煤油冷却器课程设计 设计说明书

合集下载

煤油冷却器的设计说明

煤油冷却器的设计说明

煤油冷却器的设计一前言1列管式换热器的种类固定管板式换热器管板式换热器浮头式换热器填料涵式换热器U型管换热器2换热器的特点列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。

管壳式换热器根据结构特点分为以下几种:固定管板式换热器:固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于50℃且壳方流体较清洁及不易结垢的物料。

带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa的情况。

浮头式换热器:浮头式换热器的管板有一个不与外壳连接,该端被称为浮头,管束连同浮头可以自由伸缩,而与外壳的膨胀无关。

浮头式换热器的管束可以拉出,便于清洗和检修,适用于两流体温差较大的各种物料的换热,应用极为普遍,但结构复杂,造价高。

填料涵式换热器:填料涵式换热器管束一端可以自由膨胀,与浮头式换热器相比,结构简单,造价低,但壳程流体有外漏的可能性,因此壳程不能处理易燃,易爆的流体。

U型管换热器:U型管换热器的管子两端固定在同一管板上,管子两端可以自由伸缩,与其他管子机壳体无关。

这种换热器结构比较简单,重量轻,适用于高温高压场合,但管清洗比较困难且管板利用率较差。

几种换热器的结构3换热器的发展趋势70年代的世界能源危机,有力地促进了传热强化技术的发展。

为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备。

这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高。

所以,这些年来,换热器的开发与研究成为人们关注的课题。

最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,并向低温差设计和低压力损失设计的方向发展。

煤油冷却器课程设计

煤油冷却器课程设计

煤油冷却器课程设计煤油冷却器课程设计简介煤油冷却器是一种能够将热能转化为机械能的装置,主要用于农业、交通运输、建筑等行业,起到降温、润滑、提高效率的作用。

本文将介绍煤油冷却器的课程设计,主要包括课程设计的目的、内容、教学方法和评估标准。

目的通过本次课程设计,学生将能够:1.了解煤油冷却器的结构和原理,掌握其工作原理和应用场景;2.完成一个小型煤油冷却器的制作,掌握实验操作技能;3.通过分析实验结果,加深对煤油冷却器原理的理解,提高解决实际问题的能力。

内容本次课程设计将分为以下四个部分:1.课程理论讲授首先,将介绍煤油冷却器的结构特点和工作原理,对于煤油冷却器的实际应用场景进行分析和解释。

其中包括:(1)冷却器的原理和种类(2)煤油冷却器的特点和设计原则(3)冷却器的使用和维护2.实验器材准备根据所需器材、器件以及材料进行规划购买,同时并准备实验前的各种开展实验所需的仪器,如多用表、温度计、热枪等,另外仪器准备后还须复核检查是否齐全、检验所准备的器材是否正常,确保器材完整,准备工作得当。

3.实验操作在实验讲解和演示的基础上,学生将根据所提供的样品进行实际操作,测定煤油冷却器的性能参数,调整气口数量或位置、重组插片、筛网等,从而达到最佳性能。

4.结果分析和评价在实验完成后,学生需要进行数据处理和分析,通过整理实验结果,并各自自然地描述各项数据的变化表现。

在综合分析之后,画出实验数据的数据曲线,比较实验结果,识别出具体差异。

教学方法本次课程设计采用以下教学方法:1.小组合作学习会将学生分为小组,每个小组将负责实验器材的准备、实验操作、数据收集和结果分析。

此方法将鼓励学生积极参与和合作,促进团队互助合作。

2.实验操作演示老师将根据规定的操作演示其理当的操作步骤,帮助学生更快速地学习理论和品味实践。

同时还需对关键操作环节进行一些具体分析和口头指导。

3.互动讨论在学生完成了实验操作之后,将进行整个实验过程的讨论,对实际操作和数据误差进行分析和讨论。

煤油冷却器的课程设计1

煤油冷却器的课程设计1

煤油冷却器的课程设计1板式换热器设计任务书一、设计题目:煤油冷却器的设计二、设计任务1 、处理能力:19.8 X 104 t年煤油2 、设备型号:列管式换热器3 、操作条件:煤油:入口温度140C,出口温度40C冷却介质:循环水,入口温度30C,出口温度38C允许压降:不大于105Pa每年按330 天计建厂地址:广西三、设计要求1 、选择适宜的列管式换热器并进行核算2 、要进行工艺计算3 、要进行主体设备的设计(主要设备尺寸、横算结果等)4 、编写设计任务书5 、进行设备结构图的绘制(用420*594 图纸绘制装置图一张:一主视图,一俯视图。

