2015-2016学年江汉区七年级(上)期末数学试卷
2015-2016学年新人教版七年级(上)期末数学试卷及答案(2套)
2015-2016学年七年级(上)期末数学试卷(一)一、选择题(本大题10个小题,每小题3分,共30分)1.﹣0.8的相反数是( )A.0.8 B.±0.8 C.﹣0.8 D.2.下列各组数中,相等的是( )A.﹣(﹣2)和﹣|﹣2| B.(﹣2)3和8 C.﹣32和(﹣3)2D.(﹣2)3和﹣83.下列叙述正确的是( )A.画直线AB=10厘米B.若AB=6,BC=2,那么AC=8或4C.河道改直可以缩短航程,是因为“经过两点有一条直线,并且只有一条直线”D.在直线AB上任取4点,以这4点为端点的线段共有6条4.下列各式与﹣4x3y成同类项的是( )A.4xy3B.﹣4x2y2C.﹣x3y D.﹣x35.若x表示一个一位数,y表示一个两位数,小明把x放在y的右边来组成一个三位数,你认为下列表达式中能表示这个数的是( )A.yx B.x+y C.10y+x D.10x+y6.把方程4y+=1+x写成用含x的代数式表示y的形式,以下各式正确的是( )A.y=+1 B.y=+C.y=+1 D.y=+7.已知方程组的解为,则a﹣b的值为( )A.10 B.C.﹣D.﹣108.我校一位同学从2015年元月1号开始每天记录当天的最低气温,然后绘成统计图,为了直观反应气温的变化情况,他应选择( )A.折线图B.扇形图C.条形图D.以上都合适9.直线AB上有一点O,OM⊥AB于O,另有直角∠COD在平角∠AOB内绕O点左右摆动(OC与OA、OD与OB不重合),在摆动时,始终与∠MOD保持相等的角是( )A.∠BOD B.∠AOC C.∠COM D.没有10.甲县、乙县各有钢铁100吨,丙地、丁地分别需要钢铁80吨、110吨,研究决定把甲县的100吨运往丙、丁两地,不够的再从乙县补充.实际运好以后,发现从乙县运往丁地x 吨,那么从甲县运往丙地( )A.(110﹣x)吨B.(100﹣x)吨C.(x﹣20)吨D.(x﹣10)吨二、填空题(本题共8小题,每小题3分,共24分)11.绝对值大于1且小于3的整数有__________.12.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为__________.13.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于__________.14.如果(y+3)2+|x﹣2|=0,那么|y+3|+(x﹣2)2=__________.15.甲,乙两家汽车销售公司根据近几年的销售量,分别作了如下统计图,从2010年到2014年,这两家公司中销售量增长较快的是__________.16.若关于x、y的方程组有无穷多个解,则a=__________.17.一次工程,甲独做m天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要__________天完成.18.若时针由3点30分走到3点55分,则时针转过__________度,分针转过__________度.三、解答题(本题共4小题,共46分)19.(1)计算:[+(﹣)+(﹣2)3×(﹣)2]×(﹣14)(2)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣(3)解下列方程组:.20.为了了解某校500名七年级新生入学时的数学水平,随机抽取若干名学生的数学成绩统计整理后绘制如图的频数分布直方图,观察图形回答下列问题:(1)本次随机抽查的学生人数是多少?(2)不及格的人数有多少?占抽查人数的比例是多少?(3)若80分以上的成绩为良好,试估计一下500名七年级学生成绩良好的比例是多少?21.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.22.为满足市民对优质教育的需求某中学决定改变办学条件计划拆除一部分旧校舍、建造新校舍.拆除旧校舍每平米需80元,建造新校舍每平米需700元.计划在年内拆除旧校舍与建造新校舍共7200m2,在实施中为扩大绿化面积,新建校舍只完成了计划的80%,而拆除校舍则超过了10%,结果恰好完成了原计划的拆、除的总面积.(1)求原计划拆建面积各多少m2?(2)若绿化1m2需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少m2?2015-2016学年七年级(上)期末数学试卷一、选择题(本大题10个小题,每小题3分,共30分)1.﹣0.8的相反数是( )A.0.8 B.±0.8 C.﹣0.8 D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣0.8的相反数是0.8,故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列各组数中,相等的是( )A.﹣(﹣2)和﹣|﹣2| B.(﹣2)3和8 C.﹣32和(﹣3)2D.(﹣2)3和﹣8 【考点】有理数的乘方.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、﹣(﹣2)=2,﹣|﹣2|=﹣2,不相等;B、(﹣2)3=﹣8,与8不相等;C、﹣32=﹣9,(﹣3)2=9,不相等;D、(﹣2)3=﹣8,相等.故选D.【点评】此题考查了有理数的乘方,熟练掌握运算法则是解本题的关键.3.下列叙述正确的是( )A.画直线AB=10厘米B.若AB=6,BC=2,那么AC=8或4C.河道改直可以缩短航程,是因为“经过两点有一条直线,并且只有一条直线”D.在直线AB上任取4点,以这4点为端点的线段共有6条【考点】比较线段的长短;直线的性质:两点确定一条直线;两点间的距离.【专题】推理填空题.【分析】根据直线可以无限延伸,没有长度、两点之间线段最短的知识即可判断各选项.【解答】解:A、直线没长度,故本选项错误;B、若AB=6,BC=2,不能确定C在不在直线AB上,那么AC=不一定为8或4,故本选项错误;C、河道改直可以缩短航程,是因为“两点之间线段最短”,故本选项错误;D、在直线AB上任取4点,以这4点为端点的线段共有6条,故本选项正确.故选:D.【点评】本题考查直线与线段的知识,属于基础题,注意掌握线段与直线的一些基本特点.4.下列各式与﹣4x3y成同类项的是( )A.4xy3B.﹣4x2y2C.﹣x3y D.﹣x3【考点】同类项.【分析】本题是同类项的定义的考查,同类项是所含的字母相同,并且相同字母的指数也相同的项.【解答】解:﹣4x3y中x的指数为3,y的指数为1.A、x的指数为1,y的指数为3,与﹣4x3y不是同类项,故本选项错误;B、x的指数为2,y的指数为2,与﹣4x3y不是同类项,故本选项错误;C、x的指数为3,y的指数为1,与﹣4x3y是同类项,故本选项正确;D、x的指数为3,没有y,与﹣4x3y不是同类项,故本选项错误.故选C.【点评】本题考查了同类项的定义.同类项一定要记住两个相同:同类项是所含的字母相同,并且相同字母的指数也相同.5.若x表示一个一位数,y表示一个两位数,小明把x放在y的右边来组成一个三位数,你认为下列表达式中能表示这个数的是( )A.yx B.x+y C.10y+x D.10x+y【考点】列代数式.【分析】根据x表示一个一位数,y表示一个两位数,把x放在y的右边,即y扩大了10倍,x不变,即可得出答案.【解答】解:用x、y来组成一个三位数,且把x放在y的右边,则这个三位数上个位数是x,则这个三位数可以表示成:10y+x.故选C.【点评】主要考查了列代数式,掌握位数的表示方法,能够用字母表示数是本题的关键.6.把方程4y+=1+x写成用含x的代数式表示y的形式,以下各式正确的是( ) A.y=+1 B.y=+C.y=+1 D.y=+【考点】解二元一次方程.【专题】计算题.【分析】把x看做已知数表示出y即可.【解答】解:方程4y+=1+x,去分母得:12y+x=3+3x,解得:y=+.故选B【点评】此题考查了解二元一次方程,将x看做已知数求出y是解本题的关键.7.已知方程组的解为,则a﹣b的值为( )A.10 B.C.﹣D.﹣10【考点】二元一次方程组的解.【专题】计算题.【分析】把方程组的解代入方程组得到关于a与b的方程组,求出a与b的值,即可求出a ﹣b的值.【解答】解:把代入方程组得:,①+②得:4a=6,即a=,②﹣①得:2b=﹣2,即b=﹣1,则a﹣b=,故选B【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.我校一位同学从2015年元月1号开始每天记录当天的最低气温,然后绘成统计图,为了直观反应气温的变化情况,他应选择( )A.折线图B.扇形图C.条形图D.以上都合适【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:我校一位同学从2015年元月1号开始每天记录当天的最低气温,然后绘成统计图,为了直观反应气温的变化情况,他应选择折线统计图,故选:A.【点评】此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.9.直线AB上有一点O,OM⊥AB于O,另有直角∠COD在平角∠AOB内绕O点左右摆动(OC与OA、OD与OB不重合),在摆动时,始终与∠MOD保持相等的角是( )A.∠BOD B.∠AOC C.∠COM D.没有【考点】余角和补角;垂线.【分析】根据垂直的定义,得∠AOM=∠BOM=90°,再结合图形和同角的余角相等可得始终与∠MOD保持相等的角.【解答】解:∵OM⊥AB,∴∠AOM=∠BOM=90°.∴∠AOC+∠MOC=90°.∵∠COD是直角,∴∠DOM+∠MOC=90°.∴∠DOM=∠AOC.故选B.【点评】本题利用垂直的定义和同角的余角相等,要注意领会由垂直得直角这一要点.10.甲县、乙县各有钢铁100吨,丙地、丁地分别需要钢铁80吨、110吨,研究决定把甲县的100吨运往丙、丁两地,不够的再从乙县补充.实际运好以后,发现从乙县运往丁地x 吨,那么从甲县运往丙地( )A.(110﹣x)吨B.(100﹣x)吨C.(x﹣20)吨D.(x﹣10)吨【考点】列代数式.【分析】首先表示出从甲地运往丁地的钢材,然后用甲地的所有钢材两减去运往丁地的就是运往丙地的钢材的量.【解答】解:∵丁地共需钢材110吨,发现从乙县运往丁地x吨,∴从甲地运往丁地钢材(110﹣x)吨,∵甲地公有钢材100吨,∴从甲地运往丙地100﹣(110﹣x)=(x﹣10)吨,故选D.【点评】本题考查了列代数式的知识,解题的关键是仔细读题,明白其中的等量关系,难度不大.二、填空题(本题共8小题,每小题3分,共24分)11.绝对值大于1且小于3的整数有±2.【考点】绝对值.【分析】求绝对值大于1且小于3的整数,即求绝对值等于2的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.【解答】解:绝对值大于1且小于3的整数有±2.【点评】主要考查了绝对值的性质.本题要注意不要漏掉﹣2.绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.12.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为2.【考点】整式的加减—化简求值.【分析】由题意得2x2+3x=3,将6x2+9x﹣7变形为3(2x2+3x)﹣7可得出其值.【解答】解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.【点评】本题考查整式的加减,整体思想的运用是解决本题的关键.13.如图,CD是线段AB上两点,若CB=4cm,DB=7cm,且D是AC中点,则AC的长等于6cm.【考点】两点间的距离.【分析】根据线段的和差,可得DC的长,根据线段中点的性质,可得答案.【解答】解:由线段的和差,得DC=DB﹣CB=7﹣4=3cm,由且D是AC中点,得AC=2DC=6cm,故答案为:6cm.【点评】本题考查了两点间的距离,利用线段的和差得出DC的长是解题关键.14.如果(y+3)2+|x﹣2|=0,那么|y+3|+(x﹣2)2=6.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.【解答】解:∵(y+3)2+|x﹣2|=0,∴x=2,y=﹣3;∴|y+3|+(x﹣2)2=6.故答案为6.【点评】本题考查了非负数的性质,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.15.甲,乙两家汽车销售公司根据近几年的销售量,分别作了如下统计图,从2010年到2014年,这两家公司中销售量增长较快的是甲.【考点】折线统计图.【分析】结合折线统计图中的数据,分别求出甲、乙各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2010年的销售量约为180辆,2014年约为620辆,则从2010年到2014年甲公司增长了620﹣180=440辆;乙公司2010年的销售量约为160辆,2014年的销售量为400辆,则从2010年到2014年,乙公司中销售量增长了400﹣160=240辆;则甲公司销售量增长的较快.故答案为:甲.【点评】本题主要考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.如果从折线的陡峭情况来判断,很易错选乙公司;但是两幅图中纵轴的单位长度选择不一样,所以就没法比较了,因此还要抓住关键.16.若关于x、y的方程组有无穷多个解,则a=6.【考点】二元一次方程组的解.【专题】计算题.【分析】由方程组有无穷多个解,得到两方程化简后为同一个方程,求出a的值即可.【解答】解:∵方程组有无穷多个解,∴a=6.故答案为:6.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.17.一次工程,甲独做m天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要天完成.【考点】列代数式(分式).【专题】工程问题.【分析】甲乙合作的天数=工作量1÷(甲的工作效率+乙的工作效率),把相关数值代入化简即可.【解答】解:∵甲独做m天完成,乙独做比甲晚3天才能完成,∴甲的工作效率为,乙的工作效率为,∴甲乙合作的天数为(天),故答案为【点评】考查列代数式,得到甲乙合作天数的等量关系是解决本题的关键.18.若时针由3点30分走到3点55分,则时针转过12.5度,分针转过150度.【考点】钟面角.【分析】根据时针的旋转速度乘以时针的旋转时间,可得答案;根据分针的旋转速度乘分针的旋转时间,可得答案.【解答】解:3点30分走到3点55分,则时针转过0.5°×25=12.5°,分针转过6°×25=150°,故答案为:12.5,150.【点评】本题考查了钟面角,利用了时针的旋转速度乘以时针的旋转时间,分针的旋转速度乘分针的旋转时间.三、解答题(本题共4小题,共46分)19.(1)计算:[+(﹣)+(﹣2)3×(﹣)2]×(﹣14)(2)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣(3)解下列方程组:.【考点】有理数的混合运算;整式的加减—化简求值;解二元一次方程组.【专题】计算题.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(3)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)原式=(﹣﹣50)×(﹣1)=﹣+50=46;(2)原式=3x2y﹣2xy+2xy﹣3x2y﹣xy=﹣xy,当x=3,y=﹣时,原式=1;(3)方程组整理得:,①×2+②得:15y=11,即y=,把y=代入①得:x=,则方程组的解为.【点评】此题考查了有理数的混合运算,整式的加减﹣化简求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.20.为了了解某校500名七年级新生入学时的数学水平,随机抽取若干名学生的数学成绩统计整理后绘制如图的频数分布直方图,观察图形回答下列问题:(1)本次随机抽查的学生人数是多少?(2)不及格的人数有多少?占抽查人数的比例是多少?(3)若80分以上的成绩为良好,试估计一下500名七年级学生成绩良好的比例是多少?【考点】频数(率)分布直方图;用样本估计总体.【分析】(1)每组的频数的和就是抽查的学生数;(2)利用不及格的人数除以抽查的总数即可;(3)求得调查的样本中成绩良好的比例即可.【解答】解:(1)本次随机抽查的学生人数是:1+2+3+8+10+14+6=44(人);(2)不及格的人数是:1+2+3=6,占抽查人数的比例是:=;(3)估计一下500名七年级学生成绩良好的比例是==.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.22.为满足市民对优质教育的需求某中学决定改变办学条件计划拆除一部分旧校舍、建造新校舍.拆除旧校舍每平米需80元,建造新校舍每平米需700元.