共轭梯度法求解线性方程组-matlab通用程序
共轭梯度法步骤
共轭梯度法步骤共轭梯度法是一种求解线性方程组的迭代算法,它以高效稳定的特点而广受欢迎。
以下是共轭梯度法的步骤:步骤1:初始化首先,我们需要有一个初始向量x0和一个初始残量r0=b-Ax0。
其中,A为系数矩阵,b为常数向量。
步骤2:计算方向向量令d0=r0,表示第一次迭代的方向向量。
步骤3:计算步进长度令α0=(r0·r0)/(d0·Ad0),其中·表示向量的点积。
α0表示迭代过程中每个方向向量的步进长度。
步骤4:更新解向量令x1=x0+α0d0,表示迭代后的解向量。
步骤5:计算新残量令r1=r0-α0Ad0。
步骤6:判断终止条件如果r1的范数小于预设阈值,或者迭代次数达到预设次数,终止迭代。
否则,进入下一次迭代。
步骤7:更新方向向量令β1=(r1·r1)/(r0·r0),表示更新方向向量的轴线。
步骤8:计算新方向向量令d1=r1+β1d0,表示新的迭代方向向量。
步骤9:计算新的步进长度令α1=(r1·r1)/(d1·Ad1)。
步骤10:更新解向量令x2=x1+α1d1。
步骤11:更新残量令r2=r1-α1Ad1。
步骤12:重复步骤6至11,直至满足终止条件。
总结起来,共轭梯度法的步骤主要包括初始化、计算方向向量、计算步进长度、更新解向量、计算新残量、判断终止条件、更新方向向量、计算新的步进长度、更新解向量和更新残量等。
该算法迭代次数较少,收敛速度快,适用于大规模线性方程组的求解。
matlab共轭阶梯法
matlab共轭阶梯法英文回答:Gaussian Elimination or Row Reduction.Gaussian elimination, also known as row reduction, is a method for solving systems of linear equations by transforming the augmented matrix of the system into an equivalent matrix in row echelon form. This form allows us to easily identify the solutions to the system.Steps of Gaussian Elimination:1. Convert the system of equations into an augmented matrix.2. Use row operations to transform the augmented matrix into row echelon form.Row operations:Interchange two rows.Multiply a row by a nonzero constant.Add a multiple of one row to another row.3. Interpret the row echelon form to solve the system.Row Echelon Form:A matrix is in row echelon form if it satisfies the following conditions:1. All zero rows are at the bottom of the matrix.2. The first nonzero entry in each row (called the leading entry) is 1.3. Each leading entry is to the right of the leading entry in the row above it.4. All entries below the leading entry in a column are 0.Example:Consider the system of equations:2x + 3y = 1。
计算方法——共轭梯度法求解线性方程组
(2)
(k)
共轭梯度法中关键的两点是迭代格式(2)中最佳步长k 和搜索方向 d
(k) (k)
的确定。其
中k 可以通过一元函数f(x +d )的极小化来求得,其表达式为公式(3);取 d (0) = r(0) = b-Ax(0),则 d(k+1) = r(k+1) +kd(k),要求 d(k+1)满足 (d(k+1) , Ad(k)) = 0,可得k 的表达 式(4)。
计算方法上机报告
