用MATLAB实现最速下降法,牛顿法和共轭梯度法求解实例
用MATLAB实现最速下降法_牛顿法和共轭梯度法求解实例——张小强
机电产品优化设计课程设计报告姓名:张小强学号:201222080633学院:机械电子工程学院实验的题目和要求一.课程名称:最优化设计方法二.实验日期:2013年6月27日三.实验目的:掌握最速下降法,牛顿法和共轭梯度法的算法思想,并能上机编程实现相应的算法。
四.实验要求:用MATLAB 实现最速下降法,牛顿法和共轭梯度法求解实例。
五.实验原理:最速下降法是以负梯度方向最为下降方向的极小化算法,相邻两次的搜索方向是互相直交的。
牛顿法是利用目标函数)(x f 在迭代点k x 处的Taylor 展开式作为模型函数,并利用这个二次模型函数的极小点序列去逼近目标函数的极小点。
共轭梯度法它的每一个搜索方向是互相共轭的,而这些搜索方向k d 仅仅是负梯度方向k g -与上一次搜索方向1-k d 的组合。
五.运行结果如下: 题目:f=(x-2)^2+(y-4)^2①.最速下降法:M 文件:function [R,n]=steel(x0,y0,eps)syms x ;syms y ;f=(x-2)^2+(y-4)^2;v=[x,y];j=jacobian(f,v);T=[subs(j(1),x,x0),subs(j(2),y,y0)];temp=sqrt((T(1))^2+(T(2))^2);x1=x0;y1=y0;n=0;syms kk ;while (temp>eps)d=-T;f1=x1+kk*d(1);f2=y1+kk*d(2);fT=[subs(j(1),x,f1),subs(j(2),y,f2)];fun=sqrt((fT(1))^2+(fT(2))^2);Mini=Gold(fun,0,1,0.00001);x0=x1+Mini*d(1);y0=y1+Mini*d(2);T=[subs(j(1),x,x0),subs(j(2),y,y0)];temp=sqrt((T(1))^2+(T(2))^2);x1=x0;y1=y0;n=n+1;endR=[x0,y0];调用黄金分割法:M文件:function Mini=Gold(f,a0,b0,eps)syms x;format long;syms kk;u=a0+0.382*(b0-a0);v=a0+0.618*(b0-a0);k=0;a=a0;b=b0;array(k+1,1)=a;array(k+1,2)=b;while((b-a)/(b0-a0)>=eps)Fu=subs(f,kk,u);Fv=subs(f,kk,v);if(Fu<=Fv)b=v;v=u;u=a+0.382*(b-a);k=k+1;elseif(Fu>Fv)a=u;u=v;v=a+0.618*(b-a);k=k+1;endarray(k+1,1)=a;array(k+1,2)=b;endMini=(a+b)/2;输入:[R,n]=steel(0,1,0.0001)输出:R = 1.99999413667642 3.99999120501463n = 1②.牛顿法:M文件:syms x1x2;f=(x1-2)^2+(x2-4)^2;v=[x1,x2];df=jacobian(f,v);df=df.';G=jacobian(df,v);epson=1e-12;x0=[0,0]';g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});G1=subs(G,{x1,x2 },{x0(1,1),x0(2,1)});k=0;mul_count=0;sum_count=0;mul_count=mul_count+12;sum_count=sum_count+6; while(norm(g1)>epson)p=-G1\g1;x0=x0+p;g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)});k=k+1;mul_count=mul_count+16;sum_count=sum_count+11; end;kx0mul_countsum_count结果:k = 1x0 =24mul_count = 28sum_count = 17③.共轭梯度法:M文件:function f=conjugate_grad_2d(x0,t)x=x0;syms xi yi af=(xi-2)^2+(yi-4)^2;fx=diff(f,xi);fy=diff(f,yi);fx=subs(fx,{xi,yi},x0);fy=subs(fy,{xi,yi},x0);fi=[fx,fy];count=0;while double(sqrt(fx^2+fy^2))>ts=-fi;if count<=0s=-fi;elses=s1;endx=x+a*s;f=subs(f,{xi,yi},x);f1=diff(f);f1=solve(f1);if f1~=0ai=double(f1);elsebreakx,f=subs(f,{xi,yi},x),countendx=subs(x,a,ai);f=xi-xi^2+2*xi*yi+yi^2;fxi=diff(f,xi);fyi=diff(f,yi);fxi=subs(fxi,{xi,yi},x);fyi=subs(fyi,{xi,yi},x);fii=[fxi,fyi];d=(fxi^2+fyi^2)/(fx^2+fy^2);s1=-fii+d*s;count=count+1;fx=fxi;fy=fyi;endx,f=subs(f,{xi,yi},x),count输入:conjugate_grad_2d([0,0],0.0001)结果:x = 0.24998825499785 -0.24999998741273f = 0.12499999986176count = 10ans = 0.12499999986176六.结论如下:最速下降法越接近极小值,步长越小,前进越慢。
最优化方法实验报告(2)
最优化方法实验报告Numerical Linear Algebra And ItsApplications学生所在学院:理学院学生所在班级:计算数学10-1学生姓名:甘纯指导教师:单锐教务处2013年5月实验三实验名称:无约束最优化方法的MATLAB实现实验时间: 2013年05月10日星期三实验成绩:一、实验目的:通过本次实验的学习,进一步熟悉掌握使用MATLAB软件,并能利用该软件进行无约束最优化方法的计算。
