动量守恒定律的应用(反冲)(提高篇)

合集下载

动量守恒定律的应用

动量守恒定律的应用

动量守恒定律的应用动量守恒定律是物理学中一个重要的原理,它描述了在一个封闭系统中,动量的总量保持不变。

根据动量守恒定律,当没有外力作用于一个物体或一个系统时,物体或系统的总动量将保持不变。

动量守恒定律的应用非常广泛,下面列举了几个常见的例子:1. 运动碰撞:当两个物体发生碰撞时,根据动量守恒定律可以计算碰撞后物体的速度和动量变化。

例如,在一个弹性碰撞中,碰撞前后两个物体的总动量保持不变。

运动碰撞:当两个物体发生碰撞时,根据动量守恒定律可以计算碰撞后物体的速度和动量变化。

例如,在一个弹性碰撞中,碰撞前后两个物体的总动量保持不变。

2. 火箭推进:火箭推进原理与动量守恒定律密切相关。

当火箭喷出燃料时,喷射出去的物质会产生一个反冲力,使得火箭向相反方向的运动。

根据动量守恒定律,火箭和喷出的物质的总动量在喷射过程中保持不变。

火箭推进:火箭推进原理与动量守恒定律密切相关。

当火箭喷出燃料时,喷射出去的物质会产生一个反冲力,使得火箭向相反方向的运动。

根据动量守恒定律,火箭和喷出的物质的总动量在喷射过程中保持不变。

3. 空气垫船:空气垫船利用了动量守恒定律来悬浮和移动。

通过在船下方喷射大量空气,形成压力差,从而产生反向的动力,使得船悬浮在空气层上方。

空气垫船:空气垫船利用了动量守恒定律来悬浮和移动。

通过在船下方喷射大量空气,形成压力差,从而产生反向的动力,使得船悬浮在空气层上方。

4. 运动炮弹:在炮弹射出时,考虑到重力和空气阻力的作用,根据动量守恒定律可以计算炮弹的速度和轨迹。

运动炮弹:在炮弹射出时,考虑到重力和空气阻力的作用,根据动量守恒定律可以计算炮弹的速度和轨迹。

动量守恒定律的应用在科学、工程和日常生活中都有着重要的意义。

它帮助人们理解和解释了许多物体运动的现象,并且为设计和优化许多工艺和设备提供了基础。

通过运用动量守恒定律,人们可以更好地理解和控制物体和系统的动态行为。

动量守恒定律的实际应用

动量守恒定律的实际应用

动量守恒定律的实际应用动量守恒定律是物理学中非常重要的定律之一,通过研究物体在碰撞和作用力下的运动情况,我们可以了解和应用这一定律。

本文将介绍动量守恒定律的基本原理,并探讨其在实际生活中的应用。

一、动量守恒定律简介动量守恒定律是指在一个封闭系统中,若无外力作用,物体的总动量将保持不变。

动量的大小等于物体的质量乘以其速度,即p=mv,其中p为动量,m为质量,v为速度。

当两物体发生碰撞时,它们之间的相互作用力导致动量的转移和改变,但总动量仍会保持不变。

二、交通事故中的动量守恒定律应用交通事故中常常运用到动量守恒定律来分析和解释事故发生的原因和结果。

当两车相撞时,车辆的总动量在碰撞前后仍然保持不变。

假设车辆A和车辆B碰撞前的速度分别为v1和v2,碰撞后的速度则分别为v1'和v2',根据动量守恒定律可得ma * v1 + mb * v2 = ma * v1' + mb * v2'。

通过分析这个方程,我们可以计算出事故发生时各车的速度,并据此判断碰撞的严重程度和责任。

三、火箭发射和运动中的应用火箭发射是动量守恒定律的一个重要实际应用。

在火箭发射过程中,燃料被喷出时会给火箭提供向相反方向的冲击力,推动火箭向前运动。

根据动量守恒定律,火箭推力的大小与燃料喷射速度和喷射物质的质量有关。

通过精确计算和控制火箭的喷射速度和质量,可以使火箭获得所需的速度和高度,实现进入太空或完成特定任务的目标。

四、物体落地的应用当物体从高处自由落体时,动量守恒定律可以帮助我们分析物体落地的速度和冲击力。

在没有空气阻力的情况下,物体下落时只受到重力的作用,根据动量守恒定律可得物体的速度v = gt,其中g为重力加速度,t为下落的时间。

通过计算可以得知物体落地时的速度,进而评估其落地的冲击力和对环境的影响。

五、动量守恒定律在体育运动中的应用动量守恒定律也在许多体育运动中得到应用,如击球运动和碰撞运动等。

在棒球击球中,击球手通过用球棒击打来球,将其反射出去。

动量守恒定律应用二《反冲运动》

动量守恒定律应用二《反冲运动》

解:将气球和人ห้องสมุดไป่ตู้成一个系统,则系统 动量守恒得
m人 s人 - m球 s球 0
则S 球 m S人 M
M m h M
由于绳梯的最小长度为L h S球
即L
课堂小结
知道什么是反冲运动,能举出几 个反冲运动的实例; 知道火箭的工作原理,了解反冲 运动的应用,进一步巩固动量守 恒定律; 学会用动量守恒定律解决人船模 型的题目
解:橡皮塞与玻璃管系统动量守恒, 选取橡皮塞的运动方向为正方向.
mv (M m)v ' 0
运动方向与橡皮塞运动方向相反
例2、设火箭发射前的总质量为M, 燃料燃尽后的质量为m,火箭燃 气的喷射速度为v,燃料燃尽后火 箭的飞行速度为v'. 试求火箭飞行 的速度v'?思考火箭飞行的最大 速度是由什么因素决定的?
动量守恒定律应用二 反冲运动
视频
一、反冲运动
1、概念: 一个物体在内力的作用下分离成两 个部分,一部分向某个方向运动,另一部分 必然向相反的方向运动,这种运动叫做反冲 运动。 2、要点:a. 内力作用 b. 一个物体分离成两个部分 c. 两部分运动方向相反 物理原理:动量守恒
例1、竖直平面内悬挂了一个带 橡皮塞的玻璃管,总质量为M, 加热玻璃管后,从管口水平喷 出的橡皮塞质量为m,速度为v, 求试管的反冲速度?
C. 使喷出的气体质量更大
D. 使喷出的气体密度更小
1、如图所示,在光滑水平路面上停着一辆 平板车,车尾站着一个小孩,当小孩以一定 的速度匀速向车头走动,小车将( B ) A. 向右运动 B. 向左运动 C. 保持静止 D. 无法确定
练习册:14页
例题2:长为L质量为m1的小船停在 静水中,质量为m2的人立在船头, 若不计水的阻力,当人从船头走到 船尾的过程中,船和人对地面的位 移各是多少?

动量守恒定律的应用范例

动量守恒定律的应用范例

动量守恒定律的应用范例动量守恒定律是物理学中的基本定律之一,它描述了一个封闭系统中,当没有外力作用时,总动量守恒的现象。

在许多实际情况中,我们可以运用动量守恒定律来解释和分析各种物理现象。

本文将介绍一些动量守恒定律的应用范例。

1. 斜面上的冲撞现象想象一个光滑的斜面,上面有一个质量为m1的小木块,从斜面的顶端以速度v1向下滑动。

在斜面底部,有一个质量为m2的物体以速度v2静止等待。

当小木块滑动到斜面底部撞击物体时,动量守恒定律可以用来分析冲撞过程。

根据动量守恒定律,系统总动量在冲撞前后保持不变。

记小木块冲撞后的速度为v3,物体冲撞后的速度为v4,则有:m1 * v1 + m2 * 0 = m1 * v3 + m2 * v4由于木块在斜面上垂直方向上没有速度分量,因此小木块在冲撞前后的垂直动量为0。

将上式进一步简化得:m1 * v1 = m1 * v3 + m2 * v4该式可以用来求解冲撞过程中物体的速度。

2. 火箭的推进原理火箭的推进原理基于动量守恒定律。

当火箭在太空中运行时,没有外力对其进行推动,因此内部燃料的喷射可以根据动量守恒定律来解释。

火箭在燃烧燃料时,燃料以高速喷射出火箭的喷管,根据牛顿第三定律,喷射的燃料会给火箭一个相反的冲量。

根据动量守恒定律,火箭和喷射的燃料的总动量在发射前后保持不变。

火箭的总动量可以表示为火箭本身的质量乘以速度,喷射的燃料的总动量可以表示为喷射质量乘以速度。

因此,在火箭喷射燃料时,可以利用动量守恒定律的表达式:m1 * v1 = (m1 + m2) * v2其中,m1为火箭质量,v1为火箭的速度;m2为喷射出的燃料的质量,v2为喷射出燃料的速度。