计划在年内拆除旧校舍与建造新校舍共7200m2,在实施中为扩大绿化面积,新建校舍只完成了计划的80%,而拆除校舍则超过了10%,结果恰好完成了原计划的拆、除的总面积.(1)求原计划拆建面积各多少m2?(2)若绿化1m2需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少m2?【考点】二元一次方程组的应用.【专题】压轴题.【分析】本题中的等量关系有:原计划拆除旧校舍的面积+原计划建造新校舍的面积=7200m2;原计划拆除旧校舍的面积×(1+10%)+原计划建造新校舍的面积×80%=7200m2,根据两个等量关系可列方程组求解.【解答】解:(1)设原计划拆除旧校舍x(m2),新建校舍y(m2),根据题意得:,解得,(2)实际比原计划拆除与新建校舍节约资金是:(4800×80+2400×700)﹣(4800×(1+10%)×80+2400×80%×700)=297600.用此资金可绿化面积是297600÷200=1488(m2).答:原计划拆除旧戌舍4800m2,新建校舍2400m2,实际施工中节约的资金可绿化1488m2.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.2015-2016学年七年级(上)期末数学试卷(二)一、选择题1.下列各数中,最大的是( )A.﹣3 B.0 C.1 D.22.电冰箱的冷藏室温度是5℃,冷冻室温度是﹣2℃,则电冰箱冷藏室比冷冻室温度高( ) A.3℃B.7℃C.﹣7℃D.﹣3℃3.从权威部门获悉,中国海洋面积是2897000平方公里,数2897000用科学记数法表示为( )A.2897×104B.28.97×105 C.2.897×106 D.0.2897×1074.用4个完全相同的小正方体组成如图所示的立方体图形,它的俯视图是( )A. B. C.D.5.下列各式中,次数为3的单项式是( )A.x3+y3B.x2y C.x3y D.3xy6.下列各式中,运算正确的是( )A.2(a﹣1)=2a﹣1 B.a2+a2=2a2C.2a3﹣3a3=a3D.a+a2=a37.若关于x的方程ax+3x=2的解是x=1,则a的值是( )A.﹣1 B.5 C.1 D.﹣58.下列说法中,正确的是( )A.两条射线组成的图形叫做角 B.两点确定一条直线C.两点之间直线最短 D.若AB=BC,则点B是AC的中点9.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC 等于( )A.3 B.2 C.3或5 D.2或610.若有理数a,b,c在数轴上的位置如图所示,在下列结论中:①a﹣b>0②ab<0③a+b <0④b(a﹣c)>0,其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题11.30°15′=__________°.12.若a,b互为相反数,则(a+b﹣1)2015=__________.13.若|a|=5,|b|=7,且a>b,则a+b的值可能是__________.14.如图所示,点A在点O的北偏东50°方向,点B在点O的南偏东10°方向上,则∠AOB=__________.15.一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为__________元.16.用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖__________块,第n个图形中需要黑色瓷砖__________块(用含n的代数式表示).三、解答题17.(1)2﹣(﹣3)+(﹣5)(2)2×(﹣3)2+4÷(﹣)18.先化简,再求值:2(xy﹣xy2+3)﹣(﹣4xy2+xy﹣1),其中x=﹣4,y=.19.解下列方程:(1)2x﹣3=x+1;(2).20.已知线段AB=6cm,延长AB至点C,使BC=AB,反向延长线段AB至D,使AD=AB (1)按题意画出图形,并求出CD的长;(2)若M、N分别是AD、BC的中点,求MN的长.21.随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,(2)若每行驶100km需用汽油8L,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?22.如图,将两块直角三角尺的直角顶点C叠放在一起(1)若∠DCE=25°,则∠ACB=__________,若∠ACB=150°,则∠DCE=__________ (2)猜想:∠ACB与∠DCE的大小有何特殊关系,并说明理由.23.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?24.在数轴上A表示的数为a点,B点表示的数为b,AB表示A点和B点的距离,且a,b满足|a﹣6|+(b+a)2=0(1)求a,b的值及A,B两点之间的距离;(2)若动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴朝某方向匀速运动.若点P,Q同时出发,经过t秒,P,Q两点重合,求此时t的值.2015-2016学年七年级(上)期末数学试卷一、选择题1.下列各数中,最大的是( )A.﹣3 B.0 C.1 D.2【考点】有理数大小比较.【分析】先在数轴上标出各选项中的数,再根据数轴上表示的数,越在右边的数越大,得出结果.【解答】解:表示﹣3、0、1、2的数在数轴上的位置如图所示:,由图示知,这四个数中,最大的是2.故选D.【点评】本题考查了有理数大小比较.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.电冰箱的冷藏室温度是5℃,冷冻室温度是﹣2℃,则电冰箱冷藏室比冷冻室温度高( ) A.3℃B.7℃C.﹣7℃D.﹣3℃【考点】有理数的减法.【分析】用冷藏室的温度减去冷冻室的温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣2),=5+2,=7℃.故选B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.3.从权威部门获悉,中国海洋面积是2897000平方公里,数2897000用科学记数法表示为( )A.2897×104B.28.97×105 C.2.897×106 D.0.2897×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2897000用科学记数法表示为2.897×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.用4个完全相同的小正方体组成如图所示的立方体图形,它的俯视图是( )A. B. C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】俯视图是从物体上面观看得到的图形,结合图形即可得出答案.【解答】解:从上面看可得到一个有2个小正方形组成的长方形.故选:A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,属于基础题.5.下列各式中,次数为3的单项式是( )A.x3+y3B.x2y C.x3y D.3xy【考点】单项式.【分析】一个单项式中所有字母的指数的和叫做单项式的次数,由此结合选项即可得出答案.【解答】解:A、不是单项式,故A选项错误;B、单项式的次数是3,符合题意,故B选项正确;C、单项式的次数是4,故C选项错误;D、单项式的次数是2,故D选项错误;故选B.【点评】本题考查了单项式的知识,属于基础题,关键是掌握单项式次数的定义.6.下列各式中,运算正确的是( )A.2(a﹣1)=2a﹣1 B.a2+a2=2a2C.2a3﹣3a3=a3D.a+a2=a3【考点】合并同类项.【分析】根据去括号,可判断A;根据合并同类项,可判断B,C;根据同底数幂的乘法,可判断D.【解答】解:A、去括号时括号内的每一项都乘以前面的倍数,故A错误;B、系数相加字母部分不变,故B正确;C、系数相加字母部分不变,故C错误;D、不是同底数幂的乘法指数不能相加,故D错误;故选:B.【点评】本题考查了合并同类项,合并同类项系数相加字母部分不变.7.若关于x的方程ax+3x=2的解是x=1,则a的值是( )A.﹣1 B.5 C.1 D.﹣5【考点】一元一次方程的解.【专题】计算题.【分析】根据方程的解为x=1,将x=1代入方程即可求出a的值.【解答】解:将x=1代入方程得:a+3=2,解得:a=﹣1.故选A.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.下列说法中,正确的是( )A.两条射线组成的图形叫做角 B.两点确定一条直线C.两点之间直线最短 D.若AB=BC,则点B是AC的中点【考点】角的概念;直线、射线、线段;直线的性质:两点确定一条直线;两点间的距离.【分析】根据角的定义:有公共端点是两条射线组成的图形叫做角,即可判断选项A;再利用直线、线段的定义和两点之间距离进而得出答案.【解答】解:A、有公共端点是两条射线组成的图形叫做角,故此选项错误;B、两点确定一条直线,正确;C、两点之间线段最短,故此选项错误;D、若AB=BC,则点B是AC的中点,三点不一定在一条直线上,故此选项错误.故选:B.【点评】此题主要考查了角的定义以及直线、线段的定义和两点之间距离等知识,正确把握相关定义是解题关键.9.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC 等于( )A.3 B.2 C.3或5 D.2或6【考点】两点间的距离;数轴.【专题】压轴题.【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【解答】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故选:D.【点评】在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.10.若有理数a,b,c在数轴上的位置如图所示,在下列结论中:①a﹣b>0②ab<0③a+b <0④b(a﹣c)>0,其中正确的个数有( )A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据数轴上各数的位置得出b<a<0<c,容易得出结论.【解答】解:根据题意得:b<a<0<c,∴a﹣b>0,ab>0,a+b<0,a﹣c<0,∴b(a﹣c)>0,①③④正确,②错误,故选:C.【点评】本题考查了数轴和有理数的大小比较;弄清数轴上各数的大小是解决问题的关键.二、填空题11.30°15′=30.25°.【考点】度分秒的换算.【分析】把15′除以60转化为度,即可得解.【解答】解:∵15÷60=0.25,∴30°15′=30.25°.故答案为:30.25.【点评】本题考查了度分秒的换算,熟记度分秒是60进制是解题的关键.12.若a,b互为相反数,则(a+b﹣1)2015=﹣1.【考点】有理数的乘方;相反数.【分析】根据互为相反数的两个数的和等于0可得a+b=0,再根据﹣1的奇数次幂等于﹣1解答.【解答】解:∵a,b互为相反数,∴a+b=0,∴(a+b﹣1)2015=(﹣1)2015=﹣1.故答案为:﹣1.【点评】本题考查了有理数的乘方,相反数的定义,﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.13.若|a|=5,|b|=7,且a>b,则a+b的值可能是﹣2或﹣12.【考点】有理数的加法;绝对值.【专题】分类讨论.【分析】根据所给a,b绝对值,可知a=±5,b=±7;又知a>b,那么应分类讨论两种情况:a为5,b为﹣7;a为﹣5,b为﹣7,求得a+b的值.【解答】解:已知|a|=5,|b|=7,则a=±5,b=±7;。
七年级数学上册2015---2016学年度期末试卷十含答案及解析
七年级数学上册2015---2016学年度期末试卷十含答案及解析一、填空题(每小题3分,共24分) 1.计算:(-2.5)×231= 。
2. 已知x=2是方程mx -5=10+m 的解,则m = 。
3. 在多项式7x 2y -4y 2-5 -x +x 2y +3x -10中,同类项共有 对。
4. 数轴上点A 表示 2,从A 出发,沿数轴移动4个单位长度到达点B ,则点B 表示的数是________。
5. 写出系数为-3,只含有a 、b 、c 三个字母,而且次数是5的一个单项式 。
6. 如图,将长方形纸条折成如图所示形状,BC 为折痕,若∠DBA=70°,则∠ABC= 。
7. 如图所示,已知∠BOD=2∠AOB ,OC 平分∠AOD ,∠BOC=25°,则∠AOB= 。
8. 如图所示,边长为a cm 的正方形剪去一个长、宽分别为3cm 和2cm 的长方形,那么剩余部分的面积可表示为 cm 2。
二、单项选择题(每小题3分,共24分)9. 在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将 1 460 000 000用科学记数法表示为 ( ) A .146×107 B .1.46×107 C .1.46×109 D .1.46×101010.小红同学在一个正方体盒子的每个面都写上一个字,分别是“我”、“喜”、“欢”、“数”、“学”、 “课”,其平面展开图如图所示,那么在该正方体盒子中,和“我”相对的面上的字是 ( ) A. 喜 B. 课 C. 数 D. 学七年级数学试卷 第1页 (共8页)11. 下列说法正确..的是 ( ) A. 射线就是直线 B. 连接两点间的线段,叫做这两点的距离 C.两条射线组成的图形叫做角 D. 经过两点有一条直线,并且只有一条直线12.若单项式223x y-的系数是m ,次数是n ,则mn 的值为 ( )A.2-B.6-C.4-D.43-13. 如果方程0)12(2=+++c bx x a 表示关于字母x 的一元一次方程,则必有 ( )A.c b a ,0,21≠=为任意数 B.0,0,21=≠≠c b a C.0,0,21≠≠-=c b a D.c b a ,0,21≠-=为任意数14. 一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为 ( ) A .盈利16元 B .亏损24元 C .亏损8元 D .不盈不亏15. 下列说法错误..的是 ( ) A. 0是绝对值最小的有理数 B. 如果x 的相反数是-5, 那么x=5C. 若|x|=|-4|, 那么x= -4D. 任何非零有理数的平方都大于016. 由几个大小相同的小正方体组成的立体图形从上面看如图所示,则这个立体图形应是下图中 的 ( )三、解答题(17、20每小题6分,18、19每小题5分,共22分)17.计算:(1)2×(-3)+18×321)31(-. (2)-12-[132)43(]6)12(73-⨯÷-+.七年级数学试卷 第2页 (共8页)DCB AABDC 第7题第6题O32第8题从上面看 A B C D图4我喜欢数学课18.解方程:2213269---=+--x x x x .19.先化简再求值: 2(x 3-2y 2)-(x -2y )-(x -3y 2+2x 3),其中x=-3,y=-2.七年级数学试卷 第3页 (共8页)20. 线段AB=4cm,延长线段AB到C,使BC=1cm,再反向延长AB到D,使AD=3cm,点E是AD中点,点F是CD的中点,求EF的长度.四、解答题(每小题7分,共14分)21. 一项工作甲单独完成要9天,乙单独完成要12天,丙单独完成要15天,若甲、丙先做3天后,甲因故离开由乙接替甲的工作,问还要多少天才能完成这项工作的65?七年级数学试卷 第4页 (共8页)22.如图,一副三角尺的两个直角顶点重合在一起。
(最新整理)-2016学年七年级数学上册期末测试卷及答案
5x 1 - 2x 1 =1
3
6
(2)
22.(本小题满分 4 分) x-1),其中 x= 1 .
2
先化简,再求值: 1 (-4x2+2x-8)-( 1
4
2
A
23.(本小题满分 4 分)
九年级数学第二次月考试卷
如图,∠AOB=∠COD=90°,OC 平分∠AOB,∠BOD=3∠DOE.
第4页共6页
O
求:∠COE 的度数.
2015-2016 学年七年级数学上册期末测试卷及答案
2015-2016 学年七年级数学上册 期末测试卷及答案
编辑整理:
尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由 我和我的同事精心编辑整理后发布的,发布 之前我们对文中内容进行仔细校对,但是难 免会有疏漏的地方,但是任然希望(20152016 学年七年级数学上册期末测试卷及答 案)的内容能够给您的工作和学习带来便 利。同时也真诚的希望收到您的建议和反 馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请 收藏以便随时查阅,最后祝您生活愉快 业 绩进步,以下为 2015-2016 学年七年级数 学上册期末测试卷及答案的全部内容。
BD= 1 AB= 1 CD,线段 AB、CD 的中点 E、F 之间距离是 10cm,
34
A
ED B F
C
求 AB、CD 的长.
