最新图形的相似与位似中考考点分析

合集下载

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结相似的图形在初中数学中占据非常重要的位置。

相似的图形具有相同的形状但不一定相等的大小。

在初三学习过程中,我们接触到了许多涉及相似图形的知识点。

本文将对初三相似的图形知识点进行归纳总结,以帮助同学们更好地理解和掌握这一内容。

一、相似三角形的判定条件1. AAA相似定理:如果两个三角形的对应角相等,则它们相似。

2. AA相似定理:如果两个三角形的一个角对应对应地相等,并且两个对应边成比例,则它们相似。

3. 相似三角形的对应边的比例关系:如果两个三角形相似,那么它们的对应边的长度之比等于相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)二、相似三角形的性质和应用1. 相似三角形的边长比例性质:两个相似三角形的相应边的比等于它们的相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)2. 相似三角形的高线比例性质:两个相似三角形的高线与底边之比等于相似比。

即\(\frac{h_1}{h_2} = \frac{AB}{A'B'} = \frac{BC}{B'C'} =\frac{CA}{C'A'}\)3. 相似三角形的面积比例性质:两个相似三角形的面积之比等于边长之比的平方。

即\(\frac{S_1}{S_2} = \left(\frac{AB}{A'B'}\right)^2 =\left(\frac{BC}{B'C'}\right)^2 = \left(\frac{CA}{C'A'}\right)^2\)4. 利用相似三角形性质解决实际问题。

如影子定理、塔楼高度的测量等。

数学图形相似九年级知识点

数学图形相似九年级知识点

数学图形相似九年级知识点数学中的图形相似是指两个或多个图形在形状上相似,即它们的对应角度相等,对应边的比例相等。

图形相似在几何学中有重要的应用,能够帮助我们分析和解决各种数学问题。

本文将介绍九年级数学中关于图形相似的知识点。

1. 判断图形相似的条件在九年级数学中,判断两个图形是否相似,需要满足以下三个条件:(1)对应角相等:两个图形的对应角度相等。

(2)对应边比例相等:两个图形中,对应边的长度之比相等。

(3)对应边平行:两个图形中,对应边之间相互平行。

2. 图形相似的性质图形相似具有以下性质:(1)对应角的性质:相似图形的对应角相等,即它们的内角相等,外角相等。

(2)对应边的比例:相似图形的对应边之比等于它们的周长、面积之比。

即若图形A与图形B相似,那么两个图形的对应边AB与A'B'的比例等于它们的周长或面积之比。

3. 相似三角形的定理在相似三角形中,我们可以应用以下定理来求解各种问题:(1)AAA相似定理:如果两个三角形的三个内角分别相等,则这两个三角形相似。

(2)AA相似定理:如果两个三角形的一个内角相等,并且两个三角形的对应边比例相等,则这两个三角形相似。

(3)SAS相似定理:如果两个三角形的一个内角相等,并且两个三角形的一个对边与这个角的对边的比例相等,则这两个三角形相似。

4. 图形相似应用图形相似在实际问题中有广泛的应用,比如:(1)计算高塔的高度:通过相似三角形的定理,我们可以计算高塔的高度。

例如,利用影子定理可以测量高塔的高度,其中就用到了相似三角形的概念。

(2)建模问题:在建模问题中,相似图形的概念可以帮助我们将实际物体或建筑的比例缩小或放大,以便进行实际测量或设计。

总结:数学图形相似是九年级数学中的重要知识点,它可以帮助我们分析和解决各种数学问题。

相似图形的判断条件、性质以及应用都需要我们掌握。

通过学习相似图形的知识,我们可以更好地理解几何学中的概念和应用,提升数学解题能力。

相似多边形及位似知识讲解

相似多边形及位似知识讲解

相似多边形及位似知识讲解【学习目标】1、掌握相似多边形的性质及应用;2、了解图形的位似,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;3、了解黄金分割值及相关运算.【要点梳理】要点一、相似多边形相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点诠释:用相似多边形定义判定特殊多边形的相似情况:(1)对应角都相等的两个多边形不一定相似,如:矩形;(2)对应边的比都相等的两个多边形不一定相似,如:菱形;(3)边数相同的正多边形都相似,如:正方形,正五边形.要点二、位似1.位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.位似图形的性质:(1)位似图形的对应点和位似中心在同一条直线上;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.要点诠释:(1)位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.(2)位似变换中对应点的坐标变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点三、黄金分割定义:如图,将一条线段AB 分割成大小两条线段AP 、PB ,若小段与大段的长度之比等于大段的长度与全长之比,即(此时线段AP 叫作线段PB 、AB 的比例中项),则P 点就是线段AB 的黄金分割点(黄金点),这种分割就叫黄金分割.要点诠释:1.黄金分割值:设AB=1,AP=x ,则BP=∵ ∴ ∴∴(舍负) 2.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.【典型例题】类型一、相似多边形ABAP AP PB =x -1ABAP AP PB =11x x x =-x x -=12618.0215≈-=x1.如图,矩形草坪长20m,宽16m,沿草坪四周有2m宽的环形小路,小路内外边缘所形成的两个矩形相似吗?为什么?【答案与解析】因为矩形的四个角都是直角,所以关键是看矩形ABCD与矩形EFGH的对应边的比是否相等.,而,∴∴矩形ABCD与矩形EFGH 的对应边的比不相等,因而它们不相似.【总结升华】两个边数相同的多边形,必须同时满足“对应边的比都相等,对应角都相等”这两个条件才能相似,缺一不可.举一反三【变式】如图,一张矩形纸片ABCD的长AB=a ,宽BC=b .将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=()A. 2:1B. :1C. 3:D. 3:2542016221616EFAB==++=652420222020EHAD==++=6554≠EHADEFAB≠AB CDEF GH【答案】B.提示: ∵矩形纸片对折,折痕为EF ,∴AF=AB=a ,∵矩形AFED 与矩形ABCD 相似,∴=,即=,∴()2=2,∴=.故选B .2.如图,在长8cm ,宽4cm 的矩形中截去一个矩形,使留下的矩形(阴影部分)与原矩形相似,那么留下的矩形的面积为( ).A. 2cmB. 4cmC. 8cmD. 16cm【答案】C.【解析】设留下的矩形的宽为x ,∵留下的矩形与原矩形相似,∴,∴x=2,∴留下的矩形的面积为:2×4=8(cm 2)故答案为:8.故选C .【总结升华】本题主要考查了相似多边形的性质,在解题时要能根据相似多边形的性质列出方程是本题的关键.类型二、位似22223. 利用位似图形的方法把五边形ABCDE 放大1.5倍.【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′. 这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.A B C D E A 1 B 1 C 1 D 1 E 1 A B C DE4. 如图,矩形OABC 的顶点坐标分别为O (0,0),A (6,0),B (6,4),C (0,4).画出以点O 为位似中心,矩形OABC 的位似图形OA ′ B ′ C ′ ,使它的面积等于矩形OABC 面积的,并分别写出A ′、B ′、C ′三点的坐标.【答案与解析】因为矩形OA ′B ′C ′与矩形OABC 是位似图形,面积比为1:4,所以它们的位似比为1:2. 连接OB ,(1)分别取线段OA 、OB 、OC 的中点A ′、B ′、C ′,连接O A ′、A ′B ′、B ′C ′、 C ′O ,矩形OA ′B ′C ′就是所求的图形.A ′,B ′,C ′三点的坐标分别为A ′(3,0),B ′(3,2),C ′(0,2).(2)分别在线段OA ,OB ,OC 的反向延长线上截取O A ″、O B ″、O C ″,使OA ″=OA ,OB ″=OB ,O C ″=OC ,连接 A ″B ″、B ″C ″,则矩形O A ″B ″C ″为所求. A ″、B ″、C ″三点的坐标分别为A ″(-3,0),B ″(-3,-2),C ″(0,-2).41212121【总结升华】平面直角坐标系内画位似图形,若没有明确指出只画一个,一定要把两种情况都画在坐标系内,并写出两种坐标.举一反三【变式】在已知三角形内求作内接正方形.【答案】作法:(1)在AB上任取一点G′,作G′D′⊥BC;(2)以G′D′为边,在△ABC内作一正方形D′E′F′G′;(3)连接BF′,延长交AC于F;(4)作FG∥CB,交AB于G,从F、G分别作BC的垂线FE,GD;∴四边形DEFG即为所求.类型三、黄金分割5.求做黄金矩形(写出具体做题步骤)并证明.【答案与解析】宽与长的比是的矩形叫黄金矩形.(心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.)黄金矩形的作法如下(如图所示):第一步:作一个正方形ABCD ;第二步:分别取AD ,BC 的中点M ,N ,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ;第四步:过E 作EF ⊥AD ,交AD 的延长线于F .即矩形DCEF 为黄金矩形.证明:在正方形ABCD 中,取,∵ N 为BC 的中点,∴ . 在中,. 又∵ ,∴ .122AB a =12NC BC a ==Rt DNC△ND ===NE ND=1)CE NE NC a =-=B C A BC D EFM N∴ . 故矩形DCEF 为黄金矩形. 【总结升华】要求熟练掌握多边形相似的比例关系.会利用相似比,求未知线段的长度或比值.举一反三【变式】美是一种感觉,当人的肚脐是人的身高的黄金分割点时,人的下半身长与身高之比约为0.618,人的身段成为黄金比例,给人一种美感.某女士身高165cm ,下半身长与身高的比值是0.60,为尽可能达到匀称的效果,她应穿高跟鞋的高度大约为( )A.4cmB.5cmC.6cmD.8cm【答案】D.∵该女士身高165cm ,下半身长与身高的比值是0.60,∴此女士下半身长是165×0.60=99cm ,设需要穿的高跟鞋是xcm ,根据黄金分割的定义得:0.618, 解得:x ≈8.故选D .CE CD ==99+=165+x x。

2023中考数学复习:图形的相似与位似

2023中考数学复习:图形的相似与位似

∠ABC=90°,BC=2AB,则点D的坐标是( D )
A.(7,2)
1
B.(7,5)
2
3
4
C.(5,6)
5
6
7
8
9
D.(6,5)
10
11
12
13
14
15
挑战高分
基础全练
中考创新练
9.(2022·贵州贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,
AC ∶ AB=1 ∶ 2,则△ADC与△ACB的周长比是( B )
16
17
18
基础全练
挑战高分
中考创新练

∴△DBH≌△DEC.∴BH=EC.∴ = .∵DH∥AB,∴△EDH∽△EFB.




∴ = = .∴ = .∴ = ;



[问题拓展]解:如图2,取BC的中点H,连接DH.

∵D是AC的中点,∴DH∥AB,DH= AB.