计算方法上机报告
1 共轭梯度法求解线性方程组
1.1 算法原理及程序框图 当线性方程组 Ax = b 的系数矩阵 A 是对称正定矩阵是,可以采用共轭梯度法对该 方程组进行求解,可以证明,式(1)所示的 n 元二次函数 1 f ( x ) x T Ax bT x (1) 2 取得极小值点 x*是方程 Ax = b 的解。共轭梯度法是把求解线性方程组的问题转化为求 解一个与之等价的二次函数极小化的问题。从任意给定的初始点出发,沿一组关于矩 阵 A 的共轭方向进行线性搜索,在无舍入误差的假定下,最多迭代 n 次(其中 n 为矩 阵 A 的阶数) ,就可求得二次函数的极小点,也就求得线性方程组 Ax = b 的解。其迭 代格式为公式(2)。
4
1 1
1 0 ,b 2 1 0 1 1 2
计算方法上机报告
矩阵 A 的阶数取 200 进行求解。 由于该线性方程组的系数矩阵阶数比较大,而且具有一定的规律,因此首先用 matlab 编程将系数矩阵、右端项以及阶数保存在 D 盘根目录的三个文件中(生成系数 矩阵, 右端项以及阶数的程序见附录 2) , 然后运行共轭梯度法程序进行方程组的求解。 最终的运行结果为图 4 和图 5。程序运行之后 D 盘根目录下生成的文件如图 6 所示。
双共轭梯度法matlab_概述及解释说明
双共轭梯度法matlab 概述及解释说明1. 引言1.1 概述引言部分将介绍“双共轭梯度法(Matlab)”,该方法是一种用于解决优化问题的迭代算法,常用于求解大规模线性方程组、最小二乘问题和非线性最优化等。
本文将全面讲解双共轭梯度法的基础知识、算法流程及其在MATLAB中的应用与实现。
1.2 文章结构本文按照以下方式组织:- 第二节将介绍双共轭梯度法的基础知识,包括梯度下降法、共轭梯度法和双共轭梯度法的简介。
- 第三节将详细阐述双共轭梯度法的算法流程及具体步骤解释,包括初始化步骤、迭代更新步骤以及收敛准则和结束条件设定。
- 第四节将以MATLAB为工具,展示双共轭梯度法在实践中的应用与实现举例。
这一部分将给出MATLAB代码编写指导原则,描述一个示例问题,并说明求解过程和结果分析。
- 最后一节是结论与展望,总结了双共轭梯度法的优点和局限性,并提供对未来可能的研究方向的展望和建议。
1.3 目的本文旨在介绍双共轭梯度法的原理、算法流程及其在MATLAB中的实际应用。
读者将通过本文了解如何使用该方法解决优化问题,并深入理解算法背后的理论基础。
同时,本文还将探讨双共轭梯度法存在的局限性,并展望未来可能的研究方向,为相关领域的研究提供参考。
2. 双共轭梯度法基础知识2.1 梯度下降法简介梯度下降法是一种优化算法,用于求解无约束问题的最小值。
其基本思想是通过沿着目标函数的负梯度方向进行迭代更新,以逐步减小目标函数值。
具体而言,对于一个可微分的目标函数f(x),初始值$x_0$被选为起点,然后通过以下公式进行迭代更新:$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$其中$\alpha_k$是步长或学习率,$\nabla f(x_k)$表示在点$x_k$处的梯度(即函数$f(x)$在$x_k$处的导数)。
该过程将重复执行直到满足预设的终止条件。
2.2 共轭梯度法简介共轭梯度法是一种高效的迭代方法,用于解决对称正定线性系统的问题。
共轭梯度法在bp算法中的应用及其matlab仿真
共轭梯度法在bp算法中的应用及其matlab仿真共轭梯度法(Conjugate Gradient Method)是一种优化算法,广泛应用于反向传播(Backpropagation, BP)算法中的权重更新过程。
在深度学习中,BP算法是一种基于梯度下降的优化算法,用于更新神经网络的权重参数,以最小化损失函数。
共轭梯度法作为BP算法的一种改进,可以加快优化过程的收敛速度。
共轭梯度法的核心思想是利用共轭梯度方向寻找最优解。
较传统的梯度下降法每次迭代只朝着负梯度方向移动,需要较多的迭代次数才能收敛。
而共轭梯度法通过迭代求解共轭方向的方式,使得每次迭代在之前梯度下降方向上的是独立的,从而加快了收敛速度。
在BP算法中,共轭梯度法主要应用于误差反向传播过程中的权重更新。
具体步骤如下:1.初始化:设置初始权重值。
2.前向传播:将输入样本通过神经网络进行前向传播,得到输出结果。
4.反向传播:根据误差值,利用链式法则计算每层的梯度。
5.权重更新:利用共轭梯度法更新网络权重。
具体步骤如下:a.计算共轭梯度方向:根据梯度计算更新方向。