2015~2016 学年度第一学期七年级期末考试
数学试题参考答案及评分说明
(2)
x x 2 2x 5 3
5
3
(4)
( 3) 42 1 2 3 ( 1 )3
(4) 2
2
2331'36" 4029'24"
2015-2016学年度第一学期期末测试七年级数学附答案
2015-2016学年度第一学期期末测试七年级数学说明:1.考试时间为100分钟,满分120分;2.各题均在答题卷指定位置上作答,否则无效;考试结束时,只交回答题卷.一、选择题(本大题共10小题,每小题3分,共30分)每小题给出的4个选项中,只有一个是正确的,请将所选选项的字母填写在答题卷相应的位置上.1、6-的相反数是( ) A 、6 B 、6- C 、61 D 、61- 2、下面几个有理数中,最小的数是( )A 、1B 、2-C 、0D 、5.2- 3、计算3)3(-的结果是( )A 、6B 、9C 、27D 、-27 4、下列各组代数式中,不是同类项的是( )A 、y x 2-和y x 25 B 、32和2 C 、xy 2和 23xy D 、2ax 和2a x 5、下列等式中正确的是( )A 、a b b a -=--)(B 、b a b a +-=+-)(C 、12)1(2+=+a aD 、x x +=--3)3(6、如图是由6个大小相同的正方形组成的几何体,它的左视图是( )7、若b a =,则下列式子不正确的是( )A 、11+=+b aB 、55-=+b aC 、b a -=-D 、0=-b a 8、下列等式中,不是整式的是( ) A 、y x 21- B 、x 73 C 、11-x D 、09、若0<a ,下列式子正确的是( )A BCDA 、0<-aB 、02>aC 、22a a -=D 、33a a -=10、把弯曲的道路改直,就能缩短两点之间的距离,其中蕴含的数学原理是( )A 、两点确定一条直线B 、两点之间线段最短C 、过一点有无数条直线D 、线段是直线的一部分二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷相应的位置上.11、=- 5 . 12、︒20的补角是 . 13、方程0121=+x 的解为 . 14、地球与太阳之间的距离为150 000 000km ,用记数法表示为 km .15、某种商品原价为每件b 元,第一次降价打八折,第二次降价每件又减10元,两次降价后,该商品每件的售价是 元.16、点A ,B ,C 在同一条直线上,6=AB cm ,2=BC cm ,则=AC . 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、计算:(1)15)7()18(12--+--; (2))3(9)216()3()2(3-÷-+⨯-+-. 18、计算:(1)222243234b a ab b a --++; (2))43()42(b a b a +--.19、已知平面内有A ,B ,C 三个点,按要求完成下列问题. (1)作直线AB ,连结BC 和AC ;(2)用适当的语句表述点C 与直线AB 的关系.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、解方程:42321xx -+=+. 21、x 为何值时,式子65+-x x 的值比31-x 的值大3?22、(1)已知()2210x y +++=,求x ,y 的值;BAA(2)化简:)]921(3121[4322xy y x xy y x -+-.五、解答题(三)(本大题共3小题,每小题9分,共27分)23、某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价和售价如下表:(1)求甲,乙两种节能灯各进货多少时,使进货款恰好为46 000元;(2)应如何进货,使销售完节能灯时,商场获得的利润恰好是进货价的30%,此时利润为多少?24、如图,点O 在直线AB 上,OD 是AOC ∠的平分线,射线OE 在BOC ∠内. (1)图中有多少个小于︒180的角?(2)若OE 平分BOC ∠,求DOE ∠的度数;(3)若BOE COE ∠=∠2,︒=∠108DOE ,求COE ∠的度数.25、如图,点O 是数轴的原点,点A 是数轴上的一个定点,点A 表示的数为-15,点B 在数轴上,且OA OB 3=,数轴上的两个动点M ,N 分别从点A 和点O 同时出发,向右移动,点M 的运动速度为每秒3个单位,点N 的运动速度为每秒2个单位.(1)求点B 和线段AB 的中点P 对应的有理数;(2)若点B 对应的数为正数,点M 移动到线段AB 的中点P 时,求点N 对应的有理数; (3)求点M ,N 运动多少秒时,点M ,N 与原点的距离相等.2015-2016学年度第一学期期末测试N M OACBE AD七年级数学答案及评分标准一、选择题:A D D D A A B C B B 二、填空题:11、5 12、︒160 13、2-=x 14、8105.1⨯ 15、108.0-b 16、4cm .三、解答题:17、解:(1)2222015)7()18(12-=-=--+--; (2)593548)3(9)216()3()2(3-=+--=-÷-+⨯-+-.评分说明:每小题3分.(1)答案正确就给3分;(2)计算3)2(- ,)216()3(+⨯-,)3(9-÷-各占1分,答案错误扣1分.18、解:(1)222b ab a -+;(2)b a 8--.评分说明:每小题3分.第(1)小题中,合并同类项每项占1分;第(2)小题中,去括号,每个括号占1分,计算答案占1分.19、(1)作直线AB ,线段BC ,线段AC 各占1分,共3分;(2)点C 在直线AB 外,3分. 20、解:去分母,得)2(12)1(2x x -+=+, 2分 去括号,得x x -+=+21222, 4分 移项,合并,得123=x , 6分 系数化1,得4=x 7分去括号,得221856->+--x x x , 4分 移项,合并得153->x , 5分 系数化1,得5->x , 6分21、去分母,得18)1(2)5(6=--+-x x x 2分去括号,得182256=+---x x x 4分 移项,合并得213=x 5分 系数化1,得7=x , 6分 ∴当7=x 时,式子65+-x x 的值比31-x 的值大3. 7分22、(1)∵()2210x y +++=,∴02=+x ,01=+y 2分 ∴2=x ,1-=y ; 3分(2))]921(2121[4322xy y x xy y x -+- ]294121[4322xy y x xy y x -+-= 4分 )441(4322xy y x y x --= 5分 xy y x y x 4414322+-= 6分 xy y x 4212+= 7分 评分说明:(1)中x ,y 答对1个给1分,答对2个给满分,共3分,没写出过程不扣分;(2)去小括号占1分,中括号内合并占1分,去中括号占1分,计算答案占1分,共4分.23、(1)设甲种节能灯购进x 只,乙种节能灯购进)1200(x -只, 1分 依题意得,46000)1200(4525=-+x x , 3分 解得400=x ,8001200=-x , 4分 即甲种节能灯购进400只,乙种节能灯购进800只,进货款恰好为46 000元; 5分 (2)进货款为x x x 2054000)1200(4525-=-+, 销售款为x x x 3072000)1200(6030-=-+利润为x x x 1018000)2054000()3072000(-=---,依题意有x x 3072000%)301)(2054000(-=+-, 7分 解得450=x ,7501200=-x , 135001018000=-x ,即甲种节能灯购进450只,乙种节能灯购进750只时,商场获得的利润恰好是进货价的30%,此时利润为13500元. 9分24、(1)9个; 2分 (2)∵OD 平分AOC ∠,OE 平分BOC ∠,∴AOC COD ∠=∠21,BOC COE ∠=∠21, 3分∵︒=∠+∠180BOC AOC , ∴︒=∠+∠=∠+∠=∠+∠90)(212121BOC AOC BOC AOC COE COD , ∴︒=∠+∠=∠90COE COD DOE ; 5分 (3)设x BOE =∠,∵BOE COE ∠=∠2,∴x COE 2=∠ ∴x AOC 3180-︒=∠, ∵OD 平分AOC ∠,∴AOC COD ∠=∠21, ∵︒=∠=∠+∠108DOE COE COD, 7分 ∴︒=+-︒1082)3180(21x x ,︒=36x , 8分 ∴︒=∠72COE . 9分 25、(1)∵15=OA ,OA OB 3=,∴45=OB ,若点B 在原点的右边,60=AB , ∴点B 对应的有理数为45,线段AB 的中点P 对应的有理数为15,若点B 在原点的左边,30=AB , ∴点B 对应的有理数为-45;线段AB 的中点P 对应的有理数为-30;(2)当点B 对应的数为正数时,则点M 移动30个单位到达线段AB 的中点P ,点M 移动的时间为10330= 秒,此时点N 移动的距离为20102=⨯,∴点N 对应的有理数为20; (3)设经过x 秒点有ON OM =,若点B 在原点的右边,则1523=-x x ,15=x , 若点B 在原点的左边,则153245-=-x x ,12=x .C BE AD。
2015~2016学年度第一学期七年级期末考试数学附答案
2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。
2015~2016学年度七年级上册期末数学试卷
2015~2016学年度七年级上册期末数学试卷一、选择题(本题共12个小题,每小题3分,共36分.)1、若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或22、碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米3、下列方程为一元一次方程的是()A.x+y=5B.x2=5C.x=0D.x+1x=5.4、把方程1-32x-=-354x+去分母后,正确的是( )A.1-2x-3=-3x+5B.1-2(x-3)=-3x+5C.4-2(x-3)=-3x+5D.4-2(x-3)=-(3x+5).5、下列各式中是同类项的是()A.3x2y2和﹣3xy2B.和C.5xyz和8yz D.ab2和6、如图,数轴上A、B两点,表示的数分别为﹣1和,点B关于点A的对称点为C,点C所表示的实数是().A.﹣2﹣B.﹣2+C. 2+D. 2﹣7、下面是一个被墨水污染过的方程:,答案显示此方程的解是x=,被墨水遮盖的是一个常数,则这个常数是()A.2 B.﹣2 C.﹣D.8、钟表2时30分时,时针与分针所成的角的度数为()A.90° B.100° C.105° D.75°9、已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON的大小为()A.20°B.40°C.20°或40°D.30°或10°10、某工厂今年的总产值为500万元,比去年增加15%,求这个工厂去年的总产值.若设这个工厂去年的总产值为x万元,则可列出方程是()A.15%x=500B.x=15%×500C.(1+15%)x=500D.(1-15%)x=500.11、某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x天.则方程为()A.B.C.D.12、观察两行数根据你发现的规律,取每行数的第10个数,求得它们的和是().A.2051 B.2053 C.2048 D.2050二、填空题(本大题共8个小题;每小题3分,共24分.)13、﹣5的倒数是.14、﹣的系数是_________ ,次数是_________ .15、的算术平方根是.16、3.56°=_________ °_________ ′_________ ″17、用四舍五入得到的近似数6.80×106有 3 个有效数字,精确到万位.18、已知3b2=2a﹣7,代数式9b2﹣6a+4= _________ .19、若方程2x+a=7的解是x=0.5,则a=___________.20、某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?设定价为x,则可列方程.三、解答题(本大题共8个小题;共60分)21、(本小题满分6分)计算:(1)(2)22、(本小题满分6分)一个角的补角比它的余角的2倍多20°,求这个角。
2015-2016学年七年级(上)期末数学试卷(7)
2015-2016学年七年级(上)期末数学试卷(7)一、选择题(共10小题,每小题3分,满分30分)1.如果水位升高2m时水位变化记作+2m,那么水位下降3m时水位变化记作()A.3m B.﹣3m C.5m D.﹣5m2.用四舍五入法将3.1416精确到0.01后得到的近似数为()A.3.1 B.3.14 C.3 D.3.1423.据统计部门预测,到2020年武汉市常住人口将达到约14500000人,数14500000用科学记数法表示为( )A.0.145×108 B.1.45×107 C.14.5×106 D.145×1054.如图,一个长方形绕轴l旋转一周得到的立体图形是( )A.棱锥 B.圆锥 C.圆柱 D.球5.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图① B.图② C.图③ D.图④6.下列变形正确的是()A . x=0变形得x=3 B.3x=2x﹣2变形得3x﹣2x=2C.3x=2变形得x= D .变形得2x﹣3=3x7.下面计算正确的( )A.3x2﹣x2=3 B.a+b=ab C.3+x=3x D.﹣ab+ba=08.甲厂有某种原料180吨,运出2x吨,乙厂有同样的原料120吨,运进x吨,现在甲厂原料比乙厂原料多30吨,根据题意列方程,则下列所列方程正确的是( )A.(180﹣2x)﹣(120+x)=30 B.(180+2x)﹣(120﹣x)=30C.(180﹣2x)﹣(120﹣x)=30 D.(180+2x)﹣(120+x)=309.如图,点C是线段AB的中点,点D是线段BC上一点,下列条件不能确定点D是线段BC 的中点的是()A.CD=DB B.BD=AD C.BD=AB﹣AD D.2AD=3BC10.下列结论:①若关于x的方程ax+b=0(a≠0)的解是x=1,则a+b=0;②若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=﹣;③若a+b=1,且a≠0,则x=1一定是方程ax+b=1的解.其中正确的结论是()A.①② B.②③ C.①③ D.①②③二、填空题(共6小题,每小题3分,满分18分)11.如果水库的水位高于标准水位3米时,记作+3米,则低于标准水位2米时,应记___ _米.12.34°30′=__________°..13.如图,把原来弯曲的河道改直,A、B两地间的河道长度就发生了变化,请你用数学知识解释这一现象产生的原因.14.点A,B,C在同一条直线上,AB=3cm,BC=1cm,则AC= .15.如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D 始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD=__________cm.16.已知x、y、z为有理数,且|x+y+z+1|=x+y﹣z﹣2,则=_________.三、解答题(共8小题,满分72分)17.计算:(8分)(1)3×(﹣4)+18÷(﹣6)(2)(﹣2)2×5+(﹣2)3÷4.18.解方程(8分)(1)5x=2(x+3)(2)x﹣1=.19.(8分)先化简,再求值:ab+(a2﹣ab)﹣(a2﹣2ab),其中a=1,b=2.20.(8分)某工厂第一车间有x 人,第二车间比第一车间人数的少30人,如果从第二车间调出 10人到第一车间,那么:(1)两个车间共有__________人?(2)调动后,第一车间的人数为__________ 人,第二车间的人数为__________人; (3)求调动后,第一车间的人数比第二车间的人数多几人?21.(8分)如图,延长线段AB 至点C ,使BC=AB ,反向延长AB 至D ,使AD=AB . (1)依题意画出图形,则= (直接写出结果);(2)若点E 为BC 的中点,且BD ﹣2BE=10,求AB 的长.2.53×360+2.78×(400﹣360)=1022(元);依此方案请回答:(1)若小明家2015年使用天然气500立方米,则需缴纳天然气费为 元(直接写出结果); (2)若小红家2015年使用天然气650立方米,则小红家2015年需缴纳的天然气费为多少元? (3)依此方案计算,若某户2015年实际缴纳天然气费2286元,求该户2015年使用天然气多少立方米?23.(10分)已知数轴上,点O 为原点,点A 对应的数为9,点B 对应的数为6,点C 在点B 右侧,长度为2个单位的线段BC 在数轴上移动.(1) 如图1, 当线段BC 在O 、A 两点之间移动到某一位置时恰好满足线段AC=OB ,求此时b 的值; (2)当线段BC 在数轴上沿射线AO 方向移动的过程中,若存在AC ﹣0B=AB ,求此时满足条件的b 值;(2) 当线段BC 在数轴上移动时,满足关系式|AC ﹣OB|=|AB ﹣OC|,则此时的b 的取值范围是__________.24.(12分)已知∠AOB=100°,∠COD=40°,OE 平分∠AOC,OF 平分∠BOD.(本题中的 角均为大于0°且小于等于180°的角).(1)如图1,当OB 、OC 重合时,求∠EOF 的度数;(2)当∠COD 从图1所示位置绕点O 顺时针旋转n°(0<n <90)时,∠AOE﹣∠BOF 的值是否为定值?若是定值,求出∠AOE﹣∠BOF 的值;若不是,请说明理由.(3)当∠COD 从图1所示位置绕点O 顺时针旋转n°(0<n <180)时,∠AOD+∠EOF=6∠COD,则n=__________.。
七年级数学上册2015--2016学年度期末试卷三套汇编八含答案及解析
