让我们探索高中数学数列中的新题型
高中数学「数列」专题——常见的问题类型及解答方法,建议收藏!
高中数学「数列」专题——常见的问题类型及解答方法,建议
收藏!
在高考试题中,数学数列知识很重要,事实上,许多学生在寻求数列知识的研究及解答,目的是让自己在考试中获得较高的分数,现阶段数列解题方法,过于注重解题形式,但并不解决其中存在的具体解题技巧,所以,从高中生角度看,着重分析高中数学数列常见问题类型及解答方法。
求数列的通项、前n项和等问题是数列的基本问题,虽然近年由于导数考查力度加大,部分省市有些年份对数列要求有所降低,但也有省市的数列问题还是放在压轴题的位置.其主要特点是字母运算进行代数推理,有时要涉及函数、不等式证明、反证法,甚至会用到数的整除知识,对推理能力要求较高.
最后希望大家能牢牢记住我的这句话:学知识不能投机取巧,但考试绝对有规律
其实根据历年高考试题和高考出题规律,高考出题遵循8020法则(即80%基础题,20%难题),也就是把这些题搞懂,120分就来了!虽然想短时间提到140 不那么现实,但是保证基础题不丢分,难题多得分还是能够实现的!
所以老师还给同学们整理了一份包括120个常考、必考核心考点,475道高考数学必考母题,每一道母题都是一个好的模板,碰到类似的题,同学们只需要思考其差异即可。
结束语:好了,今天小编的文章就到此结束了,感谢各位朋友的阅读。
每一篇文章,都是小编用心写的,收集了许多的资料,实属不易!如果各位阅读的朋友觉得小编今天写的文章不错,那么就麻烦各位朋友高抬金手,在文章末尾为小编点一个小小的赞,各位朋友的赞,将会让小编高兴一整天,也会成为小编继续努力的动力!同时如果各位朋友喜欢小编写的文章,可以给小编点点关注,好让小编拥有这份荣幸,继续为各位朋友创作优质的文章!当然在这里小编也祝福各位朋友天天开心,万事如意!。
新高考数学新定义 开放性和探究专题(解析版)
新高考新定义开放性和探究专题题型一:数列新题型1(2023·河北张家口·统考二模)欧拉函数φn n ∈N * 的函数值等于所有不超过正整数n ,且与n 互质的正整数的个数,例如:φ1 =1,φ3 =2.数列a n 满足a n =φ2n ,其前n 项和为S n ,则S 10=()A.1024B.2048C.1023D.2047【答案】C【分析】根据欧拉函数的定义可求出a n =φ2n =2n -1,再由等比数列的前n 项和公式即可求出答案.【详解】根据欧拉函数的定义可得a 1=φ2 =1,a 2=φ22 =2,a 3=φ23 =4,a 4=φ24 =8,一般地,a n =φ2n =2n -1.事实上,φ2n 表示从1到2n 的正整数中,与2n 互质的正整数的个数,相当于去掉从1到2n 的正整数中所有2的倍数的个数(共2n -1个数),因此,a n =φ2n =2n -2n -1=2n -1.所以,S 10=1+2+4+⋯+29=1023.故选:C .2(2023·陕西西安·西安一中校联考模拟预测)南宋数学家杨辉在《详解九章算术》中提出了高阶等差数列的问题,即一个数列a n 本身不是等差数列,但从a n 数列中的第二项开始,每一项与前一项的差构成等差数列b n (则称数列a n 为一阶等差数列),或者b n 仍旧不是等差数列,但从b n 数列中的第二项开始,每一项与前一项的差构成等差数列c n (则称数列a n 为二阶等差数列),依次类推,可以得到高阶等差数列.类比高阶等差数列的定义,我们亦可定义高阶等比数列,设数列1,1,2,8,64⋯是一阶等比数列,则该数列的第8项是( ).A.28 B.215C.221D.228【答案】C 【分析】设b n -1=a na n -1,得到b n 为等比数列,求得b n =2n -1,结合a n =b n -1⋅b n -2⋯b 1⋅a 1,进而求得a 8的值.【详解】由题意,数列1,1,2,8,64,⋯为a n ,且为一阶等比数列,设b n -1=a na n -1,所以b n 为等比数列,其中b 1=1,b 2=2,公比为q =b 2b 1=2,所以b n =2n -1,则a n =b n -1⋅b n -2⋯b 1⋅a 1=21+2+3+⋯+n -2=2n -1 n -22,n ≥2,所以第8项为a 8=221.故选:C .3(2023·上海黄浦·统考二模)设数列a n 的前n 项的和为S n ,若对任意的n ∈N *,都有S n <a n +1,则称数列a n 为“K 数列”.关于命题:①存在等差数列a n ,使得它是“K 数列”;②若a n 是首项为正数、公比为q 的等比数列,则q ∈[2,+∞)是a n 为“K 数列”的充要条件.下列判断正确的是()A.①和②都为真命题B.①为真命题,②为假命题C.①为假命题,②为真命题D.①和②都为假命题【答案】C【分析】根据给定的定义,按公差的取值情况分类探讨判断①;利用等比数列通项公式及前n项和公式,结合不等式恒成立即可推理作答.【详解】令等差数列a n的公差为d,当d≤0时,S1=a1≥a1+d=a2,不符合题意,当d>0时,S n-a n+1=na1+n(n-1)2d-(a1+nd)=d2n2-32d-a1n-a1,函数f(x)=d2x2-32d-a1x-a1的图象是开口向上的抛物线,对称轴x=32-a1d,存在x0>32-a1d,使得f(x0)>0,取不小于x0的正整数n,则有f(n)>0,即S n>a n+1,不符合题意,综上得①为假命题;等比数列a n首项a1>0,因为数列a n为“K数列”,则有a1=S1<a2=a1q,即q>1,S n=a1(1-q n)1-q,a n+1=a1q n,于是a1(1-q n)1-q<a1q n⇔q n+1-2q n+1>0⇔2-q<1q n,依题意,任意的n∈N*,2-q<1q n,函数y=1qx,x≥1在[1,+∞)单调递减,值域是0,1q ,因此2-q≤0⇔q≥2,所以q∈[2,+∞)是a n为“K数列”的充要条件,②是真命题,判断正确的是①为假命题,②为真命题.故选:C【点睛】关键点睛:数列是特殊的函数,根据数列的特性,准确构造相应的函数,借助函数性质分析求解是解题的关键,背景函数的条件,应紧扣题中的限制条件.题型二:立体几何新定义4(2023·辽宁沈阳·统考一模)刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.则正八面体(八个面均为正三角形)的总曲率为()A.2πB.4πC.6πD.8π【答案】B【分析】利用正八面体的面积和减去六个顶点的曲率和可得结果.【详解】正八面体每个面均为等比三角形,且每个面的面角和为π,该正面体共6个顶点,因此,该正八面体的总曲率为6×2π-8π=4π.故选:B.5(2021·全国·统考模拟预测)图1中的机械设备叫做“转子发动机”,其核心零部件之一的转子形状是“曲侧面三棱柱”,图2是一个曲侧面三棱柱,它的侧棱垂直于底面,底面是“莱洛三角形”,莱洛三角形是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的,如图3.若曲侧面三棱柱的高为10,底面任意两顶点之间的距离为20,则其侧面积为()A.100πB.600C.200πD.300π【答案】C【分析】由莱洛三角形是以正三角形的三个顶点为圆心,正三角形的边长为半径画圆弧得到的,结合已知可得半径为20,由弧长公式求得底面周长,进而可求得结果.【详解】莱洛三角形由三段半径为20,圆心角为π3的圆弧构成,所以该零件底面周长为3×π3×20=20π,故其侧面积为200π.故选:C.6(2023·四川南充·四川省南充高级中学校考模拟预测)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即12V球=πR2⋅R-13πR12⋅R=23πR3.现将椭圆x24+y29=1绕y轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于()A.32πB.24πC.18πD.16π【答案】D【解析】构造一个底面半径为2,高为3的圆柱,通过计算可得高相等时截面面积相等,根据祖暅原理可得橄榄球形几何体的体积的一半等于圆柱的体积减去圆锥的体积.【详解】解:构造一个底面半径为2,高为3的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,则当截面与顶点距离为h0≤h≤3时,小圆锥底面半径为r,则h3=r2,∴r=23h,故截面面积为:4π-49πh2,把y=h代入x24+y29=1,即x24+h29=1,解得:x=±239-h2,∴橄榄球形几何体的截面面积为πx2=4π-49πh2,由祖暅原理可得橄榄球形几何体的体积为:V=2V圆柱-V圆锥 =2×4π×3-13×4π×3=16π.故选:D.【点睛】关键点点睛:本题解题的关键是读懂题意,构建圆柱,通过计算得到高相等时截面面积相等,根据祖暅原理得到橄榄球形几何体的体积.题型三:函数新定义7(2023·陕西商洛·统考二模)古希腊数学家普洛克拉斯指出:“哪里有数,哪里就有美.”“对称美”是数学美的重要组成部分,在数学史上,人类一直在思考和探索数学的对称问题,图形中的对称性本质就是点的对称、线的对称.如正方形既是轴对称图形,又是中心对称图形,对称性也是函数一个非常重要的性质.如果一个函数的图象经过某个正方形的中心并且能够将它的周长和面积同时平分,那么称这个函数为这个正方形的“优美函数”.下列关于“优美函数”的说法中正确的有()①函数f x =x2x+2-x-1≤x ≤1 可以是某个正方形的“优美函数”;②函数f x =4cos 2x -π6 +3只能是边长不超过π2的正方形的“优美函数”;③函数f x =ln 4x 2+1-2x -1可以是无数个正方形的“优美函数”;④若函数y =f x 是“优美函数”,则y =f x 的图象一定是中心对称图形.A.①② B.①③ C.②③ D.②④【答案】B【分析】根据“优美函数”的定义,可判断①③中的函数为奇函数,其图象为中心对称图形,可判断其正误,结合余弦函数的性质可判断②,作图分析,举出反例,判断④.【详解】对于①,f x =x 2x+2-x -1≤x ≤1满足f -x =-x2-x +2x =-f (x ),故为奇函数,则f x 图象原点对称,且连续,所以f x 可以是中心为原点且边长为2的正方形的“优美函数”,故①正确.对于②,令2x -π6=π2+k πk ∈Z ,得x =π3+k π2k ∈Z ,所以f x =4cos 2x -π6+3图象的对称中心为π3+k π2,3 k ∈Z ,故以π3+k π2,3k ∈Z 为中心的正方形都能被函数f x =4cos 2x -π6+3的图象平分,即f x =4cos 2x -π6+3可以同时是无数个正方形的“优美函数”,故②错误.对于③,令g x =ln 4x 2+1-2x ,x ∈R ,则g -x =ln 4x 2+1+2x =-ln 4x 2+1-2x =-f (x ),故g x 为奇函数.又因为f x 的图象是由g x 的图象向下平移一个单位长度得到的,所以f x 图象的对称中心为0,-1 ,故以0,-1 为中心的正方形都能被f x =ln 4x 2+1-2x -1的图象平分,故③正确.对于④,如图所示,图中两三角形面积相等,函数y =f x 是“优美函数”,但其图象不是中心对称图形,可知④错误,故选:B8(2021·陕西渭南·统考三模)已知符号函数sgn x =1,x >0,0,x =0,-1,x <0,偶函数f x 满足f x +2 =f x ,当x ∈0,1 时,f x =x ,则下列结论正确的是()A.sgn f x >0 B.f 40412=1C.sgn f 2k =0k ∈Z D.sgn f k =sgn k k ∈Z【答案】C【分析】利用偶函数以及函数周期为2,作出函数f x 的大致图象,数形结合即可逐个分析答案.【详解】根据题意得函数f x 是周期为2的函数,作出函数f x 的大致图象,如下图所示.数形结合易知f x ∈0,1 ,则sgn f x =0或sgn f x =1,故A 错误;f 40412=f 202012 =12,故B 错误;f 2k =0k ∈Z ,则sgn f 2k =0k ∈Z ,故C 正确;sgn k =1,k >00,k =0,-1,k <0(k ∈Z ),所以sgn k =1,k ≠00,k =0 (k ∈Z ),所以sgn f k ≠sgn k k ∈Z ,故D 错误.故选:C .9(2023·陕西安康·统考二模)宋代理学家周敦颐的《太极图》和《太极图说》是象数和义理结合的表达.《朱子语类》卷七五:“太极只是一个混沦底道理,里面包含阴阳、刚柔、奇偶,无所不有”.太极图(如下图)将平衡美、对称美体现的淋漓尽致.定义:对于函数f x ,若存在圆C ,使得f x 的图象能将圆C 的周长和面积同时平分,则称f x 是圆C 的太极函数.下列说法正确的是()①对于任意一个圆,其太极函数有无数个②f x =log 122x +1 +12x 是x 2+y +1 2=1的太极函数③太极函数的图象必是中心对称图形④存在一个圆C ,f x =sin x +cos x 是它的太极函数A.①④ B.③④ C.①③ D.②③【答案】A【分析】根据“太极函数”、函数的对称性、对数运算等知识对选项4个说法进行分析,由此确定正确答案.【详解】对于①:过圆心的直线都可以将圆的周长和面积平分,所以对于任意一个圆,太极函数有无数个,故①正确对于②:f -x =log 122-x+1 -12x =log 121+2x 2x-12x ,f x -f -x =log 122x+12x +12x+x =-x +x =0,所以f x 关于y 轴对称,不是太极函数,故②错误;对于③:中心对称图形必定是太极函数,对称点即为圆心.但太极函数只需平分圆的周长和面积,不一定是中心对称图形,故③错误;对于④:曲线f x =sin x +cos x =2sin x +π4存在对称中心,所以必是某圆的太极函数,故④正确.故选:A .题型四:向量新定义10(2022·浙江·高三专题练习)定义d a ,b =a -b 为两个向量a ,b 间的“距离”,若向量a ,b满足下列条件:(ⅰ)b =1;(ⅱ)a ≠b ;(ⅲ)对于任意的t ∈R ,恒有d a ,tb ≥d a ,b,现给出下面结论的编号,①.a ⊥b ②.b ⊥a -b ③.a ⊥a -b ④.a ≥1⑤.a +b ⊥a -b 则以上正确的编号为()A.①③B.②④C.③④D.①⑤【答案】B【分析】根据题意可得a -tb 2≥a -b 2,转化为t 2-2ta ⋅b +2a ⋅b -1 ≥0对于任意的t ∈R 恒成立,即Δ≤0,整理得a ⋅b -1 2≤0,再利用向量的数量积逐一判断即可.【详解】由于d a ,b =a -b ,又对于t ∈R ,恒有d a ,tb ≥d a ,b ,显然有a -tb ≥a -b ,即a -tb 2≥a -b 2,则t 2-2ta ⋅b +2a ⋅b-1 ≥0对于任意的t ∈R 恒成立,显然有Δ=-2a ⋅b 2-42a ⋅b-1 ≤0成立,即a ⋅b -1 2≤0,则a ⋅b=1,故序号①错误,进而a ⋅b =a ⋅bcos θ=1,∵b =1,于是cos θ=1a ≤1,得a ≥1,即序号④正确.再由a ⋅b -1=0得a ⋅b -b 2=0,得b a -b =0,∴b ⊥a -b ,显然序号②正确.