一剖面图,两个局部放大图。

设备技术要求、主要参数、接管表、部件明细表、标题栏。

)化工原理课程设计说明书题目:列管式换热器的设计系别:班级:学号:姓名:指导教师:日期:2019 年1 月5 日目录、设计方案............................................ (5)1.换热器的选择..... 5 2.流动空间及流速的确定.................... 5二、物性数据.......... 5三、计算总传热系数: (6)1.热流量......... 6 2.平均传热温差..... 63.冷却水用量..6 4.总传热系数K......... 6四、计算换热面积... 7五、工艺结构尺寸... 71.管径和管内流速..7 2.管程数和传热管数............................. 73.平均传热温差校正及壳程数............. 8 4.传热管排列和分程方法..................... 8 5.壳体内径..... 8 6.折流.................. 8 7.接板管........................... 8六、换热器核算..... (9)1.热量核算.............. 9 2.热量重新核算......... 1 0 3.换热器内流体的流动阻力.............. 1 1 4.换热器主要结构尺寸和计算结果.................................................... 13 七、设计的评述..................... ................................................. 14 八、参考文献 ..................................................... 14 九、主要符号说明 ............................................. 15 十、主体设备条件图及生产工艺流程图........................................... (15)1 换热器类型的选择在本次设计任务中,两流体温度变化情况:热流体进口温度140C,出口温度40C;冷流体(循环水)进口温度30C,出口温度38C。

课程设计——煤油冷却器

课程设计——煤油冷却器

化工原理课程设计题目煤油冷却器学院名称化学化工学院指导教师职称教授班级学号学生姓名2015年9月8日目录目录目录 (I)前言.............................................................. I I 概述 (1)第二章设计任务与条件 (2)第三章工艺设计 (3)3、1生产条件的确定 (3)3、2换热器的设计计算 (3)3、2、1确定设计方案 (3)3、2、2确定物性数据 (3)3、2、3计算总传热系数 (4)3、2、4计算传热面积 (5)3、2、5工艺结构尺寸 (5)3、2、6换热器核算 (7)第四章设计结果列表 (11)4、1换热器主要结构尺寸与计算结果 (11)4、2设计结果的讨论 (12)结束语 (12)参考文献 (13)符号说明 (13)附录 (14)前言煤油一般就是通过对石油进行分馏而制得,刚刚分馏得到的煤油温度会比较高,不利于保存与运输等,需要进行冷却。

在工业大生产过程中自然冷却远远达不到煤油冷却的时间要求,选用低温水进行冷却就是比较好的冷却方式。

设计性能优良的冷却器就十分的必要了,本文通过大量数据运算得到的理论冷却器比较接近现实生产要求,有待于进一步的实践证实与运用。

关键词:煤油;水;换热器概述在化工、石油、能源、制冷、食品等行业中广泛使用各种换热器,它们也就是这些行业的通用设备,并占有十分重要的地位。

随着换热器在工业生产中的地位与作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。

列管式换热器就是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。

列管式换热器有以下几种:1、浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。

管子受热时,管束连同浮头可以沿轴向自由伸缩,完佺消除了温差应力。

特点:结构复杂、造价高,便于清洗与检修,消除温差应力,应用普遍。

设计评述:1、在换热器选型的时候,考虑各种常用的换热器优缺点:⑴固定板式换热器:结构简单,在相同的壳体直径内,排管最多,比较紧凑,使壳侧清洗困难。

材科0902煤油冷却器(列管式换热器)设计任务书

材科0902煤油冷却器(列管式换热器)设计任务书

材科0902---煤油冷却器设计任务书
(一)设计题目
煤油冷却器设计
(二)设计任务及操作条件
1、处理能力见下表
2、设备型式列管式换热器
3、操作条件
(1)煤油:入口温度140℃,出口温度40℃
(2)冷却介质:自来水,入口温度30℃,出口温度40℃
(3)允许压强降:不大于105 Pa
(5)每年按330天计,每天24小时连续运行
煤油处理能力表
1本设计组(列管式换热器组)集中辅导时间:1月31日(星期六)第1、2节,地点厚学楼110,请同学们准时上课;
2请把<化工原理课程设计A>一书中p37~p59“列管式换热器”内容打印好,设计时参考;
联系电话(陆雷老师)。

煤油冷却器设计

煤油冷却器设计

河西学院Hexi University化工原理课程设计题目: 煤油冷却器设计学院: 化学化工学院专业: 化学工程与工艺学号:姓名: 张冠雄指导教师: 王兴鹏2016年11月21日化工原理课程设计任务书一、设计题目煤油冷却器的设计二、设计任务及操作条件1.设计任务生产能力(进料量)25000 吨/年操作周期7200 小时/年2.操作条件煤油入口温度120℃,出口温度40℃冷却介质自来水,入口温度20℃,出口温度40℃允许压降≦105Pa冷却水温度20℃饱和水蒸汽压力0.25Mpa(表压)3.设备型式列管式换热器4.厂址上海(压力:1atm )三、设计内容1.设计方案的选择及流程说明2.换热器的工艺计算3.换热器的主要尺寸设计4.辅助设备选型5.设计结果汇总6.绘制换热器总装配图:主视图、俯视图、剖面图、两个局部放大图7.设计评述目录1概述 ..................................................................................................... 错误!未指定书签。

1.1化工原理课程设计的目的、要求 .................................................. 错误!未指定书签。

1.2列管式换热器及其分类 .................................................................. 错误!未指定书签。

