第二章光谱分析法教案
第二章-光谱分析法概论
E单位:电子伏(eV)或焦耳(J) h -普朗克常数,h=6.626×10-34 J·s-1; C为光速。
例:波长为200nm的电磁波,其能量是多少电子伏特(eV)? 解:
电磁波谱
13
二、电磁辐射与物质相互作用
电磁辐射与物质的相互作用是复杂的物理现象。 涉及能量变化:吸收、发射; 不涉及能量变化:反射、散射、折射、衍射。
第二章 光谱分析法概论
1
本章主要内容:
一、电磁辐射及其与物质的相互作用 二、光学分析法的分类 三、光谱分析仪器
概述
光学分析法是基于电磁辐射与物质相互作用后,电磁辐 射发生某些变化或被作用物质的某些性质发生改变而产 生各种信号,利用这些信号对物质的性质、组成及结构 进行分析的一种方法。
光学分析法的原理主要包含三个过程: (1)能源提供能量; (2)能量与被测物质相互作用; (3)产生被检测的信号。
3
第一节 电磁辐射及其与物质的相互作用
4
电磁辐射的性质:波粒二象性
1.波动性
电磁辐射的传播以及反射、折射、散射、衍射及 干涉等现象表现出电磁辐射具有波的性质。
图2-1 电磁波的传播
6
波动性参数描述
(1)周期 T 相邻两个波峰或波谷通过某一固定点所需要的时间间隔称为周期。单 位:s(秒)。
(2)频率ν 单位时间内电磁波振动的次数称为频率。单位:Hz或周/秒。 ν =1/T
范围的谱带。
2.组成:
单色器
入射狭缝 色散元件 准直镜
棱镜 光栅
分光系统
出射狭缝
滤光器
47
(1)狭缝 狭缝为光的进出口, 狭缝宽窄直接影响分 光质量。狭缝过宽, 单色光不纯,将使吸 光度变大;过窄,则 通光量变小,灵敏度 降低。因此狭缝宽度 要适当。
第二章 可见紫外吸收光谱分析1
由于玻璃可吸收紫外光,所以玻璃棱镜只能用于
用于可见光域内。 石英棱镜可使用的波长范围较宽,可从185- 4000nm,即可用于紫外、可见和近红外三个光域。
光栅是利用光的衍射与干涉作用制成的。
它可用于紫外、可见及红外光域,而且
在整个波长区具有良好的、几乎均匀一 致的分辨能力。
它具有色散波长范围宽、分辨本领高、 成本低、便于保存和易于制备等优点。 缺点是各级光谱会重叠而产生干扰。
它是分光光度法定量分析的依据。
吸光系数
朗伯-比耳定律中,当c以克/升,液层厚 度b以厘米表示时,常数K以a表示,称 为吸光系数。 a的单位为升/克.厘米。 朗伯-比耳定律 :A=abc
摩尔吸光系数
朗伯-比耳定律中,浓度用摩尔/升,液 层厚度b用厘米为单位表示,则K用另一 符号ε来表示。 ε称为摩尔吸光系数(或克分子消光系数), 单位为升/摩尔.厘米。 它表示物质的浓度为1摩尔/升,液层厚 度为1厘米时溶液的吸光度。 朗伯-比耳定律 : A=εbc
72型 721型
751型 WFD-8型
760 40000
~
硅碳棒或 辉光灯
岩盐或萤 石棱镜
WFD-3型 WFD-7型
一、组成部件
光源
单色器
样品池
记录装置
检测器
(一)光源
对光源的基本要求是应在仪器操作所 需的光谱区域内能够发射连续辐射,有足 够的辐射强度和良好的稳定性,而且辐射 能量随波长的变化应尽可能小。 常用的光源有热辐射光源(如钨丝灯 和卤钨灯)和气体放电光源(如氢灯和氘 灯)两类。
1)非单色光的影响: 光吸收定律的重要前提是入射光
第二章 光谱分析法导论
26
分子发射
分子发射与分子外层的电子能级、振动能级和转动能 级相关。因此分子发射光谱较原子发射光谱复杂。 为了保持分子的形态,分子的激发不能采用电、热等 极端方式,而采用光激发或化学能激发。 分子发射的电磁辐射基本处于紫外、可见和红外光区 。因此分子主要发射紫外、可见电磁辐射,据此建立 了荧光光谱法、磷光光谱法和化学发光光谱法。 与分子吸收光谱一样,由于相邻两个转动能级之间的 能量差很小,因此由相邻两个转动能级跃迁回同一较 低能级的两个跃迁的能量差也很小,故发射过程所发 射的两个辐射的频率或波长很接近,通常的检测系统 很难分辨出来。而分子能量相近的振动能级又很多, 因此表观上分子发射表现为对特定波长段电磁辐射的27 发射,光谱上表现为连续光谱。
E=(n+1)hv
hv
E=nhv
能量降低
发射(Emission)
物质受到激发而跃迁
到激发态后,由激发态跃迁回到基态时以辐
射的方式释放能量。
能量:光、电、热、化学能等
M → M
M→ M+h
24
发射跃迁可以理解为吸收跃迁相反的过程。由于原子 、分子和离子的基态最稳定,,所以发射跃迁涉及的 是从较高能态向基态的跃迁。 可以通过实验得到发射强度对波长或频率的函数图, 即发射光谱图。 通常情况下,分子、原子和离子处于基态,因此要产 生发射,必须使分子、原子和离子处于激发态,这个 过程称为激发。 激发可以通过提供不同不同形式的能量来实现。包括 三种:1.热能。将试样置于高压交流火花、电弧、火 焰、高温炉体之中,物质以原子、离子形式存在,可 获取热能而处于激发态,并产生紫外、可见或红外辐 射;2.电磁辐射。即用光辐射作用于分子或原子,使 之产生吸收跃迁,并发射分子荧光、分子磷光或原子 荧光;3.化学能。即通过放热的化学反应是反应物或 产物获取化学能而被激发,并产生化学发光。
有机化合物的光谱解析实验教案
有机化合物的光谱解析实验教案有机化合物的光谱解析实验教案一、实验目的:1.学习并掌握光谱解析的基本原理和方法。
2.通过实验,观察有机化合物的红外光谱、核磁共振氢谱和质谱,解析其结构特征。
3.培养学生对有机化合物光谱解析的实际操作能力和结构推断能力。
二、实验原理:光谱解析是利用物质吸收光、发射光或散射光的波长与强度,来确定物质的结构和组成的一种方法。
在有机化合物光谱解析中,常用的光谱技术包括红外光谱(IR)、核磁共振氢谱(1H-NMR)和质谱(MS)。
