函数图象中的存在性问题:因动点产生的相似三角形问题[1]

合集下载

专题03 动点引起的相似三角形存在性问题(解析版)

专题03 动点引起的相似三角形存在性问题(解析版)

专题04 动点引起的相似三角形存在性问题【相似三角形存在性】以A 、B 、C 为顶点的三角形与已知△DEF 相似,其中,∠ABC =∠DEF 分类讨论:①△ABC ∽△DEF ;②△CBA ∽△DEF 可得到:AB BC DE EF =;AB BC EF DE=,特殊地,当∠ABC =∠DEF =90°时,可借助tan ∠BAC =tan ∠DFE 或tan ∠BCA =tan ∠DFE 解答问题.【一题多解 · 典例剖析】例题1. (2021·山东省济宁市中考)如图,直线1322y x =-+分别交x 轴、y 轴于点A ,B ,过点A 的抛物线2y x bx c =-++与x 轴的另一交点为C ,与y 轴交于点()0,3D ,抛物线的对称轴l 交AD 于E ,连接OE 交AB于点F .(1)求抛物线解析式; (2)求证:OE AB ⊥;(3)P 为抛物线上的一动点,直线PO 交AD 于点M ,是否存在这样的点P ,使以A ,O ,M 为顶点的三角形与ACD △相似?若存在,求点P 的横坐标;若不存在,请说明理由.【答案】(1)y =-x 2+2x +3;(2)见解析;(3)存在,点P 113-±或±3 【解析】解:(1)∵直线1322y x =-+分别交x 轴、y 轴于点A ,B∴A (3,0),B (0,32), 又抛物线经过A (3,0),D (0,3),∴22033300b c c ⎧=-++⎨=-++⎩, 解得:23b c =⎧⎨=⎩即抛物线的解析式为y =-x 2+2x +3;(2)由y =-x 2+2x +3得,抛物线对称轴为x =1 设直线AD 的解析式为:y =kx +a , 将A (3,0),D (0,3)代入得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩即直线AD 的解析式为:y =-x +3, ∴E (1,2),G (1,0),在Rt △OEG 中,知tan ∠OEG =12OG EG = , 在Rt △OAB 中,tan ∠BAO =12OB OA =, ∴∠OEG =∠BAO , ∵∠OEG +∠EOG =90° ∴∠BAO +∠EOG =90° 即OE ⊥AB . (3)存在.∵A (3,0),抛物线的对称轴为直线x =1,∴C (-1,0), ∴AC =3-(-1)=4, ∵OA =OD =3,∠AOD =90°, ∴232AD OA ==,设直线CD 解析式为y =mx +n ,则:03m n n -+=⎧⎨=⎩,解得33m n =⎧⎨=⎩∴直线CD 解析式为y =3x +3, 易知,∠MAO =∠COD , 分类讨论:①当△AOM ∽△ACD 时,方法一:解析式法欲求P 点坐标,需求直线OP 的解析式,再与抛物线解析式联立即可. 可知,OM ∥CD即直线OP 的解析式为:y =3x , 联立y =3x ,y =-x 2+2x +3得: x 113-±即P 113-±方法二:比例法 易知AM AN AD OA =,AM AOAD AC=,∴=AN AOOA AC 即3=34AN ∴AN =94,ON =34即M (34,94)∴直线OM 解析式为:y =3x 联立y =3x ,y =-x 2+2x +3得: x =1132-±. 方法三:设参数法设M (m ,-m +3),0<m <3,A (3,0) 易知,AM AOAD AC =,即3432AM = 即AM =924∴(3-m )2+(-m +3)2=(924)2解析:m =34或m =214(舍)即M (34,94)∴直线OM 解析式为:y =3x 联立y =3x ,y =-x 2+2x +3得: x =1132-±. ②当△AMO ∽△ACD 时,方法一:比例法易知AM AOAC AD =, 即432AM = ∴AM 2由△AMN 为等腰直角三角形,知MN =AN =2, ∴ON =1,即M (1,2) ∴直线OM 的解析式为y =2x , 联立y =2x ,y =-x 2+2x +3得: x =±3方法二:设参数法 设M (m ,-m +3),0<m <3由AM 2得:(m -3)2+(-m +3)2=(22 解得:m =1或m =5(舍) ∴直线OM 的解析式为y =2x , 联立y =2x ,y =-x 2+2x +3得: x =±3综上所述,点P 113-±±3 【一题多解 · 对标练习】练习1.(2021·湖南省邵阳市中考)如图,在平面直角坐标系中,抛物线C :()20y ax bx c a =++≠经过点()1,1和()4,1.(1)求抛物线C 的对称轴.(2)当1a =-时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线1C . ①求抛物线1C 的解析式.②设抛物线1C 与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线1C 上一动点,过点D 作DE OA ⊥于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)x=2.5;(2)①y=-x2+x+2;②11+33【解析】解:(1)∵抛物线图像过(1,1)、(4,1)两点,∴抛物线对称轴为:x=(1+4)÷2=2.5;(2)①将点(1,1)、(4,1)向左平移2个单位,再向下平移1个单位,得到(-1,0),(2,0),将点(-1,0),(2,0),a=-1,代入抛物线解析式得:y=-x2+x+2.②根据①中的函数关系式,可得:A(2,0),B(-1,0),C(0,2),D(m,-m2+m+2),其中0<m<2可知∠BOC=∠DEO=90°,以点O,D,E为顶点的三角形与△OBC相似有两种情况,(i)当△ODE∽△BCO时,方法一、比例法则OE DEOB OC=,即2-++2=12m m m,解得m=1或-2(舍),方法二、三角函数tan∠BOC=tan∠ODE即OB OEOC DE=,21=2-++2mm m解得:m=1或-2(舍),(ii)当△ODE∽△CBO时,方法一、比例法则OE DEOC OB=,即2-++2=21m m m,解得:1+331-3344=或(舍)m方法二、三角函数tan∠BOC=tan∠DOE即OB DEOC OE=,21-++2=2m mm解得:1+331-3344=或(舍)m综上所述,满足条件的m的值为1或1+334.【多题一解·典例剖析】例题2.(2021·湖南省怀化市中考)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且2OA=,4OB=,8OC=,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+8;(2)存在,(1,2)或17 1,2⎛⎫ ⎪⎝⎭.【解析】解:(1)∵OA=2,OB=4,OC=8,∴A(-2,0)、B(4,0)、C(0,8),设二次函数的解析式为y=ax2+bx+c,∴84201640c a b c a b c =⎧⎪-+=⎨⎪++=⎩ 解得:812c a b =⎧⎪=-⎨⎪=⎩∴二次函数的解析式为y =-x 2+2x +8;(2)存在以点P 、C 、M 为顶点的三角形与△MNB 相似, 理由如下:由(1)知抛物线对称轴为直线:x =1,设直线BC 的解析式为y =kx +t ,将点B 、C 坐标代入可得:408k b b +=⎧⎨=⎩, 解得:28a b =-⎧⎨=⎩,∴直线BC 的解析式为y =-2x +8, ∴点M (1,6),N (1,0),∴BN =3,MN =6,BM =35,CM =5, 由∠BMN =∠CMP 知,分两种情况讨论: ①当∠CPM =∠MNB =90°时,如图所示:易知CP ∥x 轴,∴点P 坐标为(1,8).②当∠PCM =∠MNB =90°时,如图所示:∴cos ∠CMP =cos ∠MNB 即CM MNPM BM=, 535=∴PM =52,即点P 坐标为171,2⎛⎫⎪⎝⎭.综上所述,符合要求的P 点坐标为(1,8)或171,2⎛⎫ ⎪⎝⎭. 【多题一解 · 对标练习】练习2.(2021·四川省遂宁市中考)如图,已知二次函数的图象与x 轴交于A 和B (-3,0)两点,与y 轴交于C (0,-3),对称轴为直线1x =-,直线y =-2x +m 经过点A ,且与y 轴交于点D ,与抛物线交于点E ,与对称轴交于点F .(1)求抛物线的解析式和m 的值;(2)在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与△AOD 相似,若存在,求出点P 的坐标;若不存在,试说明理由.【答案】(1)y =(x +1)2-4;m =2;(2)存在,(0,12)或(0,14.5).【解析】解:(1)∵二次函数的图象与x 轴交于A 和B (-3,0)两点,对称轴为直线x =-1, ∴A (1,0),设二次函数解析式为:y =a (x -1)(x +3), 把C (0,-3)代入得: -3=a (0-1)(0+3), 解得:a =1,即二次函数解析式为:y = (x -1)(x +3),即:y =(x +1)2-4, ∵直线y =-2x +m 经过点A , ∴0=-2×1+m ,解得:m =2;(2)由(1)得:直线AF 的解析式为:y =-2x +2, 又直线y =-2x +2与y 轴交于点D ,与抛物线交于点E , ∴当x =0时,y =2,即D (0,2),联立()22214y x y x =-+⎧⎪⎨=+-⎪⎩,解得:11512x y =-⎧⎨=⎩,2210x y =⎧⎨=⎩, ∵点E 在第二象限, ∴E (-5,12),以D 、E 、P 为顶点的三角形与△AOD 相似,由∠EDP =∠ADO 知,分两种情况讨论. ①当∠EPD =∠AOD =90°时, 过点E 作EP ⊥y 轴于点P ,此时P (0,12);②当∠PED =∠AOD =90°时,过点E 作EP ’⊥AE ,则tan ∠ADO =tan ∠PEP’, ∴OA PP OD EP '=,即:125PP '=, 解得:PP ’=2.5,此时P’(0,14.5),综上所述:点P 的坐标为(0,12)或(0,14.5).练习3. (2021·四川省泸州市中考)如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:∠ACB =90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE +BF 的最大值;②点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.【答案】(1)(2)①9;②(4,6)或(3,254).【解析】解:(1)在213442y x x =-++中,当x =0,y =4即C (0,4)当y =0时,即2134042x x -++=解得:x =-2或x =8即A (-2,0),B (8,0)∴AB =10,AC 5BC 5则102=(52+(52即AB 2=AC 2+BC 2∴∠ACB =90°(2)①设直线BC 的解析式为:y =kx +b ,将(0,4),(8,0)代入得: 804k b b +=⎧⎨=⎩,解得:k =-0.5,b =4即直线BC 解析式为y =-0.5x +4设D (m ,213442m m -++),则BF =8-m ,DE =2124m m -+∴DE +BF =2124m m -++8-m =()21294m --+ ∵14-<0∴当m =2时DE +BF 取最大值,最大值为9.②∵点G 是AC 的中点,在Rt △AOC 中,OG =AG 5即△AOG 为等腰三角形,∵∠CAO +∠ACO =∠ACO +∠OCB =90°∴∠CAO =∠OCB又OC ∥DF∴∠OCB =∠CED∴∠CAO =∠CED设D (m ,213442m m -++),则E (m ,-0.5m +4),DE =2124m m-+ 当以点C ,D ,E 为顶点的三角形与△AOG 相似, 分两种情况讨论:①△ECD ∽△AOG 则CEDEAO AG =, 即212425m mCE -+=∴CE 21425m m -+又OC ∥DF ∴CEOFBC OB =845m=∴CE 5m21425m m -+5m解得:m =0(舍)或m =3即D (3,254)②△EDC ∽△AOG ,则CE DEAG OA=,212425m m-+=,∴CE=212452m m-+又OC∥DF,知,CE5m∴212452m m-+5m解得:m=0(舍)或m=4 即D(4,6)综上所述,D点坐标为(3,254)或(4,6).。