二、实验背景:(一)最速下降法1、算法原理最速下降法的搜索方向是目标函数的负梯度方向,最速下降法从目标函数的负梯度方向一直前进,直到到达目标函数的最低点。
2、算法步骤用最速下降法求无约束问题n R()min的算法步骤如下:xxf,a )给定初始点)0(x ,精度0>ε,并令k=0;b )计算搜索方向)()()(k k x f v -∇=,其中)()(k x f ∇表示函数)(x f 在点)(k x 处的梯度;c )若ε≤)(k v ,则停止计算;否则,从)(k x 出发,沿)(k v 进行一维搜索,即求k λ,使得)(min )()()(0)()(k k k k v x f v x f λλλ+=+≥; d )令1,)()()1(+=+=+k k v x x k k k k λ,转b )。
(二)牛顿法1、算法原理牛顿法是基于多元函数的泰勒展开而来的,它将)()]([-)(1)(2k k x f x f ∇∇-作为搜索方向,因此它的迭代公式可直接写出来:)()]([)(1)(2)()(k k k k x f x f x x ∇∇-=-2、算法步骤用牛顿法求无约束问题n R x x f ∈),(min 的算法步骤如下:a )给定初始点)0(x ,精度0>ε,并令k=0;b )若ε≤∇)()(k x f ,停止,极小点为)(k x ,否则转c );c )计算)()]([,)]([)(1)(2)(1)(2k k k k x f x f p x f ∇∇-=∇--令;d )令1,)()()1(+=+=+k k p x x k k k ,转b )。
matlab用共轭梯度法求解优化问题
标题:利用MATLAB中的共轭梯度法求解优化问题正文:一、概述在数学和工程领域中,优化问题是一个重要的研究领域。
优化问题的目标是寻找一个能够最大化或最小化某个函数的变量的数值,使得该函数达到最优值。
而共轭梯度法是一种常用的优化算法,能够有效地解决大规模的线性和非线性优化问题。
本文将介绍如何利用MATLAB中的共轭梯度法来求解优化问题。
二、共轭梯度法简介共轭梯度法是一种迭代算法,用于求解无约束优化问题。
它是一种在局部搜索过程中利用历史信息的优化方法,通常用于求解大规模的线性和非线性优化问题。
共轭梯度法基于数学中的共轭梯度概念,通过迭代寻找下降最快的路径,从而逐步逼近最优解。
三、MATLAB中的共轭梯度法函数MATLAB提供了丰富的优化算法和函数,其中包括了共轭梯度法函数。
在MATLAB中,可以使用“fmincg”函数来调用共轭梯度法来求解无约束优化问题。
该函数可以接收目标函数、初始变量值和其他参数作为输入,并计算出最优解。
四、使用共轭梯度法求解优化问题的步骤1. 确定目标函数在使用共轭梯度法求解优化问题之前,首先需要确定目标函数。
目标函数可以是线性函数、非线性函数或者带有约束条件的函数。
在MATLAB中,需要将目标函数定义为一个函数句柄,并且确保该函数具有输入参数和输出数值。
2. 确定初始变量值在使用共轭梯度法求解优化问题时,需要提供初始的变量值。
这些初始变量值可以是任意的数值,但通常需要根据实际问题进行合理选择。
3. 调用共轭梯度法函数在确定了目标函数和初始变量值之后,可以调用MATLAB中的“fmincg”函数来求解优化问题。
该函数会根据目标函数、初始变量值和其他参数进行迭代计算,直到找到最优解为止。
4. 获取最优解可以通过“fmincg”函数的输出结果来获取最优解。
该结果通常包括最优变量值和最优目标函数值。
五、优化问题的案例分析下面以一个简单的优化问题为例,说明如何利用MATLAB中的共轭梯度法来求解。
基于matlab平台的三种迭代法求解矩阵方程
数值分析第二次作业学院:电子工程学院基于matlab平台的三种迭代法求解矩阵方程组求解系数矩阵由16阶Hilbert方程组构成的线性方程组的解,其中右端项为[2877/851,3491/1431,816/409,2035/1187,2155/1423,538/395,1587/1279,573/502,947 /895,1669/1691,1589/1717,414/475,337/409,905/1158,1272/1711,173/244].要求:1)Gauss_Sedel迭代法;2)最速下降法;3)共轭梯度法;4)将结果进行分析对比。
解:根据题目要求,编写了对应算法的matlab程序,求解结果如下:(求解精度为10e-4,最大迭代次数1000)1、方程的解:如下图1所示图1 三种方法求解的结果对比图2 Gause_Sedel算法收敛特性图3 最速下降法收敛特性图3 共轭梯度法收敛特性从图中可以看到,在相同的最大迭代次数和预设求解精度条件下,共轭梯度算法仅需要4次迭代便可求出方程组的解,耗时0.000454秒,而且求出解的精度最高;Gauss_Sedel方法需要465次迭代,耗时0.006779秒,求解精度最差;最速下降法需要398次迭代,耗时0.007595秒,求解精度与共轭梯度算法差不多,因此两者求出的解也几乎相同。
从中可以得出结论,共轭梯度算法无论从求解精度还是求解速度上都优于其他两种,最速下降法在求解精度上几乎与共轭梯度算法持平,但求解速度更慢。
Gauss_Sedel方法在求解精度和速度两方面都最差。
具体的解为:Gauss_Sedel迭代法:(共需465次迭代,求解精度达到9.97e-5) X=[0.995328360833192 1.01431732497804 1.052861239300110.934006974137998 0.931493373808838 0.9665081384030661.00661848511341 1.03799789809258 1.051806903036541.06215849948572 1.04857676431223 1.028561990411131.01999170162638 0.971831831519515 0.9525261666348130.916996019179182].