2014年上海市高三年级六校联考数学试卷与答案

合集下载

上海市六校2014年春学期高三第二次联考语文试卷(有答案)

上海市六校2014年春学期高三第二次联考语文试卷(有答案)

上海市六校2014届下学期高三年级第二次联考语文试卷(有答案)考生注意:1.答卷前,考生务必在答题卷上将自己的姓名等相关信息及准考证号填写清楚。

2.本考试设试卷和答题卷两部分,所有试题的答案及作文必须全部写在答题卷上,写在试卷上一律不给分;答题时应注意试题题号和答题卷题号一一对应,不能错位。

3. 本试卷共6页,总分150分,考试时间150分钟。

阅读 80分一、阅读下文,完成第1—6题。

( 17 分)“微小时代”里的城市文学新转型叶祝弟①纵览2013年,郭敬明导演的《小时代》登上荧幕,在铺天盖地的宣传下,网络媒介时代的《小时代》赢得了不错的票房,但是也遭到了很多人的批评。

《小时代》中的物质化的生活态度和方式,连对之持宽容态度的王安忆也觉得这种以物判人的奇怪现象,可能会被将来的文学史注意到。

面对咄咄逼人的消费写作....,王安忆有意隐藏了自己的价值判断,有一些各行其道、互不干涉的意味。

但是,从另外一个维度上讲,王安忆的《众声喧哗》和郭敬明的《小时代》,一个是纯文学的路数,一个是类型写作的路数,却从两个不同的方向包抄过来,共同指向了今天的文化现实———转型之中国正进入了一个众声喧哗的小时代。

②从艺术水准来看,《小时代》确实乏善可陈,充其量是一部类型片,但是《小时代》的出现似乎宣示了一个时代预言:我们正进入一个奠基于个人主义之上的无边的消费主义、精致的物质主义、价值的虚无主义的小时代。

不仅如此,随着微信、微博在青年人生活中的流行,并日益成为不可替代的通讯工具乃至成为一种生活方式,一个个体化、群落化、亚风格化的小时代、微时代已经呈现在我们的面前。

③小时代、微时代的到来,与崇高、理想等有关的那些坚固的东西也许真的从此烟消云散了。

对大时代的每一次回望,都是一次告别的聚会。

这个小时代的到来,对小说的意义在于,在充满着复杂的流动性的转型中国,小说家对时代的整体性把握将越来越不可能,史诗这种传统的农耕文明的写作方式将有可能被封入历史的库房中,任何想从整体上对这个时代命名的企图和冲动将不得不最终沦为可笑的堂·吉诃德。

2014年高考上海卷数学(文)试卷解析(精编版)(原卷版)

2014年高考上海卷数学(文)试卷解析(精编版)(原卷版)

一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 . 2. 若复数z=1+2i ,其中i 是虚数单位,则1()z z+z ⋅=___________.3. 设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .4. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________. 5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为 .6.若实数x,y 满足xy=1,则2x +22y 的最小值为______________.7. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于 .9. 设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 . 10.设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .11.若2132()f x x x-=-,则满足0)(<x f 的x 取值范围是 .12. 方程sin 3cos 1xx +=在区间[0,2]π上的所有解的和等于 .13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件16. 已知互异的复数,a b 满足0ab ≠,集合{,}a b ={2a ,2b },则a b += ( )(A )2 (B )1 (C )0 (D )1-17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=的不同值的个数为( )(A )7 (B )5 (C )3 (D )118. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( ) (A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解(C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .20. (本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数a a x f x x -+=22)( (1)若a =4,求函数)(x f y =的反函数)(1x f y -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在AB 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设AB 、在同一水平面上,从A 和B 看D 的仰角分别为βα和. (1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后.CD 与铅垂方向有偏差,现在实测得,,45.1812.38==βα求CD 的长(结果精确到0.01米)?22. (本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分. 在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.23. (本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是等比数列,且11000m a =,正整数m 的最小值,以及m 取最小值时相应{}n a 的仅比; (3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.。

2014年上海高考数学试卷及答案(理科)

2014年上海高考数学试卷及答案(理科)