(2)求 的值.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
挑战高分
基础全练
中考创新练
(1)证明:①∵CD∥AB,∴∠D=∠A,∵∠CFD=∠BFA,∴△ABF∽△DCF;
②∵OB=CO,∴∠OCB=∠ABC=45°,∴∠COB=180°-∠OCB-∠ABC=90°,
∵CD∥AB,∴∠OCD=180°-∠COB=90°,∴CD是☉O的切线;
∵AE=3,EF=2AF=4,∴ME=4,BM=2,BE=3,

最新初中数学【素材一】25.7相似多边形和图形的位似

最新初中数学【素材一】25.7相似多边形和图形的位似

解读相似多边形一、知识点拨相似多边形具有对应角相等,对应边之比等于相似比,周长之比等于相似比,面积之比等于相似比的平方等性质.由于相似三角形是相似多边形的特例.因此,相似三角形具有相似多边形的一切性质.四边以上的多边形可以分割为若干个三角形,相似多边形还具有“对应三角形相似”的性质.二、典型例题例 如下图,梯形ABCD 与梯形A B C D ''''中,90A A B B ''====∠∠∠∠,D D '=∠∠,AB BC A B B C =''''.请说明:梯形ABCD ∽梯形A B C D ''''.分析:要说明梯形ABCD ∽梯形A B C D ''''.已知四个角已对应相等,只需说明四条边对应成比例即可.由AB BC A B B C ='''',90B B '==∠∠,可连结AC A C '',,则A B C A B C '''△∽△.于是1133AC AB BC A C A B B C''====''''''∠∠,∠∠,.而在ADC △和A D C '''△中,由于29019012'=-=-=∠∠∠∠,D D '=∠∠,所以A D C A D'''△∽△.即CD AD AC C D A D A C =='''''',所以AB BC CD AD A B B C C D A D ===''''''''.故梯形ABCD ∽梯形A B C D ''''. 说明:研究多边形的问题,常常把多边形分成若干个三角形,从而把求解多边形的问题转化为求解三角形的问题.三、注意事项相似多边形的定义、性质与相似三角形基本一致,而相似多边形的判定与相似三角形的判定是有区别的,对应角相等或对应边成比例的三角形相似,而对应角相等且对应边成比例的多边形才相似,所以不能随意地把判定相似三角形的方法套用来判定多边形相似.例如,两个矩形的各角都相等,但对应边不一定成比例,所以两个矩形不一定相似.另外研究多边形相似时通常利用辅助线使之转化为三角形问题.。

中考数学《图形的相似》真题汇编含解析

中考数学《图形的相似》真题汇编含解析

图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。

图形的相似图形的位似

图形的相似图形的位似

2023-11-08contents •图形相似的基本概念•图形相似的判定方法•图形位似的基本概念•图形位似的应用•图形相似与图形位似的异同点•典型例题解析目录01图形相似的基本概念相似图形的定义如果两个图形形状相同,大小不同,且它们对应线段的长度成比例,则称这两个图形相似。

相似图形的判定方法根据相似图形的定义,可以通过比较两个图形对应线段的比例来判断它们是否相似。

相似图形的定义相似图形的性质相似图形具有相同的周长、面积和对应角的大小。

相似图形的对应线段相似图形的对应线段成比例,对应角的大小相等。

相似图形的性质根据相似图形的定义,可以将相似图形分为位似图形和非位似图形。

相似图形的分类位似图形的定义位似图形的性质如果两个图形不仅相似,而且对应线段所在的直线交于一点,则称这两个图形位似。

位似图形具有相同的周长、面积和对应角的大小,且对应线段所在的直线交于一点。

03相似图形的分类020102图形相似的判定方法通过定义直接判定定义如果两个图形的形状相同,大小可以不同,则这两个图形是相似图形。

判定方法直接观察两个图形的形状是否相同。

如果两个三角形对应角相等,对应边成比例,则这两个三角形是相似三角形。

定义测量两个三角形对应角的大小和对应边的长度,判断它们是否满足对应角相等和对应边成比例的条件。

判定方法通过测量相似三角形的角度和边长判定矩阵变换和线性变换是图形变换的两种方式,通过这些变换可以将一个图形变为另一个图形。

判定方法通过矩阵变换和线性变换将一个图形变为另一个图形,判断它们是否满足相似图形的定义。

定义通过矩阵变换和线性变换判定VS03图形位似的基本概念位似是图形相似的一种特殊形式,是指两个图形在位似变换下保持相似。

位似变换是指将一个图形沿着某个方向拉伸或压缩,而保持其形状不变的变换。

位似的分类根据变换的方向和方式,位似可以分为单向位似和双向位似。

根据图形是否在平面上,位似可以分为平面位似和空间位似。

单向位似是指沿着某个方向进行拉伸或压缩变换,而双向位似是指在两个方向上进行拉伸或压缩变换。

九年级位似图形知识点归纳

九年级位似图形知识点归纳

九年级位似图形知识点归纳九年级位似图形是数学中的一个重要内容,它涉及到平面几何中的相似性质以及相似图形的相关知识。

在这篇文章中,我将对九年级位似图形的知识点进行归纳总结。

1. 什么是位似图形位似图形指的是具有相同形状但是大小不同的图形。

在位似图形中,图形的内部角度是相等的,各边的对应长度按比例关系成立。

2. 相似比位似图形中,相似比是一个重要的概念。

相似比指的是两个位似图形的相应边长度之比。

在位似图形中,相似比相等,即对应边长度的比例相等。

3. 判断位似图形判断位似图形时,需要考虑以下几个条件:- 内部角度相等:对应角度相等,即对应顶点的角度相等。

- 对应边按比例关系成立:对应边之间的比例相等。

4. 位似图形的性质位似图形具有一些特点和性质,主要包括:- 边比相等:在位似图形中,对应边的长度比例相等。

- 面积比相等:在位似图形中,对应面积之比等于边比的平方。

- 周长比相等:在位似图形中,对应边长之比等于周长比。

5. 图形变换对位似图形进行变换是学习位似图形的重要环节之一。

常见的图形变换包括:- 平移:图形在平面上的位置保持不变,只改变其位置。

- 旋转:图形按照一定的角度绕着某个固定点进行旋转。

- 缩放:图形按照一定的比例进行放大或缩小。

6. 练习题为了加深对位似图形知识点的理解和掌握,我们可以进行一些练习题。

以下是一些例题:例题1:已知两个三角形ABC和DEF,且∠A=∠D,AB:DE=3:5,BC:EF=4:7,AC:DF=2:3。

判断两个三角形是否位似,并说明理由。

解答:根据给定条件,可以发现两个三角形的内部角度相等,且对应边的比例关系成立。

因此,根据位似图形的判断条件,可以判断两个三角形是位似的。

例题2:已知两个矩形ABCD和EFGH,且AB:EF=2:3,BC:FG=3:5,CD:GH=4:7。

计算两个矩形的面积比。

解答:根据给定的边比关系,可以算出两个矩形的边长比例分别为2:3和3:5。

中考知识点总结图形的相似

中考知识点总结图形的相似

中考知识点总结图形的相似图形的相似是中考数学中的一个重要知识点,理解和掌握这部分内容对于解决相关问题至关重要。

接下来,让我们一起系统地梳理一下图形的相似的知识点。

一、相似图形的定义相似图形是指形状相同,但大小不一定相同的图形。

两个图形相似,对应角相等,对应边的比相等。

比如,两个大小不同的正方形就是相似图形,它们的角都是直角,对应边的比例相同。

二、相似多边形1、相似多边形的定义如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形叫做相似多边形。

2、相似比相似多边形对应边的比叫做相似比。

需要注意的是,相似比为1 时,两个多边形全等。

3、相似多边形的性质(1)相似多边形的对应角相等,对应边的比相等。

(2)相似多边形周长的比等于相似比。

(3)相似多边形面积的比等于相似比的平方。

三、相似三角形1、相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形。

2、相似三角形的判定(1)两角分别相等的两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

(3)三边成比例的两个三角形相似。

3、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例。

(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比。

(3)相似三角形周长的比等于相似比,面积的比等于相似比的平方。

四、位似图形1、位似图形的定义如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。

2、位似图形的性质(1)位似图形上任意一对对应点到位似中心的距离之比等于位似比。

(2)在位似变换中,位似图形的对应边互相平行或在同一条直线上。

五、相似三角形的应用相似三角形在实际生活中有广泛的应用,比如测量物体的高度、宽度,计算不能直接测量的距离等。

例如,要测量一棵大树的高度,可以在同一时刻,测量一根直立的标杆的高度以及它的影长,同时测量大树的影长。

利用相似三角形对应边成比例的性质,就可以计算出大树的高度。

九年级春季数学下册听课笔记:第二十七章相似-位似图形概念

九年级春季数学下册听课笔记:第二十七章相似-位似图形概念

2024九年级春季数学下册听课笔记:第二十七章相似- 位似图形概念1. 教师行为1.1 导入•复习引入:教师首先带领学生复习相似图形的概念及其基本性质,强调相似图形中对应角相等、对应边成比例的特点。

•情境创设:随后,教师通过展示一系列具有特殊位置关系的相似图形(如中心点放大或缩小的图案),引导学生观察并思考这些图形之间除了相似外还有何特别之处。

•概念揭示:在学生好奇与探索的氛围中,教师引出“位似图形”的概念,指出位似图形是相似图形的一种特殊情况,其对应点连线交于同一点(即位似中心)。

1.2 教学过程•详细讲解:•定义阐述:教师清晰阐述位似图形的定义,强调位似中心、位似比等关键要素。

•性质分析:结合图形实例,分析位似图形的性质,如对应线段之间的比例关系、对应角的大小关系等,并特别指出位似中心在图形变换中的重要作用。

•示例演示:通过例题演示如何根据已知条件判断两个图形是否位似,以及如何求解位似比和位似中心。

•互动探究:•小组讨论:组织学生分组讨论,每组分配不同的图形案例,探讨其是否满足位似图形的条件,并尝试找出位似中心和计算位似比。

•汇报交流:各小组派代表汇报讨论结果,教师适时点评,纠正错误,补充遗漏。

•拓展延伸:•引入位似图形在现实生活中的应用实例,如建筑设计中的比例缩放、地图制作中的坐标变换等,增强学生对位似图形实际意义的理解。

板书设计(提纲式)1.导入•复习相似图形•情境创设:特殊位置关系的相似图形•概念揭示:位似图形2.详细讲解•定义阐述:位似图形定义•性质分析:对应线段比例、对应角关系、位似中心作用•示例演示:判断位似、求解位似比和位似中心3.互动探究•小组讨论:分析图形案例•汇报交流:分享讨论结果4.拓展延伸•位似图形在现实生活中的应用作业布置•完成课后习题,巩固位似图形的概念和性质。

•寻找生活中的位似图形实例,尝试用数学语言描述其位似关系。

课堂小结•总结本节课学习的位似图形概念、性质及判断方法。

画相似图形、位似图形及图形与坐标知识点

画相似图形、位似图形及图形与坐标知识点

画相似图形及图形与坐标
一、位似图形的定义:如果两个图形不仅形状相同,而且每组对应顶点的连线相交于一点,对应边相
互平行(或在同一直线上),那么这样的两个相似图形是位似图形。

辨析:(1)位似图形与相似图形的关系:位似图形是具有特殊位置关系的相似图形,位似图形一定是相似图形,但相似图形不一定是位似图形。

(2)两个位似图形的位似中心只有一个。

例1判断每组图形中两个图形是不是位似图形,如果是指出位似中心
二、位似图形的性质——如果两个图形位似,那么他们的相似比就是相似比。

(1)位似图形上的任意一对对应点到位似中心的距离之比等于相似比。

(2)位似图形对应点的连线或延长线交于一点。

(3)位似图形对应线段平行(或在同一条直线上)且成比例。

(4)位似图形的对应角相等。

三、位似图形的画法
四、确定物体位置的方法
方法1:用坐标确定位置。

先选取某点为坐标原点,建立平面直角坐标系,然后用一对有序实数来表示一个点的位置,即为某物体的位置。

方法2:用一个角度和距离确定点的位置。

先选定某个参照物和某个方向,然后用一个角度和距离来表示一个点的位置,即为某物体的位置。

这种方法在军事和地理中经常用到。

注意:用此方法确定点的位置时,角度与距离二者缺一不可。

五、图形的变换与坐标
1.在平移过程中(1)左右移,横坐标变,纵坐标不变.
(2)上下移,纵坐标变,横坐标不变.
2.关于x轴对称的图形对应点的横坐标不变,纵坐标互为相反数;
关于y轴对称的图形对应点的纵坐标不变,横坐标互为相反数.
3.位似中心是原点的位似变换中,坐标扩大或缩小相同的倍数.。

九年级下一轮综合复习图形的相似与位似

九年级下一轮综合复习图形的相似与位似
相似三角形的对应边的比,叫做相似三角形的相似比。
△ABC∽△A/B/C/,如果BC=3,B/C/=1.5,那么 △A/B/C/与 △ABC的相似比为_________.
(1)识别
①如果一个三角形的两角分别与另一个 三角形的两角对应相等,那么这两个三角形 A 相似.ABA A B B A
B
C
B
C
AB AC BC ABC ∽ ABC AB AC BC
(2)性质
两个三角形相似,则
①它们的对应边成比例, 对应角相等; ②它们的对应高、对应中线、 对应角平分线的比等于相似比; ③它们的周长比等于相似比; 面积比等于相似比的平方.
应用举例
例1 判断 ①所有的等腰三角形都相似. (×) ②所有的直角三角形都相似. (×)
如图,△ABC在方格纸中
(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2), 并求出B点坐标;
(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC
放大,画出放大后的图形△A′B′C′; (3)计算△A′B′C′的面积S.
一.相似三角形的定义: 对应角相等、对应边成比例的三角形叫 做相似三角形。 二.相似比:
图2
E C B
D
A
B
图1
图3
C
二、(兄弟相似或X型)
(1)如图1,当AB∥ED时,则△ ABC ∽△ DEC 。
(2)如图2,当 ∠B’= ∠E’或 则△ A’B’C’ ∽△D’E’C’ 。
' C ' D ' AC ' ' ' ' ' CE CB
时,
A’
A
C E