最速下降法:(共需398次迭代,求解精度达到9.94e-5)X=[0.998835379744322 1.01507463472900 0.9825890937201850.980191460759243 0.991245169713628 1.003780222253291.01350884374478 1.01928337905816 1.020859096651941.01930314197028 1.01444777381651 1.007040589892970.998384452250809 0.987399404644377 0.9757678149709120.963209150871750].共轭梯度法:(共需4次迭代,求解精度达到3.98e-5)X=[0.996472751179456 1.02707840189049 0.9776233734098530.973206695321590 0.986133032967607 1.001289025642341.01322158496914 1.02047386502293 1.023009050605651.02163015083975 1.01678089454399 1.009203108638740.999772406055155 0.988443827498859 0.9760941924969490.962844741655005].Matlab程序主程序:clc;clear;%% 本程序用于计算第二次数值分析作业,关于希尔伯特矩阵方程的解,用三种方法,分析并比较,也可推广至任意n维的矩阵方程%%A=hilb(16); %生成希尔伯特系数矩阵b=[2877/851;3491/1431;816/409;2035/1187;2155/1423;538/395;1587/1279;573/502;947/895;166 9/1691;1589/1717;414/475;337/409;905/1158;1272/1711;173/244]; %右端向量M=1000; %最大迭代次数err=1.0e-4; %求解精度[x,n,xx,cc,jingdu]=yakebi_diedai(A,b,err,M); % 雅克比算法求解tic;[x1,n1,xx1,cc1,jingdu1]=gauss_seidel(A,b,err,M); % gauss_seidel算法求解toc;tic;[x2,n2,xx2,jingdu2]=zuisuxiajiangfa(A,b,err,M); % 最速下降法求解toc;tic;[x3,flag,jingdu3,n3]=bicg(A,b,err); % matlab内置双共轭梯度算法求解toc;tic;[x4,xx4,n4,jingdu4]=con_grad(A,b,err,M); % 教材共轭梯度算法求解toc;%% 计算相应结果,用于作图%%num=[1:16]';jie=[num,x1,x2,x4]; % 三者的解对比% 三者的收敛情况对比num1=[1:n1]';fit1=[num1,jingdu1'];num2=[1:n2]';fit2=[num2,jingdu2'];num4=[1:n4]';fit4=[num4,jingdu4'];子函数1(Gause_Sedel算法):function [x,n,xx,cc,jingdu] = gauss_seidel(A,b,err,M)% 利用迭代方法求解矩阵方程这里是高斯赛尔得迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% M 为最大迭代次数cc 迭代矩阵普半径jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解for ii=1:length(b)if A(ii,ii)==0x='error';break;endendD=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);B=(D-L)\U;cc=vrho(B); %迭代矩阵普半径FG=(D-L)\b;x0=zeros(length(b),1);x=B*x0+FG;k=0;xx(:,1)=x;while norm(A*x-b)>errx0=x;x=B*x0+FG;k=k+1;xx(:,k+1)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endjingdu(k)=norm(A*x-b);endend子函数2(最速下降算法):function [x,n,xx,jingdu]=zuisuxiajiangfa(A,b,eps,M)% 利用迭代方法求解矩阵方程这里是最速下降迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% % M 为最大迭代次数jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解x0=zeros(length(b),1);r0=b-A*x0;t0=r0'*r0/(r0'*A*r0);x=x0+t0*r0;r=b-A*x;xx(:,1)=x;k=0;while norm(r)>epsr=r;x=x;t=r'*r/(r'*A*r);x=x+t*r;r=b-A*x;k=k+1;xx(:,k+1)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endn=k;jingdu(k)=norm(r);endend子函31(共轭梯度法):function [x,xx,n,jingdu]=con_grad(A,b,eps,M)% 利用迭代方法求解矩阵方程这里是共轭梯度迭代方法% A 为系数矩阵b 为右端向量err为精度大小返回求解所得向量x及迭代次数% M 为最大迭代次数jingdu 求解过程的精度n 所需迭代次数xx 存储求解过程中每次迭代产生的解x0=zeros(length(b),1);r0=b-A*x0;p0=r0;% t0=r0'*r0/(r0'*A*r0);% x=x0+t0*r0;% xx(:,1)=x;k=0;x=x0;r=r0;p=p0;while norm(r)>epsx=x;r=r;p=p;afa=r'*r/(p'*A*p);x1=x+afa*p;r1=r-afa*A*p;beta=r1'*r1/(r'*r);p1=r1+beta*p;x=x1;r=r1;p=p1;k=k+1;xx(:,k)=x;if k>=Mdisp('迭代次数太多可能不收敛!');break;endn=k;jingdu(k)=norm(r);endend。