2014年上海市高考数学试卷(理科)一、填空题(共14题,满分56分)1.(4分)(2014•上海)函数y=1﹣2cos2(2x )的最小正周期是_________.2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=_________.3.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为_________.4.(4分)(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为_________.5.(4分)(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为_________.6.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为_________(结果用反三角函数值表示).7.(4分)(2014•上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是_________.8.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=_________.9.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是_________.10.(4分)(2014•上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_________(结果用最简分数表示).11.(4分)(2014•上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=_________.12.(4分)(2014•上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3= _________.13.(4分)(2014•上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为_________.14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为_________.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)(2014•上海)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)(2014•上海)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.417.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x 和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解18.(5分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]三、解答题(共5题,满分72分)19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.20.(14分)(2014•上海)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k 的公差.2014年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共14题,满分56分)1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是.考点:二倍角的余弦;三角函数的周期性及其求法.专题:三角函数的求值.分析:由二倍角的余弦公式化简,可得其周期.解答:解:y=1﹣2cos2(2x)=﹣[2cos2(2x)﹣1]=﹣cos4x,∴函数的最小正周期为T==故答案为:点评:本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题.2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=6.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把复数代入表达式,利用复数代数形式的混合运算化简求解即可.解答:解:复数z=1+2i,其中i是虚数单位,则(z+)•==(1+2i)(1﹣2i)+1=1﹣4i2+1=2+4=6.故答案为:6点评:本题考查复数代数形式的混合运算,基本知识的考查.3.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为x=﹣2.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题设中的条件y2=2px(p>0)的焦点与椭圆+=1的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程解答:解:由题意椭圆+=1,故它的右焦点坐标是(2,0),又y2=2px(p>0)的焦点与椭圆+=1的右焦点重合,故p=4,∴抛物线的准线方程为x=﹣2.故答案为:x=﹣2点评:本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.4.(4分)(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2].考点:分段函数的应用;真题集萃.专题:分类讨论;函数的性质及应用.分析:可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.解答:解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2].点评:本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.5.(4分)(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为2.考点:基本不等式.专题:不等式的解法及应用.分析:由已知可得y=,代入要求的式子,由基本不等式可得.解答:解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2点评:本题考查基本不等式,属基础题.6.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos(结果用反三角函数值表示).考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.解答:解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则cosθ==,∴θ=arccos,故答案为:arccos点评:本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.7.(4分)(2014•上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:由题意,θ=0,可得C与极轴的交点到极点的距离.解答:解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1,∴C与极轴的交点到极点的距离是ρ=.故答案为:.点评:正确理解C与极轴的交点到极点的距离是解题的关键.8.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.考点:极限及其运算.专题:等差数列与等比数列.分析:由已知条件推导出a1=,由此能求出q的值.解答:解:∵无穷等比数列{a n}的公比为q,a1=(a3+a4+…a n)=(﹣a1﹣a1q)=,∴q2+q﹣1=0,解得q=或q=(舍).故答案为:.点评:本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用.9.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1).考点:指、对数不等式的解法;其他不等式的解法.专题:不等式的解法及应用.分析:直接利用已知条件转化不等式求解即可.解答:解:f(x)=﹣,若满足f(x)<0,即<,∴,∵y=是增函数,∴的解集为:(0,1).故答案为:(0,1).点评:本题考查指数不等式的解法,函数的单调性的应用,考查计算能力.10.(4分)(2014•上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案.解答:解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,∴选择的3天恰好为连续3天的概率是,故答案为:.点评:本题考查古典概型以及概率计算公式,属基础题.11.(4分)(2014•上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=﹣1.考点:集合的相等.专题:集合.分析:根据集合相等的条件,得到元素关系,即可得到结论.解答:解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.点评:本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.12.(4分)(2014•上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.考点:正弦函数的图象;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.解答:解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:点评:本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.13.(4分)(2014•上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为0.2.考点:离散型随机变量的期望与方差.专题:概率与统计.分析:设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果.解答:解:设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,E(ξ)=4.2,∴4(1﹣x)+5x=4.2,解得x=0.2.