从而序号③错误,再由②a ≠b ,故序号⑤错误.综上知本题正确的序号为②④.故选:B .【点睛】本题命制是以新定义为背景,考查向量长度及数量积等知识概念,同时考查了等价转换、不等式恒成立问题,符合以生考熟的高考理念,考查知识内容源于教材,试题面向全体考生,不同思维能力层次的考生度可以利用熟悉的通法来解决问题,从而增强考生的自信心,有利于考生正常发挥,属于中档题.11(2023·全国·高三专题练习)互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,在斜坐标系中,过点P 作两坐标轴的平行线,其在x 轴和y 轴上的截距a ,b 分别作为点P 的x 坐标和y 坐标,记P a ,b ,则在x 轴正方向和y 轴正方向的夹角为θ的斜坐标系中,下列选项错误的是()A.当θ=60°时A 1,2 与B 3,4 距离为23B.点A 1,2 关于原点的对称点为A -1,-2C.向量a=x 1,y 1 与b =x 2,y 2 平行的充要条件是y 1x 2=y 2x 1D.点A 1,2 到直线x +y -1=0的距离为2【答案】D【分析】根据“斜坐标系”的定义,结合向量运算对选项进行分析,从而确定正确答案.【详解】设x 轴正方向的单位向量为e 1 ,y 轴正方向的单位向量为e 2,对于A 选项:由已知得e 1 ,e 2 =60°,所以e 1 ⋅e 2 =1×1×12=12.由A 1,2 ,B 3,4 及斜坐标的定义可知OA =e 1 +2e 2 ,OB =3e 1 +4e 2,AB =OB -OA =2e 1 +e 2 =2e 1 +e 2 2=2e 1 2+2e 1 ⋅e 2 +e 2 2=21+1+1=23,故A 选项正确;对于B 选项:根据“斜坐标系”的定义可知:点A 1,2 ,则OA =e 1 +2e 2 ,设A 1,2 关于原点的对称点为Ax ,y ,则OA ' =-OA =-e 1 -2e 2 =x e 1 +y e 2 ,由于e 1 ,e 2 不共线,所以x =-1y =-2 ,故B 选项正确;对于C 选项:a =x 1e 1 +y 1e 2 ,b =x 2e 1 +y 2e 2 ,若a 是零向量,则a ⎳b 成立,同时x 1=y 1=0,所以x 1y 2=x 2y 1成立,此时a ⎳b⇔x 1y 2=x 2y 1;若a 是非零向量,则a ⎳b ⇔存在非零常数λ,使b =λa⇔x 2e 1 +y 2e 2 =λx 1e 1 +λy 1e 2 ⇔x 2=λx 1λy 1=y 2 ⇔λx 2y 1=λx 1y 2⇔y 1x 2=y 2x 1,所以a ⎳b⇔x 1y 2=x 2y 1.故C 选项正确;对于D 选项:设直线x +y -1=0上的动点为P x ,y ,OP =x e 1 +y e 2 ,因为x +y -1=0,所以x +y =1,设OC =e 1 ,OD =e 2 ,则点P x ,y 在直线CD 上,所以直线x +y -1=0过点C 1,0 ,D 0,1 ,因为OA =e 1 +2e 2 ,则AC =OC -OA =2e 2 =2,AD =OD -OA =e 1 +e 2 =e 1 +e 2 2=3,由于OC =OD =1,OC ,OD =60°,所以CD =1.所以AD 2+CD 2=AC 2,所以AD ⊥CD ,所以点A 到直线x +y -1=0的距离为AD=3,故D 选项错误.故选:D12(2023·全国·高三专题练习)向量的运算包含点乘和叉乘,其中点乘就是大家熟悉的向量的数量积.现定义向量的叉乘:给定两个不共线的空间向量a 与b ,a ×b 规定:①a ×b 为同时与a ,b垂直的向量;②a ,b ,a ×b 三个向量构成右手系(如图1);③a ×b =a b sin a ,b ;④若a=x 1,y 1,z 1 ,b =x 2,y 2,z 2 ,则a ×b=+y 1,z 1y 2,z 2 ,-x 1,z 1x 2,z 2 ,+x 1,y 1x 2,y 2 ,其中a ,b c ,d=ad -bc .如图2,在长方体中ABCD -A 1B 1C 1D 1,AB =AD =2,AA 1=3,则下列结论正确的是()A.AB ×AD =AA 1B.AB ×AD =AD ×ABC.AB -AD ×AA 1 =AB ×AA 1 -AD ×AA 1D.长方体ABCD -A 1B 1C 1D 1的体积V =AB ×AD ⋅C 1C【答案】C【分析】利用向量的叉乘的定义逐项分析即得.【详解】解法一:AA 1 同时与AB ,AD 垂直;AA 1 ,AB ,AD三个向量构成右手系,且AB ×AD =AB AD sin AB ,AD =2×2×sin90°=4≠AA 1=3,所以选项A 错误;根据右手系知:AB ×AD 与AD ×AB 反向,所以AB ×AD ≠AD ×AB,故选项B 错误;因为AB -AD ×AA 1 =DB ×BB 1=22×3×sin90°=62,且DB ×BB 1 =-BD ×BB 1 与CA同向共线;又因为AB ×AA 1 =2×3×sin90°=6,且AB ×AA 1 与DA同向共线,AD ×AA 1 =2×3×sin90°=6,AD ×AA 1与DC 同向共线,所以AB ×AA 1 -AD ×AA 1 =62,且AB ×AA 1 -AD ×AA 1 与CA 同向共线,AB -AD ×AA 1 =AB ×AA -AD ×AA 1,故选项C 正确;因为长方体ABCD -A 1B 1C 1D 1的体积为2×2×3=12.又因为由右手系知向量AB ×AD 方向垂直底面向上,与C 1C 反向,所以AB ×AD ⋅C 1C<0,故选项D 错误;故选:C .解法二:如图建立空间直角坐标系:AB =0,2,0 ,AD =-2,0,0 ,AA 1 =0,0,3 ,则AB ×AD=0,0,4 ,所以选项A 错误;C 1C =0,0,-3 ,则AB ×AD ⋅C 1C =-12,故选项D 错误;AD ×AB=0,0,-4 ,故选项B 错误;AB -AD =DB =2,2,0 ,则AB -AD ×AA 1 =6,-6,0 ,AB ×AA 1 =6,0,0 ,AD ×AA 1 =0,6,0 ,则AB ×AA 1 -AD ×AA 1 =6,-6,0 .所以AB -AD ×AA 1 =AB ×AA 1 -AD ×AA 1 ,故选项C 正确;故选:C .题型五:开放性题型13(2023·甘肃酒泉·统考三模)已知P 是平行四边形ABCD 对角线上的一点,且AP =λAB +μAD,其中λ∈0,1,μ∈ 0,1 ,写出满足条件的λ与μ的一组λ,μ 的值.【答案】13,23(答案不唯一,满足λ+μ=1或λ=μ即可)【分析】若P 在AC 上可得λ=μ,若P 在BD 上,根据共线定理的推论得到λ+μ=1,填写符合题意的答案即可.【详解】因为AC =AB +AD ,若P 在AC 上,则AC ⎳AP ,又AP =λAB +μAD ,所以λ=μ,若P 在BD 上,即P 、B 、D 三点共线,又AP =λAB +μAD,则λ+μ=1.故答案为:13,23(答案不唯一,满足λ+μ=1或λ=μ即可)14(2023·江西九江·瑞昌市第一中学校联考模拟预测)已知⊙O :x 2+y 2=4,⊙C 与一条坐标轴相切,圆心在直线x -y +7=0上.若⊙C 与⊙O 相切,则⊙C 的一个方程为.【答案】x +4 2+y -3 2=9(答案不唯一)【分析】先根据已知得出⊙C 的圆心在⊙O 的外面.然后分⊙C 与x 轴相切以及⊙C 与y 轴相切,结合已知可得出两圆外切.列出方程,化简整理求解,即可得出答案.【详解】由已知可得,⊙O :x 2+y 2=4的圆心为O 0,0 ,半径R =2,所以点O 0,0 到直线x -y +7=0的距离d =72=722>2,所以,直线与圆相离,所以⊙C 的圆心在⊙O 的外面.当⊙C 与x 轴相切时,设⊙C 的圆心C a ,a +7 ,则⊙C 的半径r 1=a +7 .因为⊙C 与⊙O 相切,且C 在⊙O 的外面,所以两圆外切.所以OC =R +r 1,即a 2+a +7 2=2+a +7 ,整理可得,a 2=4+4a +7 .若a ≤-7,整理可得a 2+4a +24=0无解,所以a >-7,所以a 2-4a -32=0,解得a =-4或a =8,所以⊙C 方程为x +4 2+y -3 2=9或x -8 2+y -15 2=225;当⊙C 与y 轴相切时,设圆心C a ,a +7 ,则⊙C 的半径r 2=a .由两圆外切可得,OC =R +r 2,即a 2+a +7 2=2+a ,整理可得a 2+14a +49=4+4a ,则a <0,所以有a 2+18a +45=0,解得a =-3或a =-15,所以⊙C 方程为x +3 2+y -4 2=9或x +15 2+y +8 2=225.故答案为:x +4 2+y -3 2=9.15(2023·新疆·校联考二模)已知函数f x 满足下列条件:①f x 是y =sin x 经过图象变换得到的;②对于∀x ∈R ,均满足-3=f -π6 ≤f x ≤f π3=1成立;③y =f x 的函数图象过点0,-2 .请写出符合上述条件的一个函数解析式.【答案】f x =2sin 2x -π6-1(答案不唯一)【分析】由①可设f x =A sin ωx +φ +B ,根据②,设A >0,求得A =2,B =-1,且ω=2,再由③求得φ的一个值为φ=-π6,即可求解.【详解】解:由①可设f x =A sin ωx +φ +B ,又由②可知,不妨设A >0,由-3=f -π6 ≤f x ≤f π3 =1,可得A =1-(-3)2=2,B =1+(-3)2=-1,且T =2π3--π6=π,所以ω=2πT=2,所以f x =2sin 2x +φ -1,由③,可得2sin φ-1=-2,即sin φ=-12,所以φ的一个值为φ=-π6,因此函数f x 的一个解析式为f x =2sin 2x -π6-1.故答案为:f x =2sin 2x -π6-1(答案不唯一).16(2023·江西南昌·校联考模拟预测)正割(Secant )及余割(Co sec ant )这两个概念是由伊朗数学家、天文学家阿布尔·威发首先引入,sec ,csc 这两个符号是荷兰数学家基拉德在《三角学》中首先使用,后经欧拉采用得以通行.在三角中,定义正割sec α=1cos α,余割csc α=1sin α.已知函数f x =1sec x +1csc x,给出下列说法:①f x 的定义域为x x ≠k π,k ∈Z ;②f x 的最小正周期为2π;③f x 的值域为-2,-1 ∪-1,1 ∪1,2 ;④f x 图象的对称轴为直线x =-π4+k πk ∈Z .其中所有正确说法的序号为()A.②③B.①④C.③D.②③④【答案】A【分析】首先化简函数f x =2sin x +π4,再结合原函数的特征,求函数的定义域,以及根据三角函数的性质判断周期,值域和对称性.【详解】f x =1sec x +1csc x =cos x +sin x =2sin x +π4 ,由cos x ≠0,sin x ≠0,得x ≠k π2k ∈Z ,即f x 的定义域为x x ≠k π2,k ∈Z ,①错误;f x 的定义域关于原点对称,故f x 的最小正周期与函数y =2sin x +π4的最小正周期一致,均为2π,②正确;当x =0,π2,π,3π2时,y =2sin x +π4的值分别为1,1,-1,-1,考虑周期性可知,f x 的值域为-2,-1 ∪-1,1 ∪1,2 ,③正确;令x +π4=π2+k πk ∈Z ,得x =π4+k πk ∈Z ,即f x 图象的对称轴为直线x =π4+k πk ∈Z ,④错误,故选:A .17(2023春·重庆沙坪坝·高三重庆一中校考阶段练习)林业部门规定:树龄500年以上的古树为一级,树龄300~500年之间的古树为二级,树龄100~299年的古树为三级,树龄低于100年不称为古树.林业工作者为研究树木年龄,多用年轮推测法,先用树木测量生长锥在树干上打孔,抽取一段树干计算年轮个数,由经验知树干截面近似圆形,年轮宽度依次构成等差数列.现为了评估某棵大树的级别,特测量数据如下:树干周长为3.14米,靠近树芯的第5个年轮宽度为0.4cm ,靠近树皮的第5个年轮宽度为0.2cm ,则估计该大树属于()A.一级B.二级C.三级D.不是古树【答案】C【分析】由条件抽象出等差数列的基本量,再结合等差数列的前n 项和,求n .【详解】设树干的截面圆的半径为r ,树干周长2πr =3.14,r =0.5m =50cm ,从内向外数:a 5=0.4,a n -4=0.2,S n =r =50=a 5+a n -4 ⋅n2=0.3n ,∴n =5003≈167年,所以为三级.故选:C18(2023春·江西·高三校联考阶段练习)若存在实数k 和m 使得函数f x 和g x 对其公共定义域上的任意实数x 都满足:g x ≤kx +m ≤f x 恒成立,则称此直线y =kx +m 为f x 和g x 的“分离直线”.有下列命题:①f x =x 2和g x =a ln x 之间存在唯一的“分离直线”y =2ex -e 时a =2e ;②f x =x 2和g x =1x(x <0)之间存在“分离直线”,且m 的最小值为-4,则()A.①、②都是真命題B.①、②都是假命題C.①是假命题,②是真命题D.①是真命题,②是假命题【答案】A【分析】命题①,f(x)=x2和g(x)=2e ln x有公共点e,e,故隔离直线过该点,设为点斜式,结合二次函数性质对参数分类讨论,即可求解;命题②,设隔离直线为y=kx+b,则x2-kx-m≥0kx2+mx-1≤0对任意x<0恒成立,结合二次函数性质对参数分类讨论,即可求解;【详解】对于命题①,函数f(x)=x2和g(x)=2e ln x的图像在x=e处有公共点,若存在f(x)和g(x)的隔离直线,那么该直线过这个公共点e,e,设隔离直线的斜率为k,则隔离直线方程为y-e=k x-e,即y=kx-k e+e 由f(x)≥kx-k e+e x>0恒成立,即x2-kx+k e-e≥0x>0恒成立,(i)当k=0时,则x2≥e x>0不恒成立,不符合题意;(ii)当k<0时,令u x =x2-kx+k e-e x>0,对称轴x=k2<0,u x 在0,e上单调递增,且u e=0,故k<0不恒成立,不符合题意;(iii)当k>0时,令u x =x2-kx+k e-e x>0,对称轴x=k2>0,则u x min=uk2=-k24+k e-e=-k-2e24≥0,只有k=2e,即直线y=2e x-e下面证明g(x)=2e ln x≤2e x-e,令G(x)=2e x-e-2e ln x,求导G (x)=2e x-ex,令G(x)=0,得x=e,当x∈0,e时,G (x)<0,函数G(x)在区间0,e上单调递减;当x∈e,+∞时,G (x)>0,函数G(x)在区间e,+∞单调递增;故当x=e时,函数G(x)取得极小值,也是最小值,故G(x)≥0,即g(x)≤2e x-e 所以f(x)=x2和g(x)=2e ln x之间存在唯一的隔离直线y=2e x-e.