通过这个表达式,可以解析火箭在喷射燃料后的速度。

3. 球类碰撞动量守恒定律也可以应用于解析球类碰撞的现象。

想象两个相同质量的球,分别以速度v1和v2沿相反方向运动。

当这两个球碰撞后,根据动量守恒定律,系统总动量保持不变。

第四讲:动量守恒定律的应用——反冲

第四讲:动量守恒定律的应用——反冲
高二物理3-5《动量守恒定律》
第三讲:动量守恒定律的应用——反冲
2017年3月19日于广东肇庆
【反冲模型】 ①定义:对一个静止的物体,当一部分以一定的
相反方向 的运动, 速度离开物体时,剩余部分将做________ 这种现象叫反冲运动.
②特点:
动量守恒
机械能增加
③应用实例: 发射火箭、爆竹爆炸、灌溉装置、发射炮弹、 发电水轮机
4
8
例2、火箭飞行的最大速度是由什么因素决定的? 设火箭发射前总重量为M,燃料燃尽后的质量为m, 火箭燃气的喷出速度为v1,燃料燃尽后火箭的飞行 速度为v2.
mv2 (M m)v1 0
M m M 解得:v2 v1 ( 1)v1 m m
所以,当喷气速度v1越大,
速度就越大。
M m
【注意】:质量关系
【发射火箭】
【爆竹爆炸】
【灌溉装置】
【小车放在水平玻璃上,点燃酒精,水蒸 气将橡皮塞冲出,小车沿相反方向运动,如果小 车的总质量为M=3kg,水平喷出的橡皮塞的质量 为m=0.1kg,橡皮塞喷出时的速度为v0=2.9m/s, 求小车的反冲速度v。 【参考答案】: 大小为0.1m/s,方向与橡皮塞运动方向相反
越大,火箭的飞行
例3:一个静止的、不稳定的原子核的质量为M, 当它放射出一个质量为m、速度为V的粒子后,剩 余部分获得的反冲速度大小为多大?
mv 答案: M m
【问题与练习】
补:如图所示是某游乐场过山车的娱乐装置原理图, 弧形轨道末端与一个半径为R的光滑圆轨道平滑相 接,两辆质量均为m的相同小车(大小可忽略),中 间夹住一轻弹簧后连接在一起,两车从光滑弧形轨 道上的某一高度由静止滑下,当两车刚滑入圆环最 低点时连接两车的挂钩突然断开,弹簧将两车弹开, 其中后车刚好停下,前车沿圆环轨道运动恰能越过 圆弧轨道最高点,求: (1)前车被弹出时的速度; (2)前车被弹出的过程中弹 簧释放的弹性势能; (3)两车从静止下滑到最低 5 5 点的高度h. v1 5 gR , E p mgR, h R

动量守恒定律的应用、反冲运动

动量守恒定律的应用、反冲运动

一. 本周教学内容:动量守恒定律的应用及两种重要的力学现象:“反冲”、“碰撞”。

§4、§5 动量守恒定律的应用、反冲运动1. 动量守恒定律:如果一系统不受外力或作用于系统的合外力为零,则系统的总动量保持不变。

※对于两个相互作用前后都在一条直线上运动的物体组成的系统来说,动量守恒定律可写作:2121PP P P '+'=+ 其中,1P,2P 和1P ',2P '分别表示两个物体相互作用前后的动量。

2. 两类重要的力学现象:(1)反冲:系统在向外发射部分物质的同时,余下部分产生方向相反的运动的现象称反冲。

即:210P P+= 或 21P P -= (2)碰撞:相对运动的物体相遇时(无论它们是否直接接触)由于物体间相互作用,在极短时间内物体运动状态,发生显著变化的现象,称为碰撞。

由于碰撞时物体间相互作用力远比物体所受其它外力要大得多,所以可以认为两物体碰撞前后总动量守恒。

碰撞依作用形式分正碰和斜碰,在中学时只研究正碰,碰撞依作用过程中动能损失情况可划分为:⎪⎩⎪⎨⎧⎩⎨⎧一般非弹性碰撞完全非弹性碰撞非弹性碰撞弹性碰撞碰撞 弹性碰撞:碰撞前后总动能守恒。

非弹性碰撞:碰撞前后总动能不守恒,有损失。

完全非弹性碰撞:碰撞后两物体结成一体以相同的速度运动。

在此情况下,总动能损失最大。

※ 两球弹性正碰(关于动能守恒的问题,将在下一章中详讲)如果碰撞前球1运动,球2静止。

由动量守恒和动能守恒有⎪⎩⎪⎨⎧'+'='+'=22221121221111212121v m v m mv v m v m v m 解得:121121212112v m m m v v m m m m v +='⋅+-='三. 动量守恒定律的应用的难点分析:1. 动量守恒定律是自然界的基本规律之一在力学范围内,动量守恒定律可以根据牛顿第二定律和第三定律推导出来。

动量守恒定律的应用

动量守恒定律的应用

动量守恒定律的应用动量守恒定律是物理学中的基本定律之一。

它描述了在没有外力作用时,物体的总动量保持不变。

动量守恒定律在许多领域中有着广泛的应用,本文将重点探讨在机械和碰撞问题中的应用。

一、机械问题中的动量守恒在机械问题中,动量守恒定律用于描述物体在受到外力作用下的运动状态。

根据动量守恒定律,物体的总动量在相互作用过程中保持不变。

例如,考虑一个人推一个重物的情况。

当人用力推动重物时,人和重物之间会发生相互作用。

根据动量守恒定律,人和重物的总动量在推动过程中保持不变。

即人的动量减小,而重物的动量增大,总动量保持不变。

二、碰撞问题中的动量守恒碰撞是动量守恒定律应用最广泛的领域之一。

在碰撞问题中,动量守恒定律用于分析物体碰撞前后的运动状态。

碰撞可以分为弹性碰撞和非弹性碰撞两种情况。

在弹性碰撞中,物体碰撞前后的总动能保持不变,而在非弹性碰撞中,物体碰撞前后的总动能会发生改变。

以弹性碰撞为例,考虑两个相互碰撞的小球。

在碰撞前,两个小球分别有着不同的质量和速度。

根据动量守恒定律,碰撞过程中两个小球的总动量保持不变。

根据质量和速度的关系,可以利用动量守恒定律求解碰撞后小球的速度。

假设两个小球分别为m1和m2,碰撞前的速度分别为v1和v2,碰撞后的速度为v1'和v2',则有:m1v1 + m2v2 = m1v1' + m2v2'利用以上方程,可以计算出碰撞后小球的速度,从而揭示碰撞过程中的物体运动规律。