1.3换热器的设计要求 .......................................................................... 错误!未指定书签。

1.4符号说明 .......................................................................................... 错误!未指定书签。

煤油冷却器课程设计

煤油冷却器课程设计

煤油冷却器课程设计长沙学院课程设计说明书题目煤油冷却器的设计系(部) 生环系专业(班级) 09应化2班姓名学号指导教师宋勇起止日期2020.5.28——2020.6.16化工原理课程设计任务书系主任___________ 指导教师____________ 学生__戴 姣______ 2班 编号:2.2.7一、设计题目名称:煤油冷却器的设计 二、设计条件:1.煤油:入口温度:130℃,出口温度:50℃;2.冷却介质,循环水(P 为0.3MPa ,进口温度28℃,出口温度40℃) 3.承诺压强降,不超过105Pa ;4.每年按300天计;每天24 h 连续运转。

5.处理能力65000吨/年; 6.设备型式:列管式换热器。

7.煤油定性温度下的物性数据:34c c p,c c 825kg /m ,7.1510Pa s, c 2.22kJ/kg C 0.14W /m C -==⨯⋅=⋅︒=⋅︒(),()ρμλ三、设计内容1.热量衡算及初步估算换热面积; 2. 冷却器的选型及流淌空间的选择; 3. 冷却器的校核运算; 4. 结构及附件设计运算;5.绘制带操纵点的工艺流程图(A3)及冷却器的工艺条件图(A3); 6.编写设计说明书。

四、厂址:长沙地区五、设计任务完成卧式列管冷却器的工艺设计并进行校核运算,对冷却器的有关附属设备的进行设计和选用,绘制换热器系统带操纵点的工艺流程图及设备的工艺条件图,编写设计说明书。

六、设计时刻安排三周:2020年5月28日-2020年6月16第一章长沙学院课程设计鉴定表目录第1章设计方案简介 (1)1.1 换热器概述 (1)1.2列管式换热器 (1)1.2.1 固定管板式 (1)1.2.3U形管式 (2)1.3设计方案的拟定 (3)1.4工艺流程简图(见附图) (3)第二章工艺运算和主体设备设计 (4)2.1 初选换热器类型 (4)2.2 管程安排及流速确定 (4)2.3确定物性数据 (5)2.4运算总传热系数 (5)第三章工艺结构设计 (9)3.1.管径和管内流速 (9)3.2.管程数和传热管数 (9)3.3.平均传热温差校正及壳程数 (9)第四章换热器核算 (14)第五章辅助设备的运算和选型 (20)第六章设计结果表汇 (22)参考文献 (23)化工原理课程设计之心得体会 (24)第1章设计方案简介1.1 换热器概述换热器是化工,炼油工业中普遍应用的典型的工艺设备。

煤油冷却器课程设计

煤油冷却器课程设计

煤油冷却器课程设计一、引言煤油冷却器是一种常用的热交换器,其主要功能是将高温的液体或气体通过煤油冷却器内部的管道和壳体与冷却介质(通常为水)进行换热,从而实现降温或加热的目的。

在许多工业领域,如化工、电力、钢铁等,煤油冷却器都有着广泛的应用。

本文旨在介绍煤油冷却器课程设计。

二、课程设计内容1. 煤油冷却器的原理与结构2. 煤油冷却器的性能参数及其影响因素3. 煤油冷却器的设计计算方法4. 煤油冷却器实验设计与结果分析三、煤油冷却器原理与结构1. 煤油冷却器原理:利用传导、对流和辐射三种方式将高温液体或气体传递到壳体内部,并通过内部管道将其与低温介质进行换热。