b.更新权重:根据共轭梯度方向更新权重,并计算损失函数对权重的一阶导数,以更新共轭梯度方向。
c.判断终止条件:当权重变化小于预设阈值或达到最大迭代次数时停止迭代,否则返回步骤a。
在Matlab中,可以通过以下步骤进行共轭梯度法的BP算法仿真:1.定义神经网络结构:选择合适的网络层数和神经元数量,并初始化权重。
2.定义损失函数和激活函数:根据问题的特点,选择合适的损失函数和激活函数。
3.前向传播:将输入样本通过神经网络进行前向传播,得到输出结果。
5.反向传播:根据误差值,利用链式法则计算每层的梯度。
6.权重更新:利用共轭梯度法更新网络权重。
具体步骤如前文所述。
7.判断停止条件:当权重变化小于预设阈值或达到最大迭代次数时停止迭代。
8.输出结果:经过训练后的神经网络可以用于预测新的输入样本。
总而言之,共轭梯度法在BP算法中的应用主要是用于加速权重更新过程,优化神经网络的训练效果。
共轭梯度法的matlab源程序
共轭梯度法的matlab源程序functiong=conjugate_grad_2d(x0,t)%please input thisconjugate_grad_2d([2,2],0.05)x=x0;syms xi yiaf=xi^2-xiyi+3yi^2;fx=diff(f,xi);fy=diff(f,yi);fx=subs(fx,{xi,yi },x0);fy=subs(fy,{xi,yi},x0);fi=[fx,fy];count=0;whiledouble(sqrt(fx^2+fy^2))ts=-fi;ifcount=0s=-fi;elses=s1;endx=x+as;f=subs(f,{xi,yi},x);f1=diff(f);f1=solve(f1);iff1~=0ai=double(f1);elsebreakx,f=subs(f,{xi,yi},x),countend x=subs(x,a,ai);f=xi^2-xiyi+3yi^2;fxi=diff(f,xi);fyi=diff(f,yi);f xi=subs(fxi,{xi,yi},x);fyi=subs(fyi,{xi,yi},x);fii=[fxi,fyi];d=(fxi^ 2+fyi^2)(fx^2+fy^2);s1=-fii+ds;count=count+1;fx=fxi;fy =fyi;endx,f=subs(f,{xi,yi},x),count史锋的共轭梯度法matlab程序以函数f=1-(1/(sqrt(2*pi)))*(exp((-(xi-3)^2+yi^2)/2)+0.6*exp((-(xi+3)^2+yi^2)/2));为例求解最小值function f=conjugate_gradient(x0,eps)x=x0;syms xi yi af=1-(1/(sqrt(2*pi)))*(exp((-(xi-3)^2+yi^2)/2)+0.6*exp((-(xi+3)^2+yi^2)/2));fx=diff(f,xi);fy=diff(f,yi);fx=subs(fx,{xi,yi},x0);fy=subs(fy,{xi,yi},x0);fi=[fx,fy];n=0;while double(sqrt(fx^2+fy^2))>epss=-fi;if n<=0s=-fi;elses=s1;endx=x+a*s;f=subs(f,{xi,yi},x);f1=diff(f);f1=solve(f1);if f1~=0ai=double(f1);elsebreakx,nendx=subs(x,a,ai);f=1-(1/(sqrt(2*pi)))*(exp((-(xi-3)^2+yi^2)/2)+0.6*exp((-(xi+3)^2+yi^2)/2));fxi=diff(f,xi);fyi=diff(f,yi);fxi=subs(fxi,{xi,yi},x);fyi=subs(fyi,{xi,yi},x);fii=[fxi,fyi];d=(fxi^2+fyi^2)/(fx^2+fy^2);s1=-fii+d*s; %搜索方向n=n+1; %搜索次数fx=fxi;fy=fyi;endx,n%请输入:conjugate_gradient([0,0],10^(-6))后运行中国振动联盟标题: 共轭梯度法的matlab源程序[打印本页]作者: suffer 时间: 2006-10-11 09:15 标题: 共轭梯度法的matlab源程序1.function g=conjugate_grad_2d(x0,t)2.