七年级数学上册2015--2016学年度期末试卷三套汇编八含答案及解析七年级数学上册期末试卷1一、选择题(每小题3分,共24分)1.﹣6是()A.负有理数B.正有理数C.自然数D.无理数2.850000000000用科学记数法表示为()A.8.5×103亿B.0.85×104亿C.8.5×104亿D.85×102亿3.下列语句正确的是()A.画直线AB=10厘米B.过任意三点A、B、C画直线ABC.画射线OB=3厘米D.画线段AB=3cm4.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n5.若a+b>0,ab<0,a>b,则下列各式正确的是()A.b<﹣a<a<﹣b B.﹣a<b<﹣b<a C.a<﹣b<b<﹣a D.﹣b<a<﹣a<b6.已知线段AB=6cm,在直线AB上画线段AC=2cm,则线段BC的长是()A.4cm B.3cm或8cm C.8cm D.4cm或8cm7.如图是这四个正方体中哪一个的展开图()A.B.C.D.8.已知关于x的方程﹣4x+2k=10的解是x=k﹣1,则|k|的值是()A.﹣3 B.﹣7 C.3 D.7二、填空题(每题3分,共30)9.3+(﹣5)=.10.如图,从A处到B处,选择第条路最近.理由是.11.x的2倍与5的差,用代数式表示为.12.一个角的余角比它的补角的还少20°,则这个角的大小是.13.已知∠A=51°,则∠A的余角是度.14.如图,AD=4.8厘米,点C是线段AB的中点,点D是线段CB的中点,则AB=厘米.15.(﹣7xy+4y2)﹣4xy=.16.计算11°36′+43°34′=.17.若a,b互为相反数,c,d互为倒数,则3cd+a+b=.18.已知﹣x+y=2,则代数式3x﹣3y﹣7=.三、解答题19.(1)(﹣1)3﹣×[2﹣(﹣3)2].﹣22+|5﹣8|+24÷(﹣3)×(3)化简:3a﹣(4b﹣a)+b;(4)7﹣6x=3﹣4x;(5)﹣=2.(6)2x2﹣(﹣3y)﹣[4x2y+2(x2﹣3xy﹣4)﹣2+3y],其中x=1,y=﹣2.20.如图,已知O为直线AF上一点,OE平分∠AOC,(1)若∠AOE=20°,求∠FOC的度数;若OD平分∠BOC,∠AOB=84°,求∠DOE的度数.21.如图,已知AC=3AB,BC=12,点D 是线段AC的中点,求BD的长度.22.经营户小李在水果批发市场上了解到一下信息:蔬菜品种苹果香蕉西瓜梨子批发价(元/千克)3.5 1.2 1.5 1.3零售价(元/千克)4.5 1.5 2.8 1.8他共用135元钱从市场上批发了苹果和西瓜共50千克到市场上去卖.(1)请计算小李苹果和西瓜各买了多少千克?若他能够当天卖完,请问他能赚多少钱?23.如图,已知O为直线AF上一点,射线OC平分∠AOB,∠COD=20°;(1)若∠AOB=80°,试说明OD为∠AOC的角平分线;若∠BOD=60°,求∠COF的度数.24.加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A.计时制:0.05元/分钟,B.包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?参考答案与试题解析一、选择题(每小题3分,共24分)1.﹣6是()A.负有理数B.正有理数C.自然数D.无理数考点:有理数.分析:根据有理数的分类,可得答案.解答:解:﹣6是负有理数,故选:A.点评:本题考查了有理数,利用了有理数的分类:有理数.2.850000000000用科学记数法表示为()A.8.5×103亿B.0.85×104亿C.8.5×104亿D.85×102亿考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:将8500 0000 0000用科学记数法表示为8.5×103亿.故选A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.下列语句正确的是()A.画直线AB=10厘米B.过任意三点A、B、C画直线ABC.画射线OB=3厘米D.画线段AB=3cm考点:直线、射线、线段.分析:直线和射线都无法度量长度,根据即可判断A、C;根据两点确定一条直线,而三点不一定在一条直线上,即可判断C;线段有长度,根据线段的长度画出线段即可判断D.解答:解:A、直线无法度量长度,故本选项错误;B、三点不一定在一条直线上,只有两点确定一条直线,故本选项错误;C、射线无法度量长度,故本选项错误;D、线段有长度,根据线段的长可以画出线段,故本选项正确.故选D.点评:本题考查了对线段、直线、射线,两点确定一直线的应用,主要考查学生的辨析能力,题目比较好,是一道比较容易出错的题目.4.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n考点:整式的加减.分析:根据整式的加减运算法则,先去括号,再合并同类项.注意去括号时,括号前是负号,去括号时,括号里各项都要变号;合并同类项时,只把系数相加减,字母和字母的指数不变.解答:解:原式=m﹣n﹣m﹣n=﹣2n.故选C.点评:解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.5.若a+b>0,ab<0,a>b,则下列各式正确的是()A.b<﹣a<a<﹣b B.﹣a<b<﹣b<a C.a<﹣b<b<﹣a D.﹣b<a<﹣a<b考点:有理数大小比较.专题:计算题.分析:根据题意ab<0,a>b,得出a、b异号且a>0,b<0,从而得出﹣a<﹣b,再由a+b>0,得出﹣b>b,a>﹣a,最后得出答案.解答:解:∵ab<0,∴a、b异号,又∵a>b,∴a>0,b<0,∴﹣a<0,﹣b>0,又∵a+b>0,∴﹣b>﹣a,﹣b>b,a>﹣a,∴﹣a<b<﹣b<a.故选B.点评:本题考查了有理数大小比较,解题的关键是认真审题,弄清题意,题目比较简单,易于理解.6.已知线段AB=6cm,在直线AB上画线段AC=2cm,则线段BC的长是()A.4cm B.3cm或8cm C.8cm D.4cm或8cm考点:比较线段的长短.专题:分类讨论.分析:画出图形,分情况讨论:①当点C在线段AB上;②当点C在线段BA的延长线上;③因为AB大于AC,所以点C不可能在AB的延长线上.解答:解:如上图所示,可知:①当点C在线段AB上时,BC=AB﹣AC=4;②当点C在线段BA的延长线上时,BC=AB+AC=8.故选D.点评:注意根据题意,分情况讨论,要画出正确的图形,结合图形进行计算.7.如图是这四个正方体中哪一个的展开图()A.B.C.D.考点:几何体的展开图.分析:在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.解答:解:根据有图案的表面之间的位置关系,正确的展开图是D.故选:D.点评:本题考查了正方体的表面展开图及空间想象能力.易错易混点:学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.8.已知关于x的方程﹣4x+2k=10的解是x=k﹣1,则|k|的值是()A.﹣3 B.﹣7 C.3 D.7考点:一元一次方程的解.分析:把x=k﹣1代入﹣4x+2k=10得出﹣4(k﹣1)+2k=10,求出方程的解即可.解答:解:把x=k﹣1代入﹣4x+2k=10得:﹣4(k﹣1)+2k=10,解得:k=﹣3,故选A.点评:本题考查了一元一次方程的解和解一元一次方程的应用,解此题的关键是得出关于k的一元一次方程,难度适中.二、填空题(每题3分,共30)9.3+(﹣5)=﹣2.考点:有理数的加法.专题:计算题.分析:原式利用异号两数相加的法则计算即可得到结果.解答:解:原式=﹣(5﹣3)=﹣2.故答案为:﹣2点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.10.如图,从A处到B处,选择第②条路最近.理由是两点之间,线段最短.考点:线段的性质:两点之间线段最短.分析:根据两点之间线段最短的性质作答.解答:解:从A处到B处共有3条路,第②条路最近,理由是两点之间,线段最短.故答案为:②;两点之间,线段最短.点评:此题主要考查了线段的性质:两点之间,线段最短.11.x的2倍与5的差,用代数式表示为2x﹣5.考点:列代数式.分析:用x乘2减去5列式即可.解答:解:用代数式表示为2x﹣5.故答案为:2x﹣5.点评:此题考查列代数式,理解题目叙述的运算顺序与方法是解决问题的关键.12.一个角的余角比它的补角的还少20°,则这个角的大小是75°.考点:余角和补角.专题:计算题.分析:首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.解答:解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x=(180°﹣x)﹣20°,解得x=75°,故答案为75°.点评:本题考查了余角与补角的定义,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解,难度适中.13.已知∠A=51°,则∠A的余角是39度.考点:余角和补角.分析:根据余角的定义求解.如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角.解答:解:∠A的余角等于90°﹣51°=39度.故答案为:39.点评:本题比较容易,考查余角的定义.14.如图,AD=4.8厘米,点C是线段AB的中点,点D是线段CB的中点,则AB= 6.4厘米.考点:两点间的距离.分析:根据线段中点的性质,可得AC与BC的关系,CD与BD的关系,根据线段的和差,可得关于BD的方程,根据解方程,可得BD的长,再根据线段的和差,可得答案.解答:解:由点D是线段CB的中点,得BC=2BD,CD=BD.由点C是线段AB的中点,得AC=BC=2BD.由线段的和差,得AC+CD=AD.即2BD+BD=4.8.解得BD=1.6cm.由线段的和差,得AB=AD+BD=4.8+1.6=6.4cm,故答案为:6.4.点评:本题考查了两点间的距离,利用线段中点的性质、线段的和差得出BD的长是解题关键.15.(﹣7xy+4y2)﹣4xy=﹣11xy+4y2.考点:整式的加减.分析:先去括号,再合并同类项即可.解答:解:原式=﹣7xy+4y2﹣4xy=﹣11xy+4y2.故答案为:﹣11xy+4y2.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.计算11°36′+43°34′=55°10′.考点:度分秒的换算.分析:把度分分别相加,再满60进1即可.解答:解:11°36′+43°34′=54°70′=55°10′,故答案为:55°10′.点评:本题考查了度分秒之间换算的应用,注意:1°=60′.17.若a,b互为相反数,c,d互为倒数,则3cd+a+b=3.考点:代数式求值;相反数;倒数.分析:根据互为相反数的两个数和为0与互为倒数的两个数乘积是1解答.解答:解:因为a,b互为相反数,所以a+b=0,因为c,d互为倒数,所以cd=1,则3cd+a+b=3×1+0=3.点评:本题主要考查相反数和倒数的性质.记住互为相反数的两个数和为0;乘积是1的两个数互为倒数是解决问题的关键.18.已知﹣x+y=2,则代数式3x﹣3y﹣7=﹣13.考点:代数式求值.分析:将3x﹣3y﹣7前两项提取公因式﹣3,进而将已知代入求出即可.解答:解:∵﹣x+y=2,∴3x﹣3y﹣7=﹣3(y﹣x)﹣7=﹣3×2﹣7=﹣13.故答案为:﹣13.点评:此题主要考查了代数式求值,正确将原式变形求出是解题关键.三、解答题19.(1)(﹣1)3﹣×[2﹣(﹣3)2].﹣22+|5﹣8|+24÷(﹣3)×(3)化简:3a﹣(4b﹣a)+b;(4)7﹣6x=3﹣4x;(5)﹣=2.(6)2x2﹣(﹣3y)﹣[4x2y+2(x2﹣3xy﹣4)﹣2+3y],其中x=1,y=﹣2.考点:有理数的混合运算;整式的加减;整式的加减—化简求值;解一元一次方程.分析:(1)先算乘方,再算括号里面的运算,再算乘法,最后算减法;先算乘法,绝对值和除法,再算乘法,最后算加法;(3)先去括号,再进一步合并同类项即可;(4)(5)利用解方程的步骤与方法求得未知数的值即可;(6)先去括号,再合并化简,最后代入求得数值即可.解答:解:(1)原式=﹣1﹣×[2﹣9]=﹣1+=;原式=﹣4+3+(﹣8)×=﹣1﹣=﹣;(3)原式=3a﹣4b+a+b=4a﹣3b;(4)7﹣6x=3﹣4x﹣6x+4x=3﹣7﹣2x=﹣4x=2;(5)﹣=25(x﹣4)﹣2=205x﹣20﹣4x﹣2=205x﹣4x=20+20+2x=42;(6)原式=2x2+3y﹣[4x2y+2x2﹣6xy﹣8﹣4x2y+4xy+4+3y]=2x2+3y﹣2x2+2xy+4﹣3y=2xy+4,当x=1,y=﹣2时,原式=﹣4+4=0.点评:此题考查有理数的混合运算和整式加减,解方程,以及整式的化简求值,掌握运算顺序和解答的步骤是解决问题的关键.20.如图,已知O为直线AF上一点,OE平分∠AOC,(1)若∠AOE=20°,求∠FOC的度数;若OD平分∠BOC,∠AOB=84°,求∠DOE的度数.考点:角平分线的定义.分析:①利用角平分线的定义求出∠AOC,∠FOC与∠AOC和是180°.②从图中不难看出∠DOE是由∠AOB与∠BOC半角之和,也就是∠AOB的一半.解答:解:①∵OE平分∠AOC,∠AOE=20°∴∠AOC=2∠AOE=40°∴∠FOC=180°﹣∠AOC=140°;②∵OE平分∠AOC,OD平分∠BOC,∴∠AOE=∠COE=∠AOC,∠COD=∠BOD=∠BOC,∴∠DOE=∠COE+∠COD=∠AOC+∠BOC=∠AOB,已知∠AOB=84°∴∠DOE=42°.点评:本题考查了角平分线的定义,解决本题的关键牢记角平分线的定义,注意实际问题中的转化.21.如图,已知AC=3AB,BC=12,点D 是线段AC的中点,求BD的长度.考点:两点间的距离.分析:根据线段的和差,可得AB与BC的关系,根据线段中点的性质,可得CD的长,再根据线段的和差,可得答案.解答:解:由线段的和差,得BC=AC﹣AB=3AB﹣AB=2AB.由2AB=BC=12,得AB=6.由线段的和差,得AC=AB+CB=6+12=18.由点D是线段AC的中点,得DC=AC=×18=9.由线段的和差,得BD=BC﹣DC=12﹣9=3.点评:本题考查了两点间的距离,利用线段的和差得出AB的长是解题关键.22.经营户小李在水果批发市场上了解到一下信息:蔬菜品种苹果香蕉西瓜梨子批发价(元/千克)3.5 1.2 1.5 1.3零售价(元/千克)4.5 1.5 2.8 1.8他共用135元钱从市场上批发了苹果和西瓜共50千克到市场上去卖.(1)请计算小李苹果和西瓜各买了多少千克?若他能够当天卖完,请问他能赚多少钱?考点:一元一次方程的应用.分析:(1)设苹果批发买了x千克,则西瓜批发买了(50﹣x)千克,根据苹果批发总价+西瓜批发总价=135元,列出方程求解;求当天卖完这些苹果和西瓜能赚多少钱?就用零售价卖出的总价﹣批发总价.解答:解:(1)设苹果批发买了x千克,则西瓜批发买了(50﹣x)千克,依题意有3.5x+1.5(50﹣x)=135,解得x=30,50﹣x=50﹣30=20.答:苹果批发买了30千克,则西瓜批发买了20千克;(4.5﹣3.5)×30+×20=1×30+1.3×20=30+26=56(元).答:他能赚56元钱.点评:考查了一元一次方程的应用,解题关键是弄清题意,合适的等量关系,即苹果批发总价+西瓜批发总价=135元,列出方程,赚的钱=零售价卖出的总价一批发总价.23.如图,已知O为直线AF上一点,射线OC平分∠AOB,∠COD=20°;(1)若∠AOB=80°,试说明OD为∠AOC的角平分线;若∠BOD=60°,求∠COF的度数.考点:角平分线的定义.分析:(1)因为射线OC平分∠AOB,所以∠AOC=∠BOC=∠AOB=40°,根据∠AOD=∠AOC﹣∠COD=40°﹣20°=20°,∠COD=20°,所以∠AOD=∠COD,所以OD为∠AOC的角平分线;先根据∠BOD=60°,∠COD=20°,得到∠BOC=∠BOD﹣∠COD=60°﹣20°=40°,因为射线OC平分∠AOB,所以∠AOB=2∠BOC=80°,所以∠BOF=180°﹣∠AOB=180°﹣80°=100°,所以∠COF=∠BOF+∠BOC=100°+40°=140°.解答:解:(1)∵射线OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=40°,∵∠AOD=∠AOC﹣∠COD=40°﹣20°=20°,∠COD=20°,∴∠AOD=∠COD,∴OD为∠AOC的角平分线;∵∠BOD=60°,∠COD=20°,∴∠BOC=∠BOD﹣∠COD=60°﹣20°=40°,∵射线OC平分∠AOB,∴∠AOB=2∠BOC=80°,∴∠BOF=180°﹣∠AOB=180°﹣80°=100°,∴∠COF=∠BOF+∠BOC=100°+40°=140°.点评:本题考查了角平分线的定义,解决本题的关键是熟记角平分线的定义.24.加油啊!小朋友!春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A.计时制:0.05元/分钟,B.包月制:50元/月(只限一台电脑上网),另外,不管哪种收费方式,上网时都得加收通讯费0.02元/分.(1)设小明某月上网时间为x分,请写出两种付费方式下小明应该支付的费用.什么时候两种方式付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方案呢?考点:一元一次方程的应用;列代数式;代数式求值.分析:(1)根据第一种方式为计时制,每分钟0.05,第二种方式为包月制,每月50元,两种方式都要加收每分钟通信费0.02元可分别有x表示出收费情况.根据两种付费方式,得出等式方程求出即可;(3)根据一个月只上网15小时,分别求出两种方式付费钱数,即可得出答案;解答:解:(1)根据题意得:第一种方式为:(0.05+0.02)x=0.07x.第二种方式为:50+0.02x.设上网时长为x分钟时,两种方式付费一样多,依题意列方程为:(0.05+0.02)x=50+0.02x,解得x=1000,答:当上网时全长为1000分钟时,两种方式付费一样多;(3)当上网15小时,得900分钟时,A方案需付费:(0.05+0.02)×900=63(元),B方案需付费:50+0.02×900=68(元),∵63<68,∴当上网15小时,选用方案A合算,点评:此题主要考查了一元一次方程的应用以及一元一次不等式的应用,此题比较典型,同学们应重点掌握.七年级数学上册期末试卷2一、精心选一选(每题2分,共20分)1.在跳远测试中,及格的标准是4.00米,王菲跳出了4.12米,记为+0.12米,何叶跳出了3.95米,记作()A.+0.05米B.﹣0.05米C.+3.95米D.﹣3.95米2.下列空间图形中是圆柱的为()A.B.C.D.3.小红家分了一套住房,她想在自己的房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定()A.1根B.2根C.3根D.4根4.下列各式中运算正确的是()A.6a﹣5a=1B.a2+a2=a4C.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b5.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水.请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水()A.23760毫升B.2.376×105毫升C.23.8×104毫升D.237.6×103毫升6.某同学解方程5x﹣1=□x+3时,把□处数字看错得x=﹣,他把□处看成了()A.3B.﹣9C.8D.﹣87.下列展开图中,不能围成几何体的是()A.B.C.D.8.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10B.﹣8C.﹣10D.89.某商场有两件进价不同上衣均卖了80元,一件盈利60%,另一件亏本20%,这次买卖中商家()A.不赔不赚B.赚了8元C.赚了10元D.赚了32元10.一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()A.31,32,64B.31,62,63C.31,32,33D.31,45,46二、细心填一填(每题3分,共30分)11.我市12月中旬的一天中午气温为5℃,晚6时气温下降了8℃,则晚6时气温为℃.12.数轴上点A表示的数是﹣4,点B表示的数是3,那么AB=.13.12.42°=°′″.14.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.15.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128°,则∠BOC=.16.已知(a﹣3)2+|b+6|=0,则方程ax=b的解为x=.17.如图:火车从A地到B地途经C,D,E,F四个车站,且相邻两站之间的距离各不相同,则售票员应准备种票价的车票.18.麦迪在一次比赛中22投14中得28分,除了3个三分球全中外,他还投中了个两分球和个罚球.19.小明同学在上楼梯时发现:若只有一个台阶时,有一种走法,若有二个台阶时,可以一阶一阶地上,或者一步上二个台阶,共有两种走法,如果他一步只能上一个或者两个台阶,根据上述规律,有三个台阶时,他有三种走法,那么有四个台阶时,共有种走法.20.用“数字牌”做24点游戏,抽出的四张牌分别表示2,﹣3,﹣4,6(每张牌只能用一次,可以用加,减,乘,除等运算)请写出一个算式,使结果为24:.三、用心解一解(本大题共70分)21.计算:(1)(+﹣)×(﹣12);(2)2×(﹣3)2﹣5÷×2.22.解方程:.23.先化简,再求值:2a2b﹣[2ab2+2(a2b+2ab2)],其中a=﹣,b=1.24.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.26.用一张正方形的纸制作成一个无盖的长方体盒子,设这个正方形的边长为a,这个无盖的长方体盒子高为h.(只考虑如图所示,在正方形的四个角上各减去一个大小相同的正方形的情况.)(1)若a=6cm,h=2cm,求这个无盖长方体盒子的容积;(2)用含a和h的代数式表示这个无盖长方体盒子的容积;(3)某学习小组合作探究发现:当时,折成的长方体盒子容积最大.试用这一结论计算当a=18cm时这个无盖长方体盒子的最大容积.27.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.参考答案与试题解析一、精心选一选(每题2分,共20分)1.(2014秋•东丰县校级期末)在跳远测试中,及格的标准是4.00米,王菲跳出了4.12米,记为+0.12米,何叶跳出了3.95米,记作()A.+0.05米B.﹣0.05米C.+3.95米D.﹣3.95米考点:正数和负数.分析:明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中超过标准的一个为正,则另一个不到标准的就用负表示,即可解决.解答:解:“正”和“负”相对,所以王菲跳出了4.12米,比标准多0.12米,记为+0.12米,何叶跳出了3.95米,比标准少0.05米,应记作﹣0.05米.