最新中考专题练习-函数中因动点产生的相似三角形问题(含答案)

最新中考专题练习-函数中因动点产生的相似三角形问题(含答案)

综合题讲解 函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。

⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x 41y 2+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。

分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

练习1、已知抛物线2y ax bx c =++经过0P E ⎫⎪⎪⎝⎭及原点(00)O ,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为2233y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?练习2、如图,四边形OABC y轴上,将边BC 折叠,使点B 落在边OA 的点D处。

二次函数-相似三角形存在性问题(一)-含答案

二次函数-相似三角形存在性问题(一)-含答案
2 的抛物线过 B、C 两点,且交 x 轴于另一点 A,连接 AC. (1)直接写出点 A、点 B、点 C 的坐标和抛物线的解析式; (2)抛物线上是否存在一点 Q(点 C 除外),使以点 Q、A、B 为顶点的三角形与△ABC 相
似?若存在,求出点 Q 的坐标;若不存在,请说明理由.
y C
A O
B x
(1)求抛物线的解析式; (2)如图 2,直线 OQ 与线段 BC 相交于点 E,当△OBE 与△ABC 相似时,求点 Q 的坐标.
y
y
A O
B x
C
D
图1
A O
C
B x
E Q
D
图2
第2页,共14页
【分析】
(1)抛物线: y = x2 − 2x − 3;
(2)思路:考虑到△ABC 和△BOE 有一组公共角,公共角必是对应角.
根据线段长度可知∠ABQ 与∠ABC 的两边并不成比例,故(-8,-7)舍掉.
情况二:若∠ABQ=∠BAC,
过点 B 作 AC 平行线,与抛物线交点即为 Q 点.
易得直线 BQ 解析式: y = 3 x − 9 , 42
联立方程:
3 4
x

9 2
=
−1 8
x2
+
1 4
x
+
3 ,解得:
x1
=
−10

x2
的坐标.
y B
A
C
O
x
第6页,共14页
【分析】 (1) y = 1 x2 − 2x +1 ;
3 (2) tan ABC = 1 ;
2 (3)思路:平行得相等角,构造两边成比例