%please input this:conjugate_grad_2d([2,2],0.05)3.x=x0;4.syms xi yi a5.f=xi^2-xi*yi+3*yi^2;6.fx=diff(f,xi);7.fy=diff(f,yi);8.fx=subs(fx,{xi,yi},x0);9.fy=subs(fy,{xi,yi},x0);10.fi=[fx,fy];11.count=0;12.while double(sqrt(fx^2+fy^2))>t13.s=-fi;14.if count<=015.s=-fi;16.else17.s=s1;18.end19.x=x+a*s;20.f=subs(f,{xi,yi},x);21.f1=diff(f);22.f1=solve(f1);23.if f1~=024.ai=double(f1);25.else26.break27.x,f=subs(f,{xi,yi},x),count28.end29.x=subs(x,a,ai);30.f=xi^2-xi*yi+3*yi^2;31.fxi=diff(f,xi);32.fyi=diff(f,yi);33.fxi=subs(fxi,{xi,yi},x);34.fyi=subs(fyi,{xi,yi},x);35.fii=[fxi,fyi];36.d=(fxi^2+fyi^2)/(fx^2+fy^2);37.s1=-fii+d*s;38.count=count+1;39.fx=fxi;40.fy=fyi;41.end42.x,f=subs(f,{xi,yi},x),count复制代码本程序由tammy友情提供作者: bainhome 时间: 2006-10-15 23:40这段代码是我编的吧,函数名称命名风格一看就是自己...^_^当时刚学没几天,代码里大段大段的都是符号工具箱里的函数,运行慢得要死要活。
matlab共轭梯度法求解方程组
主题:matlab共轭梯度法求解方程组近年来,随着科学技术的不断发展,数学建模和计算机仿真成为科学研究和工程技术领域的重要手段。
在实际应用中,我们常常需要解决线性方程组的求解问题,而共轭梯度法作为一种高效的迭代求解方法,广泛应用于信号处理、图像处理、地球物理勘探和优化问题等领域。
本文将介绍如何利用matlab中的共轭梯度法求解线性方程组的基本原理和实际操作方法。
1. 共轭梯度法的基本原理共轭梯度法是一种迭代法,用于求解对称正定线性方程组Ax=b。
该方法的核心思想是通过一系列的迭代操作,逐步逼近方程组的解,直到满足一定的精度要求。
在每一步迭代中,共轭梯度法利用残差和方向向量的共轭性质,不断寻找最优的步长,从而实现方程组的求解。
2. matlab中共轭梯度法的基本调用方法在matlab中,调用共轭梯度法求解线性方程组非常简单。
需要将方程组的系数矩阵A和右端向量b输入到matlab中,然后利用内置函数conjugateGradient进行求解。
具体的调用方法如下:x = conjugateGradient(A, b, x0, maxIter, tol)其中,A为系数矩阵,b为右端向量,x0为初始解向量,maxIter为最大迭代次数,tol为精度要求。
调用完毕后,matlab将返回方程组的近似解x。
3. 共轭梯度法在实际工程中的应用共轭梯度法作为一种高效的求解方法,在工程技术领域得到了广泛的应用。
以图像处理为例,图像处理中经常需要解决大规模的线性方程组,而共轭梯度法能够高效地求解这类问题,提高了图像处理算法的效率和稳定性。
另外,在地球物理勘探中,共轭梯度法也被广泛应用于三维数据的快速处理和解释。
可以说,共轭梯度法在实际工程中发挥着重要的作用。
4. 共轭梯度法的优缺点分析尽管共轭梯度法具有非常高的效率和稳定性,但是该方法也存在一些缺点。
该方法只适用于对称正定的线性方程组,对于一般的线性方程组并不适用。
共轭梯度法的收敛速度受到方程条件数的影响,对于病态问题,可能收敛速度较慢。
优化设计共轭梯度matlab程序