故选B.点评:用正数表示其中一种意义的量,另一种量用负数表示.特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.2.(2005•台州)下列空间图形中是圆柱的为()A.B.C.D.考点:认识立体图形.分析:根据日常生活中的常识及圆柱的概念和特性即解.解答:解:结合图形的特点,A是圆柱,B是圆锥,C是圆台,D是棱柱.故选A.点评:熟记常见立体图形的特征是解决此类问题的关键.圆柱的侧面是光滑的曲面,且上下底面是全等的两个圆.3.(2014秋•东丰县校级期末)小红家分了一套住房,她想在自己的房间的墙上钉一根细木条,挂上自己喜欢的装饰物,那么小红至少需要几根钉子使细木条固定()A.1根B.2根C.3根D.4根考点:直线的性质:两点确定一条直线.分析:根据直线的性质求解,判定正确选项.解答:解:根据直线的性质,小红至少需要2根钉子使细木条固定.只有B符合.故选B.点评:考查直线的性质.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.4.(2012•深圳模拟)下列各式中运算正确的是()A.6a﹣5a=1B.a2+a2=a4C.3a2+2a3=5a5D.3a2b﹣4ba2=﹣a2b考点:合并同类项.专题:计算题.分析:根据同类项的定义及合并同类项法则解答.解答:解:A、6a﹣5a=a,故A错误;B、a2+a2=2a2,故B错误;C、3a2+2a3=3a2+2a3,故C错误;D、3a2b﹣4ba2=﹣a2b,故D正确.故选:D.点评:合并同类项的方法是:字母和字母的指数不变,只把系数相加减.注意不是同类项的一定不能合并.5.(2014秋•东丰县校级期末)我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水.请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水()A.23760毫升B.2.376×105毫升C.23.8×104毫升D.237.6×103毫升考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:2×0.05×(22×60×60)×30=0.1×79200×30=2.376×105毫升.故选B.点评:用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1,当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零).6.(2014秋•东丰县校级期末)某同学解方程5x﹣1=□x+3时,把□处数字看错得x=﹣,他把□处看成了()A.3B.﹣9C.8D.﹣8考点:一元一次方程的解.分析:解此题要先把x的值代入到方程中,把方程转换成求未知系数的方程,然后解得未知系数的值.解答:解:把x=﹣代入5x﹣1=□x+3,得5×(﹣)﹣1=﹣□+3,解得□=8.故选:C.点评:本题求□的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.7.(2013秋•莒南县期末)下列展开图中,不能围成几何体的是()A.B.C.D.考点:几何体的展开图.分析:根据个图形的特点判断可围成的几何体,再作答.解答:解:A能围成三棱锥,C能围成三棱柱,D能围成四棱柱,只有B两个底面在侧面的同一侧,不能围成四棱柱.故选B.点评:熟记各种几何体的平面展开图是解题的关键.8.(2014秋•新洲区期末)关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10B.﹣8C.﹣10D.8考点:同解方程.专题:计算题.分析:在题中,可分别求出x的值,当然两个x都是含有m的代数式,由于两个x相等,可列方程,从而进行解答.解答:解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2由题意知=m﹣2解之得:m=﹣8.故选:B.点评:根据题目给出的条件,列出方程组,便可求出未知数.9.(2014秋•营口期末)某商场有两件进价不同上衣均卖了80元,一件盈利60%,另一件亏本20%,这次买卖中商家()A.不赔不赚B.赚了8元C.赚了10元D.赚了32元考点:一元一次方程的应用.专题:销售问题.分析:此题可以分别设两件上衣的进价是a元,b元,根据售价=成本±利润,列方程求得两件上衣的进价,再计算亏盈.解答:解:设盈利60%的上衣的进价是a元,亏本20%的上衣的进价是b元.则有(1)a(1+60%)=80,a=50;(2)b(1﹣20%)=80,b=100.总售价是80+80=160(元),总进价是50+100=150(元),所以这次买卖中商家赚了10元.故选C.点评:此题应分别列方程求得两件上衣的进价,再作比较.10.(2014秋•温州期末)一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()A.31,32,64B.31,62,63C.31,32,33D.31,45,46考点:规律型:数字的变化类.专题:规律型.分析:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可解出接下来的3个数.解答:解:依题意得:接下来的三组数为31,62,63.故选B.。
2015—2016学年七上期末数学试卷
12015—2016学年度上学期七年级期末水平测试数 学 试 卷(全卷三个大题,共24个小题;答卷时间:120分钟;满分:120分) 注意:本卷为试题卷。
学生解答作题,必须在答题卷上。
答案书写在答题卷相应位置上,答在试题卷、草稿纸上的答案无效。
一、选择题(每小题的四个选项中只有一个符合题意,请把符合题意的选项前的字母写在答题卷指定的位置。
每小题3分,共30分)1.如果+20%表示增加20%,那么-6%表示( )A .增加20%B .增加6%C .减少6%D .减少26% 2.下列方程为一元一次方程的是( )A . 03=+yB . 32=+y xC .23-xD .012=+x 3.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是( ) A .1枚 B .2枚 C .3枚 D .任意枚 4. 下列计算正确..的是( ) A .ab b a 532=+ B . x x x 532=+ C .06622=-ab b a D .532532a a a =+5.如果一个几何体从某一方向看到的平面图形中有圆,那么这个几何体不可能...是( )A .圆锥B .圆柱C .长方体D .球 6.方程2x +a =0的解是x =3,则a 等于( )A .6B .3C .-3D .-6 7.下列图形中,哪一个是正方体的展开图( )8.若代数式3x -7和6x -20互为相反数,则x 的值为( )A .3B .0C .1D .-1 9. 如右图,∠1=15°,∠AOC=90°,点B 、O 、D 在同一直线上,则∠2的度数为( )A .75°B .105°C .15°D .165°10.一个角的余角比它的补角的31多10°,则这个角的度数为( )A .30°B .45°C .60°D .75°二、填空题(每小题3分,共24分)11.-2016的相反数是________,绝对值是________,倒数是________。
2015-2016学年湖北省武汉市江汉区七年级(上)期末数学试卷
2015-2016学年湖北省武汉市江汉区七年级(上)期末数学试卷一、选择题(共8小题,每小题3分,共24分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.1.(3分)﹣的相反数是()A.B.﹣ C.﹣ D.2.(3分)我市2015年某一天的最高气温为8℃,最低气温为﹣2℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃3.(3分)青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示应为()A.25×105 B.2.5×106C.0.25×107D.2.5×1074.(3分)下列运算正确的是()A.4m﹣m=3 B.m2+m3=m5C.4m+5n=9mn D.m2+m2=2m25.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣8 B.0 C.2 D.86.(3分)把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是()A.两地之间线段最短B.直线比曲线短C.两点之间直线最短D.两点确定一条直线7.(3分)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角 B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角8.(3分)整理一批图书,由一个人做要40h完成,现计划有一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做4h,下列四个方程中正确的是()A.+=1 B.+=1C.+=1 D.+=1二、填空题(共8小题,每小题3分,共24分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.9.(3分)某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是元.10.(3分)设某个数为x,它的4倍是它的3倍与7的差,则这个数是.11.(3分)12a m﹣1b3与是同类项,则m+n=.12.(3分)将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为.13.(3分)若∠α=20°40′,则∠α的补角的大小为.14.(3分)若|a﹣2|+(b+3)2=0,则a﹣2b的值为.15.(3分)已知∠AOB=48°,∠BOC=20°,则∠AOC=.16.(3分)如图所示,将图沿线折起来,得到一个正方体,那么“我”的对面是(填汉字)三、解答题(共5题,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.17.(10分)计算:(1)12﹣(﹣18)+(﹣7)﹣15(2)[﹣42﹣(﹣1)3×(﹣2)3]÷2×(﹣)2.18.(10分)解方程:(1)2x﹣(x+10)=6x;(2)=3+.19.(10分)先化简,再求值:x2+(2xy﹣3y2)﹣2(x2+yx﹣2y2),其中x=﹣1,y=2.20.(10分)某车间32名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母5000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?21.(12分)【背景知识】数轴上A点、B点表示的数为a、b,则A、B两点之间的距离AB=|a﹣b|;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为﹣5?并直接写出在这一运动过程中点M的运动方向和运动速度.四、选择题(共2小题,每小题4分,共8分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.22.(4分)有理数a、b、c在数轴上的位置如图,则|c﹣a|﹣|a+b|+|b﹣c|的值为()A.0 B.2a﹣2c+2b C.﹣2c D.2a23.(4分)如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是()A.①②B.①②④C.②③④D.①②③④五、填空题(共2题,每题4分,共8分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.24.(4分)观察下面的一列单项式:﹣x,2x2,﹣4x3,8x4,﹣16x5,…根据你发现的规律,第8个单项式为,第n个单项式为.25.(4分)某商场经销一种商品,由于进货时的价格比原来的进价低了8%,但售价不变,这样使得利润率由原利润率a%增长为(a+10)%,则原利润率为.六、解答题(共3题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.26.(10分)点A,B,C在同一直线上,(1)若AB=8,AC:BC=3:1,求线段AC的长度;(2)若AB=m,AC:BC=n:1(n为大于1的整数),求线段AC的长度.27.(12分)已知∠AOD=α,射线OB、OC在∠AOD的内部,OM平分∠AOC,ON平分∠BOD.(1)如图1,当射线OB与OC重合时,求∠MON的大小;(2)在(1)的条件下,若射线OC绕点O逆时针旋转一定角度θ,如图2,求∠MON的大小;(3)在(2)的条件下,射线OC绕点O继续逆时针旋转,旋转到与射线OA的反向延长线重合为止,在这一旋转过程中,∠MON=.28.(12分)某超市开展春节促销活动,出售A、B两种商品,活动方案有如下两种:(同一商品不可同时参加两种活动)(1)某单位购买A商品40件,B商品95件,选用何种活动方案更划算?能便宜多少钱?(2)若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多15件,请问该单位该如何选择活动方案才能获得最大优惠?请说明理由.2015-2016学年湖北省武汉市江汉区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.1.(3分)﹣的相反数是()A.B.﹣ C.﹣ D.【解答】解:因为+(﹣)=0,所以﹣的相反数是,故选D.2.(3分)我市2015年某一天的最高气温为8℃,最低气温为﹣2℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【解答】解:8﹣(﹣2)=8+2=10℃.故选:D.3.(3分)青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示应为()A.25×105 B.2.5×106C.0.25×107D.2.5×107【解答】解:将2500000用科学记数法表示为2.5×106.故选B.4.(3分)下列运算正确的是()A.4m﹣m=3 B.m2+m3=m5C.4m+5n=9mn D.m2+m2=2m2【解答】解:A、4m﹣m=(4﹣1)m=3m,故本选项错误;B、m2与m3不是同类项,不能合并,故本选项错误;C、4m与5n不是同类项,不能合并,故本选项错误;D、m2+m2=(1+1)m2=2m2,故本选项正确.故选:D.5.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣8 B.0 C.2 D.8【解答】解:把x=﹣2代入方程得:﹣4+a﹣4=0,解得:a=8.故选D.6.(3分)把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是()A.两地之间线段最短B.直线比曲线短C.两点之间直线最短D.两点确定一条直线【解答】解:把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是两地之间线段最短.故选:A.7.(3分)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角 B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=∠ADE,∴∠A+∠ADE=90°,∴∠A和∠ADE互为余角.故选:C.8.(3分)整理一批图书,由一个人做要40h完成,现计划有一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做4h,下列四个方程中正确的是()A.+=1 B.+=1C.+=1 D.+=1【解答】解:设应先安排x人工作,根据题意得:+=1故选B.二、填空题(共8小题,每小题3分,共24分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.9.(3分)某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是2a+10元.【解答】解:根据题意得:本月的收入为:2a+10(元).故答案为:2a+10.10.(3分)设某个数为x,它的4倍是它的3倍与7的差,则这个数是﹣7.【解答】解:设某个数为x,根据题意得4x=3x﹣7,解得x=﹣7.故答案为﹣7.11.(3分)12a m﹣1b3与是同类项,则m+n=7.【解答】解:∵12a m﹣1b3与是同类项,∴m﹣1=3,n=3,∴m=4,n=3.∴m+n=7.故答案为:7.12.(3分)将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为160°.【解答】解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为:160°.13.(3分)若∠α=20°40′,则∠α的补角的大小为159°20′.【解答】解:∵∠α=20°40′,∴∠α的补角=180°﹣20°40′=159°20′,故答案为:159°20′.14.(3分)若|a﹣2|+(b+3)2=0,则a﹣2b的值为8.【解答】解:∵|a﹣2|+(b+3)2=0,∴a=2,b=﹣3,则a﹣2b=2+6=8,故答案为:8.15.(3分)已知∠AOB=48°,∠BOC=20°,则∠AOC=28°或68°.【解答】解:①当∠BOC的一边OC在∠AOB外部时,则∠AOC=∠AOB+∠BOC=48°+20°=68°;②当∠BOC的一边OC在∠AOB内部时,则∠AOC=∠AOB﹣∠BOC=48°﹣20°=28°.故答案为:28°或68°.16.(3分)如图所示,将图沿线折起来,得到一个正方体,那么“我”的对面是数(填汉字)【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“数”是相对面,“喜”与“课”是相对面,“欢”与“学”是相对面.故答案为:数.三、解答题(共5题,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.17.(10分)计算:(1)12﹣(﹣18)+(﹣7)﹣15(2)[﹣42﹣(﹣1)3×(﹣2)3]÷2×(﹣)2.【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=(﹣16﹣8)××=﹣24××=﹣.18.(10分)解方程:(1)2x﹣(x+10)=6x;(2)=3+.【解答】解:(1)方程去括号得:2x﹣x﹣10=6x,移项合并得:5x=﹣10,解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x,去括号得:2x+2=12+2﹣x,移项合并得:3x=12,解得:x=4.19.(10分)先化简,再求值:x2+(2xy﹣3y2)﹣2(x2+yx﹣2y2),其中x=﹣1,y=2.【解答】解:x2+(2xy﹣3y2)﹣2(x2+yx﹣2y2),=x2+2xy﹣3y2﹣2x2﹣2yx+4y2,=﹣x2+y2,当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.20.(10分)某车间32名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母5000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?【解答】解:设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32﹣x)名工人生产螺母,根据题意得:1500x×2=5000(32﹣x),解得:x=20.答:为了使每天的产品刚好配套,应该分配20名工人生产螺钉.21.(12分)【背景知识】数轴上A点、B点表示的数为a、b,则A、B两点之间的距离AB=|a﹣b|;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为60;线段AB的中点M所表示的数为﹣10.(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为﹣5?并直接写出在这一运动过程中点M的运动方向和运动速度.