MATLAB实现最速下降法
%最速下降法clear all;close all;clc;tic;format longedisp('请输入参数');K=input('维数K=');ticA=hilb(K);% A元素是0-100% for i=1:K% A(i,i)=sum(abs(A(i,:)))+20*rand(1); %对角占优的量为0~20 % endb=zeros(K,1);for i=1:K;x=0;for r=1:K;x=x+A(i,r);endb(i,1)=x;end%产生b矩阵,b中的元素为A中对应行的和,目的是使方程解全为 1 jd=input('控制精度jd=');x0=zeros(K,1); %初始迭代矩阵r=b-A*x0; %剩余向量ak=dot(r,r)/dot(A*r,r);y1=x0+ak*r; %迭代公式s1=1; %迭代次数while norm(y1-x0)>=jdx0=y1;r=b-A*x0; %剩余向量ak=(r'*r)/((A*r)'*r);y1=x0+ak*r; %迭代公式s1=s1+1; %迭代次数+1ends1toc;x0=zeros(K,1); %初始迭代矩阵r=b-A*x0;%剩余向量p=r;ak=dot(r,r)/dot(p,A*p);y=x0+ak*p; %迭代公式r1=r-ak*A*p;bk=dot(r1,r1)/dot(r,r);p1=r1+bk*p;s=1; %迭代次数while norm(y-x0)>=jd; %迭代条件 x0=y;p=p1;r=r1;ak=dot(r,r)/dot(p,A*p);y=x0+ak*p; %迭代公式r1=r-ak*A*p;bk=dot(r1,r1)/dot(r,r);p1=r1+bk*p;s=s+1;endstoc;t=1:K;yy1=abs(y1'-1)/1;yy2=abs(y'-1)/1;plot(t,yy1,'r');hold onplot(t,yy2,'b');hold ontitle('绝对误差图')legend('最速下降法','共轭梯度法')。
用MATLAB实现共轭梯度法求解实例
用MATLAB实现共轭梯度法求解实例介绍共轭梯度法是一种迭代优化算法,用于求解线性方程组或最小化二次函数的问题。
在本文档中,我们将使用MATLAB来实现共轭梯度法,并通过一个实例来演示它的应用。
共轭梯度法共轭梯度法是一种迭代优化算法,用于求解形如Ax=b的线性方程组。
它的主要思想是利用迭代过程中的残差和共轭梯度的特性,逐步逼近方程的解。
共轭梯度法的优点是收敛速度快,尤其适用于大规模稀疏线性方程组的求解。
共轭梯度法的具体步骤共轭梯度法的具体步骤如下: 1. 初始化解向量x和残差r,令初始残差r0等于b减去Ax的乘积,初始搜索方向p等于r0。
2. 迭代更新解向量: - 计算搜索步长α:α等于r的转置乘以r除以p的转置乘以Ap的乘积。
- 更新解向量和残差:x等于x加上α乘以p,r等于r减去α乘以Ap。
- 计算残差的L2范数:如果残差的L2范数小于预设阈值,停止迭代;否则,继续迭代。
- 计算搜索方向的系数β:β等于r的转置乘以r除以上一次迭代的残差r的转置乘以上一次迭代的残差r的乘积。
- 更新搜索方向:p等于r加上β乘以上一次迭代搜索方向p。
3. 输出解向量x,即为线性方程组的解。
实例在这个实例中,我们将使用共轭梯度法来求解以下线性方程组:A = [4, -1, 0; -1, 4, -1; 0, -1, 4]b = [5; 5; 10]首先,我们将初始化解向量x、残差r和搜索方向p:A = [4, -1, 0; -1, 4, -1; 0, -1, 4];b = [5; 5; 10];x = zeros(size(b)); % 初始化解向量xr = b - A*x; % 初始化残差rp = r; % 初始化搜索方向p然后,我们将进行迭代更新解向量:while norm(r) > 1e-6% 设置迭代终止条件为残差的L2范数小于1e-6Ap = A*p; % 计算Apalpha = (r'*r) / (p'*Ap); % 计算搜索步长alphax = x + alpha*p; % 更新解向量xr_new = r - alpha*Ap; % 计算新的残差rbeta = (r_new'*r_new) / (r'*r); % 计算搜索方向系数betap = r_new + beta*p; % 更新搜索方向pr = r_new; % 更新残差rend最后,输出解向量x的值:x共轭梯度法是一种有效的迭代优化算法,用于求解线性方程组。
matlab牛顿法程序
matlab牛顿法程序牛顿法是一种常用的优化算法,主要用于求解非线性方程或最优化问题。
它基于一阶导数和二阶导数的信息,通过不断迭代逼近目标函数的零点或最小值。
在Matlab中,我们可以利用该语言的强大功能和简洁的语法编写牛顿法程序。
牛顿法的核心思想是利用二阶导数逼近目标函数,然后通过迭代来逼近方程的解。
设目标函数为f(x),则牛顿法的迭代公式为:x_{n+1} = x_n - f'(x_n) / f''(x_n)其中,x_n是当前的迭代点,f'(x_n)和f''(x_n)分别是目标函数在x_n处的一阶导数和二阶导数。
为了编写一个通用的牛顿法程序,我们需要先定义目标函数及其导数求解的函数。
以求解方程f(x) = 0为例,我们将定义一个函数newton_method(f, f_prime, x0, tol),其中f是目标函数,f_prime是一阶导数函数,x0是初始点,tol是迭代精度。
首先,我们需要定义目标函数和一阶导数函数:```matlabfunction y = f(x)y = x^2 - 2;endfunction y = f_prime(x)y = 2*x;end```接下来,我们可以定义牛顿法的主函数newton_method:```matlabfunction root = newton_method(f, f_prime, x0, tol)x = x0;while abs(f(x)) > tolx = x - f(x) / f_prime(x);endroot = x;end```在主函数中,我们使用一个while循环不断迭代,直到满足迭代精度tol。
每次迭代,我们更新x的值,逼近方程的解。
现在,我们可以调用newton_method函数来求解具体的方程。