中考数学相似知识点总结

中考数学相似知识点总结

中考数学相似知识点总结相似性是数学中一个重要的性质,它在几何学、代数学、物理学等多个领域都有着广泛的应用。

在中考数学中,相似性是一个重要的知识点,涉及到相似三角形、比例、相似比等内容。

本文将对中考数学中的相似知识点进行总结,希望对广大中学生的学习有所帮助。

1.相似三角形相似三角形是指具有相同形状但大小不同的三角形。

两个相似三角形的对应角相等,对应边的比值相等。

在中考数学中,相似三角形是一个重要的知识点,涉及到相似三角形的判定、性质和应用等内容。

(1)相似三角形的判定:两个三角形是相似三角形的条件有两种:a. 两个三角形的对应角相等。

即如果两个三角形的对应角相等,那么这两个三角形就是相似的。

b. 两个三角形的对应边的比值相等。

即如果两个三角形的对应边的比值相等,那么这两个三角形就是相似的。

(2)相似三角形的性质:相似三角形的性质有很多,其中比较重要的有:a. 相似三角形的对应角相等。

即两个相似三角形的对应角是相等的。

b. 相似三角形的对应边的比值相等。

即两个相似三角形的对应边的比值是相等的。

c. 相似三角形的周长和面积的性质。

如果两个三角形是相似的,那么它们的周长和面积的比值等于它们边长和面积的比值。

(3)相似三角形的应用:相似三角形在实际生活中有着广泛的应用。

例如地图的绘制、建筑物的设计、影视摄影等领域都涉及到相似三角形的知识。

2.比例比例是指两个或多个量之间的相等关系。

在中考数学中,比例是一个常见的知识点,涉及到比例的意义、性质、计算和应用等内容。

(1)比例的意义:比例表示了两个或多个量之间的相等关系,反映了事物之间的数量关系。

比例常用于描述事物之间的大小关系、速度关系、长度关系、面积关系等。

(2)比例的性质:比例具有以下几个性质:a. 交叉乘积相等。

即如果a:b=c:d,那么ad=bc。

b. 反比例的意义。

即如果a:b=c:d,那么b:a=d:c。

c. 等比例线段的性质。

即如果a:b=b:c,那么a:c是等比例线段。

专题29 相似与位似(解析版).pdf

专题29  相似与位似(解析版).pdf
BD
如图1,当α=60°时, 的值是 ,直线BD与直线CP相交所成的较小角的度数是 .
CP
(2)类比探究
BD
如图2,当α=90°时,请写出
CP
的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由. (3)解决问题 当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时
AD
的值.
CP
【答案】(1)1,60°;(2)45°;(3) 2 2 .
【分析】(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.证明△CAP≌△BAD(SAS),即
可解决问题. (2)如图2中,设BD交AC于点O,BD交PC于点E.证明△DAB∽△PAC,即可解决问题. (3)分两种情形:①如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.证明AD=DC即可解 决问题. ②如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC解决问题. 【详解】(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.
(3)CB 12 42 17 ,点B经过的路径长 90 17 17 .
180
2
【点睛】本题考查了作图﹣位似变换:画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中
心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得
到放大或缩小的图形.也考查了旋转变换.
归纳 3:相似三角形综合问题 基础知识归纳:相似三角形与几何图形的综合. 基本方法归纳:理清题意,合理推断,准确运算是关键. 注意问题归纳:审题不清、条件利用不全是常见错误.
【例3】(2019河南省,第22题,10分)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的 任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP. (1)观察猜想

图形的相似与位似的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮(全国通用)(解析版)

图形的相似与位似的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮(全国通用)(解析版)

专题19图形的相似与位似的核心知识点精讲1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题.3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置。