因动点产生的相似三角形问题

因动点产生的相似三角形问题

因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 2014年湖南省衡阳市中考第28题二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?图1 图2动感体验请打开几何画板文件名“14衡阳28”,拖动点P运动,可以体验到,当点P运动到AC 的中点的正下方时,△APC的面积最大.拖动y轴上表示实数m的点运动,抛物线的形状会改变,可以体验到,∠ACD和∠ADC都可以成为直角.思路点拨1.用交点式求抛物线的解析式比较简便.2.连结OP,△APC可以割补为:△AOP与△COP的和,再减去△AOC.3.讨论△ACD与△OBC相似,先确定△ACD是直角三角形,再验证两个直角三角形是否相似.4.直角三角形ACD存在两种情况.图文解析(1)因为抛物线与x轴交于A(-3, 0)、B(1, 0)两点,设y=a(x+3)(x-1).代入点C(0,-3m),得-3m=-3a.解得a=m.所以该二次函数的解析式为y=m(x+3)(x-1)=mx2+2mx-3m.(2)如图3,连结OP.当m=2时,C(0,-6),y=2x2+4x-6,那么P(x, 2x2+4x-6).由于S△AOP=1()2POA y⨯-=32-(2x2+4x-6)=-3x2-6x+9,S △COP =1()2P OC x ⨯-=-3x ,S △AOC =9, 所以S =S △APC =S △AOP +S △COP -S △AOC =-3x 2-9x =23273()24x -++. 所以当32x =-时,S 取得最大值,最大值为274.图3 图4 图5(3)如图4,过点D 作y 轴的垂线,垂足为E .过点A 作x 轴的垂线交DE 于F . 由y =m (x +3)(x -1)=m (x +1)2-4m ,得D (-1,-4m ).在Rt △OBC 中,OB ∶OC =1∶3m .如果△ADC 与△OBC 相似,那么△ADC 是直角三角形,而且两条直角边的比为1∶3m .①如图4,当∠ACD =90°时,OA OC EC ED =.所以331m m =.解得m =1. 此时3CA OC CD ED ==,3OC OB =.所以CA OC CD OB =.所以△CDA ∽△OBC .②如图5,当∠ADC =90°时,FA FD ED EC =.所以421m m=.解得2m =.此时2DA FD DC EC m===32OC m OB ==.因此△DCA 与△OBC 不相似. 综上所述,当m =1时,△CDA ∽△OBC .考点伸展第(2)题还可以这样割补:如图6,过点P 作x 轴的垂线与AC 交于点H .由直线AC :y =-2x -6,可得H (x ,-2x -6).又因为P (x , 2x 2+4x -6),所以HP =-2x 2-6x .因为△P AH 与△PCH 有公共底边HP ,高的和为A 、C两点间的水平距离3,所以S =S △APC =S △APH +S △CPH=32(-2x 2-6x ) =23273()24x -++. 图6例 2 2014年湖南省益阳市中考第21题如图1,在直角梯形ABCD 中,AB //CD ,AD ⊥AB ,∠B =60°,AB =10,BC =4,点P 沿线段AB 从点A 向点B 运动,设AP =x .2·1·c·n·j·y(1)求AD 的长;(2)点P 在运动过程中,是否存在以A 、P 、D 为顶点的三角形与以P 、C 、B 为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;(3)设△ADP 与△PCB 的外接圆的面积分别为S 1、S 2,若S =S 1+S 2,求S 的最小值. 动感体验 图1请打开几何画板文件名“14益阳21”,拖动点P 在AB 上运动,可以体验到,圆心O 的运动轨迹是线段BC 的垂直平分线上的一条线段.观察S 随点P 运动的图象,可以看到,S 有最小值,此时点P 看上去象是AB 的中点,其实离得很近而已.思路点拨1.第(2)题先确定△PCB 是直角三角形,再验证两个三角形是否相似.2.第(3)题理解△PCB 的外接圆的圆心O 很关键,圆心O 在确定的BC 的垂直平分线上,同时又在不确定的BP 的垂直平分线上.而BP 与AP 是相关的,这样就可以以AP 为自变量,求S 的函数关系式.图文解析(1)如图2,作CH ⊥AB 于H ,那么AD =CH .在Rt △BCH 中,∠B =60°,BC =4,所以BH =2,CH =AD =(2)因为△APD 是直角三角形,如果△APD 与△PCB 相似,那么△PCB 一定是直角三角形.①如图3,当∠CPB =90°时,AP =10-2=8.所以APAD PC PB APD 与△PCB 不相似.图2 图3 图4②如图4,当∠BCP =90°时,BP =2BC =8.所以AP =2.所以APAD APD =60°.此时△APD ∽△CBP .综上所述,当x =2时,△APD ∽△CBP .(3)如图5,设△ADP 的外接圆的圆心为G ,那么点G 是斜边DP 的中点.设△PCB 的外接圆的圆心为O ,那么点O 在BC 边的垂直平分线上,设这条直线与BC 交于点E ,与AB 交于点F .设AP =2m .作OM ⊥BP 于M ,那么BM =PM =5-m .在Rt △BEF 中,BE =2,∠B =60°,所以BF =4.在Rt △OFM 中,FM =BF -BM =4-(5-m )=m -1,∠OFM =30°,所以OM 1)m -. 所以OB 2=BM 2+OM 2=221(5)(1)3m m -+-. 在Rt △ADP 中,DP 2=AD 2+AP 2=12+4m 2.所以GP 2=3+m 2.于是S =S 1+S 2=π(GP 2+OB 2) =22213(5)(1)3m m m π⎡⎤++-+-⎢⎥⎣⎦=2(73285)3m m π-+. 所以当167m =时,S 取得最小值,最小值为1137π.图5 图6考点伸展关于第(3)题,我们再讨论个问题.问题1,为什么设AP =2m 呢?这是因为线段AB =AP +PM +BM =AP +2BM =10. 这样BM =5-m ,后续可以减少一些分数运算.这不影响求S 的最小值.问题2,如果圆心O 在线段EF 的延长线上,S 关于m 的解析式是什么?如图6,圆心O 在线段EF 的延长线上时,不同的是FM =BM -BF =(5-m )-4=1-m .此时OB 2=BM 2+OM 2=221(5)(1)3m m -+-.这并不影响S 关于m 的解析式.例3 2015年湖南省湘西市中考第26题如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c 经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B个单位的速度匀速运动,连结PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“15湘西26”,拖动点P在OA上运动,可以体验到,△APQ有两个时刻可以成为直角三角形,四边形EPQF有一个时刻可以成为平行四边形,△MBQ与△BOP有一次机会相似.思路点拨1.在△APQ中,∠A=45°,夹∠A的两条边AP、AQ都可以用t表示,分两种情况讨论直角三角形APQ.2.先用含t的式子表示点P、Q的坐标,进而表示点E、F的坐标,根据PE=QF列方程就好了.3.△MBQ与△BOP都是直角三角形,根据直角边对应成比例分两种情况讨论.图文解析(1)由y=-x+3,得A(3, 0),B(0, 3).将A(3, 0)、B(0, 3)分别代入y=-x2+bx+c,得930,3.b cc-++=⎧⎨=⎩解得2,3.bc=⎧⎨=⎩所以抛物线的解析式为y=-x2+2x+3.(2)在△APQ中,∠P AQ=45°,AP=3-t,AQ.分两种情况讨论直角三角形APQ:①当∠PQA=90°时,AP.解方程3-t=2t,得t=1(如图2).②当∠QP A=90°时,AQ AP t-t),得t=1.5(如图3).图2 图3(3)如图4,因为PE //QF ,当EF //PQ 时,四边形EPQF 是平行四边形.所以EP =FQ .所以y E -y P =y F -y Q .因为x P =t ,x Q =3-t ,所以y E =3-t ,y Q =t ,y F =-(3-t )2+2(3-t )+3=-t 2+4t . 因为y E -y P =y F -y Q ,解方程3-t =(-t 2+4t )-t ,得t =1,或t =3(舍去).所以点F 的坐标为(2, 3).图4 图5(4)由y =-x 2+2x +3=-(x -1)2+4,得M (1, 4).由A (3, 0)、B (0, 3),可知A 、B 两点间的水平距离、竖直距离相等,AB =.由B (0, 3)、M (1, 4),可知B 、M 两点间的水平距离、竖直距离相等,BM 所以∠MBQ =∠BOP =90°.因此△MBQ 与△BOP 相似存在两种可能:①当BM OB BQ OP =3t=.解得94t =(如图5).②当BM OPBQ OB =3t =.整理,得t 2-3t +3=0.此方程无实根. 考点伸展第(3)题也可以用坐标平移的方法:由P (t , 0),E (t , 3-t ),Q(3-t , t ),按照P →E 方向,将点Q 向上平移,得F (3-t , 3).再将F (3-t , 3)代入y =-x 2+2x +3,得t =1,或t =3.。