1.红外光谱(IR):利用不同化学键或基团在红外区域的吸收特性,研究有机化合物的分子结构。
不同类型的化学键或基团在红外光谱中表现出独特的吸收峰。
2.核磁共振氢谱(1H-NMR):利用核磁共振原理,研究有机化合物中氢原子(或其他原子)的化学环境。
不同类型的氢原子在核磁共振谱中表现出不同的化学位移。
3.质谱(MS):通过离子化样品并测量其质量-电荷比,研究有机化合物的分子量、分子式和分子结构。
在质谱中,不同的分子结构会产生不同的碎片离子,这些离子可用于推断分子结构。
三、实验步骤:1.准备试剂与仪器:准备好待测有机化合物、红外光谱仪、核磁共振谱仪、质谱仪等实验器材和试剂。
2.样品处理:将待测有机化合物进行适当处理,以便进行光谱分析。
例如,对于固体样品,可能需要使用KBr压片或溶解在适当溶剂中。
3.红外光谱分析:将处理后的样品放入红外光谱仪中,采集红外光谱数据。
记录各个吸收峰的位置与强度。
4.核磁共振氢谱分析:将处理后的样品放入核磁共振谱仪中,采集1H-NMR数据。
记录各个峰的化学位移与相对强度。
5.质谱分析:将处理后的样品放入质谱仪中,采集质谱数据。
解析各个碎片离子的质量与电荷比,结合其他光谱数据推断分子结构。
6.数据处理与结构推断:根据采集到的光谱数据,结合已知的化合物信息,推断化合物的可能结构。
对比已知数据,验证推断结构的准确性。
7.撰写实验报告:记录实验过程、数据和结论,撰写实验报告。
初中物理光的光谱教案
初中物理光的光谱教案一、教学目标1.1 知识目标理解光谱的概念,区分连续光谱和发射光谱等不同类型的光谱;掌握光谱的分析方法和应用;了解光谱在日常生活科学技术领域中的应用。
1.2 能力目标通过实验和探究,培养学生分析问题、解决问题的能力,提高其实验操作和数据处理的能力。
1.3 情感目标培养学生对科学的兴趣和探究精神,增强学生的合作学习意识和实践动手能力,培养学生的归纳总结和自我探究能力。
二、教学内容2.1 光的光谱及其类型2.1.1 光的光谱概念光谱是指将光按照频率、波长或能量等物理量进行分解后所得到的色带或光线的分布情况。
2.1.2 光谱的类型连续光谱:白光经过三棱镜或光栅等色散器件后,所得到的光谱形成一条连续、无间断的彩色光带。
发射光谱:物质受激后,会向外发射一定波长、频率或能量的光线,所发射出的光可以形成一组明亮的光谱线。
吸收光谱:当物质受到一定波长的光线照射时,会发生能量转移,使得物质分子的状态改变,所吸收的光线波长与激发前很不同,这种光线的波长分布形成的光谱称为吸收光谱。
二、2 实验设计2.2.1 实验目的:通过实验研究连续光谱、发射光谱和吸收光谱的特点。
2.2.2 实验原理:使用三棱镜可以将白光分解成连续光谱,使用氢气放电管可以得到氢原子的发射光谱,使用紫外和可见光谱仪可以得到红外和可见光的吸收光谱。
2.2.3 实验步骤:(1)利用三棱镜将白光分解成连续光谱,并观察连续光谱的特点;(2)使用氢气放电管,得到氢原子的发射光谱,并观察发射光谱的特点;(3)使用紫外和可见光谱仪,获取红外和可见光的吸收光谱,并观察吸收光谱的特点。
2.2.4 实验结果(1)连续光谱为一条连续的光带,颜色从紫色到红色依次排列。
(2)发射光谱为一系列明亮的光谱线,一般为某种元素的光谱线。
(3)吸收光谱为一系列暗的光谱线,一般为某种元素或分子中的电子跃迁所致。
三、课堂讨论3.1 分析实验结果(1)为什么氢原子的发射光谱是明亮的光谱线?答:加热或电激励原子时,原子中的电子受到能量的激发,会从低能级跃迁到高能级,再从高能级跃迁回到低能级时释放出能量,导致原子发光。
光谱分析课程设计
光谱分析课程设计一、教学目标本课程的教学目标是使学生掌握光谱分析的基本原理、方法和应用,能够运用光谱分析解决实际问题。
具体目标如下:1.了解光谱的基本概念和特性;2.掌握光谱分析的基本原理和方法;3.熟悉光谱分析在各个领域的应用。
4.能够正确使用光谱分析仪器进行实验操作;5.能够分析光谱图,提取有效信息;6.能够运用光谱分析解决实际问题。
情感态度价值观目标:1.培养学生的科学探究精神,提高对光谱分析的兴趣;2.培养学生珍惜实验数据,注重实证研究的意识;3.培养学生关注光谱分析在生产、科研和生活中的应用,提高综合素质。
二、教学内容本课程的教学内容主要包括光谱分析的基本原理、方法和应用。
具体安排如下:1.光谱的基本概念和特性:介绍光谱的定义、分类和产生原理;2.光谱分析的基本原理:讲解光谱分析的物理基础和数学处理方法;3.光谱分析的方法:介绍光谱仪器的结构、原理和操作方法;4.光谱分析的应用:阐述光谱分析在各个领域的应用实例。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。
具体方法如下:1.讲授法:讲解光谱分析的基本原理、方法和应用;2.讨论法:学生针对实际问题进行讨论,培养解决问题的能力;3.案例分析法:分析光谱分析在实际案例中的应用,加深学生对知识的理解;4.实验法:让学生动手操作光谱仪器,提高实验技能和实证研究能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用权威、实用的光谱分析教材,为学生提供系统、科学的知识体系;2.参考书:提供相关领域的参考书籍,帮助学生拓展知识面;3.多媒体资料:制作精美的PPT、视频等多媒体资料,增强课堂教学的趣味性;4.实验设备:准备充足的光谱仪器设备,确保学生能够充分进行实验操作。
五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用多种评估方式相结合的方法。
具体安排如下:1.平时表现:评估学生在课堂上的参与程度、提问回答等情况,以体现学生的学习态度和积极性;2.作业:布置适量作业,评估学生的知识掌握和运用能力;3.实验报告:评估学生在实验过程中的操作技能、数据处理和分析能力;4.考试:设置期中、期末考试,全面测试学生的知识水平和运用能力。