2. 煤油冷却器结构:通常由一个外壳和一个或多个管束组成。

外壳内部为冷却介质的流动通道,管束内部为高温液体或气体的流动通道。

管束和外壳之间通过密封件连接。

四、煤油冷却器性能参数及其影响因素1. 热传导系数:指单位时间内单位面积的热量传递量。

2. 换热面积:指内部管道和外壳之间的有效换热面积。

3. 流体流速:指液体或气体在管道中的流速。

4. 温度差:指高温液体或气体与低温介质之间的温度差异。

5. 影响因素:包括介质物性、管束结构、流体流量等。

五、煤油冷却器设计计算方法1. 确定换热量和换热面积;2. 计算传热系数;3. 确定壳程和管程流量;4. 计算壳程和管程压降;5. 选择管束结构及材料。

六、煤油冷却器实验设计与结果分析1. 实验目的:验证理论计算结果,分析影响换热效果的因素。

2. 实验内容:利用实验装置进行不同流量、温度差等条件下的换热实验。

3. 实验结果分析:根据实验数据分析影响换热效果的因素,并与理论计算结果进行比较。

七、总结煤油冷却器是一种重要的热交换设备,其设计涉及多个方面的知识。

通过本文的介绍,读者可以了解到煤油冷却器的原理与结构、性能参数及其影响因素、设计计算方法以及实验设计与结果分析等方面的内容。

同时,本文也为相关领域的工程师和科学家提供了参考和指导。

列管式煤油冷却器的设计使用说明

列管式煤油冷却器的设计使用说明

列管式煤油冷却器的设计使用说明
设计要点:
1.列管式煤油冷却器的设计时必须根据具体的工艺参数来确定,例如
煤油的流量、温度、压力等。

同时还需要考虑到周围环境温度、冷却剂的
温度和流量等因素。

2.在设计过程中,需要确定冷却剂和煤油的流动路径。

通常采用交错
式布管,即冷却剂和煤油的管道依次排列,并在两者之间形成热交换。

3.尺寸的确定也是设计的重要环节。

一般来说,会根据煤油的流量和
温度降来确定列管的数量和长度。

4.材料的选择要考虑到煤油的化学性质,需选用耐腐蚀、耐高温的材料。

使用说明:
1.安装前需检查列管式煤油冷却器是否完好无损,是否有松动或漏气
现象。

特别要检查连接处的密封性,确保无泄漏。

2.需要将冷却器安装在通风良好的位置,避免靠近高温设备或火源,
以免引起安全事故。

3.在使用前,需要确保提供足够的冷却剂,以保证冷却器的正常运行。

同时,要定期检查冷却剂的温度和流量是否正常。

4.使用过程中,如果发现冷却效果不佳,应及时清理冷却器的内部,
尤其是冷却剂通路,防止积聚的污垢阻碍热交换。

5.定期进行保养维护,检查冷却器的密封性、连接件的紧固程度以及材料表面的腐蚀程度,如有问题及时更换或维修。

总结:
列管式煤油冷却器是一种重要的热交换设备,适用于工业领域的煤油冷却。

设计时需要考虑多方面的因素,如工艺参数、流动路径、尺寸和材料选择等。

在使用过程中要注意安装位置的选择、冷却剂的供应、清洁和维护等事项,以确保冷却器的正常运行和高效冷却。

煤油冷却器设计

煤油冷却器设计

煤油冷却器设计课程设计报告( 2016—2017年度第一学期)名称:化工原理题目:煤油冷却器的设计院系:环境科学与工程学院班级:能化1402学号:201405040207学生姓名:冯慧芬指导教师:朱洪涛设计周数: 1成绩:日期:2016 年11月目录一.任务书1.1目的与要求1.2.主要内容二.设计方案简介2.1.换热器概述2.2 列管式换热器2.3.设计方案的拟定三.工艺计算及主体设备设计3.1热量设计3.1.1.初选换热器的类型3.1.2.管程安排(流动空间的选择)及流速确定3.1.3.确定物性数据3.1.4.计算总传热系数3.1.5.计算传热面积3.2工艺结构设计3.2.1管径和管内流速3.2.2管程数和传热管数3.2.3平均传热温差校正及壳程数3.2.4传热管排列和分程方法3.2.5折流板3.2.6壳程内径及换热管选型汇总3.3换热器核算3.3.1热量核算3.3.2压力降核算四.辅助设备的计算及选型4.1 封头4.2 缓冲挡板4.3 放气孔、排液管4.4 假管4.5 拉杆和定距管4.6 膨胀节4.7 接管五.设计结果一览表六.心得体会七.参考文献八.主体设备的工艺条件图一.任务书1.1 目的与要求1. 要求学生能综合运用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成列管换热器设计任务。

2. 使学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。

3. 熟悉和掌握查阅技术资料、国家技术标准,正确地选用公式和数据。

1.2 主要内容1.2.1处理能力:25000kg/h 煤油1.2.2设备型式:列管换热器1.2.3操作条件:煤油:入口温度:140℃ 出口温度:40℃冷却介质:自来水入口温度:30℃ 出口温度:40℃允许压强降:不大于100kPa煤油定性温度下的物性参数:密度825kg/m3粘度7.15×10-4Pa·s比热容2.22kJ/kg·℃ 导热系数0.14W/m·℃水定性温度下的物性参数:密度994kg/m3粘度7.28×10-4Pa·s比热容4.174kJ/kg·℃ 导热系数0.626W/m·℃1.2.4主体设备工艺条件图。

