斜率存在且不为零可设直线的方程为求出点的坐标结合已知条件可求得的取值范围并求出的面积关于的表达式利用基本不等式可求得面积的最小值及其对应的值由此可求得直线的方程【详解】由题意 解析:480x y +-=【分析】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,求出点A 、B 的坐标,结合已知条件可求得k 的取值范围,并求出AOB 的面积关于k 的表达式,利用基本不等式可求得AOB 面积的最小值及其对应的k 值 ,由此可求得直线l 的方程.【详解】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,即14y kx k =+-. 在直线l 的方程中,令0x =,可得14y k =-;令0y =,可得41k x k-=. 即点41,0k A k -⎛⎫⎪⎝⎭、()0,14B k -,由题意可得410140k k k -⎧>⎪⎨⎪->⎩,解得0k <, AOB 的面积为()1411111481688222AOBk S k k k k ⎛-⎛⎫=⨯⨯-=--≥+= ⎪ ⎝⎭⎝△,当且仅当()1160k k k-=-<时,即当14k =-时,等号成立,所以,直线l 的方程为()1144y x -=--,即480x y +-=.故答案为:480x y +-=. 【点睛】关键点点睛:解本题的关键在于以下两点: (1)将三角形的面积利用k 加以表示;(2)在求解最值时,可充分利用基本不等式、导数、函数的单调性等知识来求解.14.或【分析】根据两平行线间的距离公式得到即可求解【详解】由题意两条平行直线与间的距离为3根据两平行线间的距离公式可得解得或即的值为或故答案为:或【点睛】两平行线间的距离的求法:利用转化法将两条平行线间解析:9-或21. 【分析】3=,即可求解.【详解】由题意,两条平行直线1:3460l x y -+=与2:340l x y c -+=间的距离为3,根据两平行线间的距离公式,可得3d ==,解得21c =或9c =-,即c 的值为9-或21. 故答案为:9-或21. 【点睛】两平行线间的距离的求法:利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离; 利用两平行线间的距离公式求解.15.或【分析】由三角形面积公式知当面积最大时即为等腰直角三角形再利用点到直线的距离公式和半径的关系可得答案【详解】圆C 的方程即圆心半径由面积公式知当时面积最大即为等腰直角三角形此时圆心C 到直线的距离为则解析:1λ=或17λ=. 【分析】由三角形面积公式in 12s S ab C =知,当ABC 面积最大时,90ACB ∠=,即ABC 为等腰直角三角形,再利用点到直线的距离公式和半径的关系可得答案. 【详解】圆C 的方程即22(1)1x y +=-,圆心(0,1)C ,半径1R =,由面积公式21sin 2ABCSR ACB =∠知,当90ACB ∠=时面积最大, 即ABC 为等腰直角三角形,此时圆心C 到直线:20λλ+-=l x y 的距离为21d λ=+,则2|12|2211d λλ-==+,解得1λ=或17λ=,故答案为:1λ=或17λ=. 【点睛】本题考查了直线和圆的位置关系及求三角形面积最大值的问题.16.【分析】由曲线方程可知其曲线为半圆进而画出曲线来要使直线与曲线恰有两个交点可以通过数形结合分析得解【详解】曲线有即表示一个半圆(单位圆左半部分)如图当直线经过点点时求得;当直线和半圆相切时由圆心到直 解析:)1,2⎡⎣【分析】由曲线方程可知其曲线为半圆,进而画出曲线来,要使直线与曲线恰有两个交点,可以通过数形结合分析得解. 【详解】曲线2x 1y =--有即221x y +=(0)x ,表示一个半圆(单位圆左半部分).如图,(0,1)A 、(1,0)B -、(0,1)C -,当直线y x b =+经过点B 、点A 时,01b =-+,求得1b =; 当直线y x b =+和半圆相切时,由圆心到直线的距离等于半径,可得12=,求得2b =,或2b =-(舍去),故要求的实数b 的范围为12b <, 故答案为:)1,2⎡⎣【点睛】易错点睛:本题在把方程2x 1y =--化简找其对应的曲线时,容易漏掉0x ≤,从而把曲线的范围扩大为整个单位圆,导致结果出错.在把方程转化时,一定要注意变量范围的等价性.17.【分析】求出三条直线的交点坐标从而可求得三角形的面积再求极限即可【详解】由得即同理可得到直线的距离为∴∴故答案为:【点睛】本题考查数列的极限解题关键是求出三角形的面积解析:1 2【分析】求出三条直线的交点坐标,从而可求得三角形的面积n S,再求极限即可。
(完整版)直线与圆的方程测试题(含答案)