三、其他领域的动量守恒定律应用除了在机械和碰撞问题中的应用,动量守恒定律还可以应用于其他许多领域。

在物理学中,动量守恒定律用于解释光的反射和折射现象。

根据动量守恒定律,光束在发生反射或折射时,入射光的动量等于反射或折射光的动量。

在工程学中,动量守恒定律被应用于设计和分析流体力学中的管道和喷嘴等设备。

通过运用动量守恒定律,可以优化管道和喷嘴的设计,提高流体的传递效率。

总结:动量守恒定律是物理学中的重要定律之一,对于描述物体的运动状态和相互作用过程具有重要的意义。

1.51动量守恒定律的应用(反冲)基础

1.51动量守恒定律的应用(反冲)基础

1.51动量守恒定律的应用(反冲)【学习目标】1.了解什么是反冲运动和反冲运动在生活中的应用;2.知道火箭的飞行原理和主要用途;3.了解我国航天技术的发展.【要点梳理】要点一、反冲运动1.反冲运动(1)反冲:根据动量守恒定律,如果一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必然向相反的方向运动.这个现象叫做反冲.(2)反冲运动的特点:反冲运动是相互作用的物体之间的作用力与反作用力产生的效果.反冲运动过程中,一般满足系统的合外力为零或内力远大于外力的条件,因此可以运用动量守恒定律进行分析.(3)反冲现象的应用及防止:反冲是生活和生产实践中常见的一种现象,在许多场合,反冲是不利的,如大炮射击时,由于炮身的反冲,会影响炮弹的出口速度和准确性.为了减小反冲的影响,可增大炮身的阻力.但还有许多场合,恰好是利用了反冲,如反击式水轮机是应用反冲而工作的、喷气式飞机和火箭是反冲的重要应用,它们都是靠喷出气流的反冲作用而获得巨大速度的.(4)理解反冲运动与动量守恒定律.反冲运动的产生是系统内力作用的结果,两个相互作用的物体A B、组成的系统,A对B的作用力使B获得某一方向的动量,B对A的反作用力使A获得相反方向的动量,从而使A沿着与B的运动方向相反的方向做反冲运动.实际遇到的动量守恒问题通常有以下三种:①系统不受外力或所受外力之和为零,满足动量守恒的条件,可以用动量守恒定律解决反冲运动问题.②系统虽然受到外力作用,但内力远远大于外力,外力可以忽略,也可以用动量守恒定律解决反冲运动问题.③系统虽然所受外力之和不为零,系统的动量并不守恒,但系统在某一方向上不受外力或外力在该方向上的分力之和为零,则系统的动量在该方向上的分量保持不变,可以用该方向上动量守恒解决反冲运动问题.(5)在讨论反冲运动问题时,应注意以下几点.①速度的反向性.对于原来静止的整体,抛出部分具有速度时,剩余部分的反冲是相对于抛出部分来说的,两者运动方向必然相反.在列动量守恒方程时,可任意规定某一部分的运动方向为正方向,则反方向的另一部分的速度应取负值.质量为M的物体以对地速度v抛出一个质量为m的物体,研究剩余部分对地反冲速度时,设v的方向为正.列出的方程式为()0mv M m v+=-',得'mv vM m=--.由于v'为待求速度,事先可不考虑其方向,由计算结果为负值,表示剩余部分的运动方向与抛出部分速度力向相反.由于我们已明确剩余部分与抛出部分反向,因此可直接列出两部分动量大小相等方程.即上例可列式为()'mv M m v=-,'mv vM m=--.其中v'为剩余部分速率.②速度的相对性.反冲运动中存在相互作用的物体间发生相对运动,已知条件中告知的常常是物体的相对速度,在应用动量守恒定律时,应将相对速度转换为绝对速度(一般为对地速度).2.火箭(1)火箭:现代火箭是指一种靠喷射高温高压燃气获得反作用力向前推进的飞行器,是反冲运动的典型应用之一.(2)火箭的工作原理:动量守恒定律.当火箭推进剂燃烧时,从尾部喷出的气体具有很大的动量,根据动量守恒定律,火箭获得大小相等、方向相反的动量,因而发生连续的反冲现象,随着推进剂的消耗,火箭的质量逐渐减小,速度不断增大,当推进剂燃尽时,火箭即以获得的速度沿着预定的空间轨道飞行.(3)火箭飞行能达到的最大飞行速度,主要取决于两个因素:①喷气速度:现代液体燃料火箭的喷气速度约为2.5 km/s,提高到3 4 km/s~需很高的技术水平.②质量比(火箭开始飞行时的质量与火箭除燃料外的箭体质量之比),现代火箭能达到的质量比不超过10.(4)现代火箭的主要用途:利用火箭作为运载工具,例如发射探测仪器、常规弹头和核弹头、人造卫星和宇宙飞船.(5)我国的火箭技术已跨入了世界先进行列.要点二、反冲运动的模型1.“人船模型”——反冲运动【例】如图所示,长为l、质量为M的小船停在静水中,一个质量为m的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?【解析】选人和船组成的系统为研究对象,由于人从船头走到船尾的过程中,系统在水平方向不受外力作用,所以水平方向动量守恒,人起步前系统的总动量为零.当人起步加速前进时,船同时向后加速运动;当人匀速前进时,船同时向后匀速运动,当人停下来时船也停止.设某一时刻人对地的速度为2v ,船对地的速度为1v ,选人前进的方向为正方向,根据动量守恒定律有:210mv Mv =-,即:21v M v m=. 因为在人从船头走到船尾的整个过程中,每一时刻系统都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量成反比.从而可以得出判断:在人从船头走向船尾的过程中,人和船的平均速度也跟它们的质量成反比,即对应的平均动量12Mv mv =,而位移s vt =,所以有12Ms ms =,即21s M s m=. 由图可知12s s l +=,解得1ms l M m =+,2M s l M m=+,12s s l s +==人相对船.“人船模型”是利用平均动量守恒求解的一类问题.适用条件是:(1)系统由两个物体组成且相互作用前静止,系统总动量为零;(2)在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向),注意两物体的位移是相对同一参照物的位移.在解题时要画出各物体的位移关系草图,找出各长度间的关系.此类问题也可以根据静止系统不受外力、系统质心位置不变的道理求解. 利用这一模型还可以推广到其他问题上来解决大量的实际问题.2.火箭的最终速度火箭的工作原理就是动量守恒定律.当火箭推进剂燃烧时,从尾部喷出的气体具有很大的动量,根据动量守恒定律,火箭就获得数值相等、方向相反的动量,因而发生连续的反冲现象.随着推进剂的消耗,火箭逐渐减轻,加速度不断增大.当推进剂烧尽时,火箭即以获得的速度沿着预定的空间轨道飞行.根据动量守恒定律可以推导出单级火箭的最终速度公式(设火箭开始飞行时速度为零): 0lnsM v u M =, 式中u 是燃烧气体相对于火箭的喷射速度,0M 是火箭开始时的总质量,s M 是火箭喷气终了时剩下的壳体及其他附属设备的总质量,sM M 通常称为火箭的质量比. 上式是在未考虑空气阻力和地球引力的情况下推导出来的,由于空气阻力和地球引力的影响,火箭速度达不到公式中所给出的数值.但从这一公式可以看到提高火箭速度有两个办法,一是提高气体的喷射速度,二是提高质量比.而提高喷射速度的办法比提高质量比的办法更有效,但喷射速度的提高也有一定限度.【典型例题】类型一、反冲速度的计算例1.如图所示,水平地面上放置一门大炮,炮身质量为M ,炮筒与水平方向成θ角,今相对地以速度v 发射一炮弹,若炮弹质量为m ,求炮身的后退速度.【思路点拨】以m 和M 组成的系统为研究对象,水平方向上炮身和炮弹的内力远大于外力,可认为水平方向动量守恒.【答案】cos 'mv v Mθ=【解析】以炮弹的水平速度方向为正方向,由动量守恒定律可知:0cos mv Mv =-' 解得cos 'mv v Mθ=, 方向与炮弹的水平速度方向相反.【总结升华】本题系统动量并不守恒,但是水平方向上动量守恒,发射炮弹的过程中,炮身向后运动,这是一种反冲运动,以m 和M 组成的系统为研究对象,水平方向上炮身和炮弹的内力远大于外力,可认为水平方向动量守恒.举一反三:【变式】(2015 江山市模拟)如图,一个连同装备共有100Kg 的宇航员,脱离宇宙飞船后,在离飞船45m 的位置与飞船处于相对静止的状态.装备中有一个高压气源,能以50m/s 的速度喷出气体.宇航员为了能在10min 时间内返还飞船,他需要在开始返回的瞬间一次性向后喷出的气体为kg【答案】0.15【解析】设宇航员的速度为v ',则:450.0751060x v m s m s t '===⨯ 释放1m 氧气后,则根据动量守恒有:110()m v M m v '=-- 代入数据得:10.15m kg = 故答案为:0.15类型二、反冲运动的相对速度问题例2.如图所示,一个质量为m 的玩具蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上,若车长为l ,细杆高为h ,且位于小车的中点.试求:当玩具蛙最大以多少的水平速度跳出时,才能落到车面上?【答案】2()2M gv M m h=+【解析】玩具蛙跳出时,它和小车组成的系统水平方向不受外力,动量守恒,车将获得反向速度,之后玩具蛙将做平抛运动,由相关知识可求得结论.设玩具蛙以v 跳出时,车获得的速度为v ',由动量守恒定律有mv Mv ='. ①设蛙从跳出到落到车面上,蛙对地位移为1s ,车对地位移为2s ,则 1s vt =, ②2s v t =', ③212gt h =, ④ 且有122ls s +=, ⑤ 由①②③④⑤解得2()2M gv M m h=+.【总结升华】解题中注意分析物理过程,同时要明确各过程的相互关系.【变式1】质量为M 的小船以速度0v 行驶,船上有两个质量皆为m 的小孩a 和b ,分别静止站在船头和船尾.现小孩a 沿水平方向以速度v 向前跃入水中,然后小孩b 沿水平方向以同一速度v (相对于静止水面)向后跃入水中.求小孩b 跃出后小船的速度.【答案】02'1m v v M ⎛⎫=+⎪⎝⎭【解析】选小孩a b 、和船为一个系统,忽略水的阻力,系统水平方向动量守恒,设小孩b 跃出后小船向前行驶的速度为v ',选0v 方向为正方向,根据动量守恒定律,有0(2)M m v Mv mv mv +=+'-,整理得02'1m v v M ⎛⎫=+ ⎪⎝⎭.【变式2】一置于桌面上质量为M 的玩具炮,水平发射质量为m 的炮弹.炮可在水平方向自由移动.当炮身上未放置其他重物时,炮弹可击中水平地面上的目标A ;当炮身上固定一质量为0M 的重物时,在原发射位置沿同一方向发射的炮弹可击中水平地面上的目标B .炮口离水平地面的高度的h .如果两次发射时“火药”提供的机械能相等,求B A 、两目标与炮弹发射点之间的水平距离之比.【答案】00()()'()M M M m x x M M M m ++=++ 【解析】设炮弹的出口速度和炮身的反冲速度分别为1v 和2v ,E 为“火药”提供的机械能. 由动量守恒定律和能量守恒定律得120mv Mv =-, ①22121122E mv Mv =+, ② 由①②式得12()EMv m M m =+. ③炮弹射出后做平抛运动,有212h gt =, ④ 1x v t =, ⑤式中,t 是炮弹从射击到落地时所需的时间,x 为目标A 距炮口的水平距离,由③④⑤式得 4()EMhx gm M m =+.同理,目标B 距炮口的水平距离为004()'()E M M hx gm M M m +=++. ⑦由⑥⑦得00()()'()M M M m x x M M M m ++=++. 类型三、反冲运动在发射火箭中的运用例3.设火箭发射前的总质量为M ,燃料燃尽后的质量为m ,火箭燃气的喷射速度为v ,燃料燃尽后火箭的飞行速度为v '. 试求火箭飞行的速度v '?思考火箭飞行的最大速度是由什么因素决定的?【思路点拨】火箭在运动的过程中,随着燃料的消耗,火箭本身的质量在不断减小,对于这一类的问题,可选取火箭本身和在相互作用的时间内喷出的全部气体为研究对象,取相互作用的整个过程为研究过程,运用动量守恒的观点解决问题【答案】(/1)M m v - 【解析】由动量守恒定律: ()M m v mv --'=0()/v M m v m '=-- 即(/1)v M m v '=--通过式子:(1)Mv v m'=-- 可以看出,火箭所获得的速度与哪些因素有关呢?(1)喷气速度v :v 越大,火箭获得的速度越大。

动量守恒定律及应用

动量守恒定律及应用

动量守恒定律及应用引言:动量守恒定律是物理学中的基本原理之一,它描述了物体在相互作用过程中动量的守恒。

本文将介绍动量守恒定律的基本原理和应用,并探讨其在实际生活中的重要性。

一、动量守恒定律的基本原理动量守恒定律是基于牛顿第二定律和牛顿第三定律发展起来的。

根据牛顿第二定律,物体所受合外力等于其质量与加速度的乘积,即 F = ma。

而根据牛顿第三定律,物体间的相互作用力具有相等且相反的特性。

基于以上两个定律,我们可以得出动量守恒定律的表达式:在一个孤立系统中,如果没有外力作用,则系统总动量守恒,即∑mi * vi = ∑mf *vf,其中mi和vi分别表示初始时刻物体的质量和速度,mf和vf 表示最终时刻物体的质量和速度。