考点1:比例线段1.比例线段的相关概念如果选用同一长度单位量得两条线段a,b 的长度分别为m,n,那么就说这两条线段的比是n m b a =,或写成a:b=m:n.在两条线段的比a:b 中,a 叫做比的前项,b 叫做比的后项.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a,b,c,d 满足或a:b=c:d,那么a,b,c,d 叫做组成比例的项,线段a,d 叫做比例外项,线段b,c 叫做比例内项.如果作为比例内项的是两条相同的线段,即c b b a =或a:b=b:c,那么线段b 叫做线段a,c 的比例中项.2.比例的基本性质:①a:b=c:d ⇔ad=bc②a:b=b:c ac b =⇔2.3.黄金分割把线段AB 分成两条线段AC,BC(AC>BC),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB≈0.618AB.考点2:相似图形1.相似图形:我们把形状相同的图形叫做相似图形.也就是说:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.(全等是特殊的相似图形).2.相似多边形:对应角相等,对应边的比相等的两个多边形叫做相似多边形.3.相似多边形的性质:相似多边形的对应角相等,对应边成的比相等.相似多边形的周长的比等于相似比,相似多边形的面积的比等于相似比的平方.4.相似三角形的定义:形状相同的三角形是相似三角形.5.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比.(3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.6.相似三角形的判定:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(5)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个三角形相似.考点3:位似图形1.位似图形的定义两个多边形不仅相似,而且对应顶点的连线相交于一点,不经过交点的对应边互相平行,像这样的两个图形叫做位似图形,这个点叫位似中心.2.位似图形的分类(1)外位似:位似中心在连接两个对应点的线段之外.(2)内位似:位似中心在连接两个对应点的线段上.3.位似图形的性质位似图形的对应点和位似中心在同一条直线上;位似图形的对应点到位似中心的距离之比等于相似比;位似图形中不经过位似中心的对应线段平行.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接截取点.【注意】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.【题型1:相似三角形的相关计算】【典例1】(2023•雅安)如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,EF=1,EC=3,则GF的长为()A.4B.6C.8D.10【答案】C【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵AD∥BC,∴△DEF∽△BEC,∴,∵EF=1,EC=3,∴,即,∴,∵AB∥CD,∴△DFC∽△AFG,∴,∵EF=1,EC=3,∴CF=4,∴,∴GF=8,故选:C1.(2023•吉林)如图,在△ABC 中,点D 在边AB 上,过点D 作DE ∥BC ,交AC 于点E .若AD =2,BD =3,则的值是()A .B .C .D .【答案】A 【解答】解:∵DE ∥BC ,∴====.故选:A .2.(2023•内江)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A .1B .C .2D .3【答案】C 【解答】解:∵点D 、E 为边AB 的三等分点,∴AD =DE =EB ,∴AB =3BE ,AE =2AD ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴EF :AC =BE :AB ,∵AC =12,AB =3BE ,∴EF :12=BE :3BE ,∴EF =4,∵DG ∥EF ,∴△ADH ∽△AEF ,∴DH:EF=AD:AE,∵EF=4,AE=2AD,∴DH:4=AD:2AD,∴DH=2.故选:C.3.(2023•东营)如图,△ABC为等边三角形,点D,E分别在边BC,AB上,∠ADE=60°.若BD=4D C,DE=2.4,则AD的长为()A.1.8B.2.4C.3D.3.2【答案】C【解答】解:∵△ABC是等边三角形,∴BC=AC,∠B=∠C=60°,∴∠CAD+∠ADC=120°,∵∠ADE=60°.∴∠BDE+∠ADC=120°,∴∠CAD=∠BDE,∴△ADC∽△DEB,∴,∵BD=4DC,∴设DC=x,则BD=4x,∴BC=AC=5x,∴,∴AD=3,故选:C.4.(2023•绵阳)黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD的底边BC取中点E,以E为圆心,线段DE为半径作圆,其与底边BC的延长线交于点F,这样就把正方形ABCD延伸为矩形ABFG,称其为黄金矩形.若CF=4 a,则AB=()A.(﹣1)a B.(﹣2)a C.(+1)a D.(+2)a【答案】D【解答】解:设AB=x,∵四边形ABCD是正方形,∴AB=BC=x,∵矩形ABFG是黄金矩形,∴=,∴=,解得:x=(2+2)a,经检验:x=(2+2)a是原方程的根,∴AB=(2+2)a,故选:D.5.(2023•哈尔滨)如图,AC,相交于点O,AB∥DC,M是AB的中点,MN∥AC,交BD于点N,若DO:OB=1:2,AC=12,则MN的长为()A.2B.4C.6D.8【答案】B【解答】解:∵AB∥DC,∴△CDO∽△ABO,∴,∵DO:OB=1:2,∴=,∴OC=OA,∵AC=OA+OC=12,∴OA+OA=12,∴OA=8,∵MN∥AC,M是AB的中点,∴MN为△AOB的中位线,∴MN=OA==4.故选:B.【题型2:相似三角形的实际应用】【典例2】(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【答案】134【解答】解:据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为,,解得:x=134,经检验,x=134是原方程的解,∴BO=134.故答案为:134.1.(2023•南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为()A.6.4m B.8m C.9.6m D.12.5m【答案】B【解答】解:如图:∵AB⊥BD,DE⊥BD,∴∠ABC=∠EDC=90°,∵∠ACB=∠DCE,∴△ABC∽△EDC,∴,即,∴DE=8(m),故选:B.2.(2023•达州)如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为(80﹣1 60)cm.(结果保留根号)【答案】(80﹣160).【解答】解:∵点C是靠近点B的黄金分割点,AB=80cm,∴AC=AB=×80=(40﹣40)cm,∵点D是靠近点A的黄金分割点,AB=80cm,∴DB=AB=×80=(40﹣40)cm,∴CD=AC+BD﹣AB=2(40﹣40)﹣80=(80﹣160)cm,∴支撑点C,D之间的距离为(80﹣160)cm,故答案为:(80﹣160).3.(2023•潍坊)在《数书九章》(宋•秦九韶)中记载了一个测量塔高的问题:如图所示,AB表示塔的高度,CD表示竹竿顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、EF在同一平面内,点A、C、E在一条水平直线上.已知AC=20米,CE=10米,CD=7米,EF=1.4米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为18.2米.【答案】18.2.【解答】解:过点F作FG⊥CD,垂足为G,延长FG交AB于点H,由题意得:FH⊥AB,AH=CG=EF=1.4米,AC=GH=20米,CE=FG=10米,∴∠DGF=∠BHF=90°,∵CD=7米,∴DG=CD﹣CG=7﹣1.4=5.6(米),∵∠DFG=∠BFH,∴△FDG∽△FBH,∴=,∴=,∴BH=16.8,∴AB=BH+AH=16.8+1.4=18.2(米),∴塔的高度为18.2米,故答案为:18.2.【题型3:位似】【典例3】(2023•朝阳)如图,在平面直角坐标系中,已知点A(2,2),B(4,1),以原点O为位似中心,相似比为2,把△OAB放大,则点A的对应点A′的坐标是()A.(1,1)B.(4,4)或(8,2)C.(4,4)D.(4,4)或(﹣4,﹣4)【答案】D【解答】解:∵以原点O为位似中心,相似比为2,把△OAB放大,点A的坐标为(2,2),∴点A的对应点A′的坐标为(2×2,2×2)或(2×(﹣2),2×(﹣2)),即(4,4)或(﹣4,﹣4),故选:D.1.(2023•浙江)如图,在直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2),现以原点O为位似中心,在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′,则顶点C′的坐标是()A.(2,4)B.(4,2)C.(6,4)D.(5,4)【答案】C【解答】解:∵△ABC与△A′B′C′位似,△A′B′C′与△ABC的相似比为2:1,∴△ABC与△A′B′C′位似比为1:2,∵点C的坐标为(3,2),∴点C′的坐标为(3×2,2×2),即(6,4),故选:C.2.(2023•长春)如图,△ABC和△A'B'C'是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC与△A'B'C'的周长之比为1:3.【答案】1:3.【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,△ABC∽△A′B′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC与△A′B′C′的周长比为1:3,故答案为:1:3.3.(2023•烟台)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形PA1A2A3,正方形PA4A56,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形PA1A2A3的顶点坐标分别为P(﹣3,0),A1(﹣2,1),A2(﹣1,0),A3(﹣2,﹣1),则顶点A100的坐标为()A.(31,34)B.(31,﹣34)C.(32,35)D.(32,0)【答案】A【解答】解:由题意可知:点A1(﹣2,1),点A4(﹣1,2),点A7(0,3),∵1=3×0+1,4=3×1+1,7=3×2+1,……,100=3×33+1,﹣2=0﹣2,﹣1=1﹣2,0=2﹣2,1=0 +1,2=1+1,3=2+1,∴顶点A100的坐标为(33﹣2,33+1),即(31,34),故选:A.一.选择题(共10小题)1.已知,则的值是()A.B.C.3D.【答案】D【解答】解:∵=,∴=,∴=﹣1=﹣1=.故选:D.2.如图,△ABC∽△ADE,若∠A=60°,∠ABC=45°,那么∠E=()A.75°B.105°C.60°D.45°【答案】A【解答】解:∵△ABC∽△ADE,∠ABC=45°,∴∠ADE=∠ABC=45°.在△ADE中,∵∠AED+∠ADE+∠A=180°,∠A=60°,即∠AED+45°+60°=180°,∴∠AED=75°.故选:A.3.如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段BC=4cm,则线段AC的长是()A.4cm B.5cm C.6cm D.7cm【答案】C【解答】解:过点A作平行横线的垂线,交点B所在的平行横线于D,交点C所在的平行横线于E,则=,即=,解得:AB=2,∴AC=2+4=6(cm).故选:C.4.下列各组中的四条线段成比例的是()A.1cm,2cm,3cm,4cm B.2cm,3cm,4cm,5cmC.2cm,3cm,4cm,6cm D.3cm,4cm,6cm,9cm【答案】C【解答】解:A、∵1×4≠2×3,∴四条线段不成比例,不符合题意;B、∵2×5≠3×4,∴四条线段不成比例,不符合题意;C、∵2×6=3×4,∴四条线段成比例,符合题意;D、∵3×9≠4×6,∴四条线段成比例,不符合题意;故选:C.5.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高16 5cm,下半身长x与身高l的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为()A.4cm B.6cm C.8cm D.10cm【答案】C【解答】解:根据已知条件得下半身长是165×0.60=99cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:=0.618,解得:y≈8cm.故选:C.6.如图,在△ABC中,DE∥BC,DF∥AC,则下列比例式中正确的是()A.=B.=C.=D.=【答案】D【解答】解:A、因为DF∥AC,所以=,故A选项错误;B、由DF∥AC得=,由DE∥BC得=,则=,故B选项错误;C、由DF∥AC得=,故C选项错误;D、由DF∥AC得=,由DE∥BC得=,则=,故D选项正确.故选:D.7.如图,直线l1∥l2∥l3,分别交直线m、n于点A、B、C、D、E、F.若AB:BC=5:3,DE=15,则E F的长为()A.6B.9C.10D.25【答案】B【解答】解:∵l1∥l2∥l3,DE=15,∴==,即=,解得,EF=9,故选:B.8.△ABO三个顶点的坐标分别为A(2,4),B(6,0),C(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A'B'O,则点A′的坐标是()A.(1,2)B.(1,2)或(﹣1,﹣2)C.(2,1)或(﹣2,﹣1)D.(﹣2,﹣1)【答案】B【解答】解:以原点O为位似中心,把△ABO缩小为原来的,得到△A'B'O,点A的坐标为(2,4),则点A'的坐标为(2×,4×)或[2×(﹣),4×(﹣)],即(1,2)或(﹣1,﹣2),故选:B.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.3:1C.9:1D.9:16【答案】D【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,:S△BF A=9:16,∴S△DFE故答案为:D.10.小明用地理中所学的等高线的知识在某地进行野外考察,他根据当地地形画出了“等高线示意图”,如图所示(注:若某地在等高线上,则其海拔就是其所在等高线的数值;若不在等高线上,则其海拔在相邻两条等高线的数值范围内),若A,B,C三点均在相应的等高线上,且三点在同一直线上,则的值为()A.B.C.D.2【答案】B【解答】解;∵点A,B,C三点均在相应的等高线上,且三点在同一直线上,∴==,故选:B.二.填空题(共5小题)11.如果两个相似三角形的周长比为2:3,那么它们的对应高的比为2:3.【答案】见试题解答内容【解答】解:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的对应高的比为:2:3,故答案为:2:3.12.如图,利用标杆BE测量建筑物的高度.若标杆BE的高为1.2m,测得AB=1.6m,BC=12.4m,则楼高CD为10.5m.【答案】见试题解答内容【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故答案为10.5.13.如图,在某校的2022年新年晚会中,舞台AB的长为20米,主持人站在点C处自然得体,已知点C 是线段AB上靠近点B的黄金分割点,则此时主持人与点A的距离为(10﹣10)米.【答案】(10﹣10).【解答】解:∵点C是线段AB上靠近点B的黄金分割点,AB=20米,∴AC=AB=×20=(10﹣10)(米),故答案为:(10﹣10).14.《九章算术》是中国古代的数学专著,书中记载了这样一个问题:“今有勾五步,股十二步.问勾中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.【答案】.【解答】解:设正方形CDEF边长为x,则CD=DE=x,由Rt△ABC的两条直角边的长分别为5和12可知AC=5,AD=5﹣x,BC=12,∵正方形CDEF,∴DE∥BC,∴∠ADE=∠ACB,又∠A=∠A,∴△ADE∽△ACB,∴,∴,解得x=.故答案为:.15.如图,在边长为1的正方形网格中,A、B、C、D为格点,连接AB、CD相交于点E,则AE的长为.【答案】.【解答】解:根据题意可知:AB=3,AC∥BD,AC=2,BD=3,∴△AEC∽△BED,∴=,∴=,解得AE=.故答案为:.三.解答题(共5小题)16.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是(2a,﹣2b).【答案】见试题解答内容【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)点P的对应点P2的坐标是(2a,﹣2b).故答案为(2a,﹣2b).17.如图,在△ABC中,D为BC上一点,∠BAD=∠C.(1)求证:△ABD∽△CBA;(2)若AB=6,BD=3,求CD的长.【答案】(1)证明见解析过程;(2)9.【解答】证明:(1)∵∠BAD=∠C,∠B=∠B,∴△ABD∽△CBA;(2)∵△ABD∽△CBA,∴,∵AB=6,BD=3,∴,∴BC=12,∴CD=BC﹣BD=12﹣3=9.18.如图,矩形ABCD中,M为BC上一点,EM⊥AM交AD的延长线于点E.(1)求证:△ABM∽△EMA;(2)若AB=4,BM=3,求ME的长.【答案】见试题解答内容【解答】(1)证明:∵四边形ABCD为矩形,∴∠B=90°,AD∥BC,∴∠EAM=∠AMB.∵EM⊥AM,∴∠AME=90°,∵∠B=∠AME,∠AMB=∠EAM,∴△ABM∽△EMA;(2)解:∵AB=4,BM=3,∴,∵△ABM∽△EMA,∴,即,∴.19.某数学兴趣小组要完成一个项目学习,测量凌霄塔的高度AB.如图,塔前有一棵高4米的小树CD,发现水平地面上点E、树顶C和塔顶A恰好在一条直线上,测得BD=57米,D、E之间有一个花圃距离无法测量;然后,在E处放置一平面镜,沿BE后退,退到G处恰好在平面镜中看到树顶C的像,EG =2.4米,测量者眼睛到地面的距离FG为1.6米;已知AB⊥BG,CD⊥BG,FG⊥BG,点B、D、E、G 在同一水平线上.请你求出凌霄塔的高度AB.(平面镜的大小厚度忽略不计)【答案】凌霄塔的高度AB为42米,见解析.【解答】解:∵CD⊥BG,FG⊥BG,∴∠CDE=∠FGE=90°,∵∠CED=∠FEG,∴△CDE∽△FGE,∴,∵CD=4,FG=1.6,EG=2.4,∴,解得:DE=6,∵BD=57,∴BE=BD+DE=57+6=63,∵AB⊥BG,CD⊥BG,∴∠ABE=∠CDE=90°,∵∠AEB=∠CED,∴△ABE∽△CDE,∴,即,解得:AB=42,∴凌霄塔的高度AB为42米.20.如图,已知AD,BC相交于点E,且△AEB∽△DEC,CD=2AB,延长DC到点G,使CG=CD,连接AG.(1)求证:四边形ABCG(2)若∠GAD=90°,AE=2,CG=3,求AG的长.【答案】见试题解答内容【解答】(1)证明:∵△AEB∽△DEC,∴∠B=∠BCD,∴AB∥CD,即AB∥CG,∵CD=2AB,CG=CD,∴AB=CG,∴四边形ABCG是平行四边形;(2)解:∵四边形ABCG是平行四边形,AE=2,CG=3,∴AG∥BC,AG=BC,AB=CG=3,∵∠GAD=90°,∴∠AEB=90°,在Rt△ABE中,由勾股定理可得:BE=,即BE==,∵△AEB∽△DEC,∴==,∴CE=2,∴BC=BE+CE=3,∴AG=BC=3.一.选择题(共10小题)1.如图,在等边△ABC中,点D,E分别是BC,AC上的点,∠ADE=60°,AB=4,CD=1,AE=()A.3B.C.D.【答案】D【解答】方法一:∵AB=4=BC,CD=1,∴BD=BC﹣CD=3,∵∠ADC=∠BAD+∠B=∠ADE+∠CDE,∴∠CDE=∠BAD,∵∠B=∠C=60°,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=;故选:D;方法二:过点A作AF⊥BC于点F,如图,∵△ABC是等边三角形,∴BF=CF=BC=2,AF=AB=2,∵CD=1,∴DF=1,∴AD==,∵∠ADE=∠ACD=60°,∠DAE=∠CAD,∴△ADE∽△ACD,∴=,即=,解得:AE=,故选:D.2.