因动点产生的相似三角形问题(解析)

因动点产生的相似三角形问题(解析)

因动点产生的相似三角形问题(解析)如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图11.第(2)题把求∠AOM 的大小,转化为求∠BOM 的大小. 2.因为∠BOM =∠ABO =30°,因此点C 在点B 的右侧时,恰好有∠ABC =∠AOM .3.根据夹角相等对应边成比例,分两种情况讨论△ABC 与△AOM 相似.满分解答(1)如图2,过点A 作AH ⊥y 轴,垂足为H . 在Rt △AOH 中,AO =2,∠AOH =30°, 所以AH =1,OH =3.所以A (1,3)-.因为抛物线与x 轴交于O 、B (2,0)两点, 设y=ax (x-2),代入点A(1,3)-,可得33a =. 图2 所以抛物线的表达式为23323(2)333y x x x x =-=-. (2)由2232333(1)3333y x x x =-=--, 得抛物线的顶点M 的坐标为3(1,)3-.所以3tan 3BOM ∠=. 所以∠BOM =30°.所以∠AOM =150°. (3)由A (1,3)-、B (2,0)、M 3(1,)3-,得3tan 3ABO ∠=,23AB =,233OM =. 所以∠ABO =30°,3OAOM=. 因此当点C 在点B 右侧时,∠ABC =∠AOM =150°. △ABC 与△AOM 相似,存在两种情况: ①如图3,当3BA OA BC OM ==时,23233BA BC ===.此时C (4,0). ②如图4,当3BC OABA OM==时,33236BC BA ==⨯=.此时C (8,0).图3 图42、如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14bb =-.解得843b =±.所以符合题意的点Q 为(1,23+).②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。

因动点产生的相似三角形问题---专题

因动点产生的相似三角形问题---专题

因动点产生的相似三角形问题关键词:动点、相似三角形动点:运动的点或者说是不确定的点,有时题目中会明确指出动点,有时题目中相关点的坐标含有参数,换言之就是在不同的条件下会有不同的位置,或者满足条件的位置有多个。

相似三角形:对应角相等,对应边成比例的两个或多个三角形,两个三角形相似的判定定理一般说来有3个,定理1:两个角对应相等,两三角形相似 ‘AA ” 定理2:两边对应成比例且夹角相等 “SAS ” 定理3:三边对应成比例。

“SSS ”相似三角形的判定这3个定理,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A =∠D ,探求△ABC 与△DEF 相似,只要把夹∠A 和∠D 的两边表示出来,按照对应边成比例,分AB DE AC DF =和AB DFAC DE=两种情况列方程. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 两个直角三角形相似的判定方法(1)有一个锐角对应相等的两个直角三角形相似. (2)两条直角边对应成比例的两个直角三角形相似. (3)斜边和一条直角边对应成比例的两个直角三角形相似.如果要讨论相似的两个三角形中有一个是直角三角形:如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.由动点产生的相似三角形问题一般在函数和几何图中出现,其中以函数表现居多。

题型一般有是否存在点P,使得:①△PDE∽△ABC②以P、D、E为顶点的三角形与△ABC相似或者通过动点产生相似解决有关问题一般以大题为主,也有出现在填空后两题。

函数中因动点产生的相似三角形问题一般有三个解题过程:①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。

函数图象中的存在性问题:因动点产生的相似三角形问题

函数图象中的存在性问题:因动点产生的相似三角形问题

中考压轴题-------因动点产生的相似问题解题思路:抓住角相等的条件进行讨论。

如两三角形有两角相等,要这两三角形相似,只要满足角的两边成比例。

26.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作P M x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与O A C △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得D C A △的面积最大,求出点D 的坐标.24.如图,已知点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上. (1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形 A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的 交点为点C ,试在x 轴上找点D ,使得以点 B ′、C 、D 为顶点的三角形与A B C △相似.25. 如图,抛物线)0(2>++=a c bx ax y 交x 轴于A 、B 两点(A 点在B 点左侧),交y 轴于点C 。

已知B (8,0),21t a n=∠ABC,△ABC 的面积为8.(1) 求抛物线的解析式;(2) 若动直线EF (EF//x 轴)从点C 开始,以每秒1个长度单位的速度沿y 轴负方向平移,且交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动。

联结FP ,设运动时间t 秒。

当t 为何值时,OP+⋅EF OPEF 的值最大,求出最大值; (3) 在满足(2)的条件下,是否存在t 的值,使以P 、B 、F 为顶点的三角形与△ABC 相似。

若存在,试求出t 的值;若不存在,请说明理由。

因动点产生的相似三角形问题

因动点产生的相似三角形问题

函数图象中点的存在性问题一、因动点产生的相似三角形问题分析:1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

例1 :直线分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标; (2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标; (3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.例2:Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan∠A =时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.例3:如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、113y x =-+(0)ky k x =≠12A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2例4 :如图1,已知点A (-2,4) 和点B (1,0)都在抛物线上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.考点伸展在本题情境下,我们还可以探求△B ′CD 与△AB B ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.例5:如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.22y mx mx n =++例6:如图1,△ABC 中,AB =5,AC =3,cos A=.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图例 7如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan∠ABO =,求抛物线F 对应的二次函数的解析式.3102tx y -=OCOB OA ⋅=223练习题:1.如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。

函数图象中的存在性问题:因动点产生的相似三角形问题--练习题

函数图象中的存在性问题:因动点产生的相似三角形问题--练习题

中考压轴题-------因动点产生的相似问题解题思路:抓住角相等的条件进行讨论。

如两三角形有两角相等,要这两三角形相似,只要满足角的两边成比例。

26.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; (3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.24.如图,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上. (1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形 A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的 交点为点C ,试在x 轴上找点D ,使得以点 B ′、C 、D 为顶点的三角形与ABC △相似.25. 如图,抛物线)0(2>++=a c bx ax y 交x 轴于A 、B 两点(A 点在B 点左侧),交y 轴于点C 。

已知B (8,0),21tan =∠ABC ,△ABC 的面积为8.(1) 求抛物线的解析式;(2) 若动直线EF (EF//x 轴)从点C 开始,以每秒1个长度单位的速度沿y 轴负方向平移,且交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动。

联结FP ,设运动时间t 秒。

当t 为何值时,OP +⋅EF OPEF 的值最大,求出最大值;(3) 在满足(2)的条件下,是否存在t 的值,使以P 、B 、F 为顶点的三角形与△ABC 相似。