所以命题①是真命题;对于命题②,设f(x)=x2和g(x)=1x(x<0)的隔离直线为y=kx+m,则x2≥kx+m1x≤kx+m对任意x<0恒成立,即x2-kx-m≥0kx2+mx-1≤0对任意x<0恒成立,由kx2+mx-1≤0恒成立,得k≤0(i)当k=0时,则m=0符合题意;(ii)当k<0时,则x2-kx-m≥0对任意x<0恒成立,令h x =x2-kx-m x<0,对称轴x=k2<0,需Δ=k2+4m≤0,即k2≤-4m,故m≤0令d x =kx2+mx-1x<0,对称轴x=-m2k≤0,需Δ=m2+4k≤0,即m2≤-4k,所以k4≤16m2≤-64k,故-4≤k<0同理可得m4≤16k2≤-64m,即-4≤m<0,故m 的最小值为-4故命题①正确,命题②正确;故选:A专题强化一、单选题19(2023·山东潍坊·统考模拟预测)阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹.如图,在平面直角坐标系xOy 中,螺线与坐标轴依次交于点A 1-1,0 ,A 20,-2 ,A 33,0 ,A 40,4 ,A 5-5,0 ,A 60,-6 ,A 77,0 ,A 80,8 ,并按这样的规律继续下去.若四边形A n A n +1A n +2A n +3的面积为760,则n 的值为()A.18B.19C.21D.22【答案】A【分析】根据四边形的特点,将四边形的面积转化为四个直角三角形的面积,即可求解.【详解】如图,四边形A n A n +1A n +2A n +3的面积由四个直角三角形构成,得12n n +1 +12n +1 n +2 +12n +2 n +3 +12n n +3 =760,n n +1+n +3 +n +2 n +1+n +3 =1520,2n +4 2n +2 =1520,即n +2 n +1 =380,n ∈N *,解得:n =18故选:A20(2023春·湖北·高二校联考阶段练习)高斯(Gauss )被认为是历史上最重要的数学家之一,并享有“数学王子”之称.小学进行1+2+3+⋯+100的求和运算时,他这样算的:1+100=101,2+99=101,⋯,50+51=101,共有50组,所以50×101=5050,这就是著名的高斯算法,课本上推导等差数列前n 项和的方法正是借助了高斯算法.已知正数数列a n是公比不等于1的等比数列,且a1a2023=1,试根据以上提示探求:若f(x)=41+x2,则f a1+f a2+⋯+f a2023=()A.2023B.4046C.2022D.4044【答案】B【分析】根据倒序相加法,结合等比数列的下标性质进行求解即可.【详解】根据等比数列的下标性质由a1⋅a2023=1⇒a n⋅a2024-n=1,∵函数f(x)=41+x2,∴f(x)+f1x=41+x2+41+1x2=4+4x21+x2=4,令T=f a1+f a2+⋯+f a2023,则T=f a2023+f a2023+⋯+f a1 ,∴2T=f a1 +f a2023+f a2+f a2022+⋯+f a2023+f a1 =4×2023,∴T=4046.故选:B21(2022秋·山东青岛·高三统考期末)已知定义域为0,1的“类康托尔函数”f x 满足:①∀0≤x1<x2≤1,f x1≤f x2;②f x =2fx3;③f x +f1-x=1.则f12023=()A.132B.164C.1128D.1256【答案】C【分析】根据函数的定义分别赋值得到f(1)=1,f12=12,然后再利用f x =2f x3 得到f(x)=2n⋅f x3n,再次赋值,利用∀0≤x1<x2≤1,f x1 ≤f x2 即可求解.【详解】因为∀0≤x1<x2≤1,f x =2fx3,令x=0可得:f(0)=0,又因为f x +f1-x=1,令x=0可得:f(1)=1,令x=12可得:f12=12,由f x =2fx3可得:f(x)=2f x3 =22⋅f x32=⋯=2n⋅f x3n ,令x=1,n=7,则有f(1)=27f137=128f12187,所以f12187=1128,令x=12,n=6,则有f12=26f1236=64f11458=12,所以f11458=1128,因为12187<12023<11458,所以f12187≤f12023≤f11458,也即1128≤f12023≤1128,所以f12023=1128,故选:C.22(2023·全国·高三专题练习)设定点F1,0,动点M满足以MF为直径的圆与y轴相切,设动点M的轨迹为C ,则下列说法正确的是()A.轨迹C 的方程为y 2=4xB.动点M 到直线l 1:4x -3y +6=0和l 2:x =-2的距离之和的最小值为2C.长度为8的线段两端点在轨迹C 上滑动,中点到y 轴距离的最小值为4D.轨迹C 上一点P 处的切线与x 轴交于Q ,若PQ =FQ ,则切线斜率为3【答案】A【分析】先用直接法求出动点M 的轨迹方程,然后根据轨迹方程为抛物线找出焦点和准线,将BC 两选项中的问题用抛物线的定义进行转化可判断BC 的真假;D 答案需要联立方程设而不求的思想可判断.【详解】设M x ,y ,MF 中点Q x +12,y2,∵以MF 为直径的圆与y 轴相切∴x +12 =12x -12+y 2⇒y 2=4x ,A 正确.对于B ,MM +MM =MM +MP +1=MM +MF +1,MM +MF ≥F 到l 1的距离=2,∴MM +MM ≥3,B 错.对于C ,设AB 中点M ,AB =8,分别过A ,B 作l 2的垂线,垂足为A ,B ,∴MM=AA +BB 2=AF -1+BF -12=AF +BF -22≥AB -22=3∴中点到y 轴距离的最小值为3,C 错.对于D ,切线:x =my +n ,x =my +ny 2=4x消y 可得y 2-4my -4n =0,Δ=0,∴n =-m 2,y =2mx =m2 ,∴Q -m 2,0 ,P m 2,2m ,PQ =FQ ,∴4m 4+4m 2=1+m 2,∴m 2=13,m =±33,斜率±3,D 错.故选:A23(2022·重庆江北·校考一模)已知斐波那契数列a n 满足a 1=a 2=1,a n +2=a n +1+a n ,若a s ,a t 是数列a n 中的任意两项,a s -a t =m ,当m ≤2时,称数组a s ,a t 为数列a n 的“平缓数组”(a s ,a t 与a t ,a s 为相同的“平缓数组”),m 为数组a s ,a t 的组差.现从a n 的所有“平缓数组”中随机抽取3个,则这3个“平缓数组”的组差中至少有2个相等的取法种数为()A.24B.26C.29D.35【答案】B【分析】先根据“平缓数组”的定义,找出所有的“平缓数组”,然后再计算随机抽取三个“平缓数组”的组差中至少有2个相等的取法种数即可.【详解】由题意得a n +1≥a n ,a n +2-a n +1≥a n +1-a n ,a 1=a 2=1,a 3=2,a 4=3,a 5=5,a 6=8,又a 6-a 5=3,所以当n ≥5时,a n +1-a i ≥3i =1,2,⋅⋅⋅,n ,所以a n 的所有“平缓数组”有a 1,a 2 ,a 1,a 3 ,a 1,a 4 ,a 2,a 3 ,a 2,a 4 ,a 3,a 4 ,a 4,a 5 ,共7个,其中组差为0的有1个为a 1,a 2 ,组差为1的有3个为a 1,a 3 ,a 2,a 3 ,a 3,a 4 ,组差为2的有3个为a 1,a 4 ,a 2,a 4 ,a 4,a 5 ,所以这3个“平缓数组”的组差中至少有2个相等的取法种数为2C 23C 14+2C 33=26,故选:B24(2022秋·上海浦东新·高三华师大二附中校考期中)十七世纪法国数学家费马提出猜想:“当整数n >2时,关于x ,y ,z 的方程x n +y n =z n 没有正整数解”.经历三百多年,于二十世纪九十年代中期由美国数学家安德鲁怀尔斯证明了费马猜想,使它终成为费马大定理根据前面叙述,则下列命题正确的个数为()(1)存在至少一组正整数组x ,y ,z 是关于x ,y ,z 的方程x 3+y 3=z 3的解;(2)关于x ,y 的方程x 3+y 3=1有正有理数解;(3)关于x ,y 的方程x 3+y 3=1没有正有理数解;(4)当整数n >3时关于x ,y ,z 的方程x n +y n =z n 有正实数解A.0 B.1 C.2 D.3【答案】C【分析】当整数n >2时方程没有正整数解,(1)错误,x z 3+y z3=1,没有正有理数解,(2)错误,(3)正确,当x =y =1,z =21n满足条件,(4)正确,得到答案.【详解】当整数n >2时,关于x ,y ,z 的方程x n +y n =z n 没有正整数解,故方程x 3+y 3=z 3没有正整数解,(1)错误;x 3+y 3=z 3没有正整数解.即x z3+y z3=1,z ≠0 ,没有正有理数解,(2)错误,(3)正确;方程x n+y n=z n,当x =y =1,z =21n满足条件,故有正实数解,(4)正确.故选:C25(2022秋·北京·高三北京铁路二中校考期中)德国著名数学家、解析数论的创始人狄利克雷(1805年2月13日~1859年5月5日),对函数论、三角级数论等都有重要贡献,主要著作有《数论讲义》《定积分》等.狄利克雷函数就是以其名字命名的函数,其解析式为D x =1,x 为有理数,0,x 为无理数, 则下列关于狄利克雷函数D(x )的判断错误的是()A.对任意有理数t ,D (x +t )=D (x )B.对任意实数x ,D (D (x ))=1C.D (x )既不是奇函数也不是偶函数D.存在实数x ,y ,D (x +y )=D (x )+D (y )【答案】C【分析】根据狄利克雷函数的定义判断ABD ,结合奇偶性的定义判断C .【详解】对于A ,对任意有理数t ,当x 为有理数时,x +t 为有理数,则D (x +t )=1=D (x );当x 为无理数时,x +t 为无理数,则D (x +t )=0=D (x ),故A 正确;对于B ,若x 为有理数,则D (D (x ))=D (1)=1;若x 为无理数,则D (D (x ))=D (0)=1,故B 正确;对于C ,当x 为有理数时,则-x 为有理数,则D (-x )=1=D (x );当x 为无理数时,则-x 为无理数,则D (-x )=0=D (x ),于是对任意实数x ,都有D (-x )=D (x ),即狄利克雷函数为偶函数,故C 错误;对于D ,取x =2,y =3,因为2+3为无理数,所以D (2+3)=0=D (2)+D (3),故D 正确.故选:C .二、多选题26(2023春·吉林白山·高三统考期中)古希腊数学家普洛克拉斯指出:“哪里有数,哪里就有美.”“对称美”是数学美的重要组成部分,在数学史上,人类对数学的对称问题一直在思考和探索,图形中对称性的本质就是点的对称、线的对称.如正方形既是轴对称图形,又是中心对称图形,对称性也是函数一个非常重要的性质.如果一个函数的图象经过某个正方形的中心并且能够将它的周长和面积同时平分,那么称这个函数为这个正方形的“优美函数”.下列关于“优美函数”的说法中正确的有()A.函数f x =x2x+2-x-1≤x ≤1 可以是某个正方形的“优美函数”B.函数f x =4cos 2x -π6 +3只能是边长不超过π2的正方形的“优美函数”C.函数f x =ln 4x 2+1-2x -1可以是无数个正方形的“优美函数”。
高考数学题型全归纳数列创新题的基本类型及求解策略
a1j 4 3( j 1) ;
第二行是首项为,公差为的等差数列:
a2j
7 5( j 1) , ……,
第行是首项为 4 3(i 1) ,公差为 2i 1 的等差数列,
因此 aij 4 3(i 1) (2i 1)( j 1) 2ij i j i(2 j 1) j ;
⑶必要性:若在该等差数阵中,则存在正整数
……
……
……
……
aij 表示位于第行第 j 列的数.
…… aij ……
…… …… ……
⑴写出 a45 的值;
⑵写出 aij 的计算公式;
⑶证明:正整数在该等差数列阵中的充要条件是
2 N 1可以分解成两个不是的正整数之积.
解:⑴ a45 49 (详见第二问一般性结论) .
⑵该等差数阵的
第一行是首项为,公差为的等差数列:
的距离即 FP1
7 1 ,最大值为右焦点到左顶点的距离即
PF21
7 1 ,故若公差 d 0 ,
则71
2
1
7 1 ( n 1)d ,∴ n
d
1≥ 21 0 d ≤
,∴
10 .同理,若公差 d
0 ,则可求得
1
≤d 0
10
.
评析:
本题很好地将数列与椭圆的有关性质结合在一起,形式新颖,内容深遂,有一定的难度,可
1 1 20 , 2
0 20
1 21 , 3
1 20
1 21 , 4
0
02
1
2
0 2 1 2,
5 1 20 0 21 1 22 ,进而知 7 1 20 1 21 1 22 ,写成二进制为 111 .
于 是 知 二 进 制 为 位 数 能 表 示 十 进 制 中 最 大 的 数 是 111111 化 成 十 进 制 为
高考数学数列问题的题型与方法
高考数学数列问题的题型与方法Document number【980KGB-6898YT-769T8CB-246UT-18GG08】第11讲 数列问题的题型与方法数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
一、知识整合1.在掌握等差数列、等比数列的定义、性质、通项公式、前n 项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 二、方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。
数列与探索性新题型的解题技巧
数列与探索性新题型的解题技巧引言数列问题是高中数学中的重要部分,也是考试中经常出现的题型。
解决数列问题需要掌握一定的解题技巧,特别是对于探索性新题型,更需要灵活运用已有的知识来解决。
本文将介绍一些数列问题的常见解题技巧,并提供一些探索性新题型的解题思路。
常见数列问题的解题技巧等差数列问题等差数列是一种最常见的数列形式,其特点是每个项与前一项之间有相同的公差。
解决等差数列问题的关键是找到通项公式。
常见的解题技巧包括:1.求前n项和:设等差数列的首项为a₁,公差为d,前n项和为Sₙ,则有Sₙ = (n/2)(2a₁ + (n-1)d)。
2.求第n项:设等差数列的首项为a₁,公差为d,第n项为aₙ,则有aₙ = a₁ + (n-1)d。
3.求公差:设等差数列的首项为a₁,第n项为aₙ,公差为d,则有d = (aₙ -a₁)/(n-1)。
等比数列问题等比数列是一种常见的数列形式,其特点是每个项与前一项之间有相同的公比。
解决等比数列问题的关键是找到通项公式。
常见的解题技巧包括:1.求前n项和:设等比数列的首项为a₁,公比为q,前n项和为Sₙ,则有Sₙ = a₁(1 - qⁿ)/(1 - q)。
2.求第n项:设等比数列的首项为a₁,公比为q,第n项为aₙ,则有aₙ =a₁qⁿ⁻¹。
3.求公比:设等比数列的首项为a₁,第n项为aₙ,公比为q,则有q = aₙ/a₁。
递推数列问题递推数列是一种通过前几项计算后一项的数列形式,常见的形式有Fibonacci数列和差分数列。
解决递推数列问题的关键是找到递推公式。
常见的解题技巧包括:1.Fibonacci数列:Fibonacci数列的递推公式为Fₙ = Fₙ₋₁ + Fₙ₋₂,其中F₁ = 1,F₂ = 1。
可以通过循环或递归的方式计算Fibonacci数列的第n项。