二、动量守恒定律的应用1. 碰撞问题动量守恒定律在碰撞问题中有着广泛的应用。

无论是完全弹性碰撞还是非完全弹性碰撞,都可以通过动量守恒定律来求解。

在完全弹性碰撞中,碰撞前后物体的动量总和保持不变,但动能可以转化;而在非完全弹性碰撞中,除了动量总和守恒外,动能还会发生损失。

2. 火箭推进原理火箭推进原理也是动量守恒定律的应用之一。

火箭通过喷射燃料气体产生动量,由于气体的质量很小,喷射速度较大,因此动量的改变可以达到较大的数值,从而推动火箭。

3. 交通事故分析交通事故中的动量守恒定律可以用于分析碰撞力的大小以及事故发生后车辆的速度变化。

通过研究车辆的质量和速度,可以帮助调查人员还原事故过程并查明责任。

三、动量守恒定律在实际生活中的重要性动量守恒定律不仅在物理学研究中有重要意义,也在我们的日常生活中发挥了重要作用。

1. 运动防护在进行各种运动时,了解动量守恒定律可以帮助我们做好自我防护。

例如,在滑雪运动中,如果遇到碰撞,通过合理控制自己的速度和方向,可以减少事故的发生。

2. 交通安全在道路交通中,了解动量守恒定律可以帮助我们更好地理解碰撞的力量。

这可以提醒我们保持安全距离,正确操作车辆,从而减少交通事故的发生。

动量守恒定律的应用3--反冲现象与火箭的发射

动量守恒定律的应用3--反冲现象与火箭的发射

L
M m h M
例3.如图所示,在光滑的水平面上放有一个物体M,物体上有一 光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B等高 ,现让小滑块m从A点静止下滑,在此后的过程中,则( )
B
动量定理守恒定律应用4 ---碰撞问题的变式
碰撞变式1:弹簧+两物体
例1.如图,在光滑水平面上,有质量分别为3m和m的A、B两 物体,A与轻弹簧的一端相连,弹簧另一端自由,A以速度 v0向右运动,则: (1)运动过程中弹簧的最大弹性势能为多少? (2)A、B分离后各自速度多大?
M L M m M x船 L M m x人
总结:
1.条件: (1)系统原来静止 (2)系统所受合外力为零或某一方向上合外力为零 2.结论: (1)定性: 人动,船动;人静,船静;人快,船快;人慢,船慢;人 左,船右;即运动性质完全一样。 (2)定量: 任一时刻各自的速率与质量成反比:
2.影响火箭飞行速度的因素:
M v ( 1)v m
'
(2)火箭的质量比 (火箭开始飞行时的质量与燃料燃尽时的质量比)
教材P13, P14
三.反冲运动的应用-----人船模型
例1、长为L、质量为M的小船停在静水中,一 个质量为m的人从静止开始从船头走到船尾,不 计水的阻力,求船和人相对地面的位移各为多少?
A B
碰撞变式2:光滑槽问题
例2、质量为M的带有1/4光滑圆弧轨道的小车静止置于光滑水平 面上,如图4所示,一质量也为M的小球以速度v0水平冲上小车, 到达某一高度后,小球又返回小车的左端,则 ( ) BC A.小球以后将向左做平抛运动 B.小球将做自由落体运动 C.此过程小球对小车做的功为 D.小球在弧形槽上上升的最大高度为

高中物理必修之知识讲解 动量守恒定律的应用(反冲) 提高

高中物理必修之知识讲解  动量守恒定律的应用(反冲)  提高

动量守恒定律的应用(反冲)【学习目标】1.了解什么是反冲运动和反冲运动在生活中的应用;2.知道火箭的飞行原理和主要用途;3.了解我国航天技术的发展.【要点梳理】要点诠释:要点一、反冲运动1.反冲运动(1)反冲:根据动量守恒定律,如果一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必然向相反的方向运动.这个现象叫做反冲.(2)反冲运动的特点:反冲运动是相互作用的物体之间的作用力与反作用力产生的效果.反冲运动过程中,一般满足系统的合外力为零或内力远大于外力的条件,因此可以运用动量守恒定律进行分析.(3)反冲现象的应用及防止:反冲是生活和生产实践中常见的一种现象,在许多场合,反冲是不利的,如大炮射击时,由于炮身的反冲,会影响炮弹的出口速度和准确性.为了减小反冲的影响,可增大炮身的阻力.但还有许多场合,恰好是利用了反冲,如反击式水轮机是应用反冲而工作的、喷气式飞机和火箭是反冲的重要应用,它们都是靠喷出气流的反冲作用而获得巨大速度的.(4)理解反冲运动与动量守恒定律.、组成的系统,A对B的作用反冲运动的产生是系统内力作用的结果,两个相互作用的物体A B力使B获得某一方向的动量,B对A的反作用力使A获得相反方向的动量,从而使A沿着与B的运动方向相反的方向做反冲运动.实际遇到的动量守恒问题通常有以下三种:①系统不受外力或所受外力之和为零,满足动量守恒的条件,可以用动量守恒定律解决反冲运动问题.②系统虽然受到外力作用,但内力远远大于外力,外力可以忽略,也可以用动量守恒定律解决反冲运动问题.③系统虽然所受外力之和不为零,系统的动量并不守恒,但系统在某一方向上不受外力或外力在该方向上的分力之和为零,则系统的动量在该方向上的分量保持不变,可以用该方向上动量守恒解决反冲运动问题.(5)在讨论反冲运动问题时,应注意以下几点.①速度的反向性.对于原来静止的整体,抛出部分具有速度时,剩余部分的反冲是相对于抛出部分来说的,两者运动方向必然相反.在列动量守恒方程时,可任意规定某一部分的运动方向为正方向,则反方向的另一部分的速度应取负值.质量为M 的物体以对地速度v 抛出一个质量为m 的物体,研究剩余部分对地反冲速度时,设v 的方向为正.列出的方程式为()0mv M m v +=-', 得'mv v M m=--.由于v '为待求速度,事先可不考虑其方向,由计算结果为负值,表示剩余部分的运动方向与抛出部分速度力向相反.由于我们已明确剩余部分与抛出部分反向,因此可直接列出两部分动量大小相等方程.即上例可列式为()'mv M m v =-, 'mv v M m=--.其中v '为剩余部分速率.②速度的相对性.反冲运动中存在相互作用的物体间发生相对运动,已知条件中告知的常常是物体的相对速度,在应用动量守恒定律时,应将相对速度转换为绝对速度(一般为对地速度).2.火箭(1)火箭:现代火箭是指一种靠喷射高温高压燃气获得反作用力向前推进的飞行器,是反冲运动的典型应用之一.(2)火箭的工作原理:动量守恒定律.当火箭推进剂燃烧时,从尾部喷出的气体具有很大的动量,根据动量守恒定律,火箭获得大小相等、方向相反的动量,因而发生连续的反冲现象,随着推进剂的消耗,火箭的质量逐渐减小,速度不断增大,当推进剂燃尽时,火箭即以获得的速度沿着预定的空间轨道飞行. (3)火箭飞行能达到的最大飞行速度,主要取决于两个因素: ①喷气速度:现代液体燃料火箭的喷气速度约为2.5 km/s ,提高到3 4 km/s ~需很高的技术水平. ②质量比(火箭开始飞行时的质量与火箭除燃料外的箭体质量之比),现代火箭能达到的质量比不超过10.(4)现代火箭的主要用途:利用火箭作为运载工具,例如发射探测仪器、常规弹头和核弹头、人造卫星和宇宙飞船.(5)我国的火箭技术已跨入了世界先进行列.要点二、反冲运动的模型 1.“人船模型”——反冲运动【例】如图所示,长为l 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?【解析】选人和船组成的系统为研究对象,由于人从船头走到船尾的过程中,系统在水平方向不受外力作用,所以水平方向动量守恒,人起步前系统的总动量为零.当人起步加速前进时,船同时向后加速运动;当人匀速前进时,船同时向后匀速运动,当人停下来时船也停止.设某一时刻人对地的速度为2v ,船对地的速度为1v ,选人前进的方向为正方向,根据动量守恒定律有:210mv Mv =-,即:21v Mv m=. 因为在人从船头走到船尾的整个过程中,每一时刻系统都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量成反比.从而可以得出判断:在人从船头走向船尾的过程中,人和船的平均速度也跟它们的质量成反比,即对应的平均动量12Mv mv =,而位移s vt =,所以有12Ms ms =,即21s Ms m=. 由图可知12s s l +=,解得1ms l M m =+,2M s l M m =+,12s s l s +==人相对船.“人船模型”是利用平均动量守恒求解的一类问题.适用条件是:(1)系统由两个物体组成且相互作用前静止,系统总动量为零;(2)在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向),注意两物体的位移是相对同一参照物的位移.在解题时要画出各物体的位移关系草图,找出各长度间的关系.此类问题也可以根据静止系统不受外力、系统质心位置不变的道理求解.利用这一模型还可以推广到其他问题上来解决大量的实际问题.2.火箭的最终速度火箭的工作原理就是动量守恒定律.当火箭推进剂燃烧时,从尾部喷出的气体具有很大的动量,根据动量守恒定律,火箭就获得数值相等、方向相反的动量,因而发生连续的反冲现象.随着推进剂的消耗,火箭逐渐减轻,加速度不断增大.当推进剂烧尽时,火箭即以获得的速度沿着预定的空间轨道飞行.根据动量守恒定律可以推导出单级火箭的最终速度公式(设火箭开始飞行时速度为零): 0lnsM v u M =, 式中u 是燃烧气体相对于火箭的喷射速度,0M 是火箭开始时的总质量,s M 是火箭喷气终了时剩下的壳体及其他附属设备的总质量,sM M 通常称为火箭的质量比. 上式是在未考虑空气阻力和地球引力的情况下推导出来的,由于空气阻力和地球引力的影响,火箭速度达不到公式中所给出的数值.但从这一公式可以看到提高火箭速度有两个办法,一是提高气体的喷射速度,二是提高质量比.而提高喷射速度的办法比提高质量比的办法更有效,但喷射速度的提高也有一定限度.【典型例题】类型一、反冲运动中的极值例1、(2014 长葛市三模)如下图所示,光滑水平地面上停放着甲、乙两辆相同的平板车,一根轻绳跨过乙车的定滑轮(不计定滑轮的质量和摩擦),绳的一端与甲车相连,另一端被甲车上的人拉在手中,已知每辆车和人的质量均为30 kg ,两车间的距离足够远.现在人用力拉绳,两车开始相向运动,人与甲车始终保持相对静止,当乙车的速度为0.5 m/s 时,停止拉绳.求(1)人在拉绳过程中做了多少功?(2)若人停止拉绳后,至少以多大速度立即从甲车跳到乙车才能使两车不发生碰撞?【答案】(1)W =5.625 J.;(2)当人跳离甲车的速度大于或等于0.5m/s 时,两车才不会相撞 【解析】(1)设甲、乙两车和人的质量分别为m 甲、m 乙和m 人,停止拉绳时,甲车的速度为v 甲,乙车的速度为v 乙,由动量守恒定律得 (m 甲+m 人)v 甲=m 乙v 乙 求得v 甲=0.25 m/s由功能关系可知,人拉绳过程做的功等于系统动能的增加量. W =12(m 甲+m 人)v 2甲+12m 乙v 2乙=5.625 J. (2)设人跳离甲时人的速度方向为正,大小为v 人,甲车的速度为'v 甲,人离开甲车前后由动量守恒定律得:(m +m )=m +m v v v 甲甲甲甲人人人’人跳到乙车时,人与车共同速度为'v 乙:()m v m v m m v -=+乙乙乙乙人人人’ 若两车不碰撞,则''v v ≤甲乙 代入得: 0.5m/s v ≥人当人跳离甲车的速度大于或等于0.5m/s 时,两车才不会相撞 【总结升华】注意不同物理过程中的不同研究对象。