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是() A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误..的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( )A.2B.-2C. 21D. 21-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )A.1B.511 C.53 D.3 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是( )A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆的方程练习题(二)1.经过三点A(1,-1),B(1,4),C(4,-2)的圆的方程为 ( ) A.x 2+y 2+7x-3y+2=0 B.x 2+y 2-7x-3y-2=0 C.x 2+y 2-7x+3y+2=0 D.x 2+y 2-7x-3y+2=0 2.方程x 2+y 2=a 2(a ∈R)表示的图形是 ( ) A.表示点(0,0) B.表示圆C.a=0,表示点(0,0);a≠0,表示圆D.不表示任何图形3.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得 ∠OMN =45°,则x 0的取值范围是( ) A. [-1,1]B. ⎣⎡⎦⎤-12,12 C. [-2,2]D. ⎣⎡⎦⎤-22,22 4.直线3x+4y+12=0与圆(x-1)2+(y+1)2=9的位置关系是 ( ) A.过圆心 B.相切C.相离D.相交但不过圆心5.在xOy 平面内的直线x+y =1上的点M,使M 到点N(6,5,1)的距离最小时的坐标为 ( ) A.(1,0,0)B.(0,1,0)C.(0,0,1)D.(1,1,0)6.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车篷篷顶距离地面的高度不得超过 ( ) A.1.4米B.3.0米C.3.6米D.4.5米7.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离8.以(-2,1)为圆心且与直线x+y=3相切的圆的方程为 ( ) A.(x -2)2+(y +1)2=2B.(x +2)2+(y -1)2=4C.(x -2)2+(y +1)2=8D.(x +2)2+(y -1)2=89.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是 A.62B.3C.32D.6310.若Rt △ABC 的斜边的两端点A,B 的坐标分别为(-3,0)和(7,0),则直角顶点C 的轨迹方程为 ( ) A.x 2+y 2=25(y≠0)B.x 2+y 2=25C.(x -2)2+y 2=25(y≠0)D.(x -2)2+y 2=2511.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.4π5B.3π4C.(6-25)πD.5π412.已知正三角形ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是( ) A.434B.494C.37+634D.37+233413.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.14.由直线y=x+1上的一点向圆(x-3)2+y 2=1引切线,则切线长的最小值为______. 15.已知A(1,-2,1),B(2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为________. 17.(12分)圆心P 在直线y =x 上,且与直线x +2y -1=0相切的圆,截y 轴所得的弦长|AB |=2,求此圆的方程.18.(12分)已知圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-2=0相交于两点.(1)求两圆的公共弦所在直线的方程.(2)求两圆的公共弦长.19.(12分)如图所示,直三棱柱ABC-A1B1C1中,|C1C|=|CB|=|CA|=2,AC⊥CB,D,E分别是棱AB,B1C1的中点,F是AC的中点,求DE,EF的长度.20.(12分)已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,设l与圆C交于A,B两点,求AB中点M的轨迹方程.21.(12分)已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P,且被圆C截得的线段长为43,求l的方程;(2)求过P点的圆C弦的中点的轨迹方程.22.(10分)已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12.(1)证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长.直线与圆的方程练习题(二)参考答案DCADA CBDAC DB13. 1)1(22=-+y x 14. 答案:15.(0,0,3).17.(12分)解 ∵圆心P 在直线y =x 上, ∴可设P 的坐标为(k ,k ),设圆的方程为(x -k )2+(y -k )2=r 2(r >0).作PQ ⊥AB 于Q ,连接AP ,在Rt △APQ 中,|AQ |=1, |AP |=r ,|PQ |=|k |,∴r =1+k 2. 又r =|k +2k -1|12+22,∴|k +2k -1|12+22=k 2+1, 整理得2k 2-3k -2=0,解得k =2或k =-12.当k =2时,圆的半径为r =k 2+1=5, 故圆的方程为(x -2)2+(y -2)2=5.