2.差分数列:差分数列是一种通过前几项的差值计算后一项的数列形式。
可以通过观察前几项的差值规律,推导出递推公式。
新高中数学数列多选题100含解析
新高中数学数列多选题100含解析一、数列多选题1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )A .若59T T =,则必有141T =B .若59T T =,则必有7T 是n T 中最大的项C .若67T T >,则必有78T T >D .若67T T >,则必有56T T >【答案】ABC 【分析】根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】由等比数列{}n a 可知11n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:()1211212111111123n n n n n n n n a a q a q a qa a T a a a q a q--+++-=⋅⋅⋅==⋅=对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()71491426211141a q q T a ∴===,故A 正确;对于B ,若59T T =,可得42611a q =,即13211a q=,又11a >,故1q <,又59T T =,可知67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得76811871T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,56651T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.2.设数列{}n a 前n 项和n S ,且21n n S a =-,21log n n b a +=,则( ) A .数列{}n a 是等差数列 B .12n n aC .22222123213n na a a a -++++= D .122334111111n n b b b b b b b b +++++<【答案】BCD 【分析】利用n S 与n a 的关系求出数列{}n a 的通项公式,可判断AB 选项的正误;利用等比数列的求和公式可判断C 选项的正误;利用裂项求和法可判断D 选项的正误. 【详解】对任意的n *∈N ,21n n S a =-.当1n =时,11121a S a ==-,可得11a =; 当2n ≥时,由21n n S a =-可得1121n n S a --=-, 上述两式作差得122n n n a a a -=-,可得12n n a a -=,所以,数列{}n a 是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,A 选项错误,B选项正确;()221124n n na --==,所以,22221231441143nn n a a a a --==-++++,C 选项正确; 212log log 2nn n b a n +===,()1111111n n b b n n n n +==-++, 所以,12233411111111111111112233411n n b b b b b b b b n n n +++++=-+-+-++-=-<++, D 选项正确. 故选:BCD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.3.下列说法正确的是( )A .若{}n a 为等差数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,…仍为等差数列()k N *∈B .若{}n a 为等比数列,n S 为其前n 项和,则k S ,2k k S S -,32k k S S -,仍为等比数列()k N *∈C .若{}n a 为等差数列,10a >,0d <,则前n 项和n S 有最大值D .若数列{}n a 满足21159,4n n n a a a a +=-+=,则121111222n a a a +++<--- 【答案】ACD 【分析】根据等差数列的定义,可判定A 正确;当1q =-时,取2k =,得到20S =,可判定B 错误;根据等差数列的性质,可判定C 正确;化简得到1111233n n n a a a +=----,利用裂项法,可判定D 正确. 【详解】对于A 中,设数列{}n a 的公差为d , 因为12k k S a a a =+++,2122k k k k k S S a a a ++-=+++,3221223k k k k k S S a a a ++-=+++,,可得()()()()22322k k k k k k k S S S S S S S k d k N *--=---==∈,所以k S ,2k k S S -,32k k S S -,构成等差数列,故A 正确;对于B 中,设数列{}n a 的公比为()0q q ≠,当1q =-时,取2k =,此时2120S a a =+=,此时不成等比数列,故B 错误; 对于C 中,当10a >,0d <时,等差数列为递减数列, 此时所有正数项的和为n S 的最大值,故C 正确;对于D 中,由2159n nn a a a +=-+,可得()()2135623n n n n n a a a a a +-=-+=-⋅-, 所以2n a ≠或3n a ≠, 则()()1111132332n n n n n a a a a a +==------,所以1111233n n n a a a +=----, 所以1212231111111111222333333n n n a a a a a a a a a ++++=-+-++---------- 1111111333n n a a a ++=-=----. 因为14a =,所以2159n nn n a a a a +=-+>,可得14n a +>,所以11113n a +-<-,故D 正确.故选:ACD 【点睛】方法点睛:由2159n nn a a a +=-+,得到()()2135623n n n n n a a a a a +-=-+=-⋅-,进而得出1111233n n n a a a +=----,结合“裂项法”求解是解答本题的难点和关键.4.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列 C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0cD .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n = 【答案】ABD 【分析】选项A. 由题意10n n a a d +-=>可判断;选项B.先求出112n S n a d n -=+⨯,根据1012n n S S dn n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确. 选项B. ()112n n n S na d -=+⨯,则112n S n a d n -=+⨯ 所以1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列. 故B 正确. 选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++当0c时,12+n S n c n =+为等差数列. 当1c =时,2n S n c n=+为等差数列.所以选项C 不正确.选项D. 70a =,即7160a a d =+=,则16a d =- 又()()1111660222n n n n n n S na d dn d dn ---⎛⎫=+⨯=-+⨯=--= ⎪⎝⎭ 由0,0d n >>,所以1602n --=,得13n =,故选项D 正确. 故选:ABD 【点睛】关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫=-+⎪⎝⎭,从而判断,属于中档题.5.在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】ABC 【分析】 计算可得2q,故选项A 正确;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 【详解】{}n a 为递增的等比数列,由142332,12,a a a a =⎧⎨+=⎩得23142332,12,a a a a a a ==⎧⎨+=⎩解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列,∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 正确; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项B 正确;所以122n n S +=-,则9822510S =-=,故选项C 正确.又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:ABC. 【点睛】方法点睛:证明数列为等差(等比)数列常用的方法有: (1)定义法; (2)通项公式法 (3)等差(等比)中项法(4)等差(等比)的前n 项和的公式法.要根据已知灵活选择方法证明.6.已知等比数列{}n a 满足11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>.( )A .数列{}n a 的公比为pB .数列{}n a 为递增数列C .1r p =--D .当14p r-取最小值时,13-=n n a 【答案】BD 【分析】先结合已知条件,利用1n n n a S S -=-找到,p q 的关系,由11p q =-判断选项A 错误,由11pq p+=>判断B 正确,利用{}n a 通项公式和前n 项和公式代入已知式计算r p =-判断C 错误,将r p =-代入14p r-,利用基本不等式求最值及取等号条件,判断D 正确. 【详解】依题意,等比数列{}n a ,11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>,设公比是q ,2n ≥时,11n n n n S pa rS pa r +-=+⎧⎨=+⎩,作差得,1n n n pa a pa +-=,即()11n n p a pa +=+,故11n n a p a p ++=,即1p q p +=,即11p q =-. 选项A 中,若公比为p ,则11p q q ==-,即210q q --=,即p q ==时,数列{}n a 的公比为p ,否则数列{}n a 的公比不为p ,故错误;选项B 中,由0p >知,1111p q p p +==+>,故111111n n n n a a q q p ---=⋅==⎛⎫+ ⎪⎝⎭是递增数列,故正确;选项C 中,由1n n S pa r +=+,11n n q S q-=-,11p q =-,1nn a q +=知, 1111111n n n n q p q q a qr S p q +--=-⋅=-=---=,故C 错误;选项D 中, 因为r p =-,故()1111444p p p r p p -=-=+≥=⋅-,当且仅当14p p =,即12p =时等号成立,14p r-取得最小值1,此时13p q p +==,113n n n a q --==,故正确.故选:BD. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解;2、当两个正数,a b的积为定值,要求这两个正数的和式的最值时,可以使用基本不等式a b +≥,当且仅当a b =取等号.7.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,② 由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD 【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.8.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列【答案】BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.9.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .18181103354kk i a =⨯+=∑C .(31)3ij ja i =-⨯ D .()1(31)314n S n n =+- 【答案】ABD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,进而可得ii a ,根据错位相减法可求得181kki a=∑,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误; ∴()1313i ii a i -=-⋅,0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯① 12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确;S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )()()()11211131313131313nnnn a a a ---=+++---()()231131.22nn n +-=- ()1=(31)314n n n +-,D 正确; 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.10.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122...2212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,。
高考数学科学复习创新方案:数列问题的热点题型