如图,在等边△ABC中,点D,E分别在边BC,AC上,∠ADE=60°,若AD=4,=,则DE的长度为()A.1B.C.2D.【答案】D【解答】解:∵△ABC为等边三角形,∴∠B=∠C=60°.∴∠ADB+∠BAD=180°﹣∠B=120°.∵∠ADE=60°,∴∠ADB+∠EDC=180°﹣∠ADE=120°,∴∠ADB+∠BAD=∠ADB+∠EDC,∴∠BAD=∠EDC,∴△BAD∽△CDE,∴,∴,∴DE=.故选:D.3.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.【答案】C【解答】解:延长BE交CD的延长线于点M.∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=BC=4a,DF=2a,∵CM∥AB,∴==,∴DM=a,∴FM=DF+DM=a,∴===.故选:C.4.如图,在Rt△ABC中,∠BAC=90°,AB=AC,D为线段BC上一点,以AD为一边构造Rt△ADE,∠DAE=90°,AD=AE,下列说法正确的是()①∠BAD=∠EDC;②△ADO∽△ACD;③;④2AD2=BD2+CD2.A.仅有①②B.仅有①②③C.仅有②③④D.①②③④【答案】D【解答】解:①∵∠BAD=180°﹣∠B﹣∠BDA=135°﹣∠BDA,∴∠EDC=180°﹣∠ADE﹣∠BDA=135°﹣∠BDA,∴∠BAD=∠EDC,故①正确;②∵∠ADE=∠ACB,∠CAD OAD,∴△ADO∽△ACD.故②正确;③∵∠ABD=∠AEO,∠BAD=∠EAO,∴△BAD∽△EAO,∴.故③正确;④如图,过点D作DM⊥AB,DN⊥AC,垂足分别为M,N,在Rt△AED中,DE2=AD2+AE2,AD=AE,∴DE2=2AD2,同理,在Rt△BMD中,BD2=2MD2;在Rt△DCN中,CD2=2DN2.∵∠DMA=∠MAN=∠DNA=90°,∴四边形AMDN是矩形,∴DN=AM,在Rt△AMD中,AD2=AM2+MD2,∴2AD2=2AM2+2MD2,∴2AD2=BD2+CD2.故④正确.故选:D.5.凸透镜成像的原理如图所示,AD∥l∥BC.若物体到焦点的距离与焦点到凸透镜中心线DB的距离之比为5:4,则物体被缩小到原来的()A.B.C.D.【答案】A【解答】解:∵BC∥l,CG⊥l,BO⊥l,∴四边形OBCG为矩形,∴OB=CG,∵AH⊥HO,BO⊥HO,∴△AHF1∽△BOF1,∴==,∴=,∴物体被缩小到原来的.故选:A.6.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E,F,连接BD、DP,BD与CF相交于点H,给出下列结论:①∠DPC=75°;②CF=2AE;③;④△FPD∽△PHB.其中正确结论的个数是()A.4B.3C.2D.1【答案】B【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,∵四边形ABCD是正方形,∴AB=BC=CD,∠A=∠ADC=∠BCD=90°,∴∠ABE=∠DCF=30°,∴∠CPD=∠CDP=75°,故①正确;∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,∵四边形ABCD是正方形,∴∠PEF=∠PFE=60°,∴△PEF是等边三角形,∴PE=PF,∴CP+PF=CP+PE,∴CF=BE,在Rt△ABE中,∠ABE=∠ABC﹣∠PBC=30°,∴BE=2AE,∴CF=2AE,故②正确;∴∠PDE=15°,∵∠PBD=∠PBC﹣∠HBC=60°﹣45°=15°,∴∠EBD=∠EDP,∵∠DEP=∠DEB,∴△BDE∽△DPE,∴∠EPD=∠BDE=45°,∵∠BPC=∠EPF=60°,∴∠FPD=105°,∵∠BHP=∠BCH+∠HBC=105°,∴∠DPF=∠BHP,又∵∠PDF=∠DBP=15°,∴△BHP∽△DPF,故④正确;∴,∴=,∵∠DCF=30°,∴DC=DF,∴=,∴==,故③错误,故选:B.7.如图,在边长为5的正方形ABCD中,点E在AD边上,AE=2,CE交BD于点F,则DF的长为()A.B.C.D.【答案】C【解答】解:∵四边形ABCD是正方形,∴BC=CD=5,∠BCD=90°,AD∥BC,∴△DBC是等腰直角三角形,∴BD==5,∵DE∥BC,∴△DEF∽△BCF,∴DE:BC=DF:BF,∵AE=2,∴DE=AD﹣AE=3,∴3:5=DF:(5﹣DF),∴FD=.故选:C.8.如图,在Rt△ABC中,∠ABC=90°,AB=4,AC=5,AE平分∠BAC,点D是AC的中点,AE与BD 交于点O,则的值为()A.2B.C.D.【答案】B【解答】解:过C作CN∥AB交AE延长线于N,过E作EM∥BD交AC于M,∴∠BAE=∠N,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠N=∠CAE,∴CN=CA=5,∵AB∥CN,∴△ABE∽△NCE,∴BE:EC=AB:CN=4:5,∵EM∥BD,∴DM:MC=BE:EC=4:5,∴DC:DM=9:4,∵D是AC的中点,∴AD=CD,∴AD:DM=9:4,∵OD∥EM,∴==.故选:B.损耗忽略不计),则正方形的边长为()A.B.C.D.【答案】D【解答】解:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴=.设DE=x,则有:=,解得x=,故选:D.10.如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.点P 的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,BP的长为()A.B.C.D.【答案】D【解答】解:如图1,作∠BAC的平分线AP交BC于点P,由题意中的函数图象知AB=BC=4,∵∠B=36°,AB=BC,∴∠BAC=∠C=72°,∵AP平分∠BAC,∴∠BAP=∠PAC=∠B=36°,∴AP=BP,∠APC=∠B+∠BAP=72°=∠C,∴AP=AC=BP,∵∠PAC=∠B,∠C=∠C,∴△APC∽△BAC,∴,∴AP⋅AC=AB⋅PC,∴AP2=AB⋅PC=4(4﹣AP),解得:或(舍),∴,故选:D.二.填空题(共6小题)11.如图,△ABC中,AB=4,BC=5,AC=6,点D、E分别是AC、AB边上的动点,折叠△ADE得到△A′DE,且点A′落在BC边上,若△A′DC恰好与△ABC相似,AD的长为 2.4或.【答案】2.4或.【解答】解:设AD=x,∴CD=AC﹣AD=6﹣x,∵折叠△ADE得到△A′DE,∴A′D=AD=x,当△A′DC∽△BAC时,∴A′D:AB=CD:AC,∴x:4=(6﹣x):6,∴x=2.4;当△A′DC∽△ABC时,∴A′D:AB=DC:BC,∴x:4=(6﹣x):5,∴x=,∴AD长是2.4或.故答案为:2.4或.12.如图,△ABC和△ADE都是等边三角形,点D在BC上,DE交AC于点F,若DF=2,EF=4,则CD的长是.【答案】.【解答】解:∵△ABC和△ADE都是等边三角形,∴AD=AE=DE=DF+EF=2+4=6,∠ABD=∠DCF=60°,∵∠BAD+∠ABD=∠ADC=∠ADF+∠CDF,∠ABD=∠ADF=60°,∴∠BAD=∠CDF,∴△ABD∽△DCF,∴==,∴=3,设CD=x,则AB=3x,BD=2x,∴===,∴CF=x,则AF=AC﹣CF=AB﹣CF=3x﹣x=x,∵△ABC和△ADE都是等边三角形,∴∠ADF=∠ACD,∠DAF=∠CAD,∴△ADF∽△ACD,∴=,即=,AF=,∴AF==x,解得:x=.故答案为:.13.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,BD=1,CD=4,则AD的长为2.【答案】2.【解答】解:∵∠BAC=90°,AD⊥BC,BD=1,CD=4,∴AD2=CD•BD=4,∴AD=2,故答案为:2.14.如图,一张矩形纸片ABCD中,(m为常数),将矩形纸片ABCD沿EF折叠,使点A落在BC 边上的点H处,点D的对应点为点M,CD与HM交于点P.当点H落在BC的中点时,且,则m=.【答案】.【解答】解:∵=,设CP=t,则CD=AB=4t,∵点H是BC的中点,∴CH=BH=;∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,∴∠CHP+∠CPH=90°,∵∠MHE=∠A=90°,∴∠CHP+∠BHE=90°,∴∠CPH=∠BHE,∴△CHP∽△BEH,∴,即,∴BC2=4BE•t①,∵AE=AB﹣BE,AE=EH,CD=AB=4t,∴AE=EH=4t﹣BE,在Rt△BEH中,EH2=BE2+BH2,∴(4t﹣BE)2=②,联立①②并解得:BE=t,BC=t,∴m===,故答案为:.15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,AE平分∠BAC交BC于点E,连接CD交AE于点F.若AC=5,BC=12,则EF的长是.【答案】.【解答】解:过点E作EG⊥AB,垂足为G,过点D作DH∥BC,交AE于点H,∵∠ACB=90°,AC=5,BC=12,∴AB===13,∵AE平分∠BAC,∴EC=EG,∵△ABC的面积=△ACE的面积+△ABE的面积,∴AC•BC=AC•CE+AB•EG,∴AC•BC=AC•CE+AB•EG,∴5×12=5CE+13EG,∴CE=CG=,∴BE=BC﹣CE=,在Rt△ACE中,AE===,∵D是AB的中点,DH∥BC,∴AH=HE=AE=,∴DH是△ABE的中位线,∴DH=BE=,∵DH∥CE,∴∠DHF=∠CEF,∠HDF=∠ECF,∴△DHF∽△CEF,∴===,∴EF=EH=×=,故答案为:.16.如图,在平面直角坐标系中,已知A(1,0),B(2,0),C(0,1),在坐标轴上有一点P,它与A、C两点形成的三角形与△ABC相似,则P点的坐标是(3,0)或(0,2)或(0,3)或(2,0).【答案】(3,0)或(0,2)或(0,3)或(2,0).【解答】解:如图,∵A(1,0),B(2,0),C(0,1),∴OA=OC=1,OB=2,AB=OB﹣OA=1,∴AC=,当点P在x轴上时,△PAC∽△CAB时,∴=,∴=,∴PA=2,∴OP=3,∴P(3,0),当点P′在y轴上时,△P′CA∽△BAC,∵AC=CA,∴AB=CP′=1,∴OP′=2,∴P′(0,2).根据对称性可知.P(0,3)也符合题意.P与B重合,也符合题意,此时P(2,0).综上所述,满足条件的点P的坐标为(3,0)或(0,2)或(0,3)或(2,0).三.解答题(共3小题)17.如图,点P在△ABC的外部,连结AP、BP,在△ABC的外部分别作∠1=∠BAC,∠2=∠ABP,连结PQ.(1)求证:AC•AP=AB•AQ;(2)判断∠PQA与∠ACB的数量关系,并说明理由.【答案】(1)证明过程见解答;(2)∠PQA=∠ACB,理由见解答.【解答】(1)证明:∵∠1=∠BAC,∴∠1+∠PAC=∠BAC+∠PAC,∴∠CAQ=∠BAP,∵∠2=∠ABP,∴△CAQ∽△BAP,∴=,∴AC•AP=AB•AQ.(2)解:∠PQA=∠ACB,理由:∵AC•AP=AB•AQ,∴=,∵∠1=∠BAC,∴△APQ∽△ABC,∴∠PQA=∠ACB.18.如图,在△ABC中,点D,E分别在边BC,AC上,AD与BE相交于点O,且AB=AD,AE2=OE•B E.(1)求证:①∠EAD=∠ABE;②BE=EC;(2)若BD:CD=4:3,CE=8,求线段AE的长.【答案】(1)①证明见解析;②证明见解析;(2).【解答】(1)①证明:∵AE2=OE•BE,∴,∵∠AEO=∠BEA,∴△AEO∽△BEA,∴∠EAD=∠ABE;②证明:∵AB=AD,∴∠ABD=∠ADB.∵∠ABD=∠ABE+∠CBE,∠ADB=∠EAD+∠C,由①知:∠EAD=∠ABE,∴∠CBE=∠C,∴BE=EC;(2)解:过点A作AF⊥BD于点F,交BE于点G,连接GD,如图,∵AB=AD,AF⊥BD,∴BF=FD,即AF为BD的垂直平分线,∴GB=GD,∴∠GBC=∠GDB,由(1)②知:∠CBE=∠C,∴∠GDB=∠C,∴GD∥EC,∴△BGD∽△BEC,∴.∵BD:CD=4:3,∴,∴,∴GD=.∵BD:CD=4:3,BF=FD,∴FD:DC=2:3,∴.∵GD∥EC,△FGD∽△FAC,∴,∴,∴AC=.∴AE=AC﹣EC=﹣8=.19.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【观察与猜想】(1)如图①,在正方形ABCD中,点E,F分别是AB、AD上的两点,连接DE,CF,DE⊥CF,求证△AED≌△DFC.【类比探究】(2)如图②,在矩形ABCD中,AD=7,CD=4,点E是边AD上一点,连接CE,BD,且CE⊥BD,求的值.【拓展延伸】(3)如图③,在Rt△ABC中,∠ACB=90°,点D在BC边上,连结AD,过点C作CE⊥AD于点E,CE的延长线交AB边于点F.若AC=3,BC=4,,求CD的值.【答案】(1)见解析;(2);(3).【解答】(1)证明:如图1,设DF与CF的交点为G,∵四边形ABCD是正方形,∴∠A=∠FDC=90°,AD=CD,∵DE⊥CF,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,在△AED和△DFC中,,∴△AED≌△DFC(AAS);(2)解:如图2,设DB与CE交于点G,∵四边形ABCD是矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠DGC=90°,∴∠CDG+∠ECD=90°,∠ADB+∠CDG=90°,∴∠ECD=∠ADB,∵∠CDE=∠A,∴△DEC∽△ABD,∴;(3)解:如图,过点A作GA∥BC,延长CF交AG于点G,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴,∵,∴,∵GA∥BC,∴△AFG∽△BFC,∠GAC=∠ACB=90°,∴=,∴,∵CE⊥AD,∠CAE+∠ACE=90°,∴∠CAE+∠ACE=90°,又∵∠CAE+∠ADC=90°,∴∠ACG=∠ADC,∴△ACG∽△CDA,∴,∴CD==.20.(2023•武汉)问题提出如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α(α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.问题探究(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.问题拓展将图(1)特殊化,如图(3),当α=120°时,若,求的值.【答案】问题探究(1)45°;(2)∠GCF=α﹣90°;问题拓展:.【解答】解:问题探究(1)如图(2)中,在BA上截取BJ,使得BJ=BE.∵四边形ABCD是正方形,∴∠B=∠BCD=90°,BA=BC,∵BJ=BE,∴AJ=EC,∵∠AEC=∠AEF+∠CEF=∠BAE+∠B,∠AEF=∠B=90°,∴∠CEF=∠EAJ,∵EA=EF,∴△EAJ≌△FEC(SAS),∴∠AJE=∠ECF,∵∠BJE=45°,∴∠AJE=180°﹣45°=135°,∴∠ECF=135°,∴∠GCF=∠ECF﹣∠ECD=135°﹣90°=45°;(2)结论:∠GCF=α﹣90°;理由:在AB上截取AN,使AN=EC,连接NE.∵∠ABC+∠BAE+∠AEB=∠AEF+∠FEC+∠AEB=180°,∠ABC=∠AEF,∴∠EAN=∠FEC.∵AE=EF,∴△ANE≌△ECF(SAS).∴∠ANE=∠ECF.∵AB=BC,∴BN=BE.∵∠EBN=α,∴,∴∠GCF=∠ECF﹣∠BCD=∠ANE﹣∠BCD=;问题拓展:过点A作CD的垂线交CD的延长线于点P,设菱形的边长为3m.,∴DG=m,CG=2m.在Rt△ADP中,∠ADC=∠ABC=120°,∴∠ADP=60°,∴m,,∴α=120°,由(2)知,,∵∠AGP=∠FGC,∴△APG∽△FCG.∴,∴=,∴,由(2)知,,∴.∴.1.(2023•徐州)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC 上,且,则AE的长为()A.1B.2C.1或D.1或2【答案】D【解答】解:在△ABC中,∠B=90°,∠A=30°,BC=2,∴AC=2BC=4,AB=2,∠C=60°,∵点D是AB的中点,∴AD=,∵,∴DE=1,如图,当∠ADE=90°时,∵∠ADE=∠ABC,,∴△ADE∽△ABC,∴,∴AE=2,如图,当∠ADE≠90°时,取AC的中点H,连接DH,∵点D是AB中点,点H是AC的中点,∴DH∥BC,DH=BC=1,∴∠AHD=∠C=60°,DH=DE=1,∴∠DEH=60°,∴∠ADE=∠A=30°,∴AE=DE=1,故选:D.2.(2023•济南)如图,在△ABC中,AB=AC,∠BAC=36°,以点C为圆心,以BC为半径作弧交AC于点D,再分别以B,D为圆心,以大于BD的长为半径作弧,两弧相交于点P,作射线CP交AB于点E,连接DE.以下结论不正确的是()A.∠BCE=36°B.BC=AEC.D.【答案】C【解答】解:∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB==72°,由题意得:CP平分∠ACB,∴∠BCE=∠ACE=∠ACB=36°,∴∠A=∠ACE=36°,∴AE=CE,∵∠CEB=∠A+∠ACE=72°,∴∠B=∠CEB=72°,∴CB=CE,∴AE=CE=CB,∵△BCE是顶角为36°的等腰三角形,∴△BCE是黄金三角形,∴=,∴=,∴==,∴==,故A、B、D不符合题意,C符合题意;故选:C.3.(2023•阜新)如图,△ABC和△DEF是以点O为位似中心的位似图形,相似比为2:3,则△ABC和△DEF的面积比是4:9.【答案】4:9.【解答】解:∵△ABC与△DEF是以点O为位似中心的位似图形,位似比为2:3,∴△ABC∽△DEF,相似比为2:3,∴△ABC与△DEF的面积之比为22:32=4:9.故答案为:4:9.4.(2023•乐山)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE交于点F.若,则=.【答案】.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵,∴设AE =2a ,则BE =3a ,∴AB =CD =5a ,∵AB ∥CD ,∴△AEF ∽△CDF ,∴=,∴=,故答案为:.5.(2023•北京)如图,直线AD ,BC 交于点O ,AB ∥EF ∥CD ,若AO =2,OF =1,FD =2,则的值为.【答案】见试题解答内容【解答】解:∵AO =2,OF =1,∴AF =AO +OF =2+1=3,∵AB ∥EF ∥CD ,∴==,故答案为:.6.(2023•大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD 如图所示,点N 在边AD 上,现将矩形折叠,折痕为BN ,点A 对应的点记为点M ,若点M 恰好落在边DC 上,则图中与△NDM 一定相似的三角形是△MCB .【答案】△MCB .【解答】解:∵四边形ABCD 是矩形,∴∠A =∠D =∠C =90°,∴∠DNM+∠DMN=90°,由折叠的性质可知,∠BMN=∠A=90°,∴∠DMN+∠CMB=90°,∴∠DNM=∠CMB,∴△NDM∽△MCB,故答案为:△MCB.7.(2023•辽宁)如图,平行四边形ABCD的对角线AC,BD相交于点O,过点B作BE∥AC,交DA的延长线于点E,连接OE,交AB于点F,则四边形BCOF的面积与△AEF的面积的比值为.【答案】.【解答】∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,又∵BE∥AC,∴四边形AEBC是平行四边形,∴AC=BE,∴BE=2•OA,∴△OAF∽△EBF,∴==,=4S△OAF,∴S△EBF==2,=2S△AOF,∴S△AEF=2S△OBF,同理S△EBFS△OBC=S△OAB,=x,设S△OAF=4x,S△AEF=2x,S△OBF=2x,则S△EBFS△AOB=S△BOC=S△AOF+S△BOF=x+2x=3x,S四边形BCOF=S△BOC+S△BOF=3x+2x=5x,∴==,故答案为:.8.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为.【答案】见试题解答内容【解答】解:设AD交EH于点R,∵矩形EFGH的边FG在BC上,∴EH∥BC,∠EFC=90°,∴△AEH∽△ABC,∵AD⊥BC于点D,∴∠ARE=∠ADB=90°,∴AR⊥EH,∴=,∵EF⊥BC,RD⊥BC,EH=2EF,∴RD=EF=EH,∵BC=8,AD=6,AR=6﹣EH,∴=,解得EH=,∴EH的长为,故答案为:.。