第二章+原子发射光谱分析法
(2) 钠原子的第一激发态 :(3p)1 n=3 L=l=1 S = 1/2 (2S+1) = 2 J = 3/2,1/2
光谱项:32P
光谱支项 : 32P1/2 和 32P3/2
由于轨道运动和自旋运动的相互作用, 这两个光 谱支项代表两个能量有微小差异的能级状态。
J 的取值范围:
L + S, (L + S – 1), (L + S – 2), …, L - S
谱线多重性符号:2S+1(M)
钠原子由第一激发态向基态跃迁发射两条谱线
第一激发态光谱支项 : 32P1/2 和 32P3/2 基态光谱项:32S1/2
589.593 nm ,588.996 nm
能量 原子能级图 实际光谱项
主量子数 n: 1,2,3…
电子运动状态的描述
原子轨道描述: n、l、m
角量子数 l : 0,1,2, …n-1 磁量子数 ml(m): l~-l 自旋量子数 ms(s): 1/2
基态Na原子的核外电子排布: (1s)2(2s)2(2p)6(3s)1
单价电子原 子电子能级
5
(二)原子能级和能级图
单、多价电子 原子电子能级
光谱定量公式推导:
激发光源中的电离
气体(等离子体)
离解
MX
M+ X
试样
元素浓度: C
M + e 电离 M+ + 2e
NMX NM NM +
NM = N0 + N2 + ···+ Ni + ···
光谱分析法导论
⑵ 分子吸收 分子、甚至是双原子分子的光谱,要比原子光谱
复杂得多。这是由于分子所具有的能级数目比原子的 能级数目要多得多。
分子总能量
Ee 电子能量 Ev 振动能量 Er 转动能量
E=Ee+Ev+Er 1~20eV 1~0.05eV 0.05 ~0.005eV
入射的电磁波和物质的原子或分子相互作用,电
磁波的能量正好等于物质的基态和激发态之间的能量
差时,就会产生吸收光谱。
M+hv = M* hv = E1 - E0 利用物质的特征吸收光谱进行分析的方法称为吸收
光谱法。
吸收光谱法包括:原子吸收、分子吸收、磁场的 诱导吸收和弛豫过程。
⑴ 原子吸收 气态原子对特征辐射光波的吸收,其光波能量正
场的作用后,它们的磁性质会产生附加的量子化能级 。这种诱导能态间的能量差很小,它们的跃迁仅通过 吸收低频区的辐射来实现的。研究的方法是核磁共振 波谱(NMR)和顺磁共振波普法(ESR)
⑷ 弛豫过程 通过吸收辐射而被激发的原子或分子处在高能态
的寿命很短,它们要通过不同的弛豫过程返回基态。 ① 非辐射弛豫:通过与其它分子的碰撞将激发能转 变为动能,结果使体系的温度有微小的升高。 ② 荧光和磷光弛豫:原子或分子吸收电磁辐射后激 发至激发态,当返回基态时,以辐射能的形式释放能 量。荧光产生比磷光(亚稳态)迅速。 ③ 共振荧光:发射辐射的频率与用来激发的辐射的 频率完全相同的过程。
是与酶反应,可用于分析葡萄糖、乳酸、氨基酸等。
通过测量物质的发射光谱的波长和强度来进行定
性和定量分析的方法称为发射光谱分析法。
光谱分析
第二章光谱分析(一)原子发射光谱分析1.概念:①激发:基态原子吸收外界能量,被外电子“跃迁”至高能级运动状态的过程,这一过程称为电子的跃迁或激发。
此时所需要的能量称为“激发能”,原子的这种新的运动状态称为“激发态原子”②原子发射光谱:激发态原子极不稳定,在10-8S的时间里要由激发态回复到初态,此时,所吸收的能量常常以特殊的波长的光辐射发射出来。
这种由激发态原子恢复到基态时所产生的光辐射,称为“原子发射光谱”或“发射光谱”。
③特征谱线:由原子核外价电子的第一激发能级激发后产生的光辐射的波长被称为元素的“特征谱线”,也称“灵敏线”。
④基态自由原子:对于稳定的单个自由原子来说,核外电子是处于本身最低能级水平运动,这种稳定的单个自由原子我们称为基态自由原子。
⑤原子化:多数情况下,由于样品中待测元素处于非原子状态(离子或化合物),因此,测定时必须给与一定的条件将非原子化物质转化为基态自由原子,这一过程称为原子化。
2.发射光谱分析定性基础:原子激发后回覆到基态时所产生的光辐射的波长就能判断元素种类定性基础:核外电子被激发后回覆到基态所发射出的光辐射波长是独一无二的,因此,只需要通过原子激发后回覆到基态时所产生的光辐射的波长就能够判断元素的种类定量基础:在相同的原子化条件和激发态条件下,待测元素所产生的发射光强度,在一定范围内与样品中待测元素的浓度呈正比。
通过测定发射光强度与相同条件下的标准曲线相比较,即可得出样品中待测物质的浓度3.原子发射光谱分析的定量基础:相同的原子化条件和激发条件下,待测元素所能产生的发射光强度,在一定范围内与样品中待测元素的浓度呈正比。
[ I=αCb ]4. 构造:光源→单色器→检测器光源构成形式:火焰光度器、电弧光谱仪、ICP是光源,即电感或电容耦合等离子体。
5. 火焰光度计是测定碱金属的唯一标准化仪器(发射光谱中)。
6. 原子发射光谱的干扰(光谱、电离、化学、物理☆、自吸收干扰[P15☆]):解决自吸收干扰的方法:降低待测溶液的浓度。
大学化学实践教案:红外光谱分析方法
大学化学实践教案:红外光谱分析方法介绍本教案旨在向大学化学实验室的学生介绍红外光谱分析方法。
通过理论讲解和实践操作,学生将了解红外光谱的基本原理、仪器设备以及常见应用领域。
教学目标•掌握红外光谱的基本原理和仪器设备;•理解红外光谱对于物质结构和功能的表征;•学习使用红外光谱技术进行定性分析和定量分析;•熟悉常见有机物和无机物中的功能团与特征峰。