假设我们要求解方程x^2 - 2 = 0,初始点x0取1,迭代精度tol取0.0001。
matlab 最速下降法
matlab 最速下降法MATLAB 最速下降法最速下降法是一种求解无约束优化问题的基本方法,也是一种迭代算法。
该方法的基本思想是:在当前点处,沿着当前点到最优解的方向,走一步能够使目标函数值下降最快的方向,即负梯度方向。
因此,最速下降法也被称为梯度下降法。
MATLAB 是一种强大的数学计算软件,可以用于求解各种数学问题,包括最速下降法。
在 MATLAB 中,可以使用 fminunc 函数来实现最速下降法。
该函数的基本语法如下:[x,fval,exitflag,output] = fminunc(fun,x0,options)其中,fun 是目标函数,x0 是初始点,options 是选项参数。
该函数的返回值包括最优解 x、目标函数值 fval、退出标志 exitflag 和输出信息 output。
下面是一个使用 fminunc 函数求解 Rosenbrock 函数的例子:fun = @(x) 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;x0 = [-1.2,1];options =optimoptions('fminunc','Display','iter','Algorithm','quasi-newton');[x,fval,exitflag,output] = fminunc(fun,x0,options);在上面的例子中,Rosenbrock 函数是一个经典的无约束优化问题,其目标函数为:f(x) = 100*(x2-x12)2 + (1-x1)2该函数的最优解为 (1,1),最小值为 0。
使用 fminunc 函数求解该问题,可以得到最优解 x = (1,1),最小值 fval = 2.9387e-11。
需要注意的是,最速下降法是一种基本的优化方法,但其收敛速度较慢,容易陷入局部最优解。
matlab 最速下降法
MATLAB最速下降法引言最速下降法是一种优化算法,以迭代的方式寻找函数的最小值。
在MATLAB中,可以使用最速下降法对函数进行优化。
本文将详细介绍MATLAB中最速下降法的原理、应用和实现方法。
最速下降法原理最速下降法也称为梯度下降法,其核心思想是在每个迭代步骤中,沿着当前位置的负梯度方向下降,以实现函数的局部最小化。
最速下降法的迭代公式如下:x(k+1) = x(k) - λ * ∇f(x(k))其中,x(k+1)为下一次迭代的位置,x(k)为当前位置,λ为步长(学习率),∇f(x(k))为函数f(x)在x(k)点的梯度。
最速下降法的应用最速下降法广泛应用于函数优化、机器学习等领域。
它可以用来解决以下问题: 1. 函数优化:最速下降法可以根据函数的梯度信息找到函数的局部最小值,从而实现函数优化。
2. 机器学习:在机器学习中,最速下降法可以用于参数的求解,以最小化损失函数。
MATLAB中的最速下降法在MATLAB中,可以使用fminunc函数来实现最速下降法。
下面是使用MATLAB实现最速下降法的步骤: 1. 定义目标函数:首先,需要定义一个目标函数,即待优化的函数。
2. 定义初始值:选择一个合适的初始值作为最速下降法的起点。
3. 设置迭代终止条件:可以设置迭代次数上限或设定迭代误差阈值。
4. 调用fminunc函数:使用fminunc函数进行最速下降法的优化。
5. 获取优化结果:获取优化后的最优解和函数值。
下面是一个使用最速下降法优化的例子:% 定义目标函数function f = myfunc(x)f = (x(1)-1)^2 + (x(2)-2)^2;end% 定义初始值x0 = [0, 0];% 调用fminunc函数进行最速下降法的优化[xopt, fopt] = fminunc(@myfunc, x0);最速下降法的优缺点最速下降法的优点包括:简单易实现、收敛速度较快。
然而,最速下降法也存在一些缺点: 1. 收敛速度慢:最速下降法的收敛速度较慢,特别是对于目标函数呈现弯曲形状的情况。
最速下降法求范围内极值 matlab
最速下降法是一种常用的优化算法,可以用于求解多元函数的极小值。
在Matlab中,我们可以通过编写程序来实现最速下降法求取函数在给定范围内的极小值。
本文将围绕最速下降法在Matlab中的实现展开讨论,包括算法原理、程序编写、实例演示等内容。
一、最速下降法的原理及步骤最速下降法是一种基于梯度下降的优化算法,其原理是通过沿着函数梯度的负方向不断迭代,来逼近函数的极小值点。
其基本步骤如下:1. 初始化:选择初始点x0,设定迭代终止条件。
2. 梯度计算:计算当前点的梯度值∇f(xk)。
3. 方向选择:选择负梯度方向p_k=-∇f(xk)。
4. 步长确定:求解使得f(xk+α_pk)最小化的步长αk。
5. 迭代更新:更新迭代点xk+1=xk+αkp_k,并检查迭代终止条件。
二、最速下降法在Matlab中的实现在Matlab中,我们可以通过编写程序来实现最速下降法。
以下是一个简单的最速下降法求解函数极小值的Matlab程序示例:```matlabfunction [x, fval, exitflag, output] = steepestdescent(fun, x0, options)fun为目标函数句柄,x0为初始点,options为优化选项[x, fval, exitflag, output] = fminunc(fun, x0, options);end```以上代码中,我们使用了Matlab内置的优化函数fminunc来实现最速下降法。
其中fun为目标函数句柄,x0为初始点,options为优化选项,x为最优解,fval为最优值,exitflag为退出标志,output为优化输出。
三、实例演示下面我们以一个简单的二元函数为例,演示最速下降法在Matlab中的实现过程。
假设我们要求解的目标函数为f(x, y) = x^2 + y^2,且x, y∈[0, 2]。