111%用阻尼牛顿法求课本93页第2题f(x1,x2)=(x1-2)^4+(x1-2x2)^2极小值(matlab语言) k=0;ptol=1.0e-5;xk=input('input x0:')itcl=[1;1];while norm(itcl)>=ptolf1=[4*xk(1,1)^3-24*xk(1,1)^2+50*xk(1,1)-4*xk(2,1)-32;-4*xk(1,1)+8*xk(2,1)];G=[12*xk(1,1)^2-48*xk(1,1)+50,-4;-4,8];dk=-inv(G)*f1;a=-(dk'*f1)/(dk'*G*dk);xk=xk+a*dk;itcl=a*dk;k=k+1;endf=(xk(1,1)-2)^4+(xk(1,1)-2*xk(2,1))^2;fprintf('\n用阻尼牛顿法迭代%d 次后得到极小点x*及极小值f为:\n',k);disp(xk);disp(f);input x0:[1;1]xk =11用阻尼牛顿法迭代27 次后得到极小点x*及极小值f为:2.00001.00001.3270e-019≈0%用共轭梯度法求课本93页第32题f(x1,x2)=1.5*xk(1)^2+0.5xk(2)^2-xk(1)*xk(2)-2*xk(1)的极小值(matlab语言)xk=input('input x0:')ptol=1.0e-5;k=2;while k==2k=0;btk=0;dk=0;for k=0:2gk=[3*xk(1,1)-xk(2,1)-2;xk(2,1)-xk(1,1)];dk=-gk+btk*dk;f1=gk;G=[3,-1;-1,1];a=-(dk'*f1)/(dk'*G*dk);xk=xk+a*dk;gk1=[3*xk(1,1)-xk(2,1)-2;xk(2,1)-xk(1,1)];if norm(gk1)<ptolbreakendbtk=(norm(gk1)/norm(gk))^2;endif norm(gk1)<ptolbreakendendf=1.5*xk(1,1)^2+0.5*xk(2,1)^2-xk(1,1)*xk(2,1)-2*xk(1,1);fprintf('\n 运用共轭梯度法迭代%d后得到极小点xk及极小值f为:\n',k);disp(xk);disp(f);input x0:[1;2]xk =12运用共轭梯度法迭代1次后得到极小点xk及极小值f为:1.00001.0000-1%用鲍威尔法求解课本94页第4题中二次型的极小值(matlab语言)x0=[0;0];x2=[0;0];ptol=1.0e-5;d=eye(2);k=0;dk=[1;1];f=zeros(4,1);while norm(dk)>=ptolfor i=1:2f(1)=2*x0(1)^2+2*x0(2)^2-4*x0(1)-2*x0(1)*x0(2);f1=[2*x0(1)-2*x0(2)-4;4*x0(2)-2*x0(1)];f2=[2,-2;-2,4];a=-(d(:,1)'*f1)/(d(:,1)'*f2*d(:,1));x2=x2+a*d(:,1);f(2)=2*x2(1)^2+2*x2(2)^2-4*x2(1)-2*x2(1)*x2(2);det1=f(1)-f(2);f1=[2*x2(1)-2*x2(2)-4;4*x2(2)-2*x2(1)];a=-(d(:,2)'*f1)/(d(:,2)'*f2*d(:,2));x2=x2+a*d(:,2);f(3)=2*x2(1)^2+2*x2(2)^2-4*x2(1)-2*x2(1)*x2(2);det2=f(2)-f(3);endf1=[2*x2(1)-2*x2(2)-4;4*x2(2)-2*x2(1)];if det1>=det2detm=det1;m=1;elsedetm=det2;m=2;enddk=x2-x0;x3=2*x2-x0;f(4)=2*x3(1)^2+2*x3(2)^2-4*x3(1)-2*x3(1)*x3(2);if (f(4)<f(1))&((f(1)-2*f(3)+f(4))*(f(1)-f(3)-detm)^2<0.5*detm*(f(1)-f(4))^2) a=-(dk'*f1)/(dk'*f2*dk);x0=x3+a*dk;if m==1d(:,m)=d(:,2);d(:,2)=dk;elsed(:,2)=dk;endelseif f(3)<f(4)x0=x2;elsex0=x3;endk=k+1;endfx0=2*x0(1)^2+2*x0(2)^2-4*x0(1)-2*x0(1)*x0(2);fprintf('\n用鲍威尔法迭代%d次求二次型函数的极值点及极小值为:\n',k); disp(x0);disp(fx0);用鲍威尔法迭代2次求二次型函数的极值点及极小值为:428。
MATLAB共轭梯度发
最优化方法学院:专业班级:学生姓名:学号:共轭梯度法一.实验目的:(1).熟悉使用共轭梯度法求解无约束非线性规划问题的原理;(2).在掌握原理的基础上熟练运用此方法解决问题;(3).学会利用计算机语言编写程序来辅助解决数学问题;(4).解决问题的同时分析问题,力求达到理论与实践的相统一;(5).编写规范的实验报告.二.实验原理:<算法原理>:共轭梯度法为求解线性方程组而提出。