内容大纲1. 红外光谱基础知识- 1.1 原理简介•红外辐射与物质相互作用•分子振动模式- 1.2 功能团与特征峰•常见有机物中的特征峰•常见无机物中的特征峰2. 红外光谱仪器设备与操作- 2.1 光源系统•辐射源•红外光源- 2.2 光谱仪与检测系统•光栅型光谱仪•探测器- 2.3 样品测量技术•固体样品的准备和操作技巧•液体样品的准备和操作技巧3. 红外光谱应用领域- 3.1 有机物定性分析•利用红外光谱确定有机物的化学结构- 3.2 无机物分析与研究•利用红外光谱对无机物进行表征和研究实践操作示例实验目的:利用红外光谱对某有机化合物进行结构表征实验步骤:1.准备实验所需的样品及设备;2.将样品放入红外光谱仪;3.进行数据采集和处理;4.对比参考文献,解读红外光谱图中各峰位所代表的功能团;5.根据功能团信息确定化合物结构。
总结与展望本教案通过对红外光谱分析方法的介绍,使学生了解了红外光谱的基本原理、仪器设备和常见应用领域。
通过实践操作,学生能够独立进行红外光谱分析并对化合物结构进行表征。
未来,结合更多实例和案例,提供更深入的红外光谱分析方法细节以及在其他领域中的广泛应用,将进一步拓宽学生的知识面和应用能力。
第2章 光谱分析法概论
第2章 光谱分析法概论根据物质发射的电磁辐射或物质与辐射的相互作用建立起来的一类仪器分析方法,统称为光学分析法。
光是电磁辐射(又称电磁波),是一种不需要任何物质作为传播媒介就可以以巨大速度通过空间的光子流(量子流),具有波粒二象性(波动性与微粒性)。
光的波动性体现在反射、折射、干涉、衍射以及偏振等现象。
波长λ 、波数σ 和频率υ相互关系为:λν/c = 和c //1νλσ==,c =2.997925×1010cm/s 。
光的微粒性体现在吸收、发射、热辐射、光电效应、光压现象以及光化学作用等方面,用每个光子具有的能量E 作为表征。
光子的能量与频率成正比,与波长成反比,关系为: σλνhc hc h E ===/从γ 射线一直至无线电波都是电磁辐射,光是电磁辐射的一部分,若把电磁辐射按照波长或频率的顺序排列起来,就可得到电磁波谱(electromagnetic spectrum )。
波长在360~800nm 范围的光称为可见光,具有同一波长、同一能量的光称为单色光,由不同波长的光组合成的称为复合光。
复合光在与物质相互作用时,表现为其中某些波长的光被物质所吸收,另一些波长的光透过物质或被物质所反射,透过物质的光(或反射光)能被人眼观察到的即为物质所呈现的颜色。
不同波长的光具有不同的颜色,物质的颜色由透射光(或发射光)的波长所决定。
当物质与辐射能相互作用时,其内部的电子、质子等粒子发生能级跃迁,对所产生的辐射能强度随波长(或相应单位)变化作图,所得到的谱图称为光谱(也称波谱)。
利用物质的光谱进行定性、定量和结构分析的方法称为光谱分析法或光谱法。
以测量气态原子或离子外层或内层电子能级跃迁所产生的原子光谱为基础的成分分析方法为原子光谱法,由分子中电子能级(n )、振动能级(v )和转动能级(J )的变化而产生的光谱为基础的定性、定量和物质结构分析方法为分子光谱法。
有紫外-可见分光光度法(UV-Vis ),红外吸收光谱法(IR ),分子荧光光谱法(MFS )和分子磷光光谱法(MPS )等。
南京仪器分析教案
南京仪器分析教案第一章:绪论1.1 课程简介介绍南京仪器分析课程的目的、意义和主要内容。
强调仪器分析在化学、化工、环保等领域的应用重要性。
1.2 仪器分析方法的分类概述常见的仪器分析方法,如光谱分析、色谱分析、电化学分析等。
简要介绍各种方法的原理和特点。
1.3 实验操作的基本要求强调实验操作的安全性和规范性。
介绍实验中的数据处理和结果分析方法。
第二章:光谱分析2.1 紫外-可见光谱分析介绍紫外-可见光谱分析的原理和方法。
讲解紫外-可见光谱仪的使用方法和操作步骤。
2.2 红外光谱分析介绍红外光谱分析的原理和方法。
讲解红外光谱仪的使用方法和操作步骤。
2.3 拉曼光谱分析介绍拉曼光谱分析的原理和方法。
讲解拉曼光谱仪的使用方法和操作步骤。
第三章:色谱分析3.1 气相色谱分析介绍气相色谱分析的原理和方法。
讲解气相色谱仪的使用方法和操作步骤。
3.2 液相色谱分析介绍液相色谱分析的原理和方法。
讲解液相色谱仪的使用方法和操作步骤。
3.3 色谱数据分析介绍色谱数据分析的方法和技巧。
讲解色谱数据的处理和结果分析。
第四章:电化学分析4.1 电位分析介绍电位分析的原理和方法。
讲解电位分析仪的使用方法和操作步骤。
4.2 库仑分析介绍库仑分析的原理和方法。
讲解库仑分析仪的使用方法和操作步骤。
4.3 电化学发光分析介绍电化学发光分析的原理和方法。
讲解电化学发光分析仪的使用方法和操作步骤。
第五章:实验操作与数据处理5.1 实验操作技巧介绍实验操作中的注意事项和技巧。
强调实验操作的准确性和可靠性。
5.2 数据处理方法介绍实验数据的处理方法,如误差分析、校正因子计算等。
讲解数据处理软件的使用方法和操作步骤。
强调实验报告的清晰性和完整性。
第六章:原子吸收与发射光谱分析6.1 原子吸收光谱分析介绍原子吸收光谱分析的原理和方法。
讲解原子吸收光谱仪的使用方法和操作步骤。
6.2 原子发射光谱分析介绍原子发射光谱分析的原理和方法。
讲解原子发射光谱仪的使用方法和操作步骤。
仪器分析电子教案(全)
第一章:概述1.1 课程介绍介绍本课程的目的、意义和主要内容。
讲解仪器分析在化学、生物技术、环境科学等领域的应用。
1.2 仪器分析的基本概念定义仪器分析及其分类(如光谱分析、色谱分析、电化学分析等)。
介绍仪器分析的基本原理和方法。
1.3 仪器分析的发展历程概述仪器分析技术的发展历程及其重要里程碑。
讲解现代仪器分析技术的主要特点和优势。
仪器分析电子教案(二)第二章:光谱分析2.1 紫外-可见光谱分析介绍紫外-可见光谱分析的基本原理。
讲解紫外-可见光谱仪器的结构及操作方法。
2.2 红外光谱分析介绍红外光谱分析的基本原理。