我们可以通过编写如下Matlab程序来实现最速下降法的求解:```matlabfun = (x) x^2 + y^2; 定义目标函数x0 = [1, 1]; 设置初始点options = optimoptions('fminunc', 'Algorithm', 'quasi-newton'); 设置优化选项[x, fval, exitflag, output] = steepestdescent(fun, x0, options); 调用最速下降法disp(['最优解为:', num2str(x)]);disp(['最优值为:', num2str(fval)]);```通过以上程序,我们可以得到最优解为x=[0, 0],最优值为fval=0,这即为目标函数在给定范围内的极小值点及极小值。
matlab 最速下降迭代路径
一、Matlab最速下降迭代路径介绍Matlab是一款强大的数学软件工具,其中包含了各种数学工具箱,用于解决不同领域的数学问题。
最速下降迭代路径是其中的一个重要工具,用于求解非线性方程组或最优化问题。
二、最速下降迭代路径原理1.首先介绍最速下降法的思想:即在迭代过程中,每次选取下降方向时选择负梯度方向,使得目标函数值下降最快。
2.最速下降法的迭代公式:x^(k+1) = x^k - α * ∇f(x^k),其中x^k 为迭代的当前点,α为步长,∇f(x^k)为目标函数在x^k点的梯度。
三、Matlab中最速下降迭代路径的函数及使用方法1.在Matlab中,可以使用fminunc函数来实现最速下降迭代路径。
其用法为[fval, x] = fminunc(fun, x0, options),其中fun为目标函数的句柄,x0为迭代的初始点,options为优化选项。
2.在使用fminunc函数时,需注意定义目标函数的句柄,并设定合适的初始点和优化选项,以确保得到准确的最速下降迭代路径。
四、最速下降迭代路径的应用实例以一个简单的非线性方程组为例:f(x) = x^2 + 2y^2,其中目标是求解该方程组的最小值。
通过Matlab最速下降迭代路径,可以求解该方程组的最小值点。
五、总结与展望最速下降迭代路径是一种常用的非线性方程组求解方法,Matlab中的fminunc函数提供了便捷的实现途径。
今后,我们可以进一步深入研究不同类型问题下的最速下降迭代路径,并探索更多有效的数值计算方法。
以上是关于Matlab最速下降迭代路径的简要介绍,希望能为您提供一些帮助。
感谢阅读!最速下降迭代路径是一种常用的优化方法,广泛应用于解决非线性方程组和优化问题。
在Matlab中,最速下降迭代路径的实现通过fminunc函数来完成。
在本文中,我们将进一步探讨最速下降迭代路径的原理、Matlab中的具体使用方法以及其应用实例。
让我们更深入地了解最速下降迭代路径的原理。
最速下降法matlab代码
最速下降法概述最速下降法(Steepest Descent Method)是一种用于求解无约束优化问题的算法。
它通过迭代的方式,在每一步中找到当前点的下降方向,并以最快的速度沿着该方向更新解。
这种方法被广泛应用于数值优化、信号处理和机器学习等领域。
基本概念在最速下降法中,我们首先需要定义一个损失函数(目标函数),并希望将其最小化。
通常,在无约束优化问题中,我们需要最小化一个实值函数f(x),其中x是一个实值向量。
最速下降法的基本思想是,在当前点x k处,沿着梯度的方向进行搜索。
梯度表示了函数在某一点的变化速率的方向,其数学定义为函数的偏导数向量。
假设函数f(x)具有可导性,那么函数在某一点x k的梯度可以表示为∇f(x k)。
寻找下降方向的方式是取梯度的相反向量−∇f(x k),因为在该方向上函数的值下降最快。
因此,我们可以通过在每一步迭代中更新当前点,来逐渐接近最优解。
算法流程最速下降法的算法流程如下: 1. 选择一个初始点x0作为起始点。
2. 计算当前点x k处的梯度∇f(x k)。
3. 如果梯度的范数小于某一预设的阈值ϵ,或者迭代次数达到了最大值K,则停止迭代,输出当前点x k。
4. 如果不满足停止条件,更新当前点x k:x k+1=x k−αk∇f(x k),其中αk是步长(学习率),可以通过一维搜索或其他方式确定。
5. 返回第2步。
算法通过迭代的方式,不断更新当前点,直到满足停止条件。
其中,步长αk的选择十分重要,影响着算法的收敛速度和稳定性。
优缺点分析优点•算法简单,易于实现。
•在目标函数是凸函数的情况下,最速下降法收敛速度较快。
•算法的收敛性和解的存在性都得到了理论保证。
缺点•在非凸函数的情况下,最速下降法的收敛性和解的存在性未得到保证。
•最速下降法可能会陷入局部最小值,无法找到全局最小值。
这是因为在每一步迭代中,算法只考虑了当前点的局部信息。
•最速下降法的收敛速度较慢,特别是在函数的Hessian矩阵条件数较大的情况下。
最速下降法+Matlab代码
最速下降法+Matlab代码算法原理to-doMatlab代码clc; clear;f = @(x) x(1).^2+2*x(1)*x(2)+3*x(2).^2; %待求函数,x1,x2,x3...% f = @(x) x(1).^2+2*x(2).^2;paraNum = 2; %函数参数的个数,x1,x2,x3...的个数x0 = [3,3]; %初始值tol = 1e-5; %迭代容忍度flag = inf; %结束条件error = []; %函数变化while flag > tolp = g(f,x0,paraNum); %列向量f2 = @(a) f(x0-a*p');buChang = argmin(f2); %求步长,line search:argmin functionx1 = x0-buChang*p';flag = norm(x1-x0);error = [error,flag];x0 = x1;endplot(0:length(error)-1,error)function [f_grad] = g(f,x0,paraNum)temp = sym('x',[1,paraNum]);f1=f(temp);Z = gradient(f1);f_grad = double(subs(Z,temp,x0));endfunction [x] = argmin(f)%求步长t = 0;options = optimset('Display','off');[x,~] = fminunc(f,t,options);end代码问题1. Matlab符号运算,耗时2. 最速下降法的步长使⽤line-search,耗时代码改进clc; clear;f = @(x) x(1).^2+2*x(1)*x(2)+3*x(2).