煤油冷却器的设计,化工原理课程设计

煤油冷却器的设计,化工原理课程设计

目录1设计任务书 (1)1.1设计题目 (1)1.2设计任务及操作条件 (1)1.3设计已知条件 (1)1.4设计内容 (2)2设计目的及要求 (3)2.1目的 (3)2.2要求 (3)3概述及简介 (5)4设计方案简介 (6)4.1试算并初选设备规格 (6)4.2计算管程、壳程压强降 (7)5工艺计算 (8)5.1流体走法确定 (8)5.2计算和初选换热器的规格 (8)5.3核算总传热系数 (10)5.4核算压强降 (13)6辅助设计 (17)6.1换热器主要尺寸的确定 (17)6.2法兰的确定及垫片的确定 (17)6.3支座的确定 (18)6.4筒体的确定 (19)6.6拉杆及定距管的确定 (19)6.7分程隔板的确定 (20)6.8管板尺寸的确定 (20)6.9折流板的确定 (20)6.10接管尺寸的确定 (20)6.11浮头主要尺寸的确定 (21)6.12滑板结构 (21)7计算结果汇总 (23)7.1计算结果 (23)7.1计算结果 (24)8评述 (26)9重要符号说明 (28)10参考文献 (30)1设计任务书1.1设计题目煤油冷却器的设计1.2设计任务及操作条件1、设计任务①处理能力(煤油流量) 6500 kg/h②设备型式列管式换热器2、操作条件①煤油入口温度145℃,出口温度35℃②冷却介质河水入口温度25℃,出口温度35℃③管程、壳程的压强降不大于20kPa④换热器的热损失忽略3、厂址齐齐哈尔地区1.3设计已知条件1、定性温度下两流体的物性参数(1)煤油定性温度t m=90℃ 密度ρh=825kg/m3;比热容C ph=2.22kJ/(kg.℃) 导热系数λh=0.140W/(m℃)粘度μh=0.000715Pa.s(2) 河水定性温度t m=30℃ 密度ρc=995.7kg/m3比热容C pc=4.174kJ/(kg.℃) 导热系数λc=0.6176W/(m℃) 粘度μc=0.0008007Pa.s2、管内外两侧污垢热阻分别是R si=6.9157×10-4(m2℃)/WR so=1.7085×10-4 (m2℃)/W3、管壁导热系数λw=48.85 W/(m℃)1.4设计内容1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)冷却器结构尺寸的确定(2)传热面积、两侧流体压降校核(3)接管尺寸的确定4、辅助设备选型与计算5、设计结果汇总6、换热器装配图(1号图纸)7、设计评述8、参考资料*总传热系数K暂取为200W/m2℃。