讲解红外光谱仪器的结构及操作方法。
2.3 拉曼光谱分析介绍拉曼光谱分析的基本原理。
讲解拉曼光谱仪器的结构及操作方法。
第三章:色谱分析3.1 气相色谱分析介绍气相色谱分析的基本原理。
讲解气相色谱仪器的结构及操作方法。
3.2 液相色谱分析介绍液相色谱分析的基本原理。
讲解液相色谱仪器的结构及操作方法。
3.3 色谱-质谱联用分析介绍色谱-质谱联用分析的基本原理。
讲解色谱-质谱联用仪器的结构及操作方法。
仪器分析电子教案(四)第四章:电化学分析4.1 电化学分析基本原理介绍电化学分析的基本原理。
讲解电化学分析仪器的结构及操作方法。
4.2 电位分析法介绍电位分析法的基本原理。
讲解电位分析仪器的结构及操作方法。
4.3 库仑分析法介绍库仑分析法的基本原理。
讲解库仑分析仪器的结构及操作方法。
第五章:现代仪器分析技术5.1 原子吸收光谱分析介绍原子吸收光谱分析的基本原理。
讲解原子吸收光谱仪器的结构及操作方法。
5.2 原子荧光光谱分析介绍原子荧光光谱分析的基本原理。
讲解原子荧光光谱仪器的结构及操作方法。
5.3 质谱分析介绍质谱分析的基本原理。
讲解质谱仪器的结构及操作方法。
仪器分析电子教案(六)第六章:样品处理与制备6.1 样品采集与处理讲解样品采集的方法和注意事项。
介绍样品的预处理方法,如过滤、稀释、浓缩等。
食品分析第二章-光谱及色谱分析PPT培训课件
03
光谱及色谱分析在食品质量控制中的
应用
食品添加剂的检测
食品添加剂的种类和限量
光谱及色谱分析可以检测食品中添加的各种添加剂,如防腐剂、色素、抗氧化剂等,并 确定其含量是否符合法规标准。
检测方法
通过高效液相色谱法(HPLC)、气相色谱法(GC)和质谱法(MS)等光谱及色谱技 术,结合不同的检测器,如紫外可见光检测器、荧光检测器等,实现对食品添加剂的定
食品分析第二章-光ቤተ መጻሕፍቲ ባይዱ及 色谱分析
• 光谱分析在食品分析中的应用 • 色谱分析在食品分析中的应用 • 光谱及色谱分析在食品质量控制中的
应用 • 光谱及色谱分析在食品安全性评估中
的应用
01
光谱分析在食品分析中的应用
可见-紫外光谱分析
可见-紫外光谱分析是一种常用的光谱分析方法,通过测量物质在可见光和紫外光区的吸收光谱来推 断物质的成分和含量。在食品分析中,这种方法可用于检测食品中的色素、维生素和蛋白质等成分。
THANKS
感谢观看
要点一
重金属污染物的来源
重金属污染物可能来源于环境污染、食品加工过程和食品 包装材料等。
要点二
检测方法
通过原子吸收光谱法(AAS)、原子荧光法(AFS)和电感 耦合等离子体质谱法(ICP-MS)等光谱分析技术,实现对食 品中重金属污染物如铅、汞、镉、砷等的准确测定。
04
光谱及色谱分析在食品安全性评估中
薄层色谱分析
总结词
薄层色谱分析是一种简便、快速的分离方法 ,常用于定性分析和半定量分析。
详细描述
薄层色谱分析将固定相涂布在玻璃板或塑料 板上,通过点样、展开和显色等步骤对样品 进行分离和检测。该方法具有操作简便、分 离速度快和样品用量少等优点。薄层色谱分 析在食品分析中可用于检测食品中的农药残
第二章原子发射光谱分析
2.原子吸收光谱分析法
利用特殊光源发射出待测元素的共振线,并将溶液中离 子转变成气态原子后,测定气态原子对共振线吸收而进行的 定量分析方法。
3.原子荧光分析法
气态原子吸收特征波长的辐射后,外层电子从基态或低 能态跃迁到高能态,在10-8s后跃回基态或低能态时,发射出 与吸收波长相同或不同的荧光辐射,在与光源成90度的方向 上,测定荧光强度进行定量分析的方法。
二、光分析法仪器的基本单元
1. 光源
依据方法不同,采用不同的光源:火焰、灯、激光、电 火花、电弧等;依据光源性质不同,分为:
连续光源:在较大范 围提供连续波长的光源, 氢灯、氘灯、钨丝灯等;
线光源:提供特定波 长的光源,金属蒸气灯( 汞灯、钠蒸气灯)、空心 阴极灯、激光等;
2.单色器
单色器:获得高光谱纯度辐射束的装置,而辐射束的波长 可在很宽范围内任意改变;
平行光经过棱镜后按波长顺序排列成为单色光;经聚焦 后在焦面上的不同位置上成像,获得按波长展开的光谱;
棱镜的分辨能力取 决于棱镜的几何尺寸和 材料;
棱镜的光学特性可 用色散率和分辨率来表 征;
棱镜的特性与参数
(1)色散率
角色散率:用dθ/dλ表示,偏向角θ对波长的变化率;
d d
2sin
2
4.分子荧光分析法
某些物质被紫外光照射激发后,在回到基态的过程中发 射出比原激发波长更长的荧光,通过测量荧光强度进行定量 分析的方法。
5. 分子磷光分析法
处于第一最低单重激发态分子以无辐射弛豫方式进入第 一激发态的三线态,再跃迁返回基态发出磷光。测定磷光强 度进行定量分析的方法。
光谱分析实验教案
光谱分析实验教案引言:光谱分析是一种重要的实验方法,它通过研究物质在不同波长的光下的吸收、发射或散射特性,来获取物质的结构、组成和性质等信息。
在化学、物理、天文学等领域都有广泛的应用。
本文将介绍一份光谱分析实验教案,旨在帮助学生理解光谱分析的原理和应用,培养他们的实验技能和科学思维能力。
实验目的:通过本实验,学生将学会使用分光光度计进行吸收光谱测量,并掌握光谱分析的基本原理和应用方法。
实验材料:1. 分光光度计2. 可见光源(如白炽灯)3. 吸光物质溶液(如染料溶液)4. 试管或石英比色皿5. 光谱图纸实验步骤:1. 准备工作:将分光光度计调至可见光区,打开可见光源,调整光强适中。
2. 校准仪器:使用空白试剂(如纯水)进行校准,调整零点。
3. 测量吸光度:将吸光物质溶液倒入试管或石英比色皿中,放入分光光度计中,选择适当的波长进行测量,记录吸光度数值。
4. 绘制吸收光谱:根据测量结果,绘制吸收光谱曲线,标明吸光度和波长的关系。