^2; %待求函数,x1,x2,x3...% f = @(x) x(1).^2+2*x(2).^2;paraNum = 2; %函数参数的个数,x1,x2,x3...的个数x0 = [3,3]; %初始值tol = 1e-3; %迭代容忍度flag = inf; %结束条件error = []; %函数变化while flag > tol% for i =1:1p = g(f,x0,paraNum); %列向量if norm(p) < tolbuChang = 0;elsebuChang = argmin(f,x0,p,paraNum); %求步长,line search:argmin functionendx1 = x0-buChang.*p';flag = norm(x1-x0);error = [error,flag];x0 = x1;endplot(0:length(error)-1,error)function [f_grad] = g(f,x0,paraNum)temp = sym('x',[1,paraNum]);f1=f(temp);Z = gradient(f1);f_grad = double(subs(Z,temp,x0)); end% function [x] = argmin(f,paraNum) % %求步长% t = zeros(1,paraNum);% options = optimset('Display','off'); % [x,~] = fminunc(f,t,options);% endfunction [x] = argmin(f,x0,p,num) % 求步长% for i=1:paraNum% syms(['x',num2str(i)]);% endtemp = sym('x',[1,num]);f1=f(x0 - temp.*p');for i = 1:numtemp(i) = diff(f1,temp(i));endjieGuo = solve(temp);jieGuo = struct2cell(jieGuo);x = zeros(1,num);for i = 1:numx(i) = double(jieGuo{i});endend。
最速下降法matlab
最速下降法matlabmatlab步0:选取初始点x0,容许误差是e=[0~1],令k=1步1:计算目标函数的梯度若||gk||<=e,即达到误差要求,立即停止计算,并输出xk作为近似最优解。
步2:取搜索方向为dk=-gk(即负梯度方向)。
步3:利用线搜索技术确定步长k(这里采用Armijo准则来求步长)步长为k=^mk是给定的,所以要求出mkAmrijo准则就是(1)给定(0~1),(0,0.5),令m=0(2)若不等式f(xk+^m*dk)<=f(xk)+*^m*gk'*dk成立,则令mk=m,Xk+1=xk+m*dk.停止运算,输出mk得到步长(3)若不满足上述不等式,则令m=m+1,然后回到第二步。
步4:确定步长后,令Xk+1=Xk+k*dk,k=k+1,转步骤1.matlab具体代码如下:1.主函数1clear all2clc%利用grad函数求解minif(x)=100*(x1^2-x2)^2+(x1-1)^2 4%此时还要建立两个函数,一个目标函数fun,一个梯度gfun 5x0=[-1.2 1]';6[x,val,k]=grad('fun','gfun',x0);7disp(['最优解:x='])8disp(x)9disp(['此时:f(x)=',num2str(val)])102.最速下降法1function[x,val,k]=grad(fun,gfun,x0)2%功能:用最速下降法求解无约束问题minif(x)3%输入:fun,gfun分别是目标函数和梯度,x0是初始点%输出:x,val分别是近似最优值和最优值,k是迭代次数5maxk=5000;%最大迭代次数6rho=0.5;7sigma=0.4;8k=0;9e=1e-5;%精度10while(k<maxk)11g=feval(gfun,x0);%计算梯度15m=0;mk=0;3.目标函数3f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;44.目标函数的梯度1function g=gfun(x)2%目标函数的梯度3g=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1),-200*(x(1)^2-x(2))]';4end5.运行结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验的题目和要求
一、所属课程名称:
最优化方法
二、实验日期:
2010年5月10日~2010年5月15日
三、实验目的
掌握最速下降法,牛顿法和共轭梯度法的算法思想,并能上机编程实现相应的算法。
二、实验要求
用MATLAB 实现最速下降法,牛顿法和共轭梯度法求解实例。
四、实验原理
最速下降法是以负梯度方向最为下降方向的极小化算法,相邻两次的搜索方向是互相直交的。
牛顿法是利用目标函数)(x f 在迭代点k x 处的Taylor 展开式作为模型函数,并利用这个二次模型函数的极
小点序列去逼近目标函数的极小点。
共轭梯度法它的每一个搜索方向是互相共轭的,而这些搜索方向k d 仅仅是负梯度方向k g -与上一次接
待的搜索方向1-k d 的组合。
五.运行及结果如下:
最速下降法:
题目:f=(x-2)^2+(y-4)^2
M 文件:
function [R,n]=steel(x0,y0,eps)
syms x ;
syms y;
f=(x-2)^2+(y-4)^2;
v=[x,y];
j=jacobian(f,v);
T=[subs(j(1),x,x0),subs(j(2),y,y0)];
temp=sqrt((T(1))^2+(T(2))^2);
x1=x0;y1=y0;
n=0;
syms kk;
while (temp>eps)
d=-T;
f1=x1+kk*d(1);f2=y1+kk*d(2);
fT=[subs(j(1),x,f1),subs(j(2),y,f2)];
fun=sqrt((fT(1))^2+(fT(2))^2);
Mini=Gold(fun,0,1,0.00001);