九年级下册数学《相似》位似知识和点整理

九年级下册数学《相似》位似知识和点整理

位似
一、本节学习指导
本节知识我们只做为补充,同学们不用刻意做太多练习题。

本节中我们掌握位似的概念和性质即可。

二、知识要点
1、位似的概念
如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

2、性质
(1)位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。

①位似多边形的对应边平行或共线。

②位似可以将一个图形放大或缩小。

③位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。

(2)根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。

注意:
1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;
2、两个位似图形的位似中心只有一个;
3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;
4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;
5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。

三、经验之谈:
对于位似的概念同学们要多度几遍,逐字逐句的读,其实很好理解。

就好比函数的定义一样,很多同学初中都毕业了都还没有搞清楚函数的定义,我反问:同学你把函数的概念逐字逐句的读了有几遍?。

中考数学一轮复习考点33 图形的相似与位似(解析版)

中考数学一轮复习考点33 图形的相似与位似(解析版)

考点33〖图形的相似与位似〗【命题趋势】近三年来图形的相似与位似主要考查:相似三角形的性质与判定,考查形式有:(1)判定相似三角形、判定对应变;(2)利用相似三角形的性质求线段长;(3)利用相似比求面积比与周长比。

命基础题。

同时也与二次函数、四边形或圆相结合,命中档题或较难题。

【考查题型】选择题、填空题、解答题【常考知识】相似三角形的性质与判定,考查形式有:(1)判定相似三角形、判定对应变;(2)利用相似三角形的性质求线段长;(3)利用相似比求面积比与周长比。