动量守恒定律物理教案优秀5篇

动量守恒定律物理教案优秀5篇

动量守恒定律物理教案优秀5篇1、理解动量守恒定律的确切含义.2、知道动量守恒定律的适用条件和适用范围.二、能力目标1、运用动量定理和牛顿第三定律推导出动量守恒定律.2、能运用动量守恒定律解释现象.3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).三、情感目标1、培养实事求是的科学态度和严谨的推理方法.2、使学生知道自然科学规律发现的重大现实意义以及对社会发展的巨大推动作用.重点难点:重点:理解和基本掌握动量守恒定律.难点:对动量守恒定律条件的掌握.教学过程:动量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律.(-)系统为了便于对问题的讨论和分析,我们引入几个概念.1.系统:存在相互作用的几个物体所组成的整体,称为系统,系统可按解决问题的需要灵活选取.2.内力:系统内各个物体间的相互作用力称为内力.3.外力:系统外其他物体作用在系统内任何一个物体上的力,称为外力.内力和外力的区分依赖于系统的选取,只有在确定了系统后,才能确定内力和外力.(二)相互作用的两个物体动量变化之间的关系演示如图所示,气垫导轨上的A、B两滑块在P、Q两处,在A、B间压紧一被压缩的弹簧,中间用细线把A、B拴住,M和N为两个可移动的挡板,通过调节M、N的位置,使烧断细线后A、B两滑块同时撞到相应的挡板上,这样就可以用SA和SB分别表示A、B两滑块相互作用后的速度,测出两滑块的质量mA\mB和作用后的位移SA和SB比较mASA和mBSB.高二物理《动量守恒定律》教案1.实验条件:以A、B为系统,外力很小可忽略不计.2.实验结论:两物体A、B在不受外力作用的条件下,相互作用过程中动量变化大小相等,方向相反,即△pA=-△pB或△pA+△pB=0注意因为动量的变化是矢量,所以不能把实验结论理解为A、B两物体的动量变化相同.(三)动量守恒定律1.表述:一个系统不受外力或受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.2.数学表达式:p=p’,对由A、B两物体组成的系统有:mAvA+mBvB=mAvA’+mBvB’ (1)mA、mB分别是A、B两物体的质量,vA、vB、分别是它们相互作用前的速度,vA’、vB’分别是它们相互作用后的速度.注意式中各速度都应相对同一参考系,一般以地面为参考系.(2)动量守恒定律的表达式是矢量式,解题时选取正方向后用正、负来表示方向,将矢量运算变为代数运算.3.成立条件在满足下列条件之一时,系统的动量守恒(1)不受外力或受外力之和为零,系统的总动量守恒.(2)系统的内力远大于外力,可忽略外力,系统的总动量守恒.(3)系统在某一方向上满足上述(1)或(2),则在该方向上系统的总动量守恒.4.适用范围动量守恒定律是自然界最重要最普遍的规律之一,大到星球的宏观系统,小到基本粒子的微观系统,无论系统内各物体之间相互作用是什么力,只要满足上述条件,动量守恒定律都是适用的.(四)由动量定理和牛顿第三定律可导出动量守恒定律设两个物体m1和m2发生相互作用,物体1对物体2的作用力是F12,物体2对物体1的作用力是F21,此外两个物体不受其他力作用,在作用时间△Vt内,分别对物体1和2用动量定理得:F21△Vt=△p1;F12△Vt=△p2,由牛顿第三定律得F21=-F12,所以△p1=-△p2,即:△p=△p1+△p2=0或m1v1+m2v2=m1v1’+m2v2’.例1如图所示,气球与绳梯的质量为M,气球的绳梯上站着一个质量为m的人,整个系统保持静止状态,不计空气阻力,则当人沿绳梯向上爬时,对于人和气球(包括绳梯)这一系统来说动量是否守恒?为什么?高二物理《动量守恒定律》教案解析对于这一系统来说,动量是守恒的,因为当人未沿绳梯向上爬时,系统保持静止状态,说明系统所受的重力(M+m)g跟浮力F平衡,那么系统所受的外力之和为零,当人向上爬时,气球同时会向下运动,人与梯间的相互作用力总是等值反向,系统所受的外力之和始终为零,因此系统的动量是守恒的.例2如图所示是A、B两滑块在碰撞前后的闪光照片部分示意图,图中滑块A的质量为0.14kg,滑块B的质量为0.22kg,所用标尺的最小刻度是0.5cm,闪光照相时每秒拍摄10次,试根据图示回答:高二物理《动量守恒定律》教案(1)作用前后滑块A动量的增量为多少?方向如何?(2)碰撞前后A和B的总动量是否守恒?解析从图中A、B两位置的变化可知,作用前B是静止的,作用后B向右运动,A向左运动,它们都是匀速运动.mAvA+mBvB=mAvA’+mBvB’(1)vA=SA/t=0.05/0.1=0.5(m/s);vA′=SA′/t=-0.005/0.1=-0.05(m/s)△pA=mAvA’-mAvA=0.14*(-0.05)-0.14*0.5=-0.077(kg·m/s),方向向左.(2)碰撞前总动量p=pA=mAvA=0.14__0.5=0.07(kg·m/s)碰撞后总动量p’=mAvA’+mBvB’=0.14__(-0.06)+0.22__(0.035/0.1)=0.07(kg·m/s)p=p’,碰撞前后A、B的总动量守恒.例3一质量mA=0.2kg,沿光滑水平面以速度vA=5m/s运动的物体,撞上静止于该水平面上质量mB=0.5kg的物体B,在下列两种情况下,撞后两物体的速度分别为多大?(1)撞后第1s末两物距0.6m.(2)撞后第1s末两物相距3.4m.解析以A、B两物为一个系统,相互作用中无其他外力,系统的动量守恒.设撞后A、B两物的速度分别为vA’和vB’,以vA的方向为正方向,则有:mAvA=mAvA’+mBvB’;vB’t-vA’t=s(1)当s=0.6m时,解得vA’=1m/s,vB’=1.6m/s,A、B同方向运动.(2)当s=3.4m时,解得vA’=-1m/s,vB’=2.4m/s,A、B反方向运动.例4如图所示,A、B、C三木块的质量分别为mA=0.5Kg,mB=0.3Kg,mC=0.2Kg,A和B紧靠着放在光滑的水平面上,C以v0=25m/s的水平初速度沿A的上表面滑行到B的上表面,由于摩擦最终与B木块的共同速度为8m/s,求C刚脱离A时,A的速度和C的速度.高二物理《动量守恒定律》教案解析C在A的上表面滑行时,A和B的速度相同,C在B的上表面滑行时,A和B脱离.A 做匀速运动,对A、B、C三物组成的系统,总动量守恒.动量守恒定律物理教案(精选篇2)三维教学目标1、知识与技能:掌握运用动量守恒定律的一般步骤。