命题动向:等差、等比数列是重要的数列类型,高考考查的主要知识点有:等差、等比数列的概念、性质、前n项和公式.由于数列的渗透力很强,它和函数、方程、向量、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有较深的理解.题型1等差、等比数列的综合运算例1(2022·新高考Ⅱ卷)已知{a n}为等差数列,{b n}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中的元素个数.解(1)证明:设数列{a n}的公差为d,1+d-2b1=a1+2d-4b1,1+d-2b1=8b1-(a1+3d),,所以命题得证.解得b1=a1=d2,所以b k=a m+a1⇔b1×2k-1=a1+(m-1)d+a1,即2k(2)由(1)知,b1=a1=d2-1=2m,亦即m=2k-2∈[1,500],解得2≤k≤10,所以k=2,3,4, (10)故集合{k|b k=a m+a1,1≤m≤500}中的元素个数为10-2+1=9.解决由等差数列、等比数列组成的综合问题,首先要根据两数列的概念,设n na1=b1=1,1+a3=b2+b4,a2+2=b3.(1)求{a n}和{b n}的通项公式;(2)从下面条件①,②中选择一个作为已知条件,求数列{c n}的前n项和S n.条件①:c n=a n b n;条件②:c n=b na n.注:若选择条件①和条件②分别解答,按第一个解答计分.解(1)设{a n}的公比为q(q>0),{b n}的公差为d,+q2=2+4d,+2=1+2d,解得q=3或q=-1(舍去),d=2,∴a n=3n-1(n∈N*),b n=2n-1(n∈N*).(2)选择条件①:c n=a n b n,则c n=(2n-1)·3n-1,∴S n=c1+c2+c3+…+c n-1+c n=1×1+3×3+5×32+…+(2n-3)×3n-2+(2n -1)×3n-1,(ⅰ)∴3S n=1×3+3×32+5×33+…+(2n-3)×3n-1+(2n-1)×3n,(ⅱ)(ⅰ)-(ⅱ)得-2S n=1+2×(3+32+33+…+3n-1)-(2n-1)×3n=1+2×3-3n1-3-(2n-1)×3n=-2-(2n-2)×3n,∴S n=(n-1)×3n+1.选择条件②:c n=b na n,则c n=2n-13n-1,∴S n=c1+c2+c3+…+c n-1+c n=1+33+532+…+2n-33n-2+2n-13n-1,(ⅰ)∴13S n=13+332+533+…+2n-33n-1+2n-13n,(ⅱ)(ⅰ)-(ⅱ)得23S n=1++132+133+…+-2n-13n=1+2×13-13n1-13-2n-13n=2-2n +23n ,∴S n =3-n +13n -1(n ∈N *).题型2数列的通项与求和例2(2021·新高考Ⅰ卷)已知数列{a n }满足a 1=1,a n +1n +1,n 为奇数,n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和.解(1)由已知,a 1=1,a 2=a 1+1=2,a 3=a 2+2=4,a 4=a 3+1=5,所以b 1=a 2=2,b 2=a 4=5,因为a 2n +1=a 2n +2=a 2n -1+1+2=a 2n -1+3,即a 2n +1-a 2n -1=3,所以数列{a n }的奇数项构成以1为首项,3为公差的等差数列,所以当n 为奇数时,a n =1=3n -12,因为a 2n +2=a 2n +1+1=a 2n +2+1=a 2n +3,即a 2n +2-a 2n =3,所以数列{a n }的偶数项构成以2为首项,3为公差的等差数列,所以当n 为偶数时,a n =2=3n -22,而b n =a 2n =3×2n -22=3n -1,所以b n =3n -1.(2)由(1),知{a n }的前20项和S 20=a 1+a 2+…+a 20=(a 1+a 3+…+a 19)+(a 2+a 4+…+a 20)=10×1+10×92×3+10×2+10×92×3=300.所以{a n }的前20项和为300.n n+1n (1)求{a n}的首项和公差;(2)数列{b n}满足b nn=3k-2,·a n,3k-1≤n≤3k,其中k,n∈N*,求错误!i.解(1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d,由a n+1=2a n-2n+3可得a1+nd=2[a1+(n-1)d]-2n+3,即(d-2)n+a1+3-2d=0,-2=0,1+3-2d=0,1=1,=2.(2)a n=a1+(n-1)d=1+2(n-1)=2n-1.因为b nn=3k-2,·a n,3k-1≤n≤3k,则b nn=3k-2,3k-1≤n≤3k,所以b1+b4+b7+…+b58=11×3+13×5+15×7+…+139×41=12×…=2041.b2+b5+b8+b11+…+b56+b59=(a2-a5)+(a8-a11)+…+(a56-a59)=-3×2×20=-120;b3+b6+b9+b12+…+b57+b60=(-a3+a6)+(-a9+a12)+…+(-a57+a60)=3×2×20=120.因此错误!i =(b 1+b 4+b 7+…+b 58)+(b 2+b 5+b 8+…+b 59)+(b 3+b 6+b 9+…+b 60)=2041-120+120=2041.题型3数列与其他知识的交汇角度数列与函数的交汇例3(2023·成都石室中学模拟)已知函数f (x )=e x -12ax 2-x .(1)若f (x )在x ∈R 上单调递增,求a 的值;(2)证明:(1+2(n ∈N *且n ≥2).解(1)函数f (x )=e x -12ax 2-x ,求导得f ′(x )=e x -ax -1,由于函数f (x )在R 上单调递增,则f ′(x )=e x -ax -1≥0恒成立,令h (x )=e x -ax -1,则h ′(x )=e x -a ,当a =0时,f ′(x )=e x -1,当x <0时,f ′(x )<0,不满足条件;当a <0时,h ′(x )>0,h (x )在R 上单调递增,又e 1a -a ·1a -1=e 1a -2<0,即f ,不满足条件;当a >0时,令h ′(x )=0,得x =ln a ,则当x <ln a 时,h ′(x )<0,h (x )单调递减,当x >ln a 时,h ′(x )>0,h (x )单调递增,于是当x =ln a 时,h (x )取得最小值h (ln a )=e ln a -a ln a -1=a -a ln a -1,于是h (ln a )≥0,即a -a ln a -1≥0,令u (a )=a -a ln a -1,则u ′(a )=-ln a ,当0<a <1时,u ′(a )>0,u (a )单调递增;当a >1时,u ′(a )<0,u (a )单调递减,则u (a )max =u (1)=0,由于a -a ln a -1≥0恒成立,因此a -a ln a -1=0,则a =1.(2)证明:由(1)知,当a =1时,e x -x -1≥0,即e x ≥x +1,当且仅当x =0时取等号,即当x >0时,ln (x +1)<x ,因此当n ∈N *且n ≥2时,ln (1+1ln (1+1)+ln …+ln +14+…+1n2,而当n ≥2时,1n 2<1n (n -1)=1n -1-1n,所以1+14+…+1n 2<1…1+1-1n <2,则ln (1+1,所以(1+2(n ∈N *且n ≥2).(1)数列与函数的综合问题一般是以函数为背景,n 123的数,且a 1,a 2,a 3中的任何两个数都不在下表的同一列,{b n }为等差数列,其前n 项和为S n ,且a 1=b 3-2b 1,S 7=7a 3.第一列第二列第三列第一行152第二行4310第三行9820(1)求数列{a n},{b n}的通项公式;(2)若c n=[lg b n],其中[x]是高斯函数,表示不超过x的最大整数,如[lg2]=0,[lg98]=1,求数列{c n}的前100项和T100.解(1)由题意知a1=2,a2=4,a3=8,所以等比数列{a n}的公比q=2,a n=a1q n-1=2n.设等差数列{b n}的公差为d,则2=b3-2b1=2d-b1,S7=7(b1+b7)2=7b4=7a3,所以b4=8=b1+3d,所以b1=2,d=2,b n=2n.(2)c n=[lg(2n)],T100=c1+c2+…+c100=[lg2]+[lg4]+…+[lg8]+[lg10]+…+[lg98]+[lg 100]+…+[lg200]=4×0+45×1+51×2=147.角度数列与不等式的交汇例4(2021·浙江高考)已知数列{a n}的前n项和为S n,a1=-94,且4S n+1=3S n -9(n∈N*).(1)求数列{a n}的通项公式;(2)设数列{b n}满足3b n+(n-4)a n=0(n∈N*),记{b n}的前n项和为T n.若T n≤λb n对任意n∈N*恒成立,求实数λ的取值范围.解(1)因为4S n+1=3S n-9,所以当n≥2时,4S n=3S n-1-9,两式相减可得4a n+1=3a n,即a n+1a n =3 4.当n=1时,4S2=-94+a=-274-9,解得a 2=-2716,所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×-1=-3n +14n .(2)因为3b n +(n -4)a n =0,所以b n =(n -.所以T n =-3×34--++…+(n --1+(n -,①且34T n =---++…+(n -+(n -+1,②①-②,得14T n =-3×34++…-(n -+1=-94+9161-11-34-(n -+1=-n+1,所以T n =-4n+1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n+1≤λ(n -恒成立,即-3n ≤λ(n -4)恒成立,当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1;当n =4时,-12≤0恒成立;当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3.综上,实数λ的取值范围为[-3,1].S n ,T n 分别为数列{a n },{b n }的前n 项和,S 4=32,T 3=16.(1)求{a n }的通项公式;(2)证明:当n >5时,T n >S n .解(1)设等差数列{a n }的公差为d ,而b n n -6,n 为奇数,a n ,n 为偶数,则b 1=a 1-6,b 2=2a 2=2a 1+2d ,b 3=a 3-6=a 1+2d -6,4=4a 1+6d =32,3=4a 1+4d -12=16,1=5,=2,所以a n =a 1+(n -1)d =2n +3,所以{a n }的通项公式是a n =2n +3.(2)证法一:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,b n -1+b n =2(n -1)-3+4n +6=6n +1,T n =13+(6n +1)2·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,T n =T n +1-b n +1=32(n +1)2+72(n +1)-[4(n +1)+6]=32n 2+52n-5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .证法二:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-1+2(n -1)-32·n 2+14+4n +62·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,若n ≥3,则T n =(b 1+b 3+…+b n )+(b 2+b 4+…+b n -1)=-1+2n -32·n +12+14+4(n -1)+62·n -12=32n 2+52n -5,显然T 1=b 1=-1满足上式,因此当n 为奇数时,T n =32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .。
高中数学数列试题的解题方法与技巧分析
高中数学数列试题的解题方法与技巧分析高中数学数列题目是高中数学中的重要内容,也是考试中常出现的题型之一。
解题时需要掌握一定的方法和技巧,下面将从数列的定义、常见数列的特点以及常用的解题方法和技巧等几个方面进行分析。
数列的定义。
数列是由一列按照特定规律排列的数所组成的有序集合,通常用{an}或者{an}表示。
an为数列中的第n项。
常见数列的特点。
常见的数列有等差数列、等比数列以及递推数列等。
1. 等差数列:等差数列是指数列中的任意两项之差都相等的数列。
其通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
3. 递推数列:递推数列是指数列中的每一项都由前一项经过特定规律推导而来的数列。
其递推公式为an = f(an-1),其中f为递推函数。
解题方法和技巧。
1. 确定数列的类型:在解题时,首先要确定数列的类型,即是等差数列、等比数列还是递推数列。
通过观察数列的前几项之间的关系,可以初步判断数列的类型。
2. 求解数列的通项公式:一个数列若有通项公式,可通过求解通项公式来得到数列中的每一项。
对于等差数列和等比数列,可以通过观察数列的前几项之间的关系,运用数列的定义和性质来确定通项公式。
对于递推数列,可以通过观察数列的递推函数的特点,运用递推公式来确定通项公式。
3. 求解数列的前n项和:有时需要求解数列的前n项和。
对于等差数列和等比数列,可以利用数列的性质来求解前n项和的公式。
对于递推数列,可以通过递推公式求前n项的和。
4. 利用数列的性质和性质定理解题:在解题过程中,可以利用数列的性质和性质定理来简化和解决问题。
等差数列的性质定理可以用来判断数列中是否存在某项或某些项。
5. 运用数列的性质和特点进行变形:在解题过程中,有时需要对数列进行变形,运用数列的性质和特点进行变形可以使解题过程更简单。
对等差数列可以进行换元或整理项,对等比数列可以进行对数换元等。
新高中数学数列多选题专题复习含答案