【夺分技巧】1、条件中有平行线,可采用相似三角形的预备定理。

2、条件中若有一对等角,可再找一对等角或再找夹边成比例来判定。

3、条件中若有两边对应成比例,可找夹角相等。

4、条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例。

5、条件中若有等药腰关系,可找顶角相等,可找一对底角相等,也可找底和腰对应成比例。

【易错点】相似三角形的对应边弄错。

一、选择题1.(2020·贵州·中考真卷)已知ab =25,则a+bb的值为()A.25B.35C.75D.23【答案】C【考点】比例的性质【解析】直接利用同一未知数表示出a,b的值,进而代入化简即可.2.(2020·贵州·中考真卷)已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为()A.3B.2C.4D.5【答案】A【考点】相似三角形的性质,相似三角形的性质与判定【解析】根据相似三角形的周长比等于相似比解答.3.(2002·上海·中考真卷)下列命题中,错误的命题是()A.所有的等边三角形都是彼此相似的三角形B.所有的矩形都是彼此相似的四边形C.所有的等腰直角三角形都是彼此相似的三角形D.有两组对应边成比例的直角三角形相似【答案】B【考点】相似三角形的判定,相似多边形的性质【解析】根据相似多边形的判定对各项进行逐一分析即可得出答案.4.(2020·甘肃·中考真卷)生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2米,则a约为()A.1.24米B.1.38米C.1.42米D.1.62米【答案】A【考点】黄金分割【解析】解:∵雕像的腰部以下a与全身b的高度比值接近0.618,∴ab≈0.618,∵b为2米,∴a约为1.24米.5.(2020·甘肃·中考真卷)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5mB.17mC.16.5mD.18m【答案】A【考点】相似三角形的应用【解析】根据题意和图形,利用三角形相似,可以计算出CD的长,从而可以解答本题.6.(2020·湖南·中考真卷)如图,在△ABC中,EF // BC,AEEB =23,四边形BCFE的面积为21,则△ABC的面积是()A.913B.25C.35D.63【答案】B【考点】相似三角形的性质与判定【解析】由EF // BC可得出△AEF∽△ABC,利用相似三角形的性质可得出S△AEF=425S△ABC,结合S四边形BCFE=21即可得出关于S△ABC的一元一次方程,解之即可得出结论.7.(2020·广西·中考真卷)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A.15B.20C.25D.30【答案】B【考点】相似三角形的性质与判定,正方形的性质【解析】设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF // BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.8.(2020·云南·中考真卷)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO 与△BCD的面积的比等于()A.12B.14C.16D.18【答案】B【考点】相似三角形的性质与判定,三角形中位线定理,平行四边形的性质【解析】利用平行四边形的性质可得出点O为线段BD的中点,结合点E是CD的中点可得出线段OE为△DBC的中位线,利用三角形中位线定理可得出OE // BC,OE=12BC,进而可得出△DOE∽△DBC,再利用相似三角形的面积比等于相似比的平方,即可求出△DEO与△BCD的面积的比.9.(2020·海南·中考真卷)如图,在▱ABCD中,AB=10,AD=15,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,若BG=8,则△CEF的周长为()A.16B.17C.24D.25【答案】A【考点】等腰三角形的判定与性质,相似三角形的性质与判定,平行四边形的性质【解析】解:∵在▱ABCD中,CD=AB=10,BC=AD=15,∠BAD的平分线交BC于点E,∴AB // DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴DF=AD=15,同理BE=AB=10,∴CF=DF−CD=15−10=5.∵在△ABG中,BG⊥AE,AB=10,BG=8,∴AG = √AB2 − BG2 = √102 − 82 = 6,∴AE=2AG=12,∴△ABE的周长等于10+10+12=32,∵AB // CF,∴△CEF∼△BEA,相似比为5:10=1:2,∴△CEF的周长为16.二、填空题10.(2020·湖南·中考真卷)若ba =dc=12(a≠c),则b−da−c=________.【答案】12【考点】比例线段【解析】根据分比的性质即可求解.11.(2020·山西·中考真卷)如图,在Rt△ABC中,∠ACB=90∘,AC=3,BC=4,CD⊥AB,垂足为D,E 为BC的中点,AE与CD交于点F,则DF的长为________.【答案】5485【考点】勾股定理,相似三角形的性质与判定,锐角三角函数的定义【解析】解:如图,过点F作FH⊥AC于H.在Rt△ABC中,∵∠ACB=90∘,AC=3,BC=4,∴AB = √CB2 + AC2 = √42 + 32 = 5.∵CD⊥AB,∴S△ABC = 12⋅AC⋅BC = 12⋅AB⋅CD,∴CD = 125,AD = √AC2 − CD2 = √32 − (125)2 = 95.∵ FH // EC ,∴ △AFH ∽△AEC ,∴ FH EC = AH AC .∵ EC =EB =2,∴ FH AH = 23,设FH =2k ,AH =3k ,CH =3−3k . ∵ tan∠FCH = FH CH = AD CD ,∴ 2k 3 − 3k = 95125, ∴ k = 917,∴ FH = 1817,CH =3 − 2717 = 2417, ∴ CF = √CH 2 + FH 2 = √(1817)2 + (2417)2 = 3017,∴ DF = 125 − 3017 = 5485. 12.(2020·上海·中考真卷)在矩形ABCD 中,AB =6,BC =8,点O 在对角线AC 上,圆O 的半径为2,如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是________.【答案】103<AO <203【考点】相似三角形的性质与判定,直线与圆的位置关系,矩形的性质【解析】解:在矩形ABCD 中,∵ ∠D =90∘,AB =6,BC =8,∴ AC =10,如图,设⊙O 与AD 边相切于E ,连接OE ,则OE ⊥AD ,∴ OE // CD ,∴ △AOE ∼△ACD ,∴ OE CD =AO AC ,∴ 26=AO10,∴ AO =103,如图,设⊙O与BC边相切于F,连接OF,则OF⊥BC,∴OF // AB,∴△COF∼△CAB,∴OCAC =OFAB,∴OC10=26,∴OC=103,∴AO=203,∴如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是103<AO<203.13.(2020·浙江·中考真卷)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=kx(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD 的面积是2,则k的值是________.【答案】83【考点】相似三角形的性质与判定,反比例函数图象上点的坐标特征,反比例函数系数k的几何意义【解析】解:连接OD,过C作CE // AB,交x轴于E,∵∠ABO=90∘,反比例函数y=kx(x>0)的图象经过OA的中点C,∴S△COE=S△BOD=12k,S△ACD=S△OCD=2.∵CE // AB,∴△OCE∼△OAB,∴S△OCES△OAB =14,∴4S△OCE=S△OAB,∴4×12k=2+2+12k,∴k=83.14.(2020·广东·中考真卷)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB′C′,AB′,AC′分别交对角线BD于点E,F,若AE=4,则EF⋅ED的值为________.【答案】16【考点】旋转的性质,相似三角形的性质与判定,正方形的性质【解析】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45∘.∵把△ABC绕点A逆时针旋转到△AB′C′,∴∠EAF=∠BAC=∠ADB=45∘.∵∠AEF=∠DEA,∴△AEF∼△DEA,∴AEDE = EFAE,∴EF⋅ED=AE2.∵AE=4,∴EF⋅ED的值为16.三、解答题15.(2020·山东·中考真卷)如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD // AB.【考点】作图-相似变换,等腰三角形的性质【解析】(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠PAB,从而得到△PCD∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的的道理即可证得结论.【解答】如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC∵∴PD // AB.16.(2020·辽宁·中考真卷)如图所示的平面直角坐标系中,△ABC的三个顶点坐标分别为A(−3, 2),B(−1, 3),C(−1, 1),请按如下要求画图:(1)以坐标原点O为旋转中心,将△ABC顺时针旋转90∘,得到△A1B1C1,请画出△A1B1C1;(2)以坐标原点O为位似中心,在x轴下方,画出△ABC的位似图形△A2B2C2,使它与△ABC的位似比为2:1.【考点】作图-位似变换,作图-旋转变换【解析】(1)根据网格结构找出点A、B、C关于原点O对称的点A1、B1、C1的位置,然后顺次连接即可;(2)利用位似的性质,找出点A2、B2、C2的位置,然后画出图形即可.【解答】如图,△A1B1C1即为所求.如图,△A2B2C2即为所求.17.(2020·上海·中考真卷)已知:如图,在菱形ABCD中,点E,F分别在边AB,AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∼△BCH;(2)如果BE2=AB⋅AE,求证:AG=DF.【考点】相似三角形的性质与判定,全等三角形的性质与判定,相似三角形的判定,菱形的性质【解析】(1)想办法证明∠BCE=∠H即可解决问题.(2)利用平行线分线段成比例定理结合已知条件解决问题即可.【解答】证明:(1)∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,CD // AB.∵DF=BE,∴△CDF≅CBE(SAS),∴∠DCF=∠BCE.∵CD // BH,∴∠H=∠DCF,∴∠BCE=∠H.∵∠B=∠B,∴△BEC∼△BCH.(2)∵BE2=AB⋅AE,∴BEAB =AEEB.∵AG // BC,∴AEBE =AGBC,∴BEAB =AGBC.∵ DF =BE ,BC =AB ,∴ BE =AG =DF ,即AG =DF .18.(2020·安徽·中考真卷)如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE =AD .EC 与BD 相交于点G ,与AD 相交于点F ,AF =AB .(1)求证:BD ⊥EC ; (2)若AB =1,求AE 的长;(3)如图2,连接AG ,求证:EG −DG =√2AG .【考点】全等三角形的性质与判定,矩形的性质,相似三角形的性质与判定,等腰直角三角形【解析】(1)证明△AEF ≅△ADB(SAS),得出∠AEF =∠ADB ,证得∠EGB =90∘,则结论得出;(2)证明△AEF ∽△DCF ,得出AE DC =AF DF ,即AE ⋅DF =AF ⋅DC ,设AE =AD =a(a >0),则有a ⋅(a −1)=1,化简得a 2−a −1=0,解方程即可得出答案;(3)在线段EG 上取点P ,使得EP =DG ,证明△AEP ≅△ADG(SAS),得出AP =AG ,∠EAP =∠DAG ,证得△PAG 为等腰直角三角形,可得出结论.【解答】(1)证明:∵ 四边形ABCD 是矩形,点E 在BA 的延长线上,∴ ∠EAF =∠DAB =90∘,又∵ AE =AD ,AF =AB ,∴ △AEF ≅△ADB(SAS),∴ ∠AEF =∠ADB ,∴ ∠GEB +∠GBE =∠ADB +∠ABD =90∘,即∠EGB =90∘,故BD ⊥EC .(2)解:∵ 四边形ABCD 是矩形,∴ AE // CD ,∴ ∠AEF =∠DCF ,∠EAF =∠CDF ,∴ △AEF ∼△DCF ,∴ AE DC =AF DF ,即AE ⋅DF =AF ⋅DC ,设AE =AD =a(a >0),则有a ⋅(a −1)=1,化简得a 2−a −1=0,解得a =1+√52或1−√52(舍去),∴ AE =1+√52.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≅△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90∘,∴△PAG为等腰直角三角形,∴EG−DG=EG−EP=PG=√2AG.19.(2020·湖北·中考真卷)如图,在矩形ABCD中,AB=20,点E是BC边上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;点F在DG上,将△ADF沿着AF折叠,点D刚好落在AG上点H处,此时S△GFH:S△AFH=2:3.(1)求证:△EGC∽△GFH;(2)求AD的长;(3)求tan∠GFH的值.【考点】相似三角形综合题【解析】(1)由矩形的性质得出∠B=∠D=∠C=90∘,由折叠的性质得出∠AGE=∠B=90∘,∠AHF=∠D =90∘,证得∠EGC=∠GFH,则可得出结论;(2)由面积关系可得出GH:AH=2:3,由折叠的性质得出AG=AB=GH+AH=20,求出GH=8,AH=12,则可得出答案;(3)由勾股定理求出DG=16,设DF=FH=x,则GF=16−x,由勾股定理得出方程82+x2=(16−x)2,解出x=6,由锐角三角函数的定义可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90∘,由折叠对称知:∠AGE=∠B=90∘,∠AHF=∠D=90∘,∴∠GHF=∠C=90∘,∠EGC+∠HGF=90∘,∠GFH+∠HGF=90∘,∴∠EGC=∠GFH,∴△EGC∽△GFH.(2)解:∵S△GFH:S△AFH=2:3,且△GFH和△AFH等高,∴GH:AH=2:3,∵将△ABE沿着AE折叠,点B刚好落在CD边上点G处,∴AG=AB=GH+AH=20,∴GH=8,AH=12,∴AD=AH=12.(3)解:在Rt△ADG中,DG=√AG2−AD2=√202−122=16,由折叠的对称性可设DF=FH=x,则GF=16−x,∵GH2+HF2=GF2,∴82+x2=(16−x)2,解得:x=6,∴HF=6,在Rt△GFH中,tan∠GFH=GHHF =86=43.20.(2020·浙江·中考真卷)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE // AC,EF // AB.(1)求证:△BDE∽△EFC.(2)设AFFC =12,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.【考点】相似三角形的性质与判定【解析】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出BEEC =AFFC=12,即可得出结果;②先求出FCAC =23,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.【解答】证明:∵DE // AC,∴∠DEB=∠FCE,∵EF // AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;①∵EF // AB,∴BEEC =AFFC=12,∵EC=BC−BE=12−BE,∴BE12−BE =12,解得:BE=4;②∵AFFC =12,∴FCAC =23,∵EF // AB,∴△EFC∽△BAC,∴S△EFCS△ABC =(FCAC)2=(23)2=49,∴S△ABC=94S△EFC=94×20=45.。

中考中的位似图形问题

中考中的位似图形问题

中考中的位似图形问题
新一轮的中考即将到来,每一位考生都在努力备考,其中经常出现的一项考题就是位似图形题,这类题目在中学数学考试中占有很大比重,它不仅测试学生对数学知识的理解程度,同时也考察学生解题能力和思维能力。

位似图形题也叫相似图形题,是指具有同一方位或相似大小的相似图形,让考生判断其是否相似,以及相似的程度,如果其相似度足够大,则需要计算出相似图形的比例,这也是考生在位似图形题中最容易出错的部分。

首先,要解决位似图形题,需要理解相似图形的基本概念,即定义其所属的图形的形状、大小、方位和比例等。

其次,要熟悉数学表达式,以便能更好地表达相似图形的比例。

这样,才能正确计算出相似图形的比例。

最后,在做完简单的相似图形题之后,要多做一些复杂的相似图形题,以熟悉这类题型,从而在考试中能够正确解答。

另外,还有一种解决相似图形题的方法,即绘制等似图形,这种方法比较适用于比较简单的题目,如果让学生用纸笔绘制出完全相似的图形,那么将能够让学生学到更多的数学知识,同时也可以让学生在解题中获得更多的乐趣。

综上所述,位似图形题是中考数学考试中常见的一类题目,它不仅考察学生对相似图形的理解能力,也考察其计算能力和思维能力,因此,要想在中考中取得满意的答卷,学生在做位似图形题时,需要理解相似图形的基本概念,熟悉数学表达式,多做一些复杂的相似图
形题,绘制等似图形,这样才能在中考中正确解答位似图形题,取得优异成绩。