动量守恒定律的应用

动量守恒定律的应用

动量守恒定律的应用一、学习内容1.掌握运用动量守恒定律解题的一般步骤,知道当系统内力远大于外力时动量近似守恒,如碰撞、爆炸问题。

2.理解并能运用分方向动量守恒求解有关问题。

会求解多个物体组成系统的动量守恒问题。

能综合应用动量守恒和其他规律分析解决有关问题。

3.知道反冲运动的含义和反冲运动的应用,会解释反冲现象并能计算有关问题,知道火箭的飞行原理和主要用途。

4.会处理动量守恒中的临界问题。

二、学习要点1.反冲运动及其规律(1)反冲运动:两个物体相互作用,由于一个物体的运动,而引起另一个物体的后退运动.如原来静止的大炮,向前发射炮弹后,他身要后退,炮身的后退就是反冲运动再如,发射火箭时,火箭向下高速喷射气体,使火箭获得向上的速度,这也是反冲运.(2)反冲运动遵循的规律:反冲运动是系统内力作用的结果,虽然有时系统所受的合外力不为零,但由于系统内力远远大于外力,所以系统的总动量是守恒的.此外如系统所受的外力的合力不为零,但在某一方向上不受外力或在该方向上所受外力的合力为零,则在该方向上的动量(即总动量在该方向上的分量)是守恒的,这种某方向上的动量守恒应用很广泛.2.反冲运动与人船模型如图所示,长为L,质量为m1的小船停在静水中,一个质量为m2的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?选人和船组成的系统为研究对象,由于人从船头走到船尾的过程中,系统在水平方向上不受外力作用,所以水平方向动量守恒,人起步前系统的总动量为零.当人起步加速前进时,船同时向后加速运动;当人匀速前进时,船同时向后匀速运动;当人停下来时,船也停下来.设某一时刻人对地的速度为v2,船对地的速度为v1,选人前进的方向为正方向,根据动量守恒定律有 m1v1-m2v2=0 即v2/v1=m1/m2.因为在人从船头走到船尾的整个过程中,每一个时刻系统都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量成反比从而可以判断:在人从船头走到船尾的过程中,人的位移S2与船的位移S1之比,也应与它们的质量成反比,即s2/s1=m1/m2上式是人船模型的位移与质量的关系式,此式的适用条件是:一个原来处于静止状态的系统,在系统发生相对运动的过程中,有一个方向动量守恒(如水平方向或竖直方向).使用这一关系应注意:s1和s=s2是相对同一参照物的位移.由图可以看出 s1+s2=L与m1s1=m2s2联立解得 s1=m2L/(m1+m2) s2=m1L/(m1+m2)3.火箭原理火箭是反冲运动的重要应用,它是靠喷出气流的反冲作用而获得巨大速度的.现代火箭主要由壳体和燃料两大部分组成,壳体是圆筒形的,前端是封闭的尖端,后端有尾喷管,燃料燃烧时产生的高温高压气体以很大的速度从尾部向后喷出,火箭就向前飞去。

2024年高中物理新教材讲义:动量守恒定律的应用

2024年高中物理新教材讲义:动量守恒定律的应用

专题强化2动量守恒定律的应用[学习目标]1.理解某一方向上的动量守恒(重点)。

2.会利用动量守恒定律分析和解决多物体、多过程问题(重难点)。

3.会分析动量守恒定律应用中的临界问题(重难点)。

一、某一方向上的动量守恒若系统受到的合外力不为零,系统的动量不守恒。

但若在某一方向上合外力为零,则系统在此方向上动量守恒。

系统在某一方向动量守恒时,动量守恒表达式为:(以水平方向动量守恒为例)m 1v 1x +m 2v 2x =m 1v 1x ′+m 2v 2x ′。

例1如图所示,光滑的水平面上,质量为m 物体A 置于质量为M 的斜面体B 上,斜面的倾角为θ,在A 沿斜面由底端冲上顶端的过程中,A 和B 组成的系统()A .系统的动量守恒B .在竖直方向上系统的动量分量守恒C .在水平方向上系统的动量分量守恒D .在任何方向上系统的动量分量都不守恒答案C解析由题意知,A 沿斜面由底端冲上顶端的过程中,在竖直方向上A 有向下的加速度,所以A 和B 组成的系统在竖直方向上系统的动量分量不守恒.而A 和B 组成的系统在水平方向上不受外力作用,所以A 和B 组成的系统,在水平方向上系统的动量分量守恒,故选C 。

拓展延伸若A 刚好到达斜面顶端,且A 、B 具有共同速度,若不计A 、B 间的摩擦,则A到达顶端时速度的大小为()A.m v 0M +mB.m v 0cos θM +mC.M v 0M +mD.M v 0cos θM +m答案B解析因为物体A 具有竖直方向的加速度,故系统在竖直方向受到向下的重力和水平面提供的向上的作用力,且此方向合力不为零,故此方向的动量不守恒;但水平面光滑,故系统在水平方向动量守恒,A 到达顶端时,A 和斜面体只有水平方向的速度,即m v 0cos θ=(M +m )v ,所以v =m v 0cos θM +m ,故选B 。

例2如图所示,质量为m =1kg 的小物块在距离车底部h =20m 高处以一定的初速度向左被水平抛出,落在以v 0=7.5m/s 的速度沿光滑水平面向右匀速行驶的敞篷小车中,小车足够长,质量为M =4kg ,设小物块在落到车底前瞬间的速度大小是25m/s ,g 取10m/s 2,则当小物块与小车相对静止时,小车的速度大小是()A .1m/sB .3m/sC .9m/sD .11m/s答案B解析小物块做平抛运动,下落时间为t =2hg=2s ,小物块落到车底前瞬间,竖直方向速度大小为v y =gt =10×2m/s =20m/s ,小物块在落到车底前瞬间的速度大小是v =25m/s ,根据平行四边形定则可知,小物块水平方向的速度大小为v x =v 2-v y 2=252-202m/s =15m/s ,小物块与车在水平方向上动量守恒,以向右为正方向,由动量守恒定律有M v 0-m v x =(M +m )v 共,解得v 共=3m/s ,故B 正确。