若存在,试求出t 的值;若不存在,请说明理由。

y24.如图,在平面直角坐标系xOy 中,抛物线212y x bx c =-++经过点(1,3)A ,(0,1)B .(1)求抛物线的表达式及其顶点坐标;(2)过点A 作x 轴的平行线交抛物线于另一点C , ①求△ABC 的面积;②在y 轴上取一点P ,使△ABP 与△ABC 相似,求满足条件的所有P25.如图,在△ABC 中,AB = BC = 5,AC = 6,BO ⊥AC ,垂足为点O .过点A 作射线AE // BC ,点P 是边BC 上任意一点,联结PO 并延长与射线AE 相交于点Q ,设B 、P 两点间的距离为x . (1)如图1,如果四边形ABPQ 是平行四边形,求x 的值;(2)过点Q 作直线BC 的垂线,垂足为点R ,当x 为何值时,△PQR ∽△CBO ? (3)设△AOQ 的面积为y ,求y 与x 的函数关系式,并写出函数的定义域.24.已知:如图,抛物线的顶点为点D ,与y 轴相交于点A ,直线y =ax +3与y 轴也交于点A ,矩形ABCO 的顶点B 在此抛物线上,矩形面积为12. (1)求该抛物线的对称轴;(2)⊙P 是经过A 、B 两点的一个动圆,当⊙P 与y 轴相交,且在y 轴上两交点的距离为4时,求圆心P 的坐标;(3)若线段DO 与AB 交于点E ,以点 D 、A 、E 为顶点 的三角形是否有可能与以点D 、O 、A 为顶点的三角形相似,如果有可能,请求出点D 坐标及抛物线解析式;如果不可能, 请说明理由.COBA E(备用图)COPBQ AEC OBA EQ P。

因动点产生的相似三角形问题)

因动点产生的相似三角形问题)

1.2 因动点产生的等腰三角形问题例1 2011年湖州市中考第24题如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备.2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C .满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 所经过的路径长为54π. 考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =.②如图4,当P A =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =.第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例2 2011年盐城市中考第28题如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标; (2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R A S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠P AQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP =QA 时,点Q 在P A 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当P A =PQ 时,那么12cos AQ A AP∠=.因此2c o s A Q A P A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.例3 2010年南通市中考第27题如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EBCE BF=,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性. 例4 2009年重庆市中考第26题已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1思路点拨1.用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到. 2.过点M 作MN ⊥AB ,根据对应线段成比例可以求F A 的长. 3.将∠EDC 绕点D 旋转的过程中,△DCG 与△DEF 保持全等.4.第(3)题反客为主,分三种情况讨论△PCG 为等腰三角形,根据点P 的位置确定点Q 的位置,再计算点Q 的坐标.满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y .(2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56.如图2,过点M 作MN ⊥AB ,垂足为N ,那么DADNFA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF =2GO .(3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。

初中数学重点模型17 动点在相似三角形中的分类讨论(基础)

初中数学重点模型17 动点在相似三角形中的分类讨论(基础)

专题17 动点在相似三角形中的分类讨论【专题说明】由动点产生的相似三角形问题一般在函数和几何图中出现,函数一般是一次函数和二次函数,几何图形一般是三角形和四边形。

题型一般有是否存在点P ,使得:①△PDE ∽△ABC ②以P 、D 、E 为顶点的三角形与△ABC 相似。

一般以大题为主,也有出现在填空后两题。

函数中因动点产生的相似三角形问题一般有三个解题过程 :① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示 各边的长度,之后利用相似来列方程求解。

涉及知识点: 全等相似的性质及判定,一元二次方程解法,直角三角形中锐角三角函数,勾股定理,求线段的长,要用到两点间的距离公式。

【精典例题】1、如图,已知抛物线y =ax 2+bx (a ≠0)过点A (3,-3)和点B (33,0).过点A 作直线AC ∥x 轴,交y 轴于点C .(1)求抛物线的表达式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连结OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得S △AOC =13S △AOQ ?若存在,求出点Q 的坐标;若不存在,请说明理由.【思路生成】(1)将点A 和点B 的坐标代入y =ax 2+bx 中,解出a 和b 的值即可;(2)首先根据题意可得出点C 的坐标为(0,-3),设P (x ,y ),则PD =|y +3|,AD =|x -3|,然后分△OAC ∽△P AD 和△OAC ∽△APD 两种情况进行讨论,得出结果;(3)首先求出△AOC 的面积,进而得出△AOQ 的面积,然后根据点A 和点B 的坐标得出点Q 的位置.解:(1)根据题意可得⎩⎨⎧3a +3b =-3,27a +33b =0,解得⎩⎨⎧a =12,b =-332,∴抛物线的表达式为y =12x 2-332x ;(2)根据题意可得点C 的坐标为(0,-3),则OC =3,AC =3, 设P (x ,y ),则PD =y +3,AD =x - 3.若△OAC ∽△P AD ,则AC OC =AD PD ,即33=⎪⎪⎪⎪⎪⎪x -3y +3,∵y =12x 2-332x ,∴±33=x -312x 2-332x +3,整理得x 2-53x +12=0或者x 2-3x =0,前者解得x =43或3(舍去),后者解得x =0或3(舍去), ∴P 1(43,6)或P 2(0,0);若△OAC ∽△APD ,则AC OC =PD AD ,即±33=y +3x -3,∵y =12x 2-332x ,∴±33=12x 2-332x +3x -3,整理得3x 2-113x +24=0或者3x 2-73x +12=0,前者解得x =833或3(舍去),后者解得x =433或3(舍去).∴P 3⎝⎛⎭⎫433,-103或P 4⎝⎛⎭⎫833,-43. 综上所述,P 点坐标为(43,6)或(0,0)或⎝⎛⎭⎫433,-103或⎝⎛⎭⎫833,-43;(3)∵OC =3,AC =3,∴S △AOC =OC ·AC 2=332.∵S △AOC =13S △AOQ ,∴S △AOQ =932.∵OB =33,点A 到x 轴的距离d =3,∴S △AOB =OB ·d 2=932,故存在点Q ,使得S △AOC =13S △AOQ ,此时点Q 的坐标为(33,0).显然过B 点且平行于直线OA 的直线y =-3(x -33)与该抛物线的另一交点也符合条件,由-3(x-33)=12x 2-332x ,整理得x 2-3x -18=0,解得x =33或-2 3.当x =-23时,y =15,此时点Q 坐标为(-23,15).∴点Q 的坐标为(33,0)或(-23,15).2、如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点.(1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ∴x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与∴OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得∴DCA 的面积最大,求出点D 的坐标.图1 思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把∴DCA 可以分割为共底的两个三角形,高的和等于OA . 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y . (2)设点P 的坐标为))4)(1(21,(---x x x . ∴如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4. 如果2==CO AOPM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意. 如果21==CO AO PMAM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).∴如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意. ∴如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--. 解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意. 综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,∴DCA 的面积最大,此时点D 的坐标为(2,1).图5 图63、如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求∴BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标; (4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与∴BCE 相似?若存在,求m 的值;若不存在,请说明理由.图1思路点拨1.第(3)题是典型的“牛喝水”问题,当H 落在线段EC 上时,BH +EH 最小.2.第(4)题的解题策略是:先分两种情况画直线BF ,作∴CBF =∴EBC =45°,或者作BF //EC .再用含m 的式子表示点F 的坐标.然后根据夹角相等,两边对应成比例列关于m 的方程. 满分解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4.(2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2). 所以S ∴BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EO CP CO=.因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.(4)∴如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′∴x 轴于F ′.由于∴BCE =∴FBC ,所以当CE BC CB BF=,即2BC CE BF =⋅时,∴BCE ∴∴FBC .设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+. 解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =4m BF +=.所以BF =由2BC CE BF =⋅,得2(2)m +=整理,得0=16.此方程无解.图2 图3 图4∴如图4,作∴CBF =45°交抛物线于F ,过点F 作FF ′∴x 轴于F ′,由于∴EBC =∴CBF ,所以BE BC BC BF =,即2BC BE BF =⋅时,∴BCE ∴∴BFC .在Rt∴BFF′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF′=2m +2,2)BF m =+.由2BC BE BF =⋅,得2(2)2)m m +=+.解得2m =±综合∴、∴,符合题意的m 为2+4、如图1,Rt∴ABC 中,∴ACB =90°,AC =6 cm ,BC =8 cm ,动点P 从点B 出发,在BA 边上以每秒5 cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4 cm 的速度向点B 匀速运动,运动时间为t 秒(0<t <2),连接PQ .(1)若∴BPQ 与∴ABC 相似,求t 的值;(2)如图2,连接AQ 、CP ,若AQ ∴CP ,求t 的值; (3)试证明:PQ 的中点在∴ABC 的一条中位线上.图1 图2思路点拨1.∴BPQ 与∴ABC 有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD ∴BC 于D ,动点P 、Q 的速度,暗含了BD =CQ .3.PQ 的中点H 在哪条中位线上?画两个不同时刻P 、Q 、H 的位置,一目了然.满分解答(1)Rt∴ABC 中,AC =6,BC =8,所以AB =10. ∴BPQ 与∴ABC 相似,存在两种情况:∴ 如果BP BA BQ BC =,那么510848t t =-.解得t =1.∴ 如果BP BC BQ BA =,那么588410t t =-.解得3241t =.图3 图4(2)作PD ∴BC ,垂足为D .在Rt∴BPD 中,BP =5t ,cos B =45,所以BD =BP cos B =4t ,PD =3t .当AQ ∴CP 时,∴ACQ ∴∴CDP .所以AC CD QC PD =,即68443t t t -=.解得78t =.图5 图6(3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E . 由于H 是PQ 的中点,HF //PD ,所以F 是QD 的中点. 又因为BD =CQ =4t ,所以BF =CF . 因此F 是B C 的中点,E 是AB 的中点. 所以PQ 的中点H 在∴ABC 的中位线EF 上.5、如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且∴PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得∴QCO 、∴QOA 和∴QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1 思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示. 3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上. 满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0, 4b ).(2)如图2,过点P 作PD ∴x 轴,PE ∴y 轴,垂足分别为D 、E ,那么∴PDB ∴∴PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S ∴PCO +S ∴PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ∴如图4,以OA 、OC 为邻边构造矩形OAQC ,那么∴OQC ∴∴QOA .当BA QA QA OA =,即2QA BA OA =⋅时,∴BQA ∴∴QOA .所以2()14b b =-.解得8b =±Q 为(1,2+.∴如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∴OQC =90°。