当k =-12时,圆的半径为r =k 2+1=52,故圆的方程为⎝⎛⎭⎫x +122+⎝⎛⎭⎫y +122=54. 因此所求圆的方程为(x -2)2+(y -2)2=5或⎝⎛⎭⎫x +122+⎝⎛⎭⎫y +122=54. 18.方法一:(1)设两圆的交点为A(x 1,y 1),B(x 2,y 2),则A,B 的坐标满足方程组两式相减得x+2y-1=0.此方程即为过A,B 两点的直线方程.所以两圆的公共弦所在直线的方程为x+2y-1=0.(2)圆C 1可化为(x+1)2+(y+4)2=25,圆C 1的圆心为(-1,-4),半径长r 1=5.C 1(-1,-4)到直线x+2y-1=0的距离d==2.则弦长|AB|=2=2.方法二:圆C1与圆C2的方程联立,得方程组相减得x+2y-1=0,即x=1-2y.③把③代入①并整理得y2-1=0.解得y=1或y=-1,代入③得x=-1或x=3.因此圆C1与圆C2相交于A(-1,1),B(3,-1)两点.(1)两圆的公共弦所在的直线即为直线AB,方程为=,即x+2y-1=0.(2)两圆的公共弦长|AB|==2.19.以点C为坐标原点,CA,CB,CC1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系.因为|C1C|=|CB|=|CA|=2,所以C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),由中点坐标公式可得,D(1,1,0),E(0,1,2),F(1,0,0),所以|DE|==,|EF|==.20.(12分)解设A(x1,y1),B(x2,y2),M(x,y).当直线l不垂直于x轴时,依题意,得x21+(y1-1)2=5,①x22+(y2-1)2=5. ②由①-②,可得(x1+x2)(x1-x2)=-(y1+y2-2)(y1-y2),所以y1-y2x1-x2=x1+x2-(y1+y2-2)=2x -(2y -2)=x1-y.而直线恒过点(1,1),所以y 1-y 2x 1-x 2=y -1x -1,所以y -1x -1=x1-y ,即x 2-x +(y -1)2=0,即(x -12)2+(y -1)2=14.当直线l 垂直于x 轴时,点M (1,1)也适合方程(x -12)2+(y -1)2=14.综上所述,点M 的轨迹方程是(x -12)2+(y -1)2=14.21.(12分)解 (1)如图所示,|AB |=43,设D 是线段AB 的中点,则CD ⊥AB , ∴|AD |=23,|AC |=4.在Rt △ACD 中,可得|CD |=2.设所求直线l 的斜率为k ,则直线l 的方程为y -5=kx ,即kx -y +5=0.由点C 到直线AB 的距离为|-2k -6+5|k 2+1=2,得k =34,此时直线l 的方程为3x -4y +20=0.又∵当直线l 的斜率不存在时,也满足题意,此时方程为x =0, ∴所求直线l 的方程为x =0或3x -4y +20=0. (2)设过P 点的圆C 弦的中点为D (x ,y ), 则CD ⊥PD ,所以k CD ·k PD =-1, 即y -6x +2·y -5x=-1, 化简得所求轨迹方程为x 2+y 2+2x -11y +30=0.22.(10分)方法一 (1)证明 由⎩⎪⎨⎪⎧y =kx +1,(x -1)2+(y +1)2=12, 消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=[-(2-4k )]2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点,则直线l 被圆C 截得的弦长为|AB |=1+k 2|x 1-x 2|=28-4k +11k 21+k 2=211-4k +31+k 2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0, 当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0, 解得-1≤t ≤4,且t ≠0,故t =4k +31+k 2的最大值为4, 此时|AB |最小为27.方法二 (1)证明 圆心C (1,-1)到直线l 的距离为d =|k +2|1+k 2,圆C 的半径为R =23,R 2-d 2=12-k 2+4k +41+k 2=11k 2-4k +81+k 2,而在S =11k 2-4k +8中,Δ=(-4)2-4×11×8<0, 故11k 2-4k +8>0对k ∈R 恒成立,所以R 2-d 2>0,即d <R ,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 由平面几何知识, 知|AB |=2R 2-d 2=28-4k +11k 21+k 2,下同方法一.方法三 (1)证明 因为不论k 为何实数,直线l 总过点P (0,1),而|PC |=5<23=R ,所以点P (0,1)在圆C 的内部,即不论k 为何实数,直线l 总经过圆C 内部的定点P .所以不论k 为何实数,直线l 和圆C 总有两个交点.(2)解 由平面几何知识知,过圆内定点P (0,1)的弦,只有和AC (C 为圆心)垂直时才最短,而此时点P (0,1)为弦AB 的中点,由勾股定理,知|AB |=212-5=27, 即直线l 被圆C 截得的最短弦长为27.。