动量守恒定律及其应用

动量守恒定律及其应用

动量守恒定律及其应用动量守恒定律是物理学中一项重要的基本定律,它描述了在没有外力作用的情况下,一个系统内的总动量保持不变。

在本文中,我们将探讨动量守恒定律的基本原理,以及它在实际应用中的重要性。

一、动量守恒定律的基本原理动量是物体的运动特性,它与物体的质量和速度相关。

动量守恒定律指出,在一个系统内,如果没有外力作用,系统的总动量将保持不变。

具体而言,如果一个系统中没有任何物体进入或离开,那么系统的总动量在运动过程中将始终保持不变。

根据动量守恒定律,一个物体的动量改变量等于作用在该物体上的外力的合力乘以时间。

数学上可以表示为:Δp = FΔt。

其中,Δp代表物体动量的改变量,F代表外力的合力,Δt代表时间变化。

二、动量守恒定律的应用1. 碰撞问题动量守恒定律在碰撞问题中有着广泛的应用。

当两个物体发生碰撞时,如果没有外力作用于它们,那么碰撞前后的总动量保持不变。

这个原理在交通安全中有重要的应用,例如汽车碰撞时的速度计算和事故重建等。

2. 火箭发射火箭发射是动量守恒定律的重要应用之一。

根据牛顿第三定律,火箭喷出的排气具有反冲作用,从而使火箭本身获得相应的动量。

通过控制喷射速度和时间,可以实现火箭的加速和改变方向。

3. 运动员的跳远和投掷项目在跳远和投掷项目中,运动员可以利用动量守恒定律来改变自己的动作,从而获得更好的成绩。

例如,在跳远中,运动员可以利用蹲下时的动量来改变腿部的运动轨迹,从而实现更远距离的跳跃。

4. 枪械原理动量守恒定律在枪械原理中也起到关键作用。

当枪械发射子弹时,燃气的反冲力将使枪械本身获得相应的反冲动量。

通过控制子弹的质量和速度,可以实现有效的射击。

三、结论动量守恒定律是物理学中的重要定律,它在广泛的领域中发挥着作用。

通过应用动量守恒定律,我们可以更好地理解物体的运动行为,并应用于实际问题的解决。

动量守恒定律的应用不仅可以提高我们对物体运动的认识,还可以帮助我们改进技术和提高运动成绩。

113知识讲解 动量守恒定律的应用(反冲) 提高

113知识讲解  动量守恒定律的应用(反冲)  提高

动量守恒定律的应用(反冲)【学习目标】1.了解什么是反冲运动和反冲运动在生活中的应用;2.知道火箭的飞行原理和主要用途;3.了解我国航天技术的发展.【要点梳理】要点诠释:要点一、反冲运动1.反冲运动(1)反冲:根据动量守恒定律,如果一个静止的物体在内力的作用下分裂为两个部分,一部分向某个方向运动,另一部分必然向相反的方向运动.这个现象叫做反冲.(2)反冲运动的特点:反冲运动是相互作用的物体之间的作用力与反作用力产生的效果.反冲运动过程中,一般满足系统的合外力为零或内力远大于外力的条件,因此可以运用动量守恒定律进行分析.(3)反冲现象的应用及防止:反冲是生活和生产实践中常见的一种现象,在许多场合,反冲是不利的,如大炮射击时,由于炮身的反冲,会影响炮弹的出口速度和准确性.为了减小反冲的影响,可增大炮身的阻力.但还有许多场合,恰好是利用了反冲,如反击式水轮机是应用反冲而工作的、喷气式飞机和火箭是反冲的重要应用,它们都是靠喷出气流的反冲作用而获得巨大速度的.(4)理解反冲运动与动量守恒定律.、组成的系统,A对B的作用反冲运动的产生是系统内力作用的结果,两个相互作用的物体A B力使B获得某一方向的动量,B对A的反作用力使A获得相反方向的动量,从而使A沿着与B的运动方向相反的方向做反冲运动.实际遇到的动量守恒问题通常有以下三种:①系统不受外力或所受外力之和为零,满足动量守恒的条件,可以用动量守恒定律解决反冲运动问题.②系统虽然受到外力作用,但内力远远大于外力,外力可以忽略,也可以用动量守恒定律解决反冲运动问题.③系统虽然所受外力之和不为零,系统的动量并不守恒,但系统在某一方向上不受外力或外力在该方向上的分力之和为零,则系统的动量在该方向上的分量保持不变,可以用该方向上动量守恒解决反冲运动问题.(5)在讨论反冲运动问题时,应注意以下几点.①速度的反向性.对于原来静止的整体,抛出部分具有速度时,剩余部分的反冲是相对于抛出部分来说的,两者运动方向必然相反.在列动量守恒方程时,可任意规定某一部分的运动方向为正方向,则反方向的另一部分的速度应取负值.质量为M 的物体以对地速度v 抛出一个质量为m 的物体,研究剩余部分对地反冲速度时,设v 的方向为正.列出的方程式为()0mv M m v +=-', 得'm v v M m=--. 由于v '为待求速度,事先可不考虑其方向,由计算结果为负值,表示剩余部分的运动方向与抛出部分速度力向相反.由于我们已明确剩余部分与抛出部分反向,因此可直接列出两部分动量大小相等方程.即上例可列式为()'mv M m v =-,'m v v M m=--. 其中v '为剩余部分速率.②速度的相对性.反冲运动中存在相互作用的物体间发生相对运动,已知条件中告知的常常是物体的相对速度,在应用动量守恒定律时,应将相对速度转换为绝对速度(一般为对地速度).2.火箭(1)火箭:现代火箭是指一种靠喷射高温高压燃气获得反作用力向前推进的飞行器,是反冲运动的典型应用之一.(2)火箭的工作原理:动量守恒定律.当火箭推进剂燃烧时,从尾部喷出的气体具有很大的动量,根据动量守恒定律,火箭获得大小相等、方向相反的动量,因而发生连续的反冲现象,随着推进剂的消耗,火箭的质量逐渐减小,速度不断增大,当推进剂燃尽时,火箭即以获得的速度沿着预定的空间轨道飞行.(3)火箭飞行能达到的最大飞行速度,主要取决于两个因素:①喷气速度:现代液体燃料火箭的喷气速度约为2.5 km/s ,提高到3 4 km/s ~需很高的技术水平. ②质量比(火箭开始飞行时的质量与火箭除燃料外的箭体质量之比),现代火箭能达到的质量比不超过10.(4)现代火箭的主要用途:利用火箭作为运载工具,例如发射探测仪器、常规弹头和核弹头、人造卫星和宇宙飞船.(5)我国的火箭技术已跨入了世界先进行列.要点二、反冲运动的模型1.“人船模型”——反冲运动【例】如图所示,长为l 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?【解析】选人和船组成的系统为研究对象,由于人从船头走到船尾的过程中,系统在水平方向不受外力作用,所以水平方向动量守恒,人起步前系统的总动量为零.当人起步加速前进时,船同时向后加速运动;当人匀速前进时,船同时向后匀速运动,当人停下来时船也停止.设某一时刻人对地的速度为2v ,船对地的速度为1v ,选人前进的方向为正方向,根据动量守恒定律有:210mv Mv =-,即:21v M v m=. 因为在人从船头走到船尾的整个过程中,每一时刻系统都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量成反比.从而可以得出判断:在人从船头走向船尾的过程中,人和船的平均速度也跟它们的质量成反比,即对应的平均动量12Mv mv =,而位移s vt =,所以有12Ms ms =,即21s M s m=. 由图可知12s s l +=,解得1m s l Mm=+, 2M s l M m=+, 12s s l s +==人相对船.“人船模型”是利用平均动量守恒求解的一类问题.适用条件是:(1)系统由两个物体组成且相互作用前静止,系统总动量为零;(2)在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向),注意两物体的位移是相对同一参照物的位移.在解题时要画出各物体的位移关系草图,找出各长度间的关系.此类问题也可以根据静止系统不受外力、系统质心位置不变的道理求解.利用这一模型还可以推广到其他问题上来解决大量的实际问题.2.火箭的最终速度火箭的工作原理就是动量守恒定律.当火箭推进剂燃烧时,从尾部喷出的气体具有很大的动量,根据动量守恒定律,火箭就获得数值相等、方向相反的动量,因而发生连续的反冲现象.随着推进剂的消耗,火箭逐渐减轻,加速度不断增大.当推进剂烧尽时,火箭即以获得的速度沿着预定的空间轨道飞行.根据动量守恒定律可以推导出单级火箭的最终速度公式(设火箭开始飞行时速度为零): 0ln sM v u M =, 式中u 是燃烧气体相对于火箭的喷射速度,0M 是火箭开始时的总质量,s M 是火箭喷气终了时剩下的壳体及其他附属设备的总质量,0sM M 通常称为火箭的质量比. 上式是在未考虑空气阻力和地球引力的情况下推导出来的,由于空气阻力和地球引力的影响,火箭速度达不到公式中所给出的数值.但从这一公式可以看到提高火箭速度有两个办法,一是提高气体的喷射速度,二是提高质量比.而提高喷射速度的办法比提高质量比的办法更有效,但喷射速度的提高也有一定限度.【典型例题】类型一、反冲运动中的极值例1、(2014 长葛市三模)如下图所示,光滑水平地面上停放着甲、乙两辆相同的平板车,一根轻绳跨过乙车的定滑轮(不计定滑轮的质量和摩擦),绳的一端与甲车相连,另一端被甲车上的人拉在手中,已知每辆车和人的质量均为30 kg ,两车间的距离足够远.现在人用力拉绳,两车开始相向运动,人与甲车始终保持相对静止,当乙车的速度为0.5 m/s 时,停止拉绳.求(1)人在拉绳过程中做了多少功?(2)若人停止拉绳后,至少以多大速度立即从甲车跳到乙车才能使两车不发生碰撞?【答案】(1)W =5.625 J.;(2)当人跳离甲车的速度大于或等于0.5m/s 时,两车才不会相撞【解析】(1)设甲、乙两车和人的质量分别为m 甲、m 乙和m 人,停止拉绳时,甲车的速度为v 甲,乙车的速度为v 乙,由动量守恒定律得(m 甲+m 人)v 甲=m 乙v 乙 求得v 甲=0.25 m/s由功能关系可知,人拉绳过程做的功等于系统动能的增加量.W =12(m 甲+m 人)v 2甲+12m 乙v 2乙=5.625 J. (2)设人跳离甲时人的速度方向为正,大小为v 人,甲车的速度为'v 甲,人离开甲车前后由动量守恒定律得:(m +m )=m +m v v v 甲甲甲甲人人人’人跳到乙车时,人与车共同速度为'v 乙:()m v m v m m v -=+乙乙乙乙人人人’若两车不碰撞,则''v v ≤甲乙代入得: 0.5m/s v ≥人当人跳离甲车的速度大于或等于0.5m/s 时,两车才不会相撞【总结升华】注意不同物理过程中的不同研究对象。