中考专题练习_函数中因动点产生的相似三角形问题(含答案)

中考专题练习_函数中因动点产生的相似三角形问题(含答案)

函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。

⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x 41y 2+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。

分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形的可能对应边分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

练习1、已知抛物线2y ax bx c =++经过0P E ⎫⎪⎪⎝⎭及原点(00)O ,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为223y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?练习2、如图,四边形OABC y轴上,将边BC 折叠,使点B 落在边OA 的点D处。

中考专题操练_函数中因动点产生的相似三角形问题(含答案)

中考专题操练_函数中因动点产生的相似三角形问题(含答案)
综合题讲解 函数中因动点产生的相似三角形问题
例题: 如图 1,已知抛物线的顶点为 A(2,1),且经过原点 O,与 x 轴的另一个交点为 B。
⑴求抛物线的解析式;(用顶点式求得抛物线的解析式为 y 1 x2 x ) 4
⑵若点 C 在抛物线的对称轴上,点 D 在抛物线上,且以 O、C、D、B 四点为顶点的四边形为平行四边形, 求 D 点的坐标;
⑶连接 OA、AB,如图 2,在 x 轴下方的抛物线上是否存在点 P ,使得△ OBP 与△ OAB 相似?若存在,求 出 P 点的坐标;若不存在,说明理由。
O
y A
图1
B
x
例 1 题图
分析: 1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以 O、C、D、B 四点
为顶点的四边形为平行四边形要分类讨论:按 OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为
特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边
的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后
利理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们邓社新。出寻始小会的邓(找终平主关小1一代坚义)键平种表持的我2在对能.1中把科本国人社9够国发学质社5才会从4先展社,会年,主更进作会是主,人义深生为主解义毛才本层产执义放制在的质次1力政理生度《成所.认社1的兴论产还论长作.识发会发国和力刚十靠的社展主展的实,刚大教概会才义要第践发建关坚育括主是本求一的展立系2持。,义硬质、,要基生,》以人一,道理发大务本产还重发才方从理论展力是成力没要展资面而,把才促由果,有讲社的源强为把我是进中,消完话会办是调四中发们(硬先国抓灭全中主法第必、国展对2道进共住剥建提三义解一)须科的生社理生产“削立出、经决资采解学社产会,产党什,(代济前源取放技会力主是力的么消还1表基进。从和术主作义)对的执是除不中础科低发是义1为的吧社3发政社两完9国基的学级展.第建发社认二国5会展地会极全先本问技到6生一设展会识、内主,年位主分巩进建题术高产生在才主提发外义是底所义化固生立,实级力产改是义高1展一时中我决,的邓产的是力9,力革硬建到是切间5国定怎最思小力同实和国另3开道设了党积经共对的样终想年平的时行国家一放理的一执极验产农,建达。1一发,改民资方中2,根个政因教党业是设到(月再展我革教本面探是本新兴素训站、对社共2,强要国开育主指索)适任的国都的在手一执会同毛调求的放水义出出第创应务科在的调深时工、政主富1泽,政以平的4了一三造.时,学社第动刻坚代.业发规义裕东中一治来,过2解条节性代符水会一起总持前.和展律”。关社 国个领我始度放发、地主合平阶要来结社列资才认这”于会 社公域们终形和展社提题马。级务为。会,本是识个1总主 会有也党是式发更会9出变克社二关中主保硬的根8路义 主制发的衡。展快主了化思会6、系国义持道深本3线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要基本.主变事所平化向业也,1整度 制,大要小国家的享本9义。本质义化业有方建的是深5的度一变经平力资手受社任原理6本的服问法设根社对刻表确 的个化验年提和本段到会 1务理论第质同务题进与本会党揭一.述立 确共,。出社主社和社主基,的二理时的行社体主实示、:, 立同确苏“会义会目会3义本是提节论,基关改会现义了社.从为 ,富立共社文,社主的主一改矛巩出、的我本键造主和改其社会中当 使裕了二会明就会义。义、造盾固,对重国方是。义根造所会之华代 占,中十主程是主基建中的和和为第社要针这改本基承主一人中 世这国大义度在义本设国基两发进一会意。靠不造要本担义本民国 界是共以财的国基制内成特本类展一节主义的(自仅同求完的本质共一 人我产后富重家本度涵果色完矛社步、义主2己保时。成历质理和切 口们党毛属要直)制的包最伴社成盾会推中本要的证并,史论国发 四必领泽于标接正度确括大随会,的主进国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学义改特理盾展2社。志五需是提立进 之坚的提民。制处确是1.能社义我说采制革色论也。会实着章要对)出,步 一持人出,和理立中够会建国,取度开社的发的践中。马把到奠 的民要社支经,国社充经设强积的放会提生稳证国克解社定 东民“会配济是历会分济道调极必和主出了定明历思放会了 方主以下建4广史主体制路要引然社义变,.史主和主把制 大专苏义的设大上义现度初严导要会二建化而党上义发义对度 国政为的资和劳最的出和步经格、求主设。且坚长的展改企基 进党的鉴致本社动深本对社探济区逐。义确道人极持达重生造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产基的。 了过本会,是义发民最和本经的构过代社的对的会千发力逐本改社渡原主探全经展真伟根主济理发正渡化会初于促主年展概步完造会时则义索民济中正大本义结论生确的建新主步经进义的,括实成和主期。基自共的成任优构成了处方设中义探济了改阶对为现,对义总本己同国一为社务越的果根理式提国基索文社造级于国这人制 社路政的致家系国会性根本两。供的本化会与剥建家是的度 会线治道富资列家变一的本变类中了成制迅主社削设的一改的 ,第制路。