第二十四讲 图形的相似与位似

第二十四讲 图形的相似与位似

第二十四讲图形的相似与位似1.(2021·温州中考)如图,图形甲与图形乙是位似图形,O是位似中心,相似比为2∶3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为(B)A.8 B.9 C.10 D.152.(2021·遂宁中考)如图,在△ABC中,点D,E分别是AB,AC的中点,若△ADE的面积是3 cm2,则四边形BDEC的面积为(B)A.12 cm2 B.9 cm2 C.6 cm2 D.3 cm23.(2021·重庆中考)如图,△ABC与△DEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是(A)A.1∶2 B.1∶4 C.1∶3 D.1∶94.(2021·绍兴中考)如图,树AB 在路灯O 的照射下形成投影AC ,已知路灯高PO =5 m ,树影AC =3 m ,树AB 与路灯O 的水平距离AP =4.5 m ,则树的高度AB 长是(A)A .2 mB .3 mC .32 mD .103 m 5.(2020·玉林中考)一个三角形木架三边长分别是75 cm ,100 cm ,120 cm ,现要再做一个与其相似的三角形木架,而只有长为60 cm 和120 cm 的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有(B)A .一种B .两种C .三种D .四种6.(2021·大庆中考)已知x 2 =y 3 =z 4 ,则x 2+xy yz =__56__. 7.(2021·包头中考)如图,在Rt △ABC 中,∠ACB =90°,过点B 作BD ⊥CB ,垂足为B ,且BD =3,连接CD ,与AB 相交于点M ,过点M 作MN ⊥CB ,垂足为N.若AC =2,则MN 的长为__65__.8.(2021·菏泽中考)如图,在△ABC 中,AD ⊥BC ,垂足为D ,AD =5,BC =10,四边形EFGH 和四边形HGNM 均为正方形,且点E ,F ,G ,N ,M 都在△ABC 的边上,那么△AEM 与四边形BCME 的面积比为__1∶3__.9.(2021·黄冈中考)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC∶S△DEC=4∶9,BC=6,求EC的长.【解析】(1)∵∠BCE=∠ACD.∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠DCE=∠ACB,又∵∠A=∠D,∴△ABC∽△DEC;(2)∵△ABC∽△DEC;∴S△ABCS△DEC=⎝⎛⎭⎪⎫CBCE2=49,又∵BC=6,∴CE=9.10.(2021·东营中考)如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是(A)A .-2a +3B .-2a +1C .-2a +2D .-2a -211.(2020·遂宁中考)如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BE EG 的值为(C)A .12B .13C .23D .3412.(2021·资阳中考)如图,在菱形ABCD 中,∠BAD =120°,DE ⊥BC 交BC 的延长线于点E.连接AE 交BD 于点F ,交CD 于点G.FH ⊥CD 于点H ,连接CF.有下列结论:①AF =CF ;②AF 2=EF·FG;③FG ∶EG =4∶5;④cos ∠GFH =32114.其中所有正确结论的序号为__①②③④__.13.(2021·武汉中考)如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,C 是BD 的中点,过点C 作AD 的垂线,垂足是E.连接AC 交BD 于点F.(1)求证:CE 是⊙O 的切线;(2)若DC DF= 6 ,求cos ∠ABD 的值. 【解析】(1)连接OC 交BD 于点G ,∵点C 是BD 的中点,∴由圆的对称性得OC 垂直平分BD ,∴∠DGC =90°,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠EDB =90°,∵CE ⊥AE ,∴∠E =90°,∴四边形EDGC 是矩形,∴∠ECG =90°,∴CE ⊥OC ,∴CE 是⊙O 的切线;(2)连接BC ,设FG =x ,OB =r ,∵DC DF= 6 , 设DF =t ,DC = 6 t ,由(1)得,BC =CD = 6 t ,BG =GD =x +t ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BCG +∠FCG =90°,∵∠DGC =90°,∴∠CFB +∠FCG =90°,∴∠BCG =∠CFB ,∴Rt △BCG ∽Rt △BFC ,∴BC 2=BG·BF,∴( 6 t)2=(x +t)(2x +t) 解得x1=t ,x 2=-52t(不符合题意,舍去), ∴CG =BC 2-BG 2 =(6t )2-(2t )2 = 2 t ,∴OG =r - 2 t ,在Rt △OBG 中,由勾股定理得OG 2+BG 2=OB 2,∴(r - 2 t)2+(2t)2=r 2,解得r =322t , ∴cos ∠ABD =BG OB =2t 322t =223 .14.(2021·山西中考)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F =95C +32得出,当C =10时,F =50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法. 再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式1R =1R 1 +1R 2求得R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性. 任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式1R =1R 1 +1R 2计算:当R 1=7.5,R 2=5时,R 的值为多少; ②如图,在△AOB 中,∠AOB =120°,OC 是△AOB 的角平分线,OA =7.5,OB =5,用你所学的几何知识求线段OC 的长.【解析】(1)图算法方便、直观,不用公式计算即可得出结果;(答案不唯一).(2)①当R 1=7.5,R 2=5时,1R =1R 1 +1R 2 =17.5 +15 =5+7.57.5×5 =13, ∴R =3.②过点A 作AM ∥CO ,交BO 的延长线于点M ,如图∵OC 是∠AOB 的角平分线,∴∠COB =∠COA =12 ∠AOB =12×120°=60°. ∵AM ∥CO ,∴∠MAO =∠AOC =60°,∠M =∠COB =60°.∴∠MAO =∠M =60°.∴OA =OM.∴△OAM 为等边三角形.∴OM =OA =AM =7.5.∵AM ∥CO ,∴△BCO ∽△BAM.∴OC AM =BO BM.∴OC 7.5 =57.5+5. ∴OC =3.综上,通过计算验证第二个例子中图算法是正确的.1.(2021·邯郸模拟)下列图形中,任意两个图形一定是相似图形的是(D)A .三角形B .平行四边形C .抛物线D .圆2.(2021·杭州模拟)已知x -2y y =25 ,则x y的值为(D) A .54 B .45 C .512 D .1253.(2021·恩施州模拟)如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AE ∶EC =5∶3,BF =10,则CF 的长为(D)A .16B .8C .4D .64.(2021·许昌一模)如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A′B′C′,以下说法错误的是(A)A .S △ABC ∶S △A′B′C′=1∶2B .AB ∶A′B′=1∶2C.点A,O,A′三点在同一条直线上D.BC∥B′C′5.(2021·唐山模拟)如图,四边形ABCD中,AB∥DC,∠ABC=90°,AB =4,CD=1,BC=4.在边BC上取一点P,使得以A,B,P为顶点的三角形与以C,D,P为顶点的三角形相似,甲认为这样的点P只存在1个,乙认为这样的点P存在不止1个,则(B)A.甲的说法正确B.乙的说法正确C.甲、乙的说法都正确D.甲、乙的说法都不正确6.(2021·绍兴模拟)如图为一座房屋屋架结构示意图,已知屋檐AB=BC,横梁EF∥AC,点E为AB的中点,且BD⊥EF,屋架高BD=4 m,横梁AC=12 m,则支架DF长为(C)A.210 m B.2 5 m C.13 m D.213 m7.(2021·南平模拟)如图,D是BC的中点,M是AD的中点,BM的延长线交AC于N,则AN∶NC=__1∶2__.8.(2021·杭州模拟)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AB,AC于点M,N,再分别以点M,N为圆心,大于12 MN 长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D ,若△DAC ∽△ABC ,则∠B =__30__度.9.(2021·上海模拟)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”.如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为__22 或5+12__. 10.(2021·苏州模拟)如图①,△ABC 中,∠ACB =90°,点D 从点A 出发沿A→C 方向匀速运动,速度为1 cm/s.点E 是AC 上位于点D 右侧的动点,点M 是AB 上的动点,在运动过程中始终保持MD =ME ,DE =2 cm.过M 作MN ∥AC 交BC 于N ,当点E 与点C 重合时点D 停止运动.设△MDE 的面积为Scm 2,点D 的运动时间为t s ,S 与t 的函数关系如图②所示.(1)AC =________ cm ,BC =________ cm ;(2)设四边形MDEN 的面积为y cm 2,求y 的最大值;(3)是否存在t 的值,使得以M ,E ,N 为顶点的三角形与△MDE 相似?如果存在,求t 的值;如果不存在,说明理由.【解析】(1)由函数图象知,当t =4时,AD =4 cm ,点E 与点C 重合, ∵DE =2 cm ,∴AC =4+2=6(cm),当t =0时,S =2,点A 与点D 重合,如图1,过M 作MH ⊥AC 于H ,∵DE =2 cm ,∴MH =2 cm ,∵MD =ME ,∴AH =EH =1 cm ,∵∠C =90°,∴MH ∥BC ,∴△AHM ∽△ACB ,∴AH AC =MH BC, ∴16 =2CB, ∴BC =12 cm.答案:6 12(2)如图2,过M 作MH ⊥AC 于H ,∵MD =ME ,DE =2 cm ,∴DH =12DE =1 cm , ∴AH =(t +1) cm ,∵tan A =MH AH =BC AC=2, ∴MH =(2t +2) cm ,∵MN ∥AC ,∠ACB =90°,∴∠MNC =90°,∵MH ⊥DE ,∴∠MNC =∠C =∠MHC =90°,∴四边形MHCN 是矩形,∴MN =HC =AC -AH =6-(t +1)=5-t(cm),∴y =S △MDE +S △MNE =12 ×2×(2t+2)+12(5-t)(2t +2) =-t 2+6t +7=-(t -3)2+16,由题意得,0≤t≤4,∴当t =3时,y 有最大值16.(3)假设存在t 的值,使得以M ,E ,N 为顶点的三角形与△MDE 相似, ∵MN ∥AC ,∴∠MED =∠EMN.①当∠MNE =∠EDM 时,△ENM ∽△MDE ,∴MN ED =EM ME=1, ∴MN =ED ,∴5-t =2,∴t =3;②当∠MEN =∠EDM 时,△NEM ∽△MDE ,此时,NE =NM =(5-t) cm ,∵∠ACB =90°,∴EC 2+NC 2=EN 2,∴(4-t)2+(2t +2)2=(5-t)2,解得:t =-5+354(负值舍去). ∴存在t 的值,使得以M ,E ,N 为顶点的三角形与△MDE 相似,此时t =3或-5+354.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似与位似中考考点分析北环城路曙 光 路西安路南京路书店八一街400m 400m 300m图形的相似与位似相似1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600mB .500mC .400mD .300m2.如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若P 到BD 的距离为 32,则点P 的个数为( )A .1B .2C .3D .43. 如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B 重合,折痕为DE ,则S △BCE :S △BDE 等于( )A . 2:5B .14:25C .16:25D . 4:214.若两个相似三角形的面积之比为1:4,则它们的周长之比为( ) A . 1:2 B . 1:4 C . 1:5 D . 1:165.图(十)为一ABC ∆,其中D 、E 两点分别在AB 、AC 上,且AD =31,DB =29,AE =30,EC =32。

若︒∠50=A ,则图中1∠、2∠、3∠、4∠的大小关系,下列何者正确?( )A .1∠>3∠B .2∠=4∠C .1∠>4∠D .2∠=3∠6.现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形。

其中真命题的个数是( )A .1B .2C .3D .47.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)8.已知如图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于O 点,对于各图中的两个的两个三角形而言,下列说法正确的是( )A.都相似B.都不相似C.只有(1)相似D.只有(2)相似9.若相似△ABC 与△DEF 的相似比为1 :3,则△ABC 与△DEF 的面积比为( )35° 75° 75° 70°(1 AB CDO4 36 8 (2A B CDO① ②③④abcA B C D EF m n A .1 :3 B .1 :9 C .3 :1 D . 1 :310.如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA ∶OC = OB ∶OD ,则下列结论中一定正确的是( )A .①和②相似B .①和③相似C .①和④相似D .②和④相似11.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( ) A . 7 B . 7.5C . 8D . 8.512.下列说法正确的是( ) A .等腰梯形的对角线互相平分.B .一组对边平行,另一组对边相等的四边形是平行四边形.C .线段的垂直平分线上的点到线段两个端点的距离相等.D .两边对应成比例且有一个角对应相等的两个三角形相似.13.若△ABC ~△DEF ,它们的面积比为4:1,则△ABC 与△DEF 的相似比为( ) A .2:1B .1 :2C .4:1D .1:414.如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A ∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对15.如图,已知△ABC的面积是3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于__________(结果保留根号).16.某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线AB,AC之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A1A2为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①θ= 度;②若记小棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,),求此时a2,a3的值,并直接写出a n(用含n的式子表示).活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2= AA1.数学思考:(3)若已经向右摆放了3根小棒,则1θ= ,2θ= ,3θ= ;(用含θ的式子表示)(4)若只能..摆放4根小棒,求θ的范围.17.如图,在Rt△ABC中,∠B=90°,AB=1,BC=21,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.(1)求AE的长度;(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C 在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.18.如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设GFEDCBA(第28DE 、DF (或它们的延长线)分别交BC (或它的延长线)于G 、H 点,如图(2).(1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据2的情况说明理由);(3)问:当x 为何值时,△AGH 是等腰三角形?19.如图8,△ABC,是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G 、H 分别在AC ,AB 上,AD 与HG 的交点为M.(1) 求证:;AM HGAD BC(2) 求这个矩形EFGH 的周长.20.在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,sin ∠EMP =1213. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.图1 图2 备用图21.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C 作CE垂直于BD或BD的延长线,垂足为E,如图1.(1)若BD是AC的中线,如图2,求BDCE的值;(2)若BD是∠ABC的角平分线,如图3,求BDCE的值;(3)结合(1)、(2),请你推断BDCE的值的取值范围(直接写出结论,不必证明),并探究BDCE的值能小于43吗?若能,求出满足条件的D点的位置;若不能,请说明理由.DBEDEDB CEABC22. (1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P .求证:QCPEBQ DP. (2) 如图,在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点. ①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN .位似1.将左下图中的箭头缩小到原来的12,得到的图形是( )2.如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33(C )34(D )363.如图10,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均在小正方形的顶点.(1)以O 为位似中心,在网格图中作△A ′B ′C ′和△ABC 位似,且位似比为1︰2;(第2题)A BCDEB ′A ′第8题-1 x1 O -11y BAC (2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长.(结果保留根号) 4.下列命题中,正确的是( )A .过一点作已知直线的平行线有一条且只有一条B .对角线相等的四边形是矩形C .两条边及一个角对应相等的两个三角形全等D .位似图形一定是相似图形5.如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A.ED EA =DF AB B.DE BC =EF FB C. BC DE =BF BE D.BF BE =BC AE6.如图,△ABC 中,BC = 2,DE 是它的中位线,下面三个结论:⑴DE=1;⑵△ADE ∽△ABC ;⑶△ADE 的面积与△ABC 的面积之比为 1 : 4。

其中正确的有( ) A . 0 个 B.1个 C . 2 个 D.3个7.如图3所示:△ABC 中,DE ∥BC ,AD=5,BD=10,AE=3,则CE 的值为( ) A.9 B.6 C.3 D.48.如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )精品好文档,推荐学习交流仅供学习与交流,如有侵权请联系网站删除 谢谢8 A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 9.如图,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D 、E 两点,若AD :AB =1:3,则△ADE 与△ABC 的面积比为 .10.如图3,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA =10cm ,OA ′=20cm ,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .图3 O ABC DE A ′B ′C ′D ′E ′。

相关文档
最新文档