动量守恒定律的应用

动量守恒定律的应用

动量守恒定律的应用
动量守恒定律是物理学中的一条重要定律,可以应用于多种物理现象和实际问题。

1. 碰撞问题:在碰撞过程中,物体之间的动量总和保持不变。

可以利用动量守恒定律来分析碰撞前后物体的速度和质量的关系,例如弹性碰撞和非弹性碰撞。

2. 火箭推进原理:火箭的推进是利用推出高速气体产生反作用
力来推动火箭本身运动。

根据动量守恒定律,火箭推出的气体速度越快,则火箭本身的速度增加越大。

3. 水平射击问题:当一个人射击一个物体时,物体受到子弹的
冲击力,从而获得一定的速度。

根据动量守恒定律,可以计算出物体的速度和子弹速度之间的关系。

4. 交通事故分析:在交通事故中,根据动量守恒定律可以分析
事故发生前后车辆的速度和质量的关系,从而判断事故的原因和责任。

5. 运动项目分析:例如击球运动中,击球者可以通过改变球拍
和球的质量以及速度来控制球的发射速度和方向,利用动量守恒定律进行分析和优化。

总而言之,动量守恒定律广泛应用于物理学和实际问题中,可以帮助我们理解和解释各种运动现象,并且对于工程设计、交通安全等领域也有重要的指导意义。

高考物理中如何应用动量守恒定律解决问题

高考物理中如何应用动量守恒定律解决问题

高考物理中如何应用动量守恒定律解决问题在高考物理中,动量守恒定律是一个极其重要的知识点,也是解决许多物理问题的有力工具。

理解并熟练运用动量守恒定律,对于在高考中取得优异成绩至关重要。

首先,我们来明确一下动量守恒定律的概念。

动量守恒定律指出:如果一个系统不受外力或者所受外力的矢量和为零,那么这个系统的总动量保持不变。

那么,在高考中,动量守恒定律通常会在哪些类型的题目中出现呢?常见的有碰撞问题、爆炸问题、反冲问题等。

在碰撞问题中,无论是完全弹性碰撞、非完全弹性碰撞还是完全非弹性碰撞,动量守恒定律都有着广泛的应用。

以完全弹性碰撞为例,假设两个物体质量分别为 m1 和 m2,碰撞前的速度分别为 v1 和 v2,碰撞后的速度分别为 v1' 和 v2'。

根据动量守恒定律,有 m1v1 + m2v2= m1v1' + m2v2' 。

同时,由于是完全弹性碰撞,动能也守恒,结合动能守恒的公式,可以求解出碰撞后的速度 v1' 和 v2' 。

对于非完全弹性碰撞和完全非弹性碰撞,虽然动能不守恒,但动量依然守恒。

在完全非弹性碰撞中,两个物体碰撞后会粘在一起,共同运动,此时可以根据动量守恒定律求出共同的速度。

爆炸问题也是高考的常见题型。

比如一个物体在内部能量的作用下爆炸成多个部分,在爆炸过程中,内力远远大于外力,系统的动量近似守恒。

通过分析爆炸前物体的动量和爆炸后各部分的动量关系,可以解决相关问题。

反冲问题同样遵循动量守恒定律。

比如火箭发射,火箭向后喷出高速气体,产生反冲力,使火箭向前运动。

在这个过程中,火箭和喷出的气体组成的系统动量守恒。

那么,如何正确应用动量守恒定律来解题呢?第一步,要明确研究对象。

确定我们要研究的是哪一个系统,这个系统是否满足动量守恒的条件。

第二步,分析系统所受的外力。

如果外力的矢量和为零,或者在某一方向上外力的矢量和为零,那么在这个方向上动量守恒。

第三步,确定初末状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律的应用(反冲)(提高篇)
一、选择题
1.航天飞机利用喷出的气体进行加速,是利用了高速气体的哪种作用?( ).
A .产生的浮力
B .向外的喷力 c .反冲作用 D .热作用
2.竖直发射的火箭质量为6×103 kg .已知每秒钟喷出气体的质量为200 kg .若要使火箭最初能得到20. 2 m /s 。

的向上加速度,则喷出气体的速度应为( ).
A .700 rn /s
B .800 m /s
C .900 m /s
D .1000 m /s
3.质量相等的A 、B 两球之间压缩一根轻质弹簧,静置于光滑水平桌面上,当用板挡住小球A 而只释放B 球时,B 球被弹出落到距桌边水平距离为s 的地面上,如图所示.若再次以相同力压缩该弹簧,取走A 左边的挡板,将A 、B 同时释放,则四球的落地点距桌边( ).
A .2
s B C .s D s 4.质量m=100 kg 的小船静止在平静水面上,船两端载着m 甲=40 kg ,m 乙=60 kg 的游泳者,在同一水平线上甲向左、乙向右同时以相对于岸3 m /s 的速度跃入水中,如图所示,则小船的运动速率和方向为( ).
A .0.6 m /s ,向左
B .3 m /s ,向左
C .0.6 m /s ,向右
D .3 m /s ,向右
5.质量为m ,半径为R 的小球,放在半径为2R ,质量为2m .的大空心球内,大球开始静止在光滑水平面上,当小球从图所示位置无初速地沿内壁滚到最低点时,大球移动的距离为( ).
A .2R
B .3R
C .4R
D .6
R 6.一个质量为M 的平板车静止在光滑的水平面上,在平板车的车头与车尾站着甲、乙两人,质量分别为m 1和m 2,当两人相向而行时( ).
A .当m 1>m 2时,车子与甲运动方向一致
B .当v 1>v 2时,车子与甲运动方向一致
C .当m 1v 1=m 2v 2时,车子静止不动
D .当m 1v 1>m 2v 2时,车子运动方向与乙运动方向一致
7.穿着溜冰鞋的人,站在光滑的冰面上,沿水平方向举枪射击.设第一次射出子弹后,人后退的速度为v ,则( ).
A .无论射出多少颗子弹,人后退的速度为v 保持不变
B .射出n 颗子弹后,人后退的速度为nv
C .射出n 颗子弹后,人后退的速度大于nv
D .射出n 颗子弹后,人后退的速度小于nv
8.一气球由地面匀速上升,当气球下的吊梯上站着的人沿着梯子向上爬时,下列说法不.
正确的是( ).
A .气球可能匀速上升
B .气球可能相对地面静止
C .气球可能下降
D .气球运动速度不发生变化
9.一小型火箭在高空绕地球做匀速圆周运动,若其沿运动方向的相反方向射出一物体P ,不计空气阻力,则( ).
A .火箭一定离开原来轨道运动
B .P 一定离开原来轨道运动
C .火箭运动半径可能不变
D .P 运动半径一定减小
10.如图所示,质量为M 的密闭汽缸置于光滑水平面上,缸内有一隔板P ,隔板右边是真空,隔板左边是质量为m 的高压气体,若将隔板突然抽去,则汽缸的运动情况是( ).
A .保持静止不动
B .向左移动一定距离后恢复静止
C .最终向左做匀速直线运动
D .先向左移动,后向右移动回到原来位置
二、填空题
11.如图所示,质量为m ,长为a 的汽车由静止开始从质量为M 、长为b 的平板车一端行至另一端时,汽车发生的位移大小为________,平板车发生的位移大小为________.(水平地面光滑)
12.小车静置在光滑水平面上,站在车上的人练习打靶,靶装在车上的另一端,如图所示(小圆点表示枪口).已知车、人、枪和靶的总质量为M (不含子弹),每颗子弹质量为m ,共n 发.打靶时,每发子弹打入靶中,就留在靶里,且待前一发打入靶中后,再打下一发.若枪口到靶的距离为d ,待打完n 发子弹后,小车移动的距离为________.
三、解答题
13.如图所示,一玩具车携带若干质量为m 1的弹丸,车和弹丸的总质量为m 2,在半径为尺的水平光滑轨道上以速率v 0做匀速圆周运动,若小车每转一周便沿运动方向相对地面以恒定速度u 发射一枚弹丸.求:
(1)至少发射多少颗弹丸后小车开始反向运动?
(2)写出小车反向运动前发射相邻两枚弹丸的时间间隔的表达式.
14.课外科技小组制作一只“水火箭”,用压缩空气压出水流使水火箭运动,假如喷出的水流流量
保持为2×10-4 m 3/s ,喷出速度保持为对地10 m /s ,启动前火箭总质量为1.4 kg ,则启动2 s 末火箭
的速度可以达到多少?(已知火箭沿水平轨道运动,阻力不计,水的密度是103 kg /m 3)
15.如图所示,一质量为m 的玩具蛙蹲在质量为M 的小车的细杆上,小车放在光滑的水平面上,若车长为L ,细杆高为h 且位于小车的中央,试问玩具蛙对地最小以多大的水平速度跳出才能落到地面上?
【答案与解析】
一、选择题
1.【答案】C
2.【答案】C
【解析】动量守恒,即每秒喷出气体的动量等于火箭每秒增加的动量,即m 气v 气=m 箭v 箭,由动量定理得火箭获得的动力200m v m v F v t t =
==箭箭气气气,又F -m 箭g=m 箭a ,得v 气=900 m /s . 3.【答案】D
【解析】挡板挡住A 球时,弹簧的弹性势能全部转化为B 球的动能,有21'2p B E mv =
,挡板撤走
后,弹性势能两球平分,则有2
12'2
p B E mv =⨯,由以上两式解得'2B B v =,D 对. 4.【答案】A
5.【答案】B
6.【答案】CD
【解析】车子向哪一个方向运动,取决于甲、乙两人的动量大小关系,根据动量守恒定律可知选项C 、D 正确.
7.【答案】C
【解析】设人、枪(包括子弹)的总质量为M ,每颗子弹质量为m ,子弹出射速度为v 0.
由已知有0=(M -m )v -mv 0.设射出n 颗后,后退速度为v ′.则有(M -nm )v ′=nmv 0.由以上分析有
0mv v M m =-,0nmv v M nm
'=-. 因M -m >M -nm ,所以有v ′>nv ,选项C 正确.
8.【答案】D
【解析】系统满足动量守恒:(M +m )v 0=Mv 1+mv 2,当人沿梯子向上爬时,v 1可能为零,可能为正,也可能为负,则只有D 的说法不正确.
9.【答案】A
【解析】火箭射出物体P 后,由反冲原理知火箭速度变大,所需向心力变大,从而做离心运动离开原来轨道,半径增大.P 的速率可能减小、可能不变、可能增大,运动也存在多种可能性,所以A 对,B 、C 、D 错.
10.【答案】B
【解析】突然撤去隔板,气体向右运动,汽缸做反冲运动,当气体充满整个汽缸时,它们之间的作用结束.由动量守恒定律可知,开始时系统的总动量为零,结束时总动量必为零,汽缸和气体都将停止运动,故B 正确.
二、填空题
11.【答案】
()M b a M m -+ ()m b a M m
-+ 12.【答案】nmd M nm + 三、解答题
13.【答案】见解析
【解析】(1)由动量守恒定律得发射了n 颗弹丸后小车的速度为20121
n m v nm u v m nm -=-,小车开始反向时,v n =0,所以201m v n m u
=. (2)由动量守恒定律得,小车向前发射第k 颗子弹后小车的速度20121k m v km u v m km -=
-,则时间间隔 212012()k R m km t T m v km u π-∆==-且201m m k m u
<. 14.【答案】见解析
【解析】“水火箭”喷出水流做反冲运动,设火箭原来总质量为M ,喷出水流的流量为Q ,水的密度为ρ,水流的喷出速度为v ,火箭的反冲速度为v '.由动量守恒定律,得
(M -ρQt)v '=ρQtv ,
火箭启动后2 s 末的速度为
15.
【解析】蛙和车组成的系统水平方向动量守恒,则
Mv ′-mv =0 ①
蛙下落时间t = ②
若蛙恰好落地,则有2
L v t vt '+=

解①②③得:v =。

相关文档
最新文档