新高中数学数列多选题专题复习含答案一、数列多选题1.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++,数列{}n a 的前n 项为n S ,则( ) A .12n k += B .133n n a a +=- C .()2332n a n n =+D .()133234n n S n +=+- 【答案】ABD 【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可. 【详解】由题意可知,第1次得到数列1,3,2,此时1k = 第2次得到数列1,4,3,5,2,此时3k = 第3次得到数列1, 5,4,7,3,8,5,7,2,此时 7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k = 第n 次得到数列1,123,,,,k x x x x ,2 此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得: 123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈用等比数列求和可得()33132n n a -=+则 ()121331333322n n n a+++--=+=+23322n +=+ 又 ()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+ 所以 133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误. 123n n S a a a a =++++23133332222n n +⎛⎫=++++ ⎪⎝⎭()231331322nn --=+ 2339424n n +=+-()133234n n +=+-,故D 项正确. 故选:ABD. 【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.2.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是( ) A .若21,n S n =-则{}n a 是等差数列B .若21,nn S =-则{}n a 是等比数列C .若{}n a 是等差数列,则995099S a =D .若{}n a 是等比数列,且10,0,a q >>则221212n n n S S S -+⋅>【答案】BC 【分析】由n S 求n a ,根据通项公式可判断AB 是否正确,由等差数列的性质可判断C ,取1n =时,结合等比数列求和公式作差比较13S S ⋅与22S 大小即可判断D. 【详解】对于A 选项,若21n S n =-,当2n ≥时,21n a n =-,10a =不满足21n a n =-,故A错误;对于B 选项,若21nn S =-,则1112,21,1n n n n S S n a S n --⎧-=≥=⎨==⎩,由于11a =满足12n n a -=,所以{}n a 是等比数列,故B 正确;对于C 选项,若{}n a 是等差数列,则()199995099992a a S a +==,故C 正确.对于D 选项,当1n =时,()()222222132111110S S S a q qa q a q ⋅-=++-+=-<,故当1n =时不等式不等式,故221212n n n S S S -+⋅>不成立,所以D 错误.故选:BC 【点睛】本题考查数列的前n 项和为n S 与n a 之间的关系,等差数列的性质,等比数列的前n 项和为n S 的公式等,考查运算求解能力.本题D 选项解题的关键将问题特殊化,讨论1n =时,13S S ⋅与22S 大小情况.此外还需注意一下公式:11,2,1n n n S S n a S n --≥⎧=⎨=⎩;若{}n a 是等差数列,则()2121n n S n a -=-.3.(多选题)数列{}n a 满足()2*1n n n a a a n N+=-+∈,110,2a ⎛⎫∈ ⎪⎝⎭,则以下说法正确的为( ) A .10n n a a +<<B .22221231n a a a a a +++⋅⋅⋅+<C .对任意正数b ,都存在正整数m 使得12311111111mb a a a a +++⋅⋅⋅+>----成立 D .11n a n <+ 【答案】ABCD 【分析】对于A ,结合二次函数的特点可确定正误;对于B ,将原式化简为111n a a a +-<,由10n a +>得到结果; 对于C ,结合1a 范围和A 中结论可确定12111111nn a a a ++⋅⋅⋅+>---,由此判断得到结果;对于D ,利用数学归纳法可证得结论. 【详解】对于A ,2211124n n n n a a a a +⎛⎫=-+=--+ ⎪⎝⎭,若10,2n a ⎛⎫∈ ⎪⎝⎭,则110,4n a +⎛⎫∈ ⎪⎝⎭,又110,2a ⎛⎫∈ ⎪⎝⎭,可知0n a >,10n a +>, 又210n n n a a a +-=-<,10n n a a +∴<<,A 正确; 对于B ,由已知得:21n n n a a a +=-,()()()2221212231111n n n n a a a a a a a a a a a a ++∴++⋅⋅⋅+=-+-+⋅⋅⋅+-=-<,B 正确;对于C ,由110,2a ⎛⎫∈ ⎪⎝⎭及A 中结论得:1112na <-<,1121n a <<-, 12111111nn a a a ∴++⋅⋅⋅+>---,显然对任意的正数b ,在在正整数m ,使得m b >,此时12311111111mb a a a a +++⋅⋅⋅+>----成立,C 正确; 对于D ,(i )当1n =时,由已知知:112a <成立, (ii )假设当()n k k N*=∈时,11nan <+成立, 则222111112411n n n n a a a a n n +⎛⎫⎛⎫=-+=--+<-+ ⎪ ⎪++⎝⎭⎝⎭, 又()()()221111012121n n n n n -+-=-<+++++,即()2111121n n n -+<+++, 112n a n +∴<+, 综上所述:当n *∈N 时,112n a n +<+,D 正确. 故选:ABCD. 【点睛】关键点点睛:本题考查数列与不等式的综合应用问题,关键在于能够熟练应用不等式的性质与函数的性质进行化简辨析,同时对于数列中的不等式证明问题,可采用数学归纳法进行证明.4.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( ) A .11111n n n a a a +=-+ B .{}n a 是单调递增数列 C .211011111111a a a a +++>+++ D .若1212120111n n a a aa a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a a a a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确; 对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n nn n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a aa a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确.故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.5.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,② 由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD 【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.6.(多选题)已知函数()22()()n n f n n n ⎧=⎨-⎩当为奇数时当为偶数时,且()()1n a f n f n =++,则na 等于( )A .()21n -+B .21n -C .21nD .12n -【答案】AC【分析】对n 进行分类讨论,按照()()1n a f n f n =++写出通项即可. 【详解】当n 为奇数时,()()()()22112121n a f n f n n n n n =++=-+=--=-+; 当n 为偶数时,()()()221121n a f n f n n n n =++=-++=+,所以()()()2121n n n a n n ⎧-+⎪=⎨+⎪⎩当为奇数时当为偶数时. 故选:AC . 【点睛】易错点睛:对n 进行分类讨论时,应注意当n 为奇数时,1n +为偶数;当n 为偶数时,1n +为奇数.7.将()23nn ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a 31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221nS n n =+-【答案】ACD 【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D. 【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确;()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确;()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n nn n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD. 【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.8.(多选)设数列{}n a 是等差数列,公差为d ,n S 是其前n 项和,10a >且69S S =,则( ) A .0d > B .80a =C .7S 或8S 为n S 的最大值D .56S S >【答案】BC 【分析】根据69S S =得到80a =,再根据10a >得到0d <,可得数列{}n a 是单调递减的等差数列,所以7S 或8S 为n S 的最大值,根据6560S S a -=>得65S S >,故BC 正确. 【详解】由69S S =得,960S S -=, 即7890a a a ++=,又7982a a a +=,830a ∴=,80a ∴=,∴B 正确;由8170a a d =+=,得17a d =-,又10a >,0d ∴<, ∴数列{}n a 是单调递减的等差数列,()()0,70,9n n a n N n a n N n **⎧>∈≤⎪∴⎨<∈≥⎪⎩, 7S ∴或8S 为n S 的最大值,∴A 错误,C 正确; 6560S S a -=>,65S S ∴>,所以D 错误.故选:BC . 【点睛】关键点点睛:根据等差中项推出80a =,进而推出0d <是解题关键.9.已知首项为1的数列{}n a 的前n 项和为n S ,当n 为偶数时,11n n a a --=;当n 为奇数且1n >时,121n n a a --=.若4000m S >,则m 的值可以是( ) A .17 B .18C .19D .20【答案】BCD 【分析】由已知条件得出数列奇数项之间的递推关系,从而得数列21{3}k a -+是等比数列,由此可求得奇数项的表达式(也即得到偶数项的表达式),对2k S 可先求得其奇数项的和,再得偶数项的和,从而得2k S ,计算出与4000接近的和,184043S =,173021S =,从而可得结论. 【详解】依题意,2211k k a a -=+,21221k k a a +=+,*k N ∈,所以2211k k a a -=+,2122121212(1)123k k k k a a a a +--=+=++=+,∴()2121323k k a a +-+=+.又134a +=,故数列{}213k a -+是以4为首项,2为公比的等比数列,所以121423k k a --=⋅-,故S 奇()21321141232(44242)43321k k k k k a a a k k -+-===+⨯++⨯--+++-=---,S 偶21232412()242k k k a a a k k a a a +-=+=+++=+++--,故2k S S =奇+S 偶3285k k +=--,故121828454043S =--=,173021S =,故使得4000m S >的最小整数m 的值为18.故选:BCD . 【点睛】关键点点睛:本题考查数列的和的问题,解题关键是是由已知关系得出数列的奇数项满足的性质,求出奇数项的表达式(也可求出偶数项的表达式),而求和时,先考虑项数为偶数时的和,这样可分类求各:先求奇数项的和,再求偶数项的和,从而得所有项的和,利用这个和的表达式估计和n S 接近4000时的项数n ,从而得出结论.10.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式1122n nn a ⎡⎤⎛⎛-⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.。
高考数学题型归纳:数列的题型及解题方法题型归纳
高考数学题型归纳:数列的题型及解题方法题型归纳高考数学题型归纳:数列的题型及解题方法数列问题的题型与方法数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合1。
在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 2。
在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3。
培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。
2023年新高考数学一卷数列题的变式
2023年新高考数学一卷数列题的变式一、概述在2023年新高考数学一卷中,数列题一直是考生们备战的重点之一。
数列作为高考数学中的重要知识点,一直以来都是考生备战高考数学考试的重点之一。
在2023年新高考数学一卷中,数列题目将会有何变化呢?本文将对这一内容进行详细的分析。
二、基本情况2023年新高考数学一卷将继续突出数列题目在试题中的重要性,涉及的知识点将主要包括等差数列、等比数列、数列的通项公式、数列的性质等。
相比以往的考试,2023年新高考数学一卷数列题将会更加贴近社会生活和实际应用,考察学生对数列知识的综合运用能力和解决问题的能力。
三、题型分析1. 结构调整2023年新高考数学一卷中的数列题将会增加一定的灵活性,不再局限于传统的填空题或计算题,而更多地融合了实际应用题的元素,考查学生的综合运用能力和解决问题的能力。
2. 应用拓展除了基本的等差数列和等比数列之外,2023年新高考数学一卷数列题还将会涉及到更多的拓展知识,如递推数列、嵌套数列等,更贴近实际应用,增加了难度和灵活性。
3. 分析问题在题目设置上,将更加强调对学生综合运用数列知识解决实际问题的能力。
题目会更多地围绕着实际生活中的实际问题展开,考察学生的问题分析能力和解决问题的方法。
四、解题方法1. 理清思路针对2023年新高考数学一卷数列题的变化,学生需要更加注重理清解题思路,抓住题目的重点,确定解题的方法和步骤。
2. 多练多思针对数列题的变化,学生需要通过大量的练习和思考,提高解题的经验和技巧。
多做一些难度适中的数列题目,并结合实际生活中的问题加以思考,提高自己解决问题的能力。
3. 举一反三在备考过程中,学生需要对不同类型的数列题目进行分析,举一反三,总结各类题型的解题方法和技巧,以便在考试中能够灵活运用。
五、备考建议1. 注重基础在备考过程中,学生首先要扎实掌握数列的基础知识,包括等差数列、等比数列的概念、性质、通项公式等。
2. 提高应用能力针对2023年新高考数学一卷数列题的变化,学生需要多做一些与实际生活相关的数列题目,提高自己的问题分析能力和数列知识的综合运用能力。
SXC102高考数学必修_数列新题型剖析