5. 分析结果:根据吸收光谱曲线,分析吸光峰的位置、强度和形状,推测物质的结构和组成等信息。
6. 总结实验:总结实验结果,讨论实验中可能存在的误差和改进方法。
实验原理:光谱分析基于物质对不同波长光的吸收和发射特性。
当物质受到光的照射时,其分子内部的电子会发生跃迁,从低能级跃迁到高能级或从高能级跃迁到低能级,吸收或发射特定波长的光。
吸收光谱是物质在不同波长光下吸收光的强度与波长的关系曲线。
通过分析吸收光谱曲线,可以推测物质的结构和组成等信息。
实验应用:光谱分析在许多领域都有广泛的应用。
在化学领域,可以通过吸收光谱来测定物质的浓度、反应动力学等。
在生物医学领域,可以通过红外光谱来研究生物分子的结构和功能。
在天文学领域,可以通过光谱分析来研究恒星的组成和演化等。
实验注意事项:1. 实验过程中要注意安全,避免接触有毒物质。
2. 保持仪器的清洁和正常运行,避免误差的产生。
3. 实验前要对仪器进行校准,确保测量结果的准确性。
第2章 光谱分析法导论
(3)基于上述两点,光学分析法的应用非常广泛。
线光谱
带光谱
三、电磁辐射的发射(emission)
3、连续光谱(continum spectra):
固体被加热到炽热状态时,无数原子和分子的运动或振动 所产生的热辐射称为 连续光谱,也称黑体辐射(blackbody radiation)。
通常产生背景干扰。温度越高,辐射越强,而且短波长的 辐射强度增加得最快!
6×1014~ 2 2.5 × 106~ 莫斯鲍尔光谱法
×1012
8.3×103
X 射线 10-3~10nm
3 × 1014~ 1.2×106 ~ X 射线吸收法
3×1010
1.2×102
X 射线荧光法
紫外光 10~400nm 可见光 400~750nm
3 × 1010 ~ 125~3.1 7.5×108
六、以电磁辐射为基础的常用光谱方法
波谱区 近红外光 中红外光 远红外光
微波
射频
波长 0.75~2.5m 2.5~50m 50~1990m 0.1~100cm 1~100 m
跃迁类型
分子振动
分子转动 电子、核自旋
近红外光谱区:配位化学的研究对象
红外吸收光谱法:红外光分子吸收
远红外光谱区
电子自旋共振波谱法:微波分子未成对电子吸收
核磁共振波谱法:射频原子核自旋吸收
Small balls on the surface of Mars: The constituents of small balls was proved to be FeS2 by using Musbal Spectrometry (莫斯鲍尔光谱法)
第二章光谱分析法教案
第二章光谱分析法导论一.教学内容1.电磁辐射及电磁波谱的概念、特性及相关物理量2.物质与电磁辐射相互作用及相关的光谱学3.光学分析法的分类及特点4.光学分析法的基本仪器二.重点与难点1.电磁辐射与电磁波谱的特殊2.各物理量的相互换算3.物质与电磁辐射相互作用的机制4.各种能级跃迁的概念及相应的光谱三.教学要求1.牢固掌握电磁辐射和电磁波谱的概念及性质2.熟练掌握电磁辐射各种物理量之间的换算3.清楚理解物质与电磁辐射相互作用所产生的各种光谱4.清晰光学分析法分类的线索5.了解光谱法的基本仪器部件四.学时安排2学时第一节光学分析法及其分类光学分析法是根据物质发射的电磁辐射或电磁辐射与物质相互作用而建立起来的一类分析化学方法。
这些电磁辐射包括从 射线到无线电波的所有电磁波谱范围(不只局限于光学光谱区)。
电磁辐射与物质相互作用的方式有发射、吸收、反射、折射、散射、干涉、衍射、偏振等。
光学分析法可分为光谱法和非光谱法两大类。
光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。
光谱法可分为原子光谱法和分子光谱法。
原子光谱法是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。
属于这类分析方法的有原子发射光谱法(AES)、原子吸收光谱法(A AS),原子荧光光谱法(A FS)以及X射线荧光光谱法(X FS)等。
分子光谱法是由分子中电子能级、振动和转动能级的变化产生的,表现形式为带光谱。
属于这类分析方法的有紫外-可见分光光度法(U V-Vi s),红外光谱法(IR),分子荧光光谱法(M F S)和分子磷光光谱法(M P S)等。
非光谱法是基于物质与辐射相互作用时,测量辐射的某些性质,如折射、散射、干涉、衍射、偏振等变化的分析方法。
本章主要介绍光谱法。
一、发射光谱法物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子M* ,当从激发态过渡到低能态或基态时产生发射光谱。
第二章 红外吸收光谱分析法
1 1 k 1307 k
2c
K化学键的力常数,与键能和键长有关,
为双原子的折合质量 =m1m2/(m1+m2)
发生振动能级跃迁需要能量的大小取决于键两端原子的 折合质量和键的力常数,即取决于分子的结构特征。
15:32:11
表 某些键的伸缩力常数(毫达因/埃)
键类型 力常数 峰位
condition of Infrared absorption spectroscopy
满足两个条件: (1)辐射应具有能满足物质产生振动跃迁所需的能量; (2)辐射与物质间有相互偶合作用。
对称分子:没有偶极矩,辐 射不能引起共振,无红外活性。 如:N2、O2、Cl2 等。
非对称分子:有偶极矩,红 外活性。
v 1 1 k 1307 k 1307 9.6 1650cm1
2c
12 / 2
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
15:32:11
三、分子中基团的基本振动形式
basic vibration of the group in molecular