【解答】解:(1)根据题意可知,运动开始前,A、B两点的距离AB=|﹣40﹣20|=60;线段AB的中点M所表示的数为:;(2)设它们按上述方式运动,A、B两点经过x秒会相遇,则点A运动x秒后所在位置的点表示的数为﹣40+3x;点B运动x秒后所在位置的点表示的数为20﹣2x;根据题意,得:﹣40+3x=20﹣2x解得x=12,∴它们按上述方式运动,A、B两点经过12秒会相遇,相遇点所表示的数是:﹣40+3x=﹣40+3×12=﹣4;答:A、B两点经过12秒会相遇,相遇点所表示的数是﹣4.(3)根据题意,得:,解得t=10,∵t=0时,中点M表示的数为﹣10;t=10时,中点M表示的数为﹣5;∴中点M的运动方向向右,运动速度为.答:经过10秒,线段AB的中点M表示的数是﹣5.M点的运动方向向右,运动速度为每秒个单位长度.故答案为:(1)60,﹣10.四、选择题(共2小题,每小题4分,共8分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.22.(4分)有理数a、b、c在数轴上的位置如图,则|c﹣a|﹣|a+b|+|b﹣c|的值为()A.0 B.2a﹣2c+2b C.﹣2c D.2a【解答】解:根据数轴上点的位置得:b<c<0<a,且|a|<|b|,则c﹣a<0,a+b<0,b﹣c<0,则|c﹣a|﹣|a+b|+|b﹣c|=a﹣c+a+b+c﹣b=2a.故选D.23.(4分)如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是()A.①②B.①②④C.②③④D.①②③④【解答】解:∵H为AC的中点,M为AB的中点,N为BC的中点,∴AH=CH=AC,AM=BM=AB,BN=CN=BC,∴MN=MB+BN=(AB+BC)=AC,∴MN=HC,①正确;(AH﹣HB)=(AB﹣BH﹣BH)=MB﹣HB=MH,②正确;MN=AC,③错误;(HC+HB)=(BC+HB+HB)=BN+HB=HN,④正确,故选:B.五、填空题(共2题,每题4分,共8分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.24.(4分)观察下面的一列单项式:﹣x,2x2,﹣4x3,8x4,﹣16x5,…根据你发现的规律,第8个单项式为128x8,第n个单项式为(﹣1)n2n﹣1x n.【解答】解:根据分析的规律,得第8个单项式是27x8=128x8.第n个单项式为(﹣1)n2n﹣1x n,故答案为:128x8,(﹣1)n2n﹣1x n.25.(4分)某商场经销一种商品,由于进货时的价格比原来的进价低了8%,但售价不变,这样使得利润率由原利润率a%增长为(a+10)%,则原利润率为15%.【解答】解:设原商品的进价为b元.根据题意得:.解得:x=b(1+a%).根据题意得:=(a+10)%.解得:a%=15%.故答案为:15%.六、解答题(共3题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.26.(10分)点A,B,C在同一直线上,(1)若AB=8,AC:BC=3:1,求线段AC的长度;(2)若AB=m,AC:BC=n:1(n为大于1的整数),求线段AC的长度.【解答】解:(1)当点C在线段AB上时,∵AB=8,AC:BC=3:1,∴AC=6,当点B在线段AC上时,∵AB=8,AC:BC=3:1,∴BC=4,∴AC=AB+BC=12;(2)当点C在线段AB上时,∵AB=m,AC:BC=n:1,∴AC=,当点B在线段AC上时,∵AB=m,AC:BC=n:1,∴BC=,∴AC=AB+BC=m+=.27.(12分)已知∠AOD=α,射线OB、OC在∠AOD的内部,OM平分∠AOC,ON平分∠BOD.(1)如图1,当射线OB与OC重合时,求∠MON的大小;(2)在(1)的条件下,若射线OC绕点O逆时针旋转一定角度θ,如图2,求∠MON的大小;(3)在(2)的条件下,射线OC绕点O继续逆时针旋转,旋转到与射线OA的反向延长线重合为止,在这一旋转过程中,∠MON=(θ﹣α).【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=∠AOB,∠BON=∠BOD,∴∠MON=∠COM+∠BON﹣∠BOC=(∠AOC+∠BOD),∵∠AOD=∠AOB+∠BOD=α,∴∠MON=α;(2)∵OM平分∠AOC,ON平分∠BOD.∴∠COM=∠AOC,∠BON=∠BOD,∴∠MON=∠COM+∠BON﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC,∵∠AOD=∠AOC+∠BOD﹣∠BOC=α,∴∠AOC+∠BOD=α+θ,∴∠MON=(α+θ)﹣θ=(α﹣θ);(3)如图3,∵OM平分∠AOC,ON平分∠BOD.∴∠AOM=∠AOC=90°,∠DON=∠BOD,∴∠MON=90°﹣α+∠BOD,∵∠AOD﹣∠BOD+BOC=180°,∴∠BOD=α+θ﹣180°,∴∠MON=90°﹣α+∠BOD=90°﹣α+(α+θ﹣180°)=(θ﹣α).故答案为(θ﹣α).28.(12分)某超市开展春节促销活动,出售A、B两种商品,活动方案有如下两种:(同一商品不可同时参加两种活动)(1)某单位购买A商品40件,B商品95件,选用何种活动方案更划算?能便宜多少钱?(2)若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多15件,请问该单位该如何选择活动方案才能获得最大优惠?请说明理由.【解答】解:(1)当单位购买A商品40件,B商品95件时,方案一付款:40×50×(1﹣20%)+95×80×(1﹣30%)=6920元;方案二付款:(40×50+95×80)×(1﹣28%)=6912元,∵6920>6912,6920﹣6912=8,∴选用方案二更划算,能便宜8元;(2)单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多15件时,方案一付款:50x×(1﹣20%)+(2x+15)×80×(1﹣30%)=40x+112x+840=152x+840;由x+(2x+15)≤51,可得x≤12方案二付款:当1≤x≤12时,50x+80(2x+15)=50x+160x+1200=210x+1200,当x≥12时,[50x+80(2x+15)]×(1﹣28%)=(210x+1200)×72%=151.2x+864,当152x+840=151.2x+864时,可得x=30,即当x<30时,选择方案一,当x=30时,方案一和方案二一样,当x>30时,选择方案二.。
2015-2016学年湖北省武汉市江岸区七年级(上)期末数学试卷带解析答案
2015-2016学年湖北省武汉市江岸区七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)武汉冬季某天的最高气温为5℃,最低气温为﹣3℃,这天的最高气温与最低气温的温差为()A.2℃B.﹣3℃C.5℃D.8℃2.(3分)2015年,美国、菲律宾等国不断在南中国海九段线内滋事,中国海军展现了维护中国领海主权的决心和信心.据悉,南中国海九段线以内的所有海域面积约为3120000平方公里,把数3120000用科学记数法表示为()A.3.12×105B.3.12×106C.31.2×105D.0.312×1073.(3分)下列说法中正确的是()A.﹣23x2y的系数是﹣2,次数是6B.单项式﹣πa m+2b7﹣m的系数是π,次数是9C.多项式﹣5x7y+4x2+π﹣2的次数是8,项数是3D.是二次四项式4.(3分)如图,A处有一艘轮船,B处有一盏灯塔,则在轮船A处看灯塔B的方向是()A.南偏东60°B.南偏东30°C.西偏北30°D.北偏西60°5.(3分)如图的几何体的俯视图是()A.B.C. D.6.(3分)解方程时,去分母、去括号后,正确结果是()A.4x+1﹣10x+1=1 B.4x+2﹣10x﹣1=1 C.4x+2﹣10x﹣1=6 D.4x+2﹣10x+1=6 7.(3分)长方形如图折叠,D点折叠到D′的位置.已知∠D′FC=76°,则∠EFC=()A.124°B.108°C.118° D.128°8.(3分)如图,线段AB上有C、D两点,以AC、CD、BD为直径的圆的周长分别为C1、C2、C3,以AB为直径的圆的周长为C,下列结论正确的是()A.C1+C2=C3+C B.C1+C2+C3=C C.C1+C2+C3>C D.C1+C2+C3<C9.(3分)幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;若每人分4个,则差2个,问有多少个苹果?设有x个苹果,则可列方程为()A.3x+1=4x﹣2 B.C.D.10.(3分)如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)﹣3的相反数是;﹣3的倒数是;﹣3的绝对值是.12.(3分)小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:2y+=﹣y﹣■.小明翻看了书后的答案,此方程的解是y=﹣,则这个常数是.13.(3分)已知线段MN,P是MN的中点,Q是PN的中点,R是MQ的中点.若MR=2,则MN=.14.(3分)已知一个角的补角比这个角的余角3倍大10°,则这个角的度数是度.15.(3分)一列火车匀速行驶,完全通过一条长450米的隧道需要25秒的时间.隧道顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的速度为米/秒.16.(3分)如图,线段OA绕点O逆时针旋转一周,满足∠EOF始终在∠AOB 的内部且∠EOF=58°.线段OM、ON分别为∠AOE和∠BOF的平分线,在旋转过程中,∠MON的最大值是.三、解答题(共8题,共72分)17.(12分)计算:(1)12﹣(﹣12)+(﹣7)﹣15(2)(﹣2)3﹣22﹣|﹣|×(﹣10)2.18.(6分)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.19.(6分)解方程:.20.(8分)如图,将一副三角板摆放在一起(1)∠AOC的度数为,射线OA、OB、OC组成所有小于平角的角的和为.(2)反向延长射线OA到D,OE为∠BOD的平分线,OF为∠COD的平分线,请按题意画出图形,并求出∠EOF的度数.21.(8分)如图,已知线段AB(1)延长线段AB到C,使BC=AB,D为AC的和中点,请准确画出图形并标出点D.(2)若DC=2,求AB的长.22.(10分)2016年春节临近,武汉掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(比如:顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上一和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?完成表后就可以做出选择商场甲商场乙商场丙商场实际付款(元)(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100元减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了20元钱,问丙商场先打了多少折后再参加活动?(结果精确到0.01)23.(10分)如图,有两段线段AB=2(单位长度),CD=1(单位长度)在数轴上运动.点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC=(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,若BC=6(单位长度),求t的值(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,设M为AC中点,N为BD中点,则线段MN的长为.24.(12分)已知,如图(1),∠AOB和∠COD共顶点O,OB和OD重合,OM 为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β(1)如图(2),若α=90°,β=30°,则,∠MON=(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示)(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O 同时逆时针旋转,转速为1°/秒(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.2015-2016学年湖北省武汉市江岸区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)武汉冬季某天的最高气温为5℃,最低气温为﹣3℃,这天的最高气温与最低气温的温差为()A.2℃B.﹣3℃C.5℃D.8℃【解答】解:5﹣(﹣3)=5+3=8℃.故选:D.2.(3分)2015年,美国、菲律宾等国不断在南中国海九段线内滋事,中国海军展现了维护中国领海主权的决心和信心.据悉,南中国海九段线以内的所有海域面积约为3120000平方公里,把数3120000用科学记数法表示为()A.3.12×105B.3.12×106C.31.2×105D.0.312×107【解答】解:数3120000用科学记数法表示为3.12×106,故选:B.3.(3分)下列说法中正确的是()A.﹣23x2y的系数是﹣2,次数是6B.单项式﹣πa m+2b7﹣m的系数是π,次数是9C.多项式﹣5x7y+4x2+π﹣2的次数是8,项数是3D.是二次四项式【解答】解:A单项式的系数是﹣8,次数是3,故A错误;B单项式的系数是﹣π,故B错误;C多项式的项数是3,故C正确;D多项式是二次三项式,故D错误;故选:C.4.(3分)如图,A处有一艘轮船,B处有一盏灯塔,则在轮船A处看灯塔B的方向是()A.南偏东60°B.南偏东30°C.西偏北30°D.北偏西60°【解答】解:如图所示:可得∠CAB=60°,即在轮船A处看灯塔B的方向是:南偏东60°.故选:A.5.(3分)如图的几何体的俯视图是()A.B.C. D.【解答】解:从上面看是5个矩形,左边矩形的右边是虚线,右边矩形的左边是虚线,故选:C.6.(3分)解方程时,去分母、去括号后,正确结果是()A.4x+1﹣10x+1=1 B.4x+2﹣10x﹣1=1 C.4x+2﹣10x﹣1=6 D.4x+2﹣10x+1=6【解答】解:方程去分母得:2(2x+1)﹣(10x+1)=6,去括号得:4x+2﹣10x﹣1=6,故选:C.7.(3分)长方形如图折叠,D点折叠到D′的位置.已知∠D′FC=76°,则∠EFC=()A.124°B.108°C.118° D.128°【解答】解:根据翻折不变性得出,∠DFE=∠EFD′∵∠D′FC=76°,∠DFE+∠EFD′+∠D′FC=180°,∴2∠EFD′=180°﹣76°=104°∴∠EFD′=52°,∴∠EFC=∠EFD′+∠D′FC=76°+52°=128°.故选:D.8.(3分)如图,线段AB上有C、D两点,以AC、CD、BD为直径的圆的周长分别为C1、C2、C3,以AB为直径的圆的周长为C,下列结论正确的是()A.C1+C2=C3+C B.C1+C2+C3=C C.C1+C2+C3>C D.C1+C2+C3<C【解答】解:∵⊙O、⊙O1、⊙O2、⊙O3的周长C、C1、C2、C3;∴C=ABπ,C1=ACπ,C2=CDπ,C3=BDπ;∴ABπ=ACπ+CDπ+BDπ=(AC+CD+BD)π,故C与C1、C2、C3的数量关系为:C=C1+C2+C3.9.(3分)幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;若每人分4个,则差2个,问有多少个苹果?设有x个苹果,则可列方程为()A.3x+1=4x﹣2 B.C.D.【解答】解:设有x个苹果,由题意得,=.故选:B.10.(3分)如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)﹣3的相反数是3;﹣3的倒数是﹣;﹣3的绝对值是3.【解答】解:﹣3的相反数是3;﹣3的倒数是﹣;﹣3的绝对值是3.故答案为:3、﹣、3.12.(3分)小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:2y+=﹣y﹣■.小明翻看了书后的答案,此方程的解是y=﹣,则这个常数是1.【解答】解:设所缺的部分为x,则2y+=﹣y﹣x,把y=﹣代入,得2×(﹣)+=﹣(﹣)﹣x得x=1.故答案是:1.13.(3分)已知线段MN,P是MN的中点,Q是PN的中点,R是MQ的中点.若MR=2,则MN=.【解答】解:设QN=x,则PQ=x,MP=2x,∴MQ=MP+PQ=3x,∴MR=x=2,解得x=,MN=2MP=4x=4×=,故答案为:.14.(3分)已知一个角的补角比这个角的余角3倍大10°,则这个角的度数是50度.【解答】解:设这个角是x°,则余角是(90﹣x)度,补角是(180﹣x)度,根据题意得:180﹣x=3(90﹣x)+10解得x=50.故填50.15.(3分)一列火车匀速行驶,完全通过一条长450米的隧道需要25秒的时间.隧道顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的速度为30米/秒.【解答】解:设火车的长度是x米,根据题意得出:=,解得:x=300,=30(米/秒),答:火车速度为30米/秒;故答案为:30.16.(3分)如图,线段OA绕点O逆时针旋转一周,满足∠EOF始终在∠AOB 的内部且∠EOF=58°.线段OM、ON分别为∠AOE和∠BOF的平分线,在旋转过程中,∠MON的最大值是119°.【解答】解:当∠AOB=180°时,∠MON最大,∵∠EOF=58°,∴∠AOE+∠BOF=∠AOB﹣∠EOF=180°﹣58°=122°,∵OM、ON分别为∠AOE和∠BOF的平分线,∴∠MOE=∠AOE,∠FON=∠BOF,∴∠MOE+∠FON=(∠AOE+∠BOF)=×122°=61°,∴∠MON=∠EOF+∠MOE+∠FON=58°+61°=119°,即∠MON的最大值是119°;故答案为:119°.三、解答题(共8题,共72分)17.(12分)计算:(1)12﹣(﹣12)+(﹣7)﹣15(2)(﹣2)3﹣22﹣|﹣|×(﹣10)2.【解答】解:(1)原式=12+12﹣7﹣15=24﹣22=2;(2)原式=﹣8﹣4﹣×100=﹣12﹣25=﹣37.18.(6分)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【解答】解:x﹣2(x﹣y2)+(﹣x+y2)=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6+=6.19.(6分)解方程:.【解答】解:原式可变形为:3(3y﹣1)﹣12=2(5y﹣7)去括号得:9y﹣3﹣12=10y﹣14移项得:9y﹣10y=﹣14+12+3合并得:﹣y=1系数化1得:y=﹣120.(8分)如图,将一副三角板摆放在一起(1)∠AOC的度数为15°,射线OA、OB、OC组成所有小于平角的角的和为90°.(2)反向延长射线OA到D,OE为∠BOD的平分线,OF为∠COD的平分线,请按题意画出图形,并求出∠EOF的度数.【解答】解:(1)∠AOC=45°﹣30°=15°,射线OA、OB、OC组成所有小于平角的角的和为:45°+30°+15°=90°,故答案为:15°;90°;(2)∠BOD=180°﹣45°=135°,∠COD=180°﹣15°=165°,∵OE为∠BOD的平分线,OF为∠COD的平分线,∴∠DOF=∠COD=82.5°,∠DOE=∠DOB=67.5°,∴∠EOF=∠DOF﹣∠DOE=15°.21.(8分)如图,已知线段AB(1)延长线段AB到C,使BC=AB,D为AC的和中点,请准确画出图形并标出点D.(2)若DC=2,求AB的长.【解答】解:(1)如图所示:点D即为所求;(2)∵D为AC的和中点,DC=2,∴AD=DC=2,∴AC=4,∵BC=AB,∴设AB=x,则BC=x,故x=4,解得:x=,即AB的长为.22.(10分)2016年春节临近,武汉掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(比如:顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上一和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?