后来,人们把这种方法用于求解无约束最优化问题,使之成为一种重要的最优化方法。
共轭梯度法的基本思想是把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点。
根据共轭方向的基本性质,这种方法具有二次终止性。
在各种优化算法中,共轭梯度法是非常重要的一种。
其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。
共轭方向无约束最优化方法的核心问题是选择搜索方向.在本次实验中,我们运用基于共轭方向的一种算法—共轭梯度法三.算法流程图:四.实验结果:(1).实验函数f=(3*x1-cos(x2*x3)-1/2)^2+(x1^2-81*(x2+0.1)+sin(x3)+1.06)^2+(exp(-x1*x2)+20*x3+ 1/3*(10*3.14159-3))^2;(2).源程序:syms x1 x2 x3 r;f=(3*x1-cos(x2*x3)-1/2)^2+(x1^2-81*(x2+0.1)+sin(x3)+1.06)^2+(exp(-x1*x2)+20* x3+1/3*(10*3.14159-3))^2;x=[x1,x2,x3];df=jacobian(f,x);df=df.';error=0.000001;x0=[0,0,0]';g1=subs(df,x,x0);k=0;while(norm(g1)>error)if k==0d=-g1;elsebta=g1'*g1/(g0'*g0);d=-g1+bta*d0;endy=subs(f,x,x0+r*d);result=jintuifa(y,r);result2=gold(y,r,result);step=result2;x0=x0+step*d;g0=g1;g1=subs(df,x,x0);d0=d;k=k+1;end;kx0min=subs(f,[x1 x2 x3],x0)(3).实验结果k =26x0 =0.4996-0.0900-0.5259min =1.1496e-018(4).结果分析:由FR法得到的最优解为(0.4996, -0.0900, -0.5259),迭代的次数为32,由于精度的降低(ε= 61-),实际证明对结果也有一定的影响。
共轭梯度法求解最优化计算Matlab
syms x1 x2;f=4*(x1)^2-4*(x1)*(x2)+3*(x2)^2+x1;%函数表达式%f=8*(x1)^2+4*(x1)*(x2)+5*(x2)^2;X=—10:0.1:10; Y=—10:0。
1:10;[X,Y]=meshgrid(X,Y);Z=4.*X.^2-4.*X。
*Y+3。
*Y.^2+X;mesh(X,Y,Z)contour(X,Y,Z)x0=[10 10]';%初始点v=[x1,x2];mu=0。
01;%最小误差gradf=gradient(f);%函数的梯度H=jacobian(gradf,v);h0=subs(H,[x1;x2],x0);%在点x0处的Hessiang0=subs(gradf,[x1;x2],x0);%在点x0处的梯度值if g0’*g0〈mu%检验是否满足精度条件minf=subs(f,[x1;x2],x0);%函数的最小值return;endd0=-g0;%搜索方向alpha=-(g0’*d0)/(d0'*h0*d0);%步长xk=x0+alpha*d0;%下一点gk=subs(gradf,[x1;x2],xk);%梯度值beta=gk’*gk/(g0'*g0);%求搜索方向时的系数dk=-gk+beta*d0;%下一个方向x0=xk;%更新点g0=gk;%更新所在点的梯度d0=dk;%更新方向while g0’*g0>mualpha=-(g0’*d0)/(d0’*h0*d0);%步长xk=x0+alpha*d0;%下一点gk=subs(gradf,[x1;x2],xk);%梯度值beta=gk’*gk/(g0’*g0);%求搜索方向时的系数dk=—gk+beta*d0;%下一搜索方向x0=xk;%更新点g0=gk;%更新所在点的梯度d0=dk;%更新方向hk=subs(H,[x1;x2],x0);%在点xk处的梯度值h0=hk;%更新矩阵endminf=subs(f,[x1;x2],xk)%函数的最小值xk。