1.两类基本振动形式
三、影响峰位变化的因素
molecular structure and absorption peaks
化学键的振动频率不仅与其性质有关,还受分子的内部 结构和外部因素影响。相同基团的特征吸收并不总在一个固 定频率上。
1.内部因素
(1)电子效应 a.诱导效应:吸电子基团使吸收峰向高频方向移动(兰移)
(动画)
(2)峰数 峰数与分子自由度有关。无瞬间偶基距变 化时,无红外吸收。
15:32:11
峰位、峰数与峰强
(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相 差越大(极性越大),吸收峰越强;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章光谱分析法导论一.教学内容1.电磁辐射及电磁波谱的概念、特性及相关物理量2.物质与电磁辐射相互作用及相关的光谱学3.光学分析法的分类及特点4.光学分析法的基本仪器二.重点与难点1.电磁辐射与电磁波谱的特殊2.各物理量的相互换算3.物质与电磁辐射相互作用的机制4.各种能级跃迁的概念及相应的光谱三.教学要求1.牢固掌握电磁辐射和电磁波谱的概念及性质2.熟练掌握电磁辐射各种物理量之间的换算3.清楚理解物质与电磁辐射相互作用所产生的各种光谱4.清晰光学分析法分类的线索5.了解光谱法的基本仪器部件四.学时安排2学时第一节光学分析法及其分类光学分析法是根据物质发射的电磁辐射或电磁辐射与物质相互作用而建立起来的一类分析化学方法。
这些电磁辐射包括从 射线到无线电波的所有电磁波谱范围(不只局限于光学光谱区)。
电磁辐射与物质相互作用的方式有发射、吸收、反射、折射、散射、干涉、衍射、偏振等。
光学分析法可分为光谱法和非光谱法两大类。
光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。
光谱法可分为原子光谱法和分子光谱法。
原子光谱法是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。
属于这类分析方法的有原子发射光谱法(AES)、原子吸收光谱法(A AS),原子荧光光谱法(A FS)以及X射线荧光光谱法(X FS)等。
分子光谱法是由分子中电子能级、振动和转动能级的变化产生的,表现形式为带光谱。
属于这类分析方法的有紫外-可见分光光度法(U V-Vi s),红外光谱法(IR),分子荧光光谱法(M F S)和分子磷光光谱法(M P S)等。
非光谱法是基于物质与辐射相互作用时,测量辐射的某些性质,如折射、散射、干涉、衍射、偏振等变化的分析方法。
本章主要介绍光谱法。
一、发射光谱法物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子M* ,当从激发态过渡到低能态或基态时产生发射光谱。
M* −→M +hv通过测量物质的发射光谱的波长和强度进行定性和定量分析的方法叫做发射光谱分析法。
根据发射光谱所在的光谱区和激发方法不同,发射光谱法分为:1.γ射线光谱法天然或人工放射性物质的原子核在衰变的过程中发射α和β粒子后,使自身的核激发,然后核通过发射γ射线回到基态。
测量这种特征γ射线的能量(或波长),可以进行定性分析,测量γ射线的强度(检测器每分钟的记数),可以进行定量分析。
2. X射线荧光分析法原子受高能辐射激发,其内层电子能级跃迁,即发射出特征X 射线,称为X射线荧光。
用X射线管发生的一次X射线来激发X射线荧光是最常用的方法。
测量X射线的能量(或波长)可以进行定性分析,测量其强度可以进行定量分析。
3. 原子发射光谱分析法用火焰、电弧、等离子炬等作为激发源,使气态原子或离子的外层电子受激发发射特征光学光谱,利用这种光谱进行分析的方法叫做原子发射光谱分析法。
波长范围在190 ~ 900n m。
4. 原子荧光分析法气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到较高能态,约经10-8s,又跃迁至基态或低能态,同时发射出与原激发波长相同(共振荧光)或不同的辐射(非共振荧光—直跃线荧光、阶跃线荧光、阶跃激发荧光、敏化荧光等),称为原子荧光。
波长在紫外和可见光区。
在与激发光源成一定角度(通常为90︒)的方向测量荧光的强度,可以进行定量分析。
5. 分子荧光分析法某些物质被紫外光照射后,物质分子吸收辐射而成为激发态分子,然后回到基态的过程中发射出比入射波长更长的荧光。
测量荧光的强度进行分析的方法称为荧光分析法。
波长在光学光谱区。
6. 分子磷光分析法物质吸收光能后,基态分子中的一个电子被激发跃迁至第一激发单重态轨道,由第一激发单重态的最低能级,经系统间交叉跃迁至第一激发三重态(系间窜跃),并经过振动弛豫至最低振动能级,由此激发态跃迁回至基态时,便发射磷光。
根据磷光强度进行分析的方法成为磷光分析法。
它主要用于环境分析、药物研究等方面的有机化合物的测定。
7. 化学发光分析法由化学反应提供足够的能量,使其中一种反应的分子的电子被激发,形成激发态分子。
激发态分子跃迁回基态时,发出一定波长的光。
其发光强度随时间变化。
在合适的条件下,峰值与被分析物浓度成线形关系,可用于定量分析。
由于化学发光反应类型不同,发射光谱范围为400~ 1400n m。
二、吸收光谱法当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需的能量满足△E= h v的关系时,将产生吸收光谱。
M+ hv−→M*吸收光谱法可分为:1. Mōssb au e r(莫斯鲍尔)谱法由与被测元素相同的同位素作为γ射线的发射源,使吸收体(样品)原子核产生无反冲的γ射线共振吸收所形成的光谱。