煤油冷却器的设计说明

煤油冷却器的设计说明

煤油冷却器的设计说明首先,在设计煤油冷却器之前,需要明确冷却器所需的冷却量和工作条件。

冷却量可以根据需要冷却的煤油流量以及入口和出口温度差来计算。

工作条件包括煤油的粘度、密度、温度、压力等参数。

这些信息将对冷却器的尺寸和工作方式具有重要影响。

其次,冷却器的主要结构包括热交换器、冷却介质和冷却介质循环系统。

热交换器是实现煤油冷却的关键部分,通常采用管壳式热交换器。

冷却介质可以是水、空气或其他液体。

根据煤油的工作条件,可以选择最适合的冷却介质。

冷却介质循环系统包括循环泵、冷却介质储罐、冷却介质管路等,用于将冷却介质循环引导至热交换器并进行再循环。

在热交换器的设计中,首先需要确定煤油和冷却介质的传热方式。

常见的方式包括对流传热、辐射传热和传导传热。

对流传热是通过煤油和冷却介质的对流来实现的,辐射传热是通过辐射来实现的,传导传热是通过热传导来实现的。

根据传热方式的不同,可以选择不同的热交换器结构和材料。

其次,在选择热交换器结构时,应考虑到煤油和冷却介质的流动性和传热效果。

常见的热交换器结构包括管壳式热交换器、板式热交换器和管束式热交换器等。

其中,管壳式热交换器是最常用的煤油冷却器结构,其具有传热效果好、清洗维护方便等优点。

然后,在煤油冷却器的设计中,还需考虑煤油和冷却介质的物理性质对传热效果的影响。

煤油的粘度和密度会影响流动性,而流动性对传热效果具有重要影响。

因此,在确定热交换器尺寸和结构时,需要充分考虑煤油的粘度和密度,以保证传热效果的良好。

最后,在煤油冷却器的设计中,还需考虑到安全性和经济性的问题。

安全性包括冷却介质的选择和传热介质的泄漏防护等。

经济性包括选材、制造工艺和成本等方面。

在保证冷却效果的前提下,应尽量选择经济性好的设计方案。

综上所述,煤油冷却器的设计需要考虑到冷却量、工作条件、热交换器结构、冷却介质选择等多个方面的因素。

通过科学合理的设计,可以使煤油冷却器具有良好的冷却效果,提高煤油的燃烧效率和延长使用寿命。

化工原理课程设计说明书-煤油冷却器的设计

化工原理课程设计说明书-煤油冷却器的设计

课程设计任务书一、摘要换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。

换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。

根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。

由于使用条件的不同,换热器可以有各种各样的形式和结构。

在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。

衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动力。

二、关键字煤油换热器列管式换热器膨胀节固定管板式封头管板目录一、概述 (1)二、工艺流程草图及设计标准 (1)2.1工艺流程草图 (1)2.2设计标准 (2)三、换热器设计计算 (2)3.1确定设计方案 (2)3.1.1选择换热器的类型 (2)3.1.2流体溜径流速的选择 (2)3.2确定物性的参数 (3)3.3估算传热面积 (3)3.3.1热流量 (3)3.3.2平均传热温差 (3)3.3.3传热面积 (3)3.3.4冷却水用量 (4)3.4工艺结构尺寸 (4)3.4.1管径和管内流速 (4)3.4.2管程数和传热管数 (4)3.4.3平均传热温差校正及壳程数 (4)3.4.4传热管排列和分程方法 (5)3.4.5壳体内径 (5)3.4.6折流板 (5)3.4.7接管 (5)3.5换热器核算 (6)3.5.1热流量核算 (6)3.5.1.1壳程表面传热系数 (6)3.5.1.2管内表面传热系数 (7)3.5.1.3污垢热阻和管壁热阻 (7)3.5.1.4计算传热系数K C (7)3.5.1.5换热器的面积裕度 (8)3.5.2换热器内流体的流动阻力 (8)3.5.2.1管程流体阻力 (8)3.5.2.2壳程阻力 (8)四、设计结果设计一览表 (10)五、设计自我评价 (11)六、参考资料 (12)七、主要符号说明 (13)一、概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

煤油冷却器的设计_化工原理换热器设计说明书

煤油冷却器的设计_化工原理换热器设计说明书

《化工原理》课程设计说明书题目:煤油冷却器的设计学院:化工学院专业:化学工程与工艺姓名:学号:指导老师:同组人员完成时间:目录1.前言 32.设计题目(任务书) 53.流程示意图 54.流程和方案的说明和论证 75.设计结果概要(主要设备尺寸、各种物料量和状态、能耗指标、设计时规定的主要操作参数以及附属设备的规格、型号及数量) 86.设计计算与说明 97.对设计的评述与体会心得 288.参考文献目录 30一. 前言换热器简单说是具有不同温度的两种或两种以上流体之间传递热量的设备。

在工业生产过程中,进行着各种不同的热交换过程,其主要作用是使热量由温度较高的流体向温度较低的流体传递,使流体温度达到工艺的指标,以满足生产过程的需要。

此外,换热设备也是回收余热,废热,特别是低品位热能的有效装置。

根据管壳式换热器的结构特点,常将其分为固定管板式、浮头式、U型管式、填料函式、滑动管板式、双管式等。

本次课程设计设计的是固定管板式换热器。

固定管板式换热器,管束连接在管板上,管板与壳体焊接。

其优点是结构简单、紧凑、能承受较高的压力,造价低,管程清洗方便,管子损坏或堵塞时易于更换;缺点是当管束与壳体的壁温或材料的线胀系数相差较大时,壳体与管束将会产生较大的热应力。

这种换热器适用于壳测介质清洁且不易结垢、并能进行清洗、管程与壳程两侧温差不大或温差较大但壳测压力不高的场合管壳式换热器结构:管壳式换热器的主要零部件有壳体、接管、封头、管板、换热管、折流板元件等,对于温差较大的固定管板式换热器,还应包括膨胀节。

管壳式换热器的结构应该保证冷、热两种流体分走管程和壳程,同时还要承受一定温度和压力的能力(1)管板:管板是换热器的重要元件,主要是用来连接换热器,同时将管程和壳程分隔,避免冷热流体相混合。

当介质无腐蚀或有轻微腐蚀时,一般采用碳素钢、低合金钢板或其锻件制造。

(2)管子与管板的连接:管子与管板的连接必须牢固,不泄漏。

既要满足其密封性能,又要有足够的抗拉强度。

煤油冷却器的设计.

煤油冷却器的设计.

武汉工程大学邮电与信息工程学院课程设计说明书论文题目:煤油冷却器的设计学号: **********学生姓名:**专业班级: 2011级过控03班指导教师:***总评成绩:2014年6月17日目录摘要 (I)Abstract (II)第一章概述 (1)1.1列管式换热器的种类 (2)1.2换热器的特点 (2)1.3换热器的发展趋势 (3)1.4换热器 (3)1.5流动空间的确定 (4)1.6设计标准 (5)第二章设计方案的确定 (6)2.1 选择换热器的类型 (6)2.2 流动空间及流速的确定 (6)第三章设计计算 (8)3.1确定物性参数 (8)3.2 计算总传热系数 (8)3.3计算传热面积 (10)3.4 工艺结构尺寸的确定 (10)3.5换热器核算 (13)第四章设计结果 (18)第五章小结 (19)致谢 (21)参考文献 (22)附录 (23)附录一字母和符号说明 (23)附录二列管式换热器装配图 (24)摘要本次煤油换热器课程设计的核心是计算换热器的传热面积,进而确定换热器的其他尺寸或选择换热器的型号。

由总传热率方程可知,要计算换热面积,得确定总传热系数和平均温差。

通过多次核算和比较,设计结果如下:带膨胀节的固定管板式换热器,选用的碳钢管φ25×2.5mm,换热面积为22.414m2,且为双管程单壳程结果,传热管排列采用组合排列法,即没程内均按正三角形排列,隔板两侧采用正方形。