数列新题型剖析近几年高考中,有关数列的新情境、新信息、新定义的问题多次出现,现以典型题目为例,简单介绍一下其中的方法和数学思想.常见的主要新题型: 一、与新定义有关的新题型: 例1、对于有限数列()123,,,,n A a a a a =,设n S 为其前n 项和,定义12nS S S n+++为A 的“凯森和”, 有99项的数列()12399,,,,a a a a 的“凯森和”为1000,则有100项的数列()123100,,,,a a a a 的“凯森和”为( )A 、1001B 、991C 、999D 、990 解析:记n S 为数列()12399,,,,a a a a 前n 项和,有99项的数列()12399,,,,a a a a 的“凯森和”的和为1000,根据“凯森和”的定义得1299100099S S S +++=,则129999000S S S +++=;记n S '为数列()123991,,,,,a a a a 的和,则其“凯森和”为()()()1299121001111100100S S S S S S +++++++'''+++=()129910010099000991100100S S S +++++===,所以答案选B.二、与信息、算法有关的数列新题型:例2、一种计算机装置,有一个数据入口A 和一个数据出口B ,执行下述程序: ⑴当从A 口输入自然数1时,从B 口得到实数13,记为()113f =; ⑵当从A 口输入自然数()2n n ≥时,在B 口得到的结果()f n 是前一结果()1f n -的()()211213n n ---+倍.则当从A 口输入3时,从B 口得到 ,要想从B 口得到12303,则应从A 口输入自然数 . 解析:由()113f =,欲求()3f ,需要求()2f ,因为()()()()2111213n f n f n n --=-⋅-+, 即()()23121n f n f n n -=-⋅+,则()()()()113121,32535735f f f f =⨯==⨯=⨯, 把()1f 理解为()1113f =⨯,则由()1113f =⨯,()()112,33557f f ==⨯⨯,可以猜想当2n ≥时,()()()12121f n n n =-+,事实上,()()()()()()232511,12,,2121215n n f n f n f n f n f f n n --=-⋅-=-⋅=⨯+-,上述等式相乘,可得()()135252315792121n n f n f n n --=⨯⨯⨯⨯⨯⨯-+ 由()113f =,有()()()12121f n n n =-+,令()()()1121212303f n n n ==-+,解得24n =,故答案为135,24.。
高中数列常见题型总结经典
高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n nn S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。
2、若数列}{n a 的前n 项和323-=n n a S ,求该数列的通项公式。
3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。
^2.形如)(1n f a a n n =-+型(累加法)(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+.(2)若f(n)为n 的函数时,用累加法.例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a nn =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-⋅n q a . %(2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。
1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。
2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。
高三数学:2024新高考新试卷结构数列的通项公式的9种题型总结(解析版)
2024新高考新试卷结构数列的通项公式的9种题型总结考点一:已知()n f S n =,求na 利用()()⎩⎨⎧≥-==-2,1,11n S S n a S n nn ,注意一定要验证当1=n 时是否成立【精选例题】【例1】已知n S 为数列{}n a 的前n 项和,且121n n S +=-,则数列{}n a 的通项公式为()A .2n n a =B .3,12,2n nn a n =⎧=⎨≥⎩C .12n n a -=D .12n n a +=【答案】B【详解】当2n ≥时,121nn S -=-,1112212n n n n n n a S S +---+=-==;当1n =时,1111213a S +==-=,不符合2n n a =,则3,12,2n n n a n =⎧=⎨≥⎩.故选:B.【例2】定义123nnp p p p +++⋅⋅⋅+为n 个正数123,,,,n p p p p ⋅⋅⋅的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为15n,则10a 等于()A .85B .90C .95D .100【例3】(多选题)定义12n n H n-+++= 为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,下列关于数列{}n a 的描述正确的有()A .数列{}n a 为等差数列B .数列{}n a 为递增数列C .2022202520222S =D .2S ,4S ,6S 成等差数列【答案】ABC【详解】由已知可得112222n n n n a a a H n -+++== ,所以112222n nn a a a n -+++=⋅ ,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅ ,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 正确,所以()32n n n S +=,所以32n S n n +=,故2022202520222S =,故C 正确.25S =,414S =,627S =,2S ,4S ,6S 不是等差数列,故D 错误,故选:ABC .【例4】设数列{}n a 满足123211111222n n a a a a n -+++⋅⋅⋅+=+,则{}n a 的前n 项和()A .21n -B .21n +C .2nD .121n +-【答案】C【详解】解:当1n =时,12a =,当2n ≥时,由1231221111112222n n n n a a a a a n ---+++⋅⋅⋅++=+得123122111222n n a a a a n --+++⋅⋅⋅+=,两式相减得,1112n n a -=,即12n n a -=,综上,12,12,2n n n a n -=⎧=⎨≥⎩所以{}n a 的前n 项和为()11212224822212n n n ---+++++=+=- ,故选:C.【跟踪训练】1.无穷数列{}n a 的前n 项和为n S ,满足2nn S =,则下列结论中正确的有()A .{}n a 为等比数列B .{}n a 为递增数列C .{}n a 中存在三项成等差数列D .{}n a 中偶数项成等比数列【答案】D【详解】解:无穷数列{}n a 的前n 项和为n S ,满足2nn S =2n ∴≥,111222n n n n n n a S S ---=-=-=,当1n =时,11122a S ===,不符合上式,12,1,2,2,n n n a n -=⎧∴=⎨≥⎩所以{}n a 不是等比数列,故A 错误;又122a a ==,所以{}n a 不是递增数列,故B 错误;假设数列{}n a 中存在三项,,r m s a a a 成等差数列,由于122a a ==,则*,,N ,2r m s r m s ∈≤<<,所以得:11122222m r s m r s a a a ---=+⇒⨯=+11222m r s --∴=+,则11122r m s m ----∴=+,又11021s m s m ----≥⇒≥且120r m -->恒成立,故式子11122r m s m ----=+无解,{}n a 中找不到三项成等差数列,故C 错误;21*22(N )n n a n -∴=∈,212(1)21242n n n na a ++-∴=={}2n a ∴是等比数列,即{}n a 中偶数项成等比数列,故D 正确.故选:D .考点二:叠加法(累加法)求通项若数列{}n a 满足)()(*1N n n f a a n n ∈=-+,则称数列{}n a 为“变差数列”,求变差数列{}n a 的通项时,利用恒等式)2()1()3()2()1()()()(1123121≥-+⋅⋅⋅++++=-+⋅⋅⋅+-+-+=-n n f f f f a a a a a a a a a n n n 求通项公式的方法称为累加法。
新高考数学中“数列多选题”的类型分析及答案
新高考数学中“数列多选题”的类型分析及答案一、数列多选题1.已知数列{}n a 的首项1a m =且满足()()14751221nn a a n n a a +⎡⎤=-⋅-⋅+-⋅-⎣⎦,其中n *∈N ,则下列说法中正确的是( )A .当1m =时,有3n n a a +=恒成立B .当21m =时,有47n n a a ++=恒成立C .当27m =时,有108111n n a a ++=恒成立D .当()2km k N *=∈时,有2n kn k aa +++=恒成立【答案】AC 【分析】题设中的递推关系等价为1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,根据首项可找到{}n a 的局部周期性,从而可得正确的选项. 【详解】因为()()14751221n n a a n n a a +⎡⎤=-⋅-⋅+-⋅-⎣⎦,故1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数, 当1m =即11a =时,24a =,32a =,41a =,故{}n a 为周期数列且3n n a a +=,故A 正确.当21m =即121a =时,264a =,同理416a =,58a =,64a =,72a =,81a =,故58a a ≠,故B 错误.当2km =即12ka =时,根据等比数列的通项公式可有11222k kk a -⎛⎫= ⎪⎝⎭=,+1+21,4k k a a ==,+32k a =, +1+3k k a a ≠,故D 错误.对于C ,当27m =时,数列{}n a 的前108项依次为:27,82,42,124,62,31,94,47,142,71,214,107,322,161,484242,121,364,182,91,274,, 137,412,206,103,310,155,466,233,700,350,175,526,263,790,395,1186,593,1780, 890,445,1336,668,334,167,502,251,754,377,1132,566,283,850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619,4858,2429,7288,3644,1822,911,2734, 1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732,866,433,1300,650, 325,976,488,244,122,61,184,92,46,23,70,35,106,53,160,80,40,20,10,5,16,故1098a =,1104a =,1112a =,1121a =,1134a =,所以109112n n a a ++=对任意1n ≥总成立.(备注:因为本题为多选题,因此根据A 正确,BD 错误可判断出C 必定正确,可无需罗列出前108项) 故选:AC. 【点睛】方法点睛:对于复杂的递推关系,我们应该将其化简为相对简单的递推关系,对于数列局部周期性的研究,应该从特殊情况中总结出一般规律,另外,对于多选题,可以用排除法来确定可选项.2.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 【答案】ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.3.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0n S <时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nn N上单调递增,1na 在7nn N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确;由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.4.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是( ) A .若21,n S n =-则{}n a 是等差数列B .若21,nn S =-则{}n a 是等比数列C .若{}n a 是等差数列,则995099S a =D .若{}n a 是等比数列,且10,0,a q >>则221212n n n S S S -+⋅>【答案】BC 【分析】由n S 求n a ,根据通项公式可判断AB 是否正确,由等差数列的性质可判断C ,取1n =时,结合等比数列求和公式作差比较13S S ⋅与22S 大小即可判断D. 【详解】对于A 选项,若21n S n =-,当2n ≥时,21n a n =-,10a =不满足21n a n =-,故A错误;对于B 选项,若21nn S =-,则1112,21,1n n n n S S n a S n --⎧-=≥=⎨==⎩,由于11a =满足12n n a -=,所以{}n a 是等比数列,故B 正确;对于C 选项,若{}n a 是等差数列,则()199995099992a a S a +==,故C 正确. 对于D 选项,当1n =时,()()222222132111110S S S a q qa q a q ⋅-=++-+=-<,故当1n =时不等式不等式,故221212n n n S S S -+⋅>不成立,所以D 错误.故选:BC 【点睛】本题考查数列的前n 项和为n S 与n a 之间的关系,等差数列的性质,等比数列的前n 项和为n S 的公式等,考查运算求解能力.本题D 选项解题的关键将问题特殊化,讨论1n =时,13S S ⋅与22S 大小情况.此外还需注意一下公式:11,2,1n n n S S n a S n --≥⎧=⎨=⎩;若{}n a 是等差数列,则()2121n n S n a -=-.5.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+= ⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误;故选:BC.6.