光谱波长在γ射线区。
从Mōs s b au er谱可获得原子的氧化态和化学键、原子核周围电子云分布或邻近环境电荷分布的不对称性以及原子核处的有效磁场等信息。
2. 紫外-可见分光光度法利用溶液中的分子或基团在紫外和可见光区产生分子外层电子能级跃迁所形成的吸收光谱。
根据吸收光谱用于定性和定量测定。
3. 原子吸收光谱法利用待测元素气态原子对共振线的吸收进行定量测定的方法。
其吸收机理是原子的外层电子能级跃迁,波长在紫外、可见和近红外区。
4. 红外光谱法利用分子在红外区的振动- 转动吸收光谱来测定物质的成分和结构的光谱分析法。
5. 核磁共振波谱法在强磁场作用下,核自旋磁矩与外磁场相互作用分裂为能量不同的核磁能级,核磁能级之间的跃迁吸收或发射射频区的电磁波。
利用吸收光谱可进行有机化合物结构鉴定,以及分子的动态效应、氢键的形成、互变异构反应等化学研究。
三、Ra ma n散射频率为 0的单色光照射透明物质,物质分子会发生散射现象。
如果这种散射是光子与物质分子发生能量交换引起,即不仅光子的运动方向发生变化,它的能量也发生变化,则称为R a ma n散射。
这种散射光的频率(νm)与入射光的频率不同,称为R a ma n位移。
R am a n位移的大小与分子的振动和转动的能级有关,利用R am a n位移研究物质结构的方法称为R am a n光谱法。
第二节光谱仪器用来研究吸收、发射或荧光的电磁辐射强度和波长关系的仪器叫做光谱仪或分光光度计。
光谱仪或分光光度计一般包括五个基本单元:光源、单色器、样品容器、检测器和读出器件。
由光源发射的待测元素的锐线光束(共振线),通过原子化器,被原子化器中的基态原子吸收,再射入单色器中进行分光后,被检测器接收,即可测得其吸收信号。
由光源发出的光,经过第一单色器(激发光单色器)后,得到所需的激发光。
通过样品池,由于一部分光线被荧光物质所吸收,荧光物质被激发后,将向四面八方发射荧光,为了消除入射光和散射光的影响,荧光的测量应在与激发光成直角方向进行,第二单色器为荧光单色器,主要是消除溶液中可能共存的其它光线的干扰,以获得所需的荧光,荧光作用于检测器上,得到相应的电信号。
一、光源光谱分析中,光源必须具有足够的输出功率和稳定性。
由于光源辐射功率的波动与电源功率的变化成指数关系,因此往往需用稳压电源以保证稳定或者用参比光束的方法来减少光源输出对测定所产生的影响。
光源为连续光源和线光源等。
一般连续光源主要用于分子吸收光谱法;线光源用于荧光、原子吸收和Ra man光谱法。
1. 连续光源连续光源是指在波长范围内主要发射强度平稳的具有连续光谱的光源。
(1)紫外光源紫外连续光源主要采用氢灯和或氘灯。
在低压(≅1.3 ⨯103P a)下以电激发的方式产生的连续光谱,光谱范围为160~375nm。
高压氢灯以2000 ~ 6000V的高压使两个铝电极之间发生放电。
低压氢灯是在有氧化物涂层的灯丝和金属电极间形成电弧,启动电压约为400V直流电压,而维持直流电弧的电压为40V。
氘灯的工作方式与氢灯相同,光谱强度比氢灯大3~ 5倍,寿命也比氢灯长。
(2)可见光源可见光区最常见的光源是钨丝灯。
在大多数仪器中,钨丝的工作温度约为2870K,光谱波长范围为320 ~ 2500nm。
氙灯也可用作可见光源,当电流通过氙灯时,产生强辐射,发射的连续光谱分布在250 ~ 700nm。
(3)红外光源常用的红外光源是一种用电加热到温度在1500 ~2000K之间的惰性固体,光强最大的区域在6000 ~ 5000cm-1。
在长波侧667c m-1和短波侧10000c m-1的强度已降到峰值的1%左右。
常用的有能斯特灯、硅碳棒。
2. 线光源(1)金属蒸气灯在透明封套内含有低压气体元素,常见的是汞灯和钠蒸气灯。
把电压加到固定在封套上的一对电极上,会激发出元素的特征线光谱。
汞灯产生的线光谱的波长范围为254 ~ 734n m,钠灯主要是589.0n m和589.6n m处的一对谱线。
(2)空心阴极灯主要用于原子吸收光谱,能提供许多元素的特征光谱。
(3)激光激光的强度高,方向性和单色性好,作为一种新型光源应用于R am a n光谱、荧光光谱、发射光谱、fo ur i er变换红外光谱等领域。
二、单色器单色器的主要作用是将复合光分解成单色光或有一定宽度的谱带。
单色器由入射狭缝和出射狭缝、准直镜以及色散元件,如棱镜或光栅等组成。
单色器1. 棱镜棱镜的作用是把复合光分解为单色光。
由于不同波长的光在同一介质中具有不同的折射率,波长短的光折射率大,波长长的光折射率小。
因此,平行光经色散后按波长顺序分解为不同波长的光,经聚焦后在焦面的不同位置成像,得到按波长展开的光谱。
常用的棱镜有C o rn u(考纽)棱镜是顶角α为60︒的棱镜;为了防止生成双像,Li t t r o w(立特鲁)棱镜是由2个30︒棱镜组成,一边为左旋石英,另一边为右旋石英,左旋、右旋石英做成30︒棱镜。
对于同一材料,光的折射率为其波长的函数。
在可见-紫外光谱区域,可用下式表示:n = A+ B/λ2 + C/λ4式中n为折射率,λ为波长,A、B、C为常数。
由公式可见,波长越长,折射率愈小。
当包含有不同波长的复合光通过棱镜时,不同波长的光就会因折射率不同而分开。
这种作用称为棱镜的色散作用。
色散能力常以色散率和分辨率表示。
(1)色散率(角色散率、线色散率和倒线色散率)棱镜的角色散率用dθ/dλ表示。
表示入射线与折射线的夹角,即偏向角θ对波长的变化率。
角色散率越大,波长相差很小的两条谱线分得越开。
取一个棱角为α(A)的等边棱镜,它的折射线与入射线的夹角叫做偏向角θ。
当入射线射入棱镜内的折射线与棱镜底边平行时,入射角与出射角相等,此时偏向角最小。
根据折射率定律,可以证明:从最小偏向角θ和棱镜的顶角A ,可以求出棱镜的折射率。