管数为48,管长23.794m,管间距为65,折流板形式采用上下结构,其间距为0.1m,切度高度为25%,壳体内径为325mm,该换热器可满足生产需求。

关键字:煤油;列管式换热器;固定管板式AbstractThis design is the core of the calculation of heat exchanger heat transfer area, and then decide the other dimensions of the heat exchanger or choose the model of heat exchanger. The total heat transfer rate equation shows that to calculate heat transfer area, to determine the total heat transfer coefficient and the mean temperature difference. Through calculation and comparison for many times, the design results are as follows: the fixed tube plate heat exchanger with expansion joint, selection of carbon steel pipe phi 25 x 2.5 mm, so the heat exchange area is 22.414, and for the shell side of the double sides are single as a result, the pipe arrangement method, namely didn't ride in all according to the regular triangle arrangement, diaphragm use square on both sides. Pipe number of 48, length of 23.794 m, tube spacing is 65, baffle plate form the top and bottom structure, the spacing of 0.1 m, QieDu height was 25%, the shell inside diameter is 325 mm, the heat exchanger can meet the production requirements.Key words: kerosene; Shell and tube heat exchanger; Fixed tube-sheet第一章概述在化工、石油、动力、制冷、食品等行业中广泛使用各换热器,且它们是这些行业的通用设备,并占有十分重要的地位。

化工设计-煤油冷却器

化工设计-煤油冷却器

化工设计说明书设计题目:煤油冷却器的设计专业班级:设计人:学号:指导老师:时间:前言化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。

通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。

化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。

其基本内容为:(1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。

(2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。

(3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。

(4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。

(5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。

(6)设计说明书的编写。

设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参考文献。

整个设计由论述,计算和图表三个部分组成,论述应该条理清晰,观点明确;计算要求方法正确,误差小于设计要求,计算公式和所有数据必需注明出处;图表应能简要表达计算的结果。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且是上述这些行业的通用设备,占有十分重要的地位。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。

完善的换热器在设计或选型时应满足以下基本要求:(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作和维修;(4)经济上合理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安阳工学院课程设计说明书课程名称:化工原理课程设计设计题目:列管式换热器院系:化学与环境工程学院学生姓名:***学号:2010050400**专业班级:10高分子材料与工程(1)班指导教师:路有昌2012年11月15日课 程 设 计 任 务 设计题目 列管式换热器学生姓名*** 所在院系 化学与环境工程学院 专业、年级、班 10高分子材料-1班设计要求: (1) 处理能力 a t 6101 煤油(2) 操作条件① 煤油:入口温度℃140,出口温度℃40.② 冷却介质:循环水,入口温度℃30,出口温度℃40.③ 允许压降:不大于Pa 510.④ 每年按300天计算,每天24小时连续运行..学生应完成的工作:(1) 根据换热任务和有关要求确认设计方案;(2) 初步确认换热器的结构和尺寸;(3) 核算换热器的传热面积和流体阻力;(4) 确认换热器的工艺结构。

参考文献阅读:《化工容器及设备》、《化工原理》、《化工容器及设备》、《化工单元过程及设备课程设计》、《热交换器设计手册》、《换热原理及计算》 工作计划:因为本课程设计一共安排了两周时间,所以,第一周主要进行换热器特性参数的有关计算,第二周按照自己的计算的参数进行换热器的绘制工作。

任务下达日期:2012年11月05日任务完成日期:2012年11月16日指导老师(签名): 学生(签字):列管式换热器设计[摘要]通过对列管式换热器的设计,首先要确定设计的方案,选择合适的计算步骤。

查得计算中用到的各种数据,对该换热器的传热系数传热面积工艺结构尺寸等等要进行核算,与要设计的目标进行对照是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和参考,来完成本次课程设计。

[关键字] 换热器标准方案核算结构尺寸目录第一章概述 (4)第二章方案的设计与拟定 (6)第三章设计计算 (9)3.1确定设计方案 (9)3.1.1选择换热器类型 (9)3.1.2流动空间及流苏的测定 (9)3.2确定物性数据 (10)3.3计算总传热系数 (11)3.3.1壳程质量流量 (11)3.3.2热流量 (11)3.3.3平均传热温差 (11)3.3.4冷却水用量 (11)3.3.5总传热系数K (11)3.4计算传热面积 (12)3.5工艺结构尺寸 (13)3.5.1管径和管内流速 (13)3.5.2管程数和传热管数 (13)3.5.3传热管排列和分程方法 (14)3.5.4壳体内径 (14)3.5.5折流板 (14)3.5.6接管 (15)3.6换热器核算 (15)3.6.1热量核算 (15)3.6.1.1壳程对流传热系数 (15)3.6.1.2管程对流传热系数 (16)3.6.1.3传热系数K (16)3.6.1.4传热面积S (17)3.6.2换热器内流体的流动阻力 (17)3.6.2.1管程流动阻力 (17)3.6.2.2壳程流动阻力 (18)3.7换热器主要结构尺寸和计算结果 (19)第四章设计小结 (20)第五章收获与致谢 (22)第六章参考文献 (23)第一章概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,它们也是这些行业的通用设备,并占有十分重要的地位。

换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一、换热器按传热原理分类1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。