本重的革、道变化不国强立度速义会制中社个造建 这三主度。社大主,社路化,同这大,的发事主度国的会过结立 是节要。会义关人也会,1社性场的标重展业义的特本主.渡合极 世、内人主有系解和是主奠我会质巨思志大的的工结(色质义时起大 界社容民义初。决社2义定国主的大想着意需发业束3社0。工期来地 社(会被民原级了会基)世了社义矛而武我义要展化,会(业。,提 会2主概则和3在生本把纪理会经盾深器国同),同实主2化党把高 主对义括专,高一产制资中)论的济,刻。新经遵改总时现义新是在对了 义手制为政第级个资度本国强基阶成在特的通民济循革之并了具民党这资工 运二七度“实一形以料的主又调础级分新别社过主文自4过,举由有主在个本人 动、届 业在一质是式农的.(初义一消,关已民是它会(没主化愿于和的新重主过过主阶 史新社二 的中化上发之民主1步工次灭开系占主要是变4收义不互集平方民(大)义渡渡义级 上民会中 社国三已展)分为人确商划剥阔也绝主正中革官能利中改针主3的用社时时工和 又主全 会的改成生坚。主立)业时削了发对义确国,僚命满、的造,主理和会期期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义论平的.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向和赎五总总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3实买种路路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会践的经线线成人 性理历中 ,化级是导的义后√ 1农为巨极。的会内体对革成本要的和如刻主意)方济的和为民 的论史国 党”专共、工的中村自变分邓主指部实生命的结建国初实的义积法成主总自的 伟是经“ 和即政同稳家商半国的食。化小义导矛际产在走社束状设家步现社的。极改分体任食积 大以验稳 政社;致步资业殖社革阶其们平。公下盾出力一农会和况。帮构社会转引造—。务其极 胜一毛步 府会人富前本的民会命级力吐对1有,。发的个村主社之加助想会变导资—要.,力性 利、泽地 采主民。进农社地第的必和出社制中(,发以包义会间强的,变革农本社从是的和 。适东由 取义代”的业会半二阶须社了会已国3不展农围的主党原要革中社民主会根)要社创合为农 了工表这方是、主封节级走层会最主成共拘造民城国义矛的则求与保会组义主本从在会造中主业 积大段针国手义建、构农状主终义为产泥成为市营改盾建,2中经持主织工义上全一主性国要极化会话,家工改的.社成村况义达本我党武于破主、经造,设以央济社义起商性改体个义。特代转 领,制成采对业造东会主包,劳到质国领装已坏体武济阶成,互向发会基来业中质变人相劳点表变 导�

专业题材四-函数中因动点产生的相似三角形问答(中考压轴解析)

专业题材四-函数中因动点产生的相似三角形问答(中考压轴解析)

专题四:函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。

⑴求抛物线的解析式;(用顶点式求得抛物线的解析式为xx 41y 2+-=)⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。

分析:1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况例题1、解:⑴由题意可设抛物线的解析式为1)2x (a y 2+-=∵抛物线过原点,∴1)20(a 02+-=∴41a -=.抛物线的解析式为1)2x (41y 2+--=,即xx 41y 2+-=⑵如图1,当OB 为边即四边形OCDB 是平行四边形时,CD ∥=OB, 由1)2x (4102+--=得4x ,0x 21==,∴B(4,0),OB =4. ∴D 点的横坐标为6将x =6代入1)2x (41y 2+--=,得y =-3,∴D(6,-3);根据抛物线的对称性可知,在对称轴的左侧抛物线上存在点D,使得四边形ODCB 是平行四边形,此时D 点的坐标为(-2,-3),当OB 为对角线即四边形OCBD 是平行四边形时,D 点即为A 点,此时D 点的坐标为(2,1) ⑶如图2,由抛物线的对称性可知:AO =AB,∠AOB =∠ABO. 若△BOP 与△AOB 相似,必须有∠POB =∠BOA =∠BPO 设OP 交抛物线的对称轴于A ′点,显然A ′(2,-1)∴直线OP 的解析式为x21y -= 由xx 41x 212+-=-,得6x ,0x 21== .∴P(6,-3)过P 作PE ⊥x 轴,在Rt △BEP 中,BE =2,PE =3,∴PB =13≠4.∴PB ≠OB,∴∠BOP ≠∠BPO, ∴△PBO 与△BAO 不相似,同理可说明在对称轴左边的抛物线上也不存在符合条件的P 点. 所以在该抛物线上不存在点P ,使得△BOP 与△AOB 相似.2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。

最新挑战中考数学压轴题函数图象中点的存在性问题--相似三角形

最新挑战中考数学压轴题函数图象中点的存在性问题--相似三角形
( 1)若 △ BPQ 与△ ABC 相似,求 t 的值; ( 2)如图 2,连接 AQ、 CP,若 AQ⊥ CP,求 t 的值; ( 3)试证明: PQ 的中点在 △ ABC 的一条中位线上.
图1
图2
动感体验
请打开几何画板文件名“ 14 武汉 24”,拖动点 P 运动,可以体验到,若 △ BPQ 可以两 次成为直角三角形,与 △ ABC 相似.当 AQ⊥CP 时,△ ACQ∽△ CDP. PQ 的中点 H 在 △ABC 的中位线 E读而精思
思路点拨
1. △BPQ 与 △ ABC 有公共角,按照夹角相等,对应边成比例,分两种情况列方程. 2.作 PD⊥ BC 于 D,动点 P、 Q 的速度,暗含了 BD = CQ. 3. PQ 的中点 H 在哪条中位线上?画两个不同时刻 P、 Q、 H 的位置,一目了然.
( 2)作 PD⊥ BC,垂足为 D.
在 Rt△BPD 中, BP= 5t, cosB= 4 ,所以 BD = BPcosB= 4t, PD= 3t. 5
当 AQ⊥ CP 时,△ ACQ∽△ CDP .
所以 AC
CD ,即
6
8 4t .解得 t
7.
QC PD
4t 3t
8
图5
图6
( 3)如图 4,过 PQ 的中点 H 作 BC 的垂线,垂足为 F,交 AB 于 E.
满分解答
( 1)将点 A(2, m)代入 y=x+ 2,得 m=4.所以点 A 的坐标为 (2, 4). 将点 A(2, 4)代入 y k ,得 k= 8.
x ( 2)将点 B(n, 2),代入 y 8 ,得 n=4.
x 所以点 B 的坐标为 (4, 2).
读书之法 , 在循序而渐进 ,熟读而精思