完成表后就可以做出选择商场甲商场乙商场丙商场实际付款(元)336360310(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100元减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了20元钱,问丙商场先打了多少折后再参加活动?(结果精确到0.01)【解答】解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270﹣200)=360(元);选丙商城需付费用为290+270﹣5×50=310(元).∵360>336>310,∴选择丙商城最实惠.故答案为:336;360;310.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x﹣100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了n折后再参加活动,则打折后的价格小于600元,不小于500元,根据题意得:(630×﹣5×50)﹣(630﹣6×50)=20,解得n≈9.52,答:丙商场先打了9.52折后再参加活动.23.(10分)如图,有两段线段AB=2(单位长度),CD=1(单位长度)在数轴上运动.点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15(1)点B在数轴上表示的数是﹣10,点C在数轴上表示的数是14,线段BC=24(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,若BC=6(单位长度),求t的值(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,设M为AC中点,N为BD中点,则线段MN的长为.【解答】解:(1)∵AB=2,点A在数轴上表示的数是﹣12,∴点B在数轴上表示的数是﹣10;∵CD=1,点D在数轴上表示的数是15,∴点C在数轴上表示的数是14.∴BC=14﹣(﹣10)=24.故答案为:﹣10;14;24.(2)当运动时间为t秒时,点B在数轴上表示的数为t﹣10,点C在数轴上表示的数为14﹣2t,∴BC=|t﹣10﹣(14﹣2t)|=|3t﹣24|.∵BC=6,∴|3t﹣24|=6,解得:t1=6,t2=10.答:当BC=6(单位长度)时,t的值为6或10.(3)当运动时间为t秒时,点A在数轴上表示的数为﹣t﹣12,点B在数轴上表示的数为﹣t﹣10,点C在数轴上表示的数为14﹣2t,点D在数轴上表示的数为15﹣2t,∵0<t<24,∴点C一直在点B的右侧.∵M为AC中点,N为BD中点,∴点M在数轴上表示的数为,点N在数轴上表示的数为,∴MN=﹣=.故答案为:.24.(12分)已知,如图(1),∠AOB和∠COD共顶点O,OB和OD重合,OM 为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β(1)如图(2),若α=90°,β=30°,则,∠MON=60°(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示)(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O 同时逆时针旋转,转速为1°/秒(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.【解答】解:(1)∵OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β,α=90゜,β=30゜,∴∠MON=α+β=60°;故答案为:60°;(2)设∠BOD=γ,∵∠MOD==,∠NOB==,∴∠MON=∠MOD+∠NOB﹣∠DOB=+﹣γ=;(3)设运动时间为t秒,则∠DOB=3t﹣t=2t,∠DOE=∠DOB=t,∴∠COE=β+t.∠AOD=α+2t,又∵α=2β,∴∠AOD=2β+2t=2(β+t).∴=,∴∠AOD=2∠COE.。
2015-2016七年级上册数学期末测试卷
2015-2016七年级数学第一学期期末测试卷一、选择题(每小题3分,共30分) 1.31-的相反数是( ) A .3 B .3- C .31D .31- 2. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260000平方米,将260000用科学计数法表示应为 ( )A. 2.6×106B.2.6×105C.26×104D. 0.26×1063. 若单项式n ab 4与42b a m -是同类项,则有 ( )A .m=1,n=2B .m=1,n=4C .m=4,n=2D .m=n=24.方程12=+a x 和方程2213+=-x x 同解,则a 的值为( )A.3B.-3C.-5D.55. 平面上有任意三点,过其中两点画直线,共可以画( )A .1条B .3条C .1条或3条D .无数条6. 下列图形中,是正方体表面展开图的是( )7. 两个角互为补角,其中一个角是另一个角的5倍,则这两个角是( )A.15o ,75oB. 20o ,100oC. 10o ,50oD. 30o ,150o8. 点A ,B,C 在同一直线上,AB=5,BC=3,那么线段AC 的长度是( )A .8B .2C .8或2D .无法判断 9.(0)a b ab a b+≠的所有可能的值有( ) A.1个 B.2个 C.3个 D.4个10.文化商场同时卖出两台电子琴,每台均卖960元,以成本计算。
其中一台盈利20%,另一台亏本20%,则这次出售中商场( )A.不赔不赚B.赚160元C.赚80元D.赔80元二、填空题(每小题2分,共16分)11. 2015年12月24日的天气预报,丽江市的最低气温为-3℃,龙岩市的最低气温为8℃,这一天丽江市的最低气温比龙岩市的最低气温低℃.12. 关于x 的多项式()b x x x a b -+--34是二次三项式,则a=_____,b=______;13. 一个多项式减去x 6-,结果是162+-x x ,这个多项式是 .14. 已知0232=--a a ,则2625a a -+=.15.23o17′的余角是;21°44′⨯4= . 16.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为8km/h ,水速为2km/h,设A 港与B 港距离为x km ,则所列方程为 .17. 已知线段AB=12cm ,AB 的中点为C ,AB 的三等份点为D ,则C 、D 间的距离为 .18. 观察下面的单项式:,8,4,2,432a a a a --.根据你发现的规律,第6个式子是 .三、作图题(4分,要求尺规作图,保留作图痕迹,不写作法)19.根据下列语句画出图形:(1)直线L 经过A 、B 、C 三点,点C 在点A 与点B 之间;(2)两条直线m 与n 相交于点P ;(3)线段a 、b 相交于点O ,与线段c 分别交于点P 、Q .四、计算、解答题(共50分)20.(4分)计算:)2(164812-÷+⨯21.(6分)解方程:⑴32166432+=-x x ⑵62316352--=+-x x22.(7分)已知032=++-b a ,化简求值()()b a ab b a ab 22223223---.23.(7分)有一堆桃子,分给一群猴子,若每只猴子分3个,则剩余20个;若每只猴子分4个,则还缺25个,问猴子有多少只?24. (8分)关于x 的方程()a x x -=-23的解比31221-=+x x 的解小25,求a 的值.25.(8分)如图所示,已知.,,30,90BOC ON AOB OM BOC AOB ∠∠︒=∠︒=∠平分平分(1)(4分)求MON ∠的值等于多少?(2)(4分)如果,α=∠AOB β=∠BOC ,其它条件不变,那么=∠MON .(用含βα,的式子表示,要求写出推理证明过程).26.(10分)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)(5分)问该中学库存多少套桌凳?(2)(5分)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理. 你认为哪种方案省时又省钱?为什么?。
2015—2016学年度第一学期期末检测试卷七年级数学试题及答案
2015—2016学年度第一学期期末检测试卷七年级数学2016.1.28一、选择题。
(每题3分,共30分)( )1.-5的绝对值是: A.5 B.51 C.-5 D.0.5 ( )2.当χ=-2时,代数式-χ+1的值是:A.-1B.-3C.1D.3( )3.下列说法中,正确的是:A.直线AB 与直线BA 是同一条直线B.射线OA 与射线AO 是同一条射线C.延长线段AB 到点C ,使AC=BCD. 画直线AB=5cm( )4.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为:A.149×106千米2B. 1.49×108千米2C. 14.9×107千米2D. 0.149×109千米2( )5.图1是由5个大小相同的小正方体摆成的立体图形,它的俯视图...是:(图一) A B C D( )6.下列各组两项中,是同类项的是:A. χy 与-χyB. 51abc 与51ac C.-2χy 与-3ab D. 3χ2y 与3χy 2( )7.如图,数轴上的A 、B 两点分别表示有理数a 、b ,下列式子中不.正确的是A.|b|>|a|B.a -b <0C.-a +b >0D.a +b <0( )8.试从以下事件中选出必然事件:A.这张彩票中大奖B.掷骰子掷得4点C.明天北京下雨D.在装有2个白球、1个红球的袋子中取出2个球,其中至少有一个白球A.这张彩票中大奖B.掷骰子掷得4点C.明天北京下雨D.在装有2个白球、1个红球的袋子中取出2个球,其中至少有一个白球( )9.在下列的代数式的写法中,表示正确的一个是:A.“负χ的平方”记作-χ2B. “y 与311的积”记作311y C.“χ的3倍”记作χ3 D.“a 除以2b 的商”记作b a 2( )10. 如图,3×3方格中的任一行、任一列以及对角线上的数字之和相等,那么m 等于: A.9 B.10 C.13 D.无法确定二、填空题。
2015-2016学年七年级(上)期末数学试卷(解析版)
2015-2016学年七年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1062.下列各式计算正确的是()A.5a+a=5a2B.5a+b=5abC.5a2b﹣3ab2=2a2b D.2ab2﹣5b2a=﹣3ab23.如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.4.下列图形经过折叠不能围成棱柱的是()A.B.C.D.5.有理数a、b在数轴上的位置如图所示,则化简|a+b|﹣|a﹣b|的结果为()A.2a B.﹣2b C.﹣2a D.2b6.如图,直线AB、CD相交于点O,OD平分∠BOE,则∠AOD的补角的个数为()A.1个B.2个C.3个D.4个7.下列说法错误的是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.过一点有且只有一条直线与已知直线平行D.若两条直线相交所成的角是直角,则这两条直线互相垂直8.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A.﹣74 B.﹣77 C.﹣80 D.﹣83二、填空题(本大题共有10小题,每小题3分,共30分)9.一个数的绝对值是5,这个数是.10.若方程3x m﹣2﹣2=0是关于x的一元一次方程,则m的值为.11.已知∠β=48°30′,则∠β的余角是.12.下午2点时,时针与分针的夹角的度数是.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠FEC=56°,则∠AED=.14.已知整式x2﹣2x+6的值为9,则﹣2x2+4x+6的值为.15.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.16.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD平分∠AOC,则∠BOD 度数为.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是km.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为cm.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).20.解方程:(1)3(x﹣5)=﹣12;(2).21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加个小正方体.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG AH.(填写下列符号>,<,≤,≥之一)25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有条线段;(2)求线段AN的长;(3)求线段MN的长.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 …2号探测气球所在位置的海拔/米30 …(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=;若∠AOC=140°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.2015-2016学年江苏省扬州中学教育集团树人学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.B.2.D.3.B.4.B.5.A 6.C.7.C.8.B.二、填空题(本大题共有10小题,每小题3分,共30分)9.±510.3 11.41°30″12.60°13.62°14.0 15.7 16.30°或50°.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是5km.【考点】一元一次方程的应用.【分析】设甲、乙两村之间的距离为xkm,根据已知两人的速度结合行驶的路程相等,时间差为15分钟得出方程,再求出答案即可.【解答】解:设甲、乙两村之间的距离为xkm.根据题意可得:﹣=,解得:x=5,答:甲、乙两村之间的距离为5km;故答案为:5.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为10cm.【考点】翻折变换(折叠问题).【分析】将折叠纸条展开,分析其中的三角形,梯形的特点,再进行计算.【解答】解:将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即2cm,下底等于纸条宽的2倍,即4cm,两个三角形都为等腰直角三角形,斜边为纸条宽的2倍,即4cm,故超出点P的长度为(26﹣10)÷2=8,AM=8+2=10cm,故答案为:10.【点评】本题考查了折叠的性质.关键是将折叠图形展开,分析每个图形形状及与纸条宽的关系.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣2﹣=﹣3;(2)原式=﹣1+4﹣3+2=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)3(x﹣5)=﹣12;(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣15=﹣12,移项合并得:3x=3,解得:x=1;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值以及偶次方的性质得出a,b的值,再利用整式加减运算法则化简求出原式,进而代入a,b的值求出答案.【解答】解:∵|a+1|+(b﹣)2=0,∴a+1=0,b﹣=0,解得:a=﹣1,b=,∴3a2﹣4ab+[a2﹣2(a2﹣3ab)]=3a2﹣4ab+a2﹣2a2+6ab,=2a2+2ab,将a,b的值代入上式可得:原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.【点评】此题主要考查了偶次方、绝对值的性质以及整式加减运算法则,正确求出a,b的值是解题关键.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.【考点】同解方程.【分析】先求出方程=3x﹣2的解,再代入方程3(x﹣m)=6+2m,即可解答.【解答】解:方程=3x﹣2的解为:x=1,把x=1代入方程3(x﹣m)=6+2m得:3(1﹣m)=6+2m,解得:m=﹣0.6.【点评】本题考查了同解方程的知识,解答本题的关键是理解方程解得含义.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加2个小正方体.【考点】作图-三视图;由三视图判断几何体.【分析】(1)主视图有3列,每列小正方数形数目分别为2,1,1,俯视图有3列,每列小正方形数目分别为1,2,1,左视图有2列,每列小正方形数目分别为2,1.据此可画出图形;(2)保持这个几何体的俯视图和左视图不变的情况下添加小正方体即可.【解答】解:(1)如图所示:;(2)可以在①和②的位置上各添加一个小正方体,这个几何体的俯视图和左视图都不变,最多添加2个,故答案为:2.【点评】此题主要考查了画三视图,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.(填写下列符号>,<,≤,≥之一)【考点】作图—基本作图;垂线段最短;点到直线的距离.【分析】(1)根据网格结构特点,过点C作长2宽1的长方形的对角线即可;(2)根据网格结构以及长方形的性质作出即可;(3)根据点到直线的距离的定义解答;(4)结合图形直接进行判断即可得解.【解答】解:(1)如图所示,直线CD即为所求作的直线AB的平行线;(2)如图所示:(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.故答案为:AG;<.【点评】本题考查了基本作图,利用网格结构作垂线,平行线,点到直线的距离的定义,都是基础知识,需熟练掌握.25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?【考点】一元一次不等式组的应用;一元一次方程的应用.【分析】(1)先设小客车租了x辆,根据如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位,列出方程,求出x的值,即可得出答案;(2)先设至少要租用大客车x辆,根据同时租用大、小客车共6辆,且确保每个师生均有座位,列出不等式,求出解集即可.【解答】解:(1)设小客车租了x辆,根据题意得:30x=45(x﹣2)﹣30,解得:x=8,则这次准备外出采风的师生共有30×8=240(人),答:这次准备外出采风的师生共240人;(2)至少要租用大客车x辆,根据题意得:45x+30(6﹣x)≥240,解得:x≥4,答:至少要租用大客车4辆.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,根据题目中的数量关系,列出方程和不等式.26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有10条线段;(2)求线段AN的长;(3)求线段MN的长.【考点】两点间的距离.【分析】(1)根据线段有两个端点,写出所有线段后计算个数;(2)由N是AC中点知AN=AC,而AC=AB﹣BC,根据AB、BC的长度可得;(3)由图可知,MN=AM﹣AN,由M是AB中点且AB=10cm可得AM长度,由(2)知AN的长度,可得MN长.【解答】解:(1)图中的线段有AN、AC、AM、AB、NC、NM、NB、CM、CB、MB这10条;(2)∵AB=10cm,BC=6cm,∴AC=AB﹣BC=4cm,又∵N是AC的中点,∴AN=AC=2cm;(3)∵AB=10cm,M是AB的中点,∴AM=AB=5cm,由(1)知,AN=2cm,∴MN=AM﹣AN=3cm;故答案为:(1)10.【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.