表面式换热器有管壳式、套管式和其他型式的换热器。

2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。

蓄热式换热器有旋转式、阀门切换式等。

3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。

4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。

二、换热器按用途分类1、加热器加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。

2、预热器预热器预先加热流体,为工序操作提供标准的工艺参数。

3、过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。

4、蒸发器蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。

列管式换热器是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。

第二章方案设计和拟订根据任务书给定的冷热流体的温度,来选择设计列管式换热器中的固定管板式换热器;再依据冷热流体的性质,判断其是否易结垢,来选择管程走什么,壳程走什么。

在这里,冷水走管程,热水走壳程。

从手册中查得冷热流体的物性数据,如密度,比热容,导热系数,黏度。

计算出总传热系数,再计算出传热面积。

根据管径管内流速,确定传热管数,标准传热管长为3m,算出传热管程,传热管总根数等等。

再来就校正传热温差以及壳程数。

确定传热管排列方式和分程方法。

根据设计步骤,计算出壳体内径,选择折流板,确定板间距,折流板数等,再设计壳程和管程的内径。

分别对换热器的热量,管程对流系数,传热系数,传热面积进行核算,再算出面积裕度。

最后,对传热流体的流动阻力进行计算,如果在设计范围内就能完成任务。

根据固定管板式的特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。

U形管式特点:结构简单,质量轻,适用于高温和高压的场合。

管程清洗困难,管程流体必须是洁净和不易结垢的物料。

浮头式特点:结构复杂、造价高,便于清洗和检修,完全消除温差应力,应用普遍。

我们设计的换热器的流体是冷热水,不易结垢,再根据造价低,经济的原则我们选用固定管板式换热器。

根据以下原则:(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。

(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。

(3) 压强高的流体宜走管内,以免壳体受压。

(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。

(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。

(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。

(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。

我们选择冷水走管程,热水走壳程。

流体流速的选择:增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。

但是流速增加,又使流体阻力增大,动力消耗就增多。

所以适宜的流速要通过经济衡算才能定出。

此外,在选择流速时,还需考虑结构上的要求。

例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。

管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。

这些也是选择流速时应予考虑的问题。

在本次设计中,根据表换热器常用流速的范围,取管内流速s m u i /1.1 。

管子的规格和排列方法:选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。

易结垢、粘度较大的液体宜采用较大的管径。

我国目前试用的列管式换热器系列标准中仅有φ25×2.5mm 及φ19×2mm 两种规格的管子。

在这里,选择 φ25×2.5mm 管子。

管长的选择是以清洗方便及合理使用管材为原则。

长管不便于清洗,且易弯曲。

一般出厂的标准钢管长为6m ,则合理的换热器管长应为1.5、2、3或6m 。

此外,管长和壳径应相适应,一般取L/D 为4~6(对直径小的换热器可大些)。

在这次设计中,管长选择3m 。

管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。

正方形直列排列的优点是便于清洗列管的外壁,适用于壳程流体易产生污垢的场合;但其对流传热系数较正三角排列时为低。

正方形错列排列则介于上述两者之间,即对流传热系数(较直列排列的)可以适当地提高。

在这里选择三角形排列。

管子在管板上排列的间距 (指相邻两根管子的中心距),随管子与管板的连接方法不同而异。

通常,胀管法取t=(1.3~1.5)do ,且相邻两管外壁间距不应小于6mm ,即t≥(d+6)。

焊接法取t=1.25do 。

管程和壳程数的确定 当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小。

为了提高管内流速,可采用多管程。

但是程数过多,导致管程流体阻力加大,增加动力费用;同时多程会使平均温度差下降;此外多程隔板使管板上可利用的面积减少,设计时应考虑这些问题。

列管式换热器的系列标准中管程数有1、2、4和6程等四种。

采用多程时,通常应使每程的管子数大致相等。

根据计算,管程为2程,壳程为单程。

折流挡板:安装折流挡板的目的,是为了加大壳程流体的速度,使湍动程度加剧,以提高壳程对流传热系数。

最常用的为圆缺形挡板,切去的弓形高度约为外壳内径的10~40%,一般取20~25%,过高或过低都不利于传热。

两相邻挡板的距离(板间距)h为外壳内径D的(0.2~1)倍。

系列标准中采用的h值为:固定管板式的有150、300和600mm三种,板间距过小,不便于制造和检修,阻力也较大。

板间距过大,流体就难于垂直地流过管束,使对流传热系数下降。

这次设计选用圆缺形挡板。

换热器壳体的内径应等于或稍大于(对浮头式换热器而言)管板的直径。

初步设计时,可先分别选定两流体的流速,然后计算所需的管程和壳程的流通截面积,于系列标准中查出外壳的直径。

主要构件的选用:(1)封头封头有方形和圆形两种,方形用于直径小的壳体(一般小于400mm),圆形用于大直径的壳体。

(2)缓冲挡板为防止壳程流体进入换热器时对管束的冲击,可在进料管口装设缓冲挡板。

(3)导流筒壳程流体的进、出口和管板间必存在有一段流体不能流动的空间(死角),为了提高传热效果,常在管束外增设导流筒,使流体进、出壳程时必然经过这个空间。

相关文档
最新文档