函数图像中的存在性问题因动点产生的相似三角形问题巩固基础

函数图像中的存在性问题因动点产生的相似三角形问题巩固基础

(2008济南市)24.(本小题满分9分)已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于A 、B 两点,(10)A -,.(1)求这条抛物线的解析式.(2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,PN ⊥DB 于N ,请判断PM PNBE AD+是否为定值? 若是,请求出此定值;若不是,请说明理由.(3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.24.解:(1)设抛物线的解析式为2(1)3y a x =-- (1)分 将A (-1,0)代入: 20(11)3a =--- ∴ 34a =......................................... 2分 ∴ 抛物线的解析式为23(1)34y x =--,即:2339424y x x =-- ............................ 3分(2)是定值,1PM PNBE AD+= ..................................................................................... 4分 ∵ AB 为直径,∴ ∠AEB =90°,∵ PM ⊥AE ,∴ PM ∥BE ∴ △APM ∽△ABE ,∴ PM APBE AB=① 同理:PN PBAD AB=② ............................................................................................. 5分 ① + ②:1PM PN AP PBBE AD AB AB+=+= ........................................................................... 6分 (3)∵ 直线EC 为抛物线对称轴,∴ EC 垂直平分AB∴ EA =EB ∵ ∠AEB =90°∴ △AEB 为等腰直角三角形. ∴ ∠EAB =∠EBA =45° ....................... 7分 如图,过点P 作PH ⊥BE 于H ,由已知及作法可知,四边形PHEM 是矩形, ∴PH =ME 且PH ∥ME第24题图 COxA D P M EB Ny在△APM 和△PBH 中 ∵∠AMP =∠PHB =90°, ∠EAB =∠BPH =45° ∴ PH =BH且△APM ∽△PBH ∴ PA PMPB BH=∴PA PM PMPB PH ME==① .................... 8分 在△MEP 和△EGF 中,∵ PE ⊥FG , ∴ ∠FGE +∠SEG =90° ∵∠MEP +∠SEG =90° ∴ ∠FGE =∠MEP ∵ ∠PME =∠FEG =90° ∴△MEP ∽△EGF ∴PM EFME EG=② 由①、②知:PA EFPB EG=............................................................................................. 9分 (本题若按分类证明,只要合理,可给满分)(2008年绍兴市)24.将一矩形纸片OABC 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿AO 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP OQ ,;(2)当1t =时,如图1,将OPQ △沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;(3)连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC 能否垂直?若能,求出相应的t 值;若不能,说明理由.24.(本题满分14分)解:(1)6OP t =-,23OQ t =+.图1(第24题图)(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =, 1CD ∴=,(13)D ∴,. (3)①PQ 能与AC 平行. 若PQ AC ∥,如图2,则OP OAOQ OC=, 即66233t t -=+,149t ∴=,而703t ≤≤, 149t ∴=.②PE 不能与AC 垂直.若PE AC ⊥,延长QE 交OA 于F ,如图3,则23335t QF OQAC OC +==.23QF t ⎫∴=+⎪⎭.EFQF QE QF OQ ∴=-=- 2233t t ⎫⎛⎫=+-+⎪ ⎪⎭⎝⎭21)1)3t =+.又Rt Rt EPF OCA △∽△,PE OCEF OA∴=, 图16326(51)3t t -∴=⎛⎫-+ ⎪⎝⎭,3.45t ∴≈,而703t ≤≤,t ∴不存在.(2008年苏州市)29.(本题9分)如图,抛物线(1)(5)y a x x =+-与x 轴的交点为M 、N .直线y kx b =+与x 轴交于P (-2,0).与y 轴交于C ,若A 、B 两点在直线y kx b =+上.且AO=BO=2, AO ⊥BO .D 为线段MN 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考压轴题-------因动点产生的相似问题
解题思路:抓住角相等的条件进行讨论。

如两三角形有两角相等,要这两三角形相似,只要满足角的两边成比例。

26.如图,抛物线经过(40)(10)(02)A B C -,,
,,,三点. (1)求出抛物线的解析式;
(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;
(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.
24.如图,已知点A (-2,4) 和点B (1,0)都在抛物线2
2y mx mx n =++上. (1)求m 、n ;
(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形 A A ′B ′B 为菱形,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB ′ 的 交点为点C ,试在x 轴上找点D ,使得以点 B ′、C 、D 为顶点的三角形与ABC △相似.
25. 如图,抛物线)0(2>++=a c bx ax y 交x 轴于A 、B 两点(A 点在B 点左侧),交y 轴于点C 。

已知B (8,0),2
1
t a n =∠A B C
,△ABC 的面积为8. (1) 求抛物线的解析式;
(2) 若动直线EF (EF//x 轴)从点C 开始,以每秒1个长度单位的速度沿y 轴负方向平移,且交y 轴、线段
BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动。

联结
FP ,设运动时间t 秒。

当t 为何值时,⋅OP
EF 的值最大,求出最大值; (3) 在满足(2)的条件下,是否存在t 的值,使以P 、B 、F 为顶点的三角形与△ABC 相似。

若存在,试求出t 的值;若不存在,请说明理由。

y
24.如图,在平面直角坐标系xOy 中,抛物线212
y x bx c =-
++经过点(1,3)A ,(0,1)B .
(1)求抛物线的表达式及其顶点坐标;
(2)过点A 作x 轴的平行线交抛物线于另一点C , ①求△ABC 的面积;
②在y 轴上取一点P ,使△ABP 与△ABC 相似,求满足条件的所有P
25.如图,在△ABC 中,AB = BC = 5,AC = 6,BO ⊥AC ,垂足为点O .过点A 作射线AE // BC ,点P 是边BC 上任意一点,联结PO 并延长与射线AE 相交于点Q ,设B 、P 两点间的距离为x . (1)如图1,如果四边形ABPQ 是平行四边形,求x 的值;
(2)过点Q 作直线BC 的垂线,垂足为点R ,当x 为何值时,△PQR ∽△CBO ? (3)设△AOQ 的面积为y ,求y 与x 的函数关系式,并写出函数的定义域.
24.已知:如图,抛物线的顶点为点D ,与y 轴相交于点A ,直线y =ax +3与y 轴也交于点A ,矩形ABCO 的顶点B 在此抛物线上,矩形面积为12. (1)求该抛物线的对称轴;
(2)⊙P 是经过A 、B 两点的一个动圆,当⊙P 与y 轴相交,且在y 轴上两交点的距离为4时,求圆心P 的坐标;
(3)若线段DO 与AB 交于点E ,以点 D 、A 、E 为顶点 的三角形是否有可能与以点D 、O 、A 为顶点的三角形相似,
如果有可能,请求出点D 坐标及抛物线解析式;如果不可能, 请说明理由.
C
O
B
A E
(备用图)
C
O
P
B
Q A
E
C O
B
A E
Q P。

相关文档
最新文档