距离是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35…x+52号探测气球所在位置的海拔/米2030 …0.5x+15(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?【考点】一元一次方程的应用.【分析】(1)根据“1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升”,得出1号探测气球、2号探测气球的函数关系式;(2)两个气球能位于同一高度,根据题意列出方程,即可解答;(3)两个气球所在位置的海拔相差7.5米,分两种情况:①2号探测气球比1号探测气球海拔高7.5米;②1号探测气球比2号探测气球海拔高7.5米;分别列出方程求解即可.【解答】解:(1)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20.填表如下:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35 …x+52号探测气球所在位置的海拔/米20 30 …0.5x+15故答案为:35,x+5,20,0.5x+15;(2)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度;(3)分两种情况:①2号探测气球比1号探测气球海拔高7.5米,根据题意得(0.5x+15)﹣(x+5)=7.5,解得x=5;②1号探测气球比2号探测气球海拔高7.5米,根据题意得(x+5)﹣(0.5x+15)=7.5,解得x=35.答:当两个气球所在位置的海拔相差7.5米时,这时气球上升了5分或35分.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,列出函数解析式.28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=60°;若∠AOC=140°,则∠DOE=70°;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.【考点】角的计算;角平分线的定义.【分析】(1)首先利用补角的定义可得出∠BOC,再利用角平分线的定义可得出∠COE,易得∠DOE;(2)同理由(1)可得;(3)设∠DOE=x,∠AOF=y,根据已知和(2)的结论可得出x﹣y=45°,从而得出结论.【解答】解:(1)若∠AOC=120°,则∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;若∠AOC=140°,则∠BOC=180°﹣140°=40°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣20°=70°;故答案为:60°;70°;(2);∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90)=,故答案为:;(3)∠DOE﹣∠AOF=45°.理由:设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.【点评】此题考查的知识点是角平分线的性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.。
2015-2016学年七上数学期末测试卷
中卫2015-2016学年七年级(上)数学期末测试试卷亲爱的同学,本学期即将结束.今天是展示你才华的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!本试卷共3页,28道题,总分为120分,考试时间为120分钟.不能用计算器.一、你一定能选对!(每小题只有一个正确的选项,每小题3分,共30分) 1.6-的相反数是( )A .-6B .6C .61D .16-2.冬季中卫某天的最高气温是-2°C,最低气温是-12°C,则中卫这一天的温差是( ) A .14°CB .10°C C .-10°CD .-14°C3.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A .美B .丽B .中 D .卫 4.下列运算正确的是( )A .3x +3y= 6 x yB .-y 2-y 2=0C .3(x +8)=3x +8D .-(6 x +2 y)=-6 x -2 y 5.下列调查中,适宜采用普查方式的是( ) A .对我市中学生心理健康现状的调查B .调查我市冷饮市场雪糕质量情况C .对我国首架大陆民用飞机各零部件质量的检查D .了解全省七年级学生的视力情况6.将下图中的直角三角形ACB 绕着直角边AC 旋转一周,从正面看所得几何体的开状是( )7.如图添加一个小正方形,使该图形经过折叠以后能围成一个四棱柱,不同添法共有()种A .7种B .5种C .4种D .3种8.已知a 、b 在数轴上对应点的位置如图所示,则下列结论中正确的是 A .0>-b a B .0>-b aC .0>+b aD .0>ab9.一个长方形的周长是26cm ,若这个长方形的长减少 1cm ,宽增加2cm ,就可以成为一个正方形,则此正方形的边长是 A .5cm B .6cmC .7cmD .8cm10.已知★0)2014(201320132014=-⨯则对★表述错误的是( ) A .★的相反数是自身 B .★绝对值是自身 C .★的倒数是自身 D .★的4次幂是自身DCBA二、你能填得又快又准吗?(每小题3分,共30分)11.节约粮食-300千克,表示的意义是 . 12.若单项式37y x m 与n y x 261是同类项则n m 是 . 13.根据国家统计局发布某省生产总值的主要数据显示:去年生产总值突破万亿大关,2013年第一季度生产总值为226 040 000 000元人民币,增速居全国第一.这个数据用科学记数法可表示为 元.14.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是_________.15. 若1=-b a ,则代数式221a b -+的值是__________. 16.若,互为倒数,,互为相反数,则= .17. 将弯曲的河道改直,可以缩短航程,是因为: . 18.如右图,C 是线段AB 上任意一点,M ,N 分别是AC ,BC 的中点,如果 AB =12cm ,那么 MN 的长为_____cm .19.若1=x 是关于x 的方程032=+k x 的解,则=k __________.20.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为 售货员应标在标签上的价格为 元.三、请你来算一算、做一做,千万别出错哟!(共60分)21.计算:(每小题5分,共10分)(1) 21(2)8(2)()2--÷-⨯- (2))12()61()2(323-⨯---÷22.解方程:(每小题5分,共10分)(1) 6234y y +=- (2)2151136x x +--=23.(本小题5分)先化简再求值211(428)(2)42a a a -+---,其中12a =ABCMN25.(本小题6分)小明对某校七年级2班做喜欢什么球类运动的调查.如图是小明对所调查结果的条形统计图. (1)该校七年级2班共有多少名学生?(2)请你改用扇形统计图来表示该校七年级2班同学喜欢的球类运动. (3)从统计图中你可以获得哪些信息?26.(本小题6分)如图,已知AO ⊥OC ,OB ⊥OD ,∠COD=38°,求∠AOB 的度数.D CBOA(本小题9分)甲乙两人在8千米的环城公路上跑步,甲每分钟跑220180米。
江汉区3学年度第一学期期末考试七年级数学试题
江汉区2015~2016学年度第一学期期末考试七年级数学试题一、选择题(共8小题,每小题3分,共24分) 1.43-的相反数是( ) A .34B .43-C .43 D .34-2.我市2015年某一天的最高气温为8℃,最低气温-2℃,那么这天的最高气温比最低气温高( ) A .-10℃B .-6℃C .6℃D .10℃ 3.青藏高原的面积约为2500000平方千米,将2500000用科学记数法表示应为( ) A .25×105B .2.5×106C .0.25×107D .2.5×107 4.下列运算正确的是( ) A .4m -m =3 B .m 2+m 3=m 5C .4m +5n =9mnD .m 2+m 2=2m 2 5.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值等于( )A .-8B .0C .2D .86.把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是( ) A .两点之间线段最短 B .直线比曲线短 C .两点之间直线最短D .两点确定一条直线7.如图,在△ABC 中,∠A +∠B =90°,点D 、E 分别在边AC 、AB 上.若∠B =∠ADE ,则下列结论正确的是( ) A .∠A 和∠B 互为补角B .∠B 和∠ADE 互为补角C .∠A 和∠ADE 互为余角D .∠AED 和∠DEB 互为余角8.整理一批图书,由一个人做要40小时完成.现有一部分人先做4小时,然后增加2人与他们一起做8小时,完成了这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x 人先做4小时,下列四个方程中正确的是( ) A .140840)2(4=++xx B .140)2(8404=++x x C .140)2(8404=-+x x D .1408404=+xx 二、填空题(共8小题,每小题3分,共24分)9.某商店上月的收入为a 元,本月的收入比上月的2倍还多10元,本月的收入是__________ 10.设某个数为x ,它的4倍是它的3倍与7的差,则这个数是___________ 11.12a m -1b 3与21-a 3b n是同类项,则m +n =__________ 12.将一副三角板如图放置,若∠AOD =20°,则∠BOC =__________ 13.若∠α=20°40′,则∠α的补角的大小为__________ 14.若|a -2|+(b +3)2=0,则a -2b 的值为__________ 15.已知∠AOB =48°,∠BOC =20°,则∠AOC =__________16.如图所示,将图沿线折起来,得到一个正方体,那么“我”的对面是__________(填汉字) 三、解答题(共5小题,共52分)17.(本题10分)计算:(1) 12-(-18)+(-7)-15(2) [-42-(-1)3×(-2)3]÷2)21(322-⨯18.(本题10分)解方程:(1) 2x -(x +10)=6x(2)42321xx -+=+19.(本题10分)先化简,再求值:x 2+(2xy -3y 2)-2(x 2+xy -2y 2),其中x =-1,y =220.(本题10分)某车间32名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母5000个.一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?21.(本题12分)【背景知识】数轴上A 点、B 点表示的数为a 、b ,则A 、B 两点之间的距离AB =|a -b |;线段AB 的中点M 表示的数为2ba 【问题情境】已知数轴上有A 、B 两点,分别表示的数为-40和20,点A 以每秒3个单位的速度沿数轴向右匀速运动,点B 以每秒2个单位向左匀速运动,设运动时间为t 秒(t >0) (1) 运动开始前,A 、B 两点的距离为___________,线段AB 的中点M 所表示的数为_________ (2) 它们按上述方式运动,A 、B 两点经过多少秒会相遇,相遇点所表示的数是什么?(3) 当t 为多少时,线段AB 的中点M 表示的数为-5?并直接写出在这一运动过程中点M 的运动方向和运动速度四、选择题(共2小题,每小题4分,共8分)22.(2012秋·洪山期中)有理数a 、b 、c 在数轴上的位置如图,则|c -a |-|a +b |+|b -c |的值为( ) A .0B .2a -2c +2bC .-2cD .2a23.如图,点A 、B 、C 在同一直线上,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:① MN =HC ;② MH =21(AH -HB );③ MN =21(AC +HB );④ HN =21(HC +HB ),其中正确的是( )A .①②B .①②④C .②③④D .①②③④五、填空题(共2小题,每小题4分,共8分)24.观察下面的一列单项式:-x 、2x 2、-4x 3、8x 4、-16x 5,……,根据你发现的规律,第8个单项式为__________,第n 个单项式为__________25.某商场经销一种商品,由于进货时的价格比原来的进价低了8%,但售价不变,这样使得利润率由原利润率a %增长为(a +10)%,则原利润率为__________六、解答题(共3小题,第26题10分,第27题12分,第28题12分,共34分) 26.(本题10分)点A 、B 、C 在同一直线上 (1) 若AB =8,AC ∶BC =3∶1,求线段AC 的长度(2) 若AB =m ,AC ∶BC =n ∶1(n 为大于1的整数),求线段AC 的长度27.(本题10分)已知∠AOD=α,射线OB、OC在∠AOD的内部,OM平分∠AOC,ON平分∠BOD(1) 如图1,当射线OB与OC重合时,求∠MON的大小(2) 在(1)的条件下,若射线OC绕点O逆时针旋转一定角度θ,如图2,求∠MON的大小(3) 在(2)的条件下,射线OC绕点O继续逆时针旋转,旋转到与射线OA的反向延长线重合为止,在这一旋转过程中,∠MON=__________28.(本题10分)某超市开展春节促销活动,出售A、B两种商品,活动方案有如下两种:方案一A B标价(单位:元)50 80 每件商品返利按标价的20% 按标价的30%方案二若所购的A、B商品达到或超过51件(不同商品可累计),则按标价的28%返利;若没有达到51件,则不返利(同一商品不可同时参加两种活动)(1) 某单位购买A商品40件,B商品95件,选用何种活动方案更划算?能便宜多少钱?(2) 若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多15件,请问该单位该如何选择活动方案才能获得最大优惠?请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江汉区七年级(上)期末数学试卷
一、选择题(共8小题,每小题3分,共24分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.
1.﹣的相反数是()
A.B.﹣C.﹣D.
2.我市2015年某一天的最高气温为8℃,最低气温为﹣2℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃
3.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示应为()
A.25×105B.2.5×106C.0.25×107D.2.5×107
4.下列运算正确的是()
A.4m﹣m=3 B.m2+m3=m5C.4m+5n=9mn D.m2+m2=2m2
5.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()
A.﹣8 B.0 C.2 D.8
6.把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是()
A.两地之间线段最短B.直线比曲线短C.两点之间直线最短D.两点确定一条直线
7.如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角B.∠B和∠ADE互为补角
C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角
8.整理一批图书,由一个人做要40h完成,现计划有一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做4h,下列四个方程中正确的是()
A.+=1 B.+=1 C.+=1 D.+=1
二、填空题(共8小题,每小题3分,共24分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.
9.某商店上月收入为a元,本月的收入比上月的2倍还多10元,本月的收入是元.10.设某个数为x,它的4倍是它的3倍与7的差,则这个数是.
11.12a m﹣1b3与是同类项,则m+n=.
12.将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小
为.
13.若∠α=20°40′,则∠α的补角的大小为.
14.若|a﹣2|+(b+3)2=0,则a﹣2b的值为.
15.已知∠AOB=48°,∠BOC=20°,则∠AOC=.
16.如图所示,将图沿线折起来,得到一个正方体,那么“我”的对面是(填汉字)
三、解答题(共5题,共52分)下列各题需要在答题卷指定位置写出文字说明、
证明过程或计算步骤.
17.计算:
(1)12﹣(﹣18)+(﹣7)﹣15
(2)[﹣42﹣(﹣1)3×(﹣2)3]÷2×(﹣)2.
18.解方程:
(1)2x﹣(x+10)=6x;(2)=3+.
19.先化简,再求值:x2+(2xy﹣3y2)﹣2(x2+yx﹣2y2),其中x=﹣1,y=2.
20.某车间32名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母5000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?
21.【背景知识】数轴上A点、B点表示的数为a、b,则A、B两点之间的距离AB=|a﹣b|;线段AB的中
点M表示的数为.
【问题情境】已知数轴上有A、B两点,分别表示的数为﹣40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).
(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?
(3)当t为多少时,线段AB的中点M表示的数为﹣5?并直接写出在这一运动过程中点M的运动方向和运动速度.
四、选择题(共2小题,每小题4分,共8分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.
22.有理数a、b、c在数轴上的位置如图,则|c﹣a|﹣|a+b|+|b﹣c|的值为()
A.0 B.2a﹣2c+2b C.﹣2c D.2a
23.如图,点A、B、C在同一直线上,H为AC的中点,M为AB的中点,N为BC的中点,则下列说法:①MN=HC;②MH=(AH﹣HB);③MN=(AC+HB);④HN=(HC+HB),其中正确的是()
A.①②B.①②④C.②③④D.①②③④
五、填空题(共2题,每题4分,共8分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.
24.观察下面的一列单项式:﹣x,2x2,﹣4x3,8x4,﹣16x5,…根据你发现的规律,第8个单项式为,第n个单项式为.
25.某商场经销一种商品,由于进货时的价格比原来的进价低了8%,但售价不变,这样使得利润率由原利润率a%增长为(a+10)%,则原利润率为.
六、解答题(共3题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.26.点A,B,C在同一直线上,
(1)若AB=8,AC:BC=3:1,求线段AC的长度;
(2)若AB=m,AC:BC=n:1(n为大于1的整数),求线段AC的长度.
27.已知∠AOD=α,射线OB、OC在∠AOD的内部,OM平分∠AOC,ON平分∠BOD.
(1)如图1,当射线OB与OC重合时,求∠MON的大小;
(2)在(1)的条件下,若射线OC绕点O逆时针旋转一定角度θ,如图2,求∠MON的大小;
(3)在(2)的条件下,射线OC绕点O继续逆时针旋转,旋转到与射线OA的反向延长线重合为止,在这一旋转过程中,∠MON=.
(同一商品不可同时参加两种活动)
(1)某单位购买A商品40件,B商品95件,选用何种活动方案更划算?能便宜多少钱?
(2)若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多15件,请问该单位该如何选择活动方案才能获得最大优惠?请说明理由.。