x0=x1+Mini*d(1);y0=y1+Mini*d(2);
T=[subs(j(1),x,x0),subs(j(2),y,y0)];
temp=sqrt((T(1))^2+(T(2))^2);
x1=x0;y1=y0;
n=n+1;
end
R=[x0,y0]
调用黄金分割法:
M文件:
function Mini=Gold(f,a0,b0,eps)
syms x;format long;
syms kk;
u=a0+0.382*(b0-a0);
v=a0+0.618*(b0-a0);
k=0;
a=a0;b=b0;
array(k+1,1)=a;array(k+1,2)=b;
while((b-a)/(b0-a0)>=eps)
Fu=subs(f,kk,u);
Fv=subs(f,kk,v);
if(Fu<=Fv)
b=v;
v=u;
u=a+0.382*(b-a);
k=k+1;
elseif(Fu>Fv)
a=u;
u=v;
v=a+0.618*(b-a);
k=k+1;
end
array(k+1,1)=a;array(k+1,2)=b;
end
Mini=(a+b)/2;
输入:
[R,n]=steel(0,1,0.0001)
R = 1.99999413667642 3.99999120501463
R = 1.99999413667642 3.99999120501463
n = 1
牛顿法:
题目:f=(x-2)^2+(y-4)^2
M文件:
syms x1x2;
f=(x1-2)^2+(x2-4)^2;
v=[x1,x2];
df=jacobian(f,v);
df=df.';
G=jacobian(df,v);
epson=1e-12;x0=[0,0]';g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)});k= 0;mul_count=0;sum_count=0;
mul_count=mul_count+12;sum_count=sum_count+6;
while(norm(g1)>epson)
p=-G1\g1;
x0=x0+p;
g1=subs(df,{x1,x2},{x0(1,1),x0(2,1)});
G1=subs(G,{x1,x2},{x0(1,1),x0(2,1)});
k=k+1;
mul_count=mul_count+16;sum_count=sum_count+11;
end;
k
x0
mul_count
sum_count
结果::k = 1
x0 =
2
4
mul_count = 28
sum_count = 17
共轭梯度法:
题目:f=(x-2)^2+(y-4)^2
M文件:
function f=conjugate_grad_2d(x0,t) x=x0;
syms xi yi a
f=(xi-2)^2+(yi-4)^2;
fx=diff(f,xi);
fy=diff(f,yi);
fx=subs(fx,{xi,yi},x0);
fy=subs(fy,{xi,yi},x0);
fi=[fx,fy];
count=0;
while double(sqrt(fx^2+fy^2))>t s=-fi;
if count<=0
s=-fi;
else
s=s1;
end
x=x+a*s;
f=subs(f,{xi,yi},x);
f1=diff(f);
f1=solve(f1);
if f1~=0
ai=double(f1);
else
break
x,f=subs(f,{xi,yi},x),count
end
x=subs(x,a,ai);
f=xi-xi^2+2*xi*yi+yi^2;
fxi=diff(f,xi);
fyi=diff(f,yi);
fxi=subs(fxi,{xi,yi},x);
fyi=subs(fyi,{xi,yi},x);
fii=[fxi,fyi];
d=(fxi^2+fyi^2)/(fx^2+fy^2);
s1=-fii+d*s;
count=count+1;
fx=fxi;
fy=fyi;
end
x,f=subs(f,{xi,yi},x),count
输入:conjugate_grad_2d([0,0],0.0001)
结果:
x = 0.24998825499785 -0.24999998741273
f = 0.12499999986176
count = 10
ans = 0.12499999986176
六、结论如下:
最速下降法越接近极小值,步长越小,前进越慢。
牛顿法要求二阶导数,计算量很大。
共轭梯度法是介于最速下降和牛顿法之间的算法,克服了最速下降法的收敛速度慢的缺点,又避免了牛顿法的大计算量。
数值分析最速下降法matlab源程序
Matlab源程序
clc;
clear;
syms x1 x2;
X=[x1,x2];
fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17;
fxd1=[diff(fx,x1) diff(fx,x2)];
x=[2 3];
g=0;
e=0.0005;
a=1;
fan=subs(fxd1,[x1 x2],[x(1) x(2)]);
g=0;
for i=1:length(fan)
g=g+fan(i)^2;
end
g=sqrt(g);
step=0;
while g>e
step=step+1;
dk=-fan;
%点x(k)处的搜索步长
ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2);
xu=x+ak*dk;
x=xu;
%输出结果
optim_fx=subs(fx,[x1 x2],[x(1) x(2)]);
fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx);
%计算目标函数点x(k+1)处一阶导数值
fan=subs(fxd1,[x1 x2],[x(1) x(2)]);
g=0;
for i=1:length(fan)
g=g+fan(i)^2;
end
g=sqrt(g);
end
%输出结果
optim_fx=subs(fx,[x1 x2],[x(1) x(2)]);
fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx);。