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( ) A .11111n n n a a a +=-+ B .{}n a 是单调递增数列 C .211011111111a a a a +++>+++ D .若1212120111n n a a aa a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a aa a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确; 对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n n n n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a a a a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭,由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确. 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.7.(多选)在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .1q =B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】BC 【分析】 计算可得2q,故选项A 错误;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误.【详解】 ∵142332,12,a a a a =⎧⎨+=⎩∴23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩, ∵{}n a 为递增数列,∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 错误; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项,B C 正确; 又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:BC. 【点睛】方法点睛:证明数列的性质,常用的方法有:(1)定义法;(2)中项公式法.要根据已知灵活选择方法证明.8.已知数列{}n a 的前n 项和为2n 33S n n =-,则下列说法正确的是( )A .342n a n =-B .16S 为n S 的最小值C .1216272a a a +++=D .1230450a a a +++=【答案】AC 【分析】利用和与项的关系,分1n =和2n ≥分别求得数列的通项公式,检验合并即可判定A; 根据数列的项的正负情况可以否定B;根据前16项都是正值可计算判定C;注意到121617193300()a a a S a a a +++=+----16302S S =-可计算后否定D.【详解】1133132a S ==-=,()()()2213333113422n n n a S S n n n n n n -=-=---+-=-≥,对于1n =也成立,所以342n a n =-,故A 正确;当17n <时,0n a >,当n=17时n a 0=,当17n >时,n a 0<,n S ∴只有最大值,没有最小值,故B 错误;因为当17n <时,0n a >,∴21216163316161716272a a a S +++==⨯-=⨯=,故C 正确;121617193300()a a a S a a a +++=+----2163022272(333030S S =-=⨯-⨯-)54490454=-=,故D 错误. 故选:AC. 【点睛】本题考查数列的和与项的关系,数列的和的最值性质,绝对值数列的求和问题,属小综合题.和与项的关系()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩,若数列{}n a 的前 k 项为正值,往后都是小于等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-,若数列{}n a 的前 k 项为负值,往后都是大于或等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-+.若数列的前面一些项是非负,后面的项为负值,则前n 项和只有最大值,没有最小值,若数列的前面一些项是非正,后面的项为正值,则前n 项和只有最小值,没有最大值.9.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++. 又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122...2212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,10.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <【答案】BD 【分析】根据22n n S a =-,利用数列通项与前n 项和的关系得1,1,2n nS n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2nn a =,24nn a =,数列{}2na 的前n 项和为()141444143n n nS +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲 数列与探索性新题型【考点透视】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用公式解答简单的问题. 3.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题.4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决. 【例题解析】考点1 正确理解和运用数列的概念与通项公式理解数列的概念,正确应用数列的定义,能够根据数列的前几项写出数列的通项公式. 典型例题例1.在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f (n)表示第n 堆的乒乓球总数,则()f 3_____=;()_____f n =(答案用n 表示)思路启迪:从图中观察各堆最低层的兵乓球数分别是12,3,4, …推测出第n层的球数。
解答过程:显然()f 310=.第n 堆最低层(第一层)的乒乓球数,()n 12n n n 1a a a a 2+=+++= ,第n 堆的乒乓球数总数相当于n 堆乒乓球的低层数之和,即()()22212n n n 111f n a a a (12n ).222+=+++=++++⋅…所以:n n 1n 2f (n)6++=例2.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 .第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1 …… ………………………………………思路启迪:计算图形中相应1的数量的特征,然后寻找它们之间的规律。
解:第1次全行的数都为1的是第21-=1行,第2次全行的数都为1的是第221-=3行,第3次全行的数都为1的是第321-=7行,······,第n 次全行的数都为1的是第21n -行;第61行中1的个数是521- =32. 应填21n -,32考点2 数列的递推关系式的理解与应用在解答给出的递推关系式的数列问题时,要对其关系式进行适当的变形 ,转化为常见的类型进行解题。
如“逐差法”若n n 1a a n,--=且1a 1=;我们可把各个差列出来进行求和,可得到数列{}n a 的通项.()()()n n n 1n 1n 2211a a a a a a a a ---=-+-++-+ ()()n n 1n n 121.2+=+-+++=再看“逐商法”即n 1na n 1a +=+且1a 1=,可把各个商列出来求积。
()()n n 12n 1n 1n 21a a a a a n n 1n 221n!a a a ---==--= 另外可以变形转化为等差数列与等比数列,利用等差数列与等比数列的性质解决问题。
例3.数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列. (错误!未找到引用源。
)求c 的值;(错误!未找到引用源。
)求{}n a 的通项公式. 思路启迪:(1)由123a a a ,,成公比不为1的等比数列列方程求c ;(2)可根据递推公式写出数列的前几项,然后分析每一项与该项的序号之间的关系,归纳概括出an 与n 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式.解:(错误!未找到引用源。
)12a =,22a c =+,323a c =+,因为123a a a ,,成等比数列,所以2(2)2(23)c c +=+,解得0c =或2c =. 当0c =时,123a a a ==,不符合题意舍去,故2c =. (错误!未找到引用源。
)当2n ≥时,由于21a a c -=, 322a a c -=, ,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-= .又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+= ,,. 当1n =时,上式也成立, 所以22(12)n a n n n =-+= ,,.小结:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.例4.已知数列{}n x 满足122x x =,()1212n n n x x x --=+,3,4,n =….若lim 2n n x →∞=, 则 ( B )(A) 32(B) 3 (C) 4 (D) 5思路启迪:对递推关系变形,运用叠加法求得,特别注意的是对两边同时运用. 解答过程:n n 1n 12x x x --=+, n n 1n 2n x x x x --∴-=-.32134324n 1n 2n 3n 1n n 1n 2n x x x x x x x x x x x x x x x x -------=-⎫⎪-=-⎪⎪⎬⎪-=-⎪-=-⎪⎭ 相叠加n 212n n 1x x x x x x --=+--.12x x 2=, n n 112x x 2x-∴+=. ()n n 11n n lim 2x x lim 2x -→∞→∞+=, n n lim x 2→∞=,12x 6∴= ,1x 3=.解答过程2:由()1212n n n x x x --=+得:n n 1n 1n 2211111x +x x x x x x 222---=+==+= ,n n 11n 1lim x x x 2-→∞⎛⎫+= ⎪⎝⎭,因为n n lim x 2→∞=. 所以:1x 3=.解答过程3:由()1212n n n x x x --=+得:()()2n n 1n 1n 2n 2n 311x x x x x x 22-----⎛⎫⎛⎫-=--=-- ⎪ ⎪⎝⎭⎝⎭…………()n 2n 121111x x x 22--⎛⎫⎛⎫==--=- ⎪⎪⎝⎭⎝⎭ ,从而 23211x x x 2⎛⎫-=- ⎪⎝⎭;34311x x x 2⎛⎫-=- ⎪⎝⎭;……;n 1n n 111x x x 2--⎛⎫-=- ⎪⎝⎭.叠加得:23n 1n 21111x x x 222-⎡⎤⎛⎫⎛⎫⎛⎫-=-+-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.n 2n 2111x x x 162-⎡⎤⎛⎫=+--⎢⎥⎪⎝⎭⎢⎥⎣⎦, n 2n 21n n 11lim x lim x x 162-→∞→∞⎧⎫⎡⎤⎪⎪⎛⎫=+--⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭. 11x 12x 26=+ , 从而1x 3=. 小结:数列递推关系是近几年高高数学的热点,主要是一些能转化为等差等比数列的递推关系式。
对连续两项递推()n n-1a ka d n 2,k 1=+≥≠,可转化为n n 1d d a k a 1k 1k -⎛⎫-=- ⎪--⎝⎭;对连续三项递推的关系()n 1n n-1a ka da n 2+=+≥如果方程2x kx d=0--有两个根αβ、,则上递推关系式可化为()n 1n n n 1a a a a αβ+--=-或()n 1n n n 1a a a a βα+--=-.考点3 数列的通项n a 与前n 项和n S 之间的关系与应用n a 与n S 的关系:1n n n 1S n=1a S S n 2-⎧=⎨-≥⎩,数列前n 项和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式n n n 1a S S -=-时,一定要注意条件n 2≥,求通项时一定要验证1a 是否适合。
解决含n a 与n S 的式子问题时,通常转化为只含n a 或者转化为只n S 的式子.例5. 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )(A)122n +- (B) 3n (C) 2n (D)31n - 命题目的:本题考查了等比数列的定义和求和公式,着重考查了运算能力。
过程指引因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒= 即2n a =,所以2n S n =,故选择答案C.例6.已知在正项数列{a n }中,S n 表示前n 项和且na 1=+,求a n . 思路启迪:转化为只含n a 或者只含n S 的递推关系式.解答过程1:由已知n a 1=+,得当n=1时,a 1=1;当n ≥2时,an = S n -S n -1,代入已知有n n 1S S 1--+,n 1n S S 1-=-.)2n 1S 1-=,又n n n 1a 0,S S ->>1.1,是以1为首项,1为公差的等差数列,n 故n a 2n 1=-.解答过程2:由已知n a 1+,得当n=1时,a 1=1;当n ≥2时 因为2n n a 1S 2+⎛⎫= ⎪⎝⎭,所以22n n 1n a 1a 1a 22-++⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.22n n n n 1n 14a a 2a a 2a --=+--,22n n n 1n 1a 2a a 2a 0-----= ()()n n 1n n 1a a a a 20--+--=,因为n a 0>,所以n n 1a a 2--=,所以n a 2n 1=-.考点4. 数列中与n 有关的等式的理解与应用对数列中的含n 的式子,注意可以把式子中的n 换为n 1-得到另外的式子。