故答案为:0.2.点评:本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用.14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].考点:直线与圆的位置关系.专题:直线与圆.分析:通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可.解答:解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且x P∈[﹣2,0],对于点A(m,0),存在C上的点P和l上的Q使得+=,说明A是PQ的中点,Q的横坐标x=6,∴m=∈[2,3].故答案为:[2,3].点评:本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)(2014•上海)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判定.解答:解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B.点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.16.(5分)(2014•上海)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.4考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:建立空适当的间直角坐标系,利用坐标计算可得答案.解答:解:如图建立空间直角坐标系,则A(2,0,0),B(2,0,1),P1(1,0,1),P2(0,0,1),P3(2,1,1),P4(1,1,1),P5(0,1,1),P6(2,2,1),P7(1,2,1),P8(0,2,1),,=(﹣1,0,1),=(﹣2,0,1),=(0,1,1),=(﹣1,1,1),=(﹣2,1,1),=(0,2,1),=(﹣1,2,1),=(﹣2,2,1),易得•=1(i=1,2,…,8),∴•(i=1,2,…,8)的不同值的个数为1,故选A.点评:本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段.17.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x 和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解考点:一次函数的性质与图象.专题:函数的性质及应用;直线与圆.分析:判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可.解答:解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:(a2b1﹣a1b2)x=b2﹣b1,即(a2﹣a1)x=b2﹣b1.∴方程组有唯一解.故选:B.点评:本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解额指数的应用.18.(5分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]考点:分段函数的应用.专题:函数的性质及应用.分析:当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.解答:解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a≤2+a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.点评:本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.三、解答题(共5题,满分72分)19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积.解答:解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,∴∠P1=60°,同理∠P2=∠P3=60°,∴△P1P2P3是等边三角形,P﹣ABC是正四面体,∴△P1P2P3的边长为4,V P﹣ABC==点评:本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法.20.(14分)(2014•上海)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.考点:反函数;函数奇偶性的判断.专题:函数的性质及应用.分析:(1)根据反函数的定义,即可求出,(2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决.解答:解:(1)∵a=4,∴∴,∴,∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞).(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,∴=,整理可得a(2x﹣2﹣x)=0.∵2x﹣2﹣x不恒为0,∴a=0,此时f(x)=1,x∈R,满足条件;若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵a≥0,∴a=1,此时f(x)=,满足条件;综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.点评:本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC 长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).考点:解三角形的实际应用.专题:解三角形.分析:(1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论.(2)利用正弦定理,建立方程关系,即可得到结论.解答:解:(1)设CD的长为x米,则tanα=,tanβ=,∵0,∴tanα≥tan2β,∴tan,即=,解得0≈28.28,即CD的长至多为28.28米.(2)设DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43°,由正弦定理得,即a=,∴m=≈26.93,答:CD的长为26.93米.点评:本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键.22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.考点:直线的一般式方程;真题集萃.专题:计算题;直线与圆.分析:(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论.(2)联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围.(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线.解答:(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,∴点(1,2)、(﹣1,0)被直线x+y﹣1=0分隔.(2)解:联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据题意,此方程无解,故有1﹣4k2≤0,∴k≤﹣,或k≥.(3)证明:设点M(x,y),则•|x|=1,故曲线E的方程为[x2+(y﹣2)2]x2=1 ①.y轴为x=0,显然与方程①联立无解.又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有η=1×(﹣1)=﹣1<0,故x=0是一条分隔线.若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx﹣2)2]x2=1,令f(x)=[x2+(kx﹣2)2]x2﹣1,∵f(0)f(2)<0,∴f(x)=0有实数解,即y=kx与E有公共点,∴y=kx不是E的分隔线.∴通过原点的直线中,有且仅有一条直线是E的分隔线.点评:本题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档题.23.(16分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k 的公差.考点:等比数列的性质;数列的求和.专题:等差数列与等比数列.分析:(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出S n分别代入不等式S n≤S n+1≤3S n,得到关于q的不等式组,解不等式组求出q的范围.(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…a k的公差.解答:解:(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,S n=n,S n≤S n+1≤3S n,即,成立.当1<q≤3时,,S n≤S n+1≤3S n,即,∴不等式∵q>1,故3q n+1﹣q n﹣2=q n(3q﹣1)﹣2>2q n﹣2>0对于不等式q n+1﹣3q n+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴q n+1﹣3q n+2=q n(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,S n≤S n+1≤3S n,即,∴此不等式即,3q﹣1>0,q﹣3<0,3q n+1﹣q n﹣2=q n(3q﹣1)﹣2<2q n﹣2<0,q n+1﹣3q n+2=q n(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,上,q的取值范围为:.(3)设a1,a2,…a k的公差为d.由,且a1=1,得即当n=1时,﹣≤d≤2;当n=2,3,…,k﹣1时,由,得d≥,所以d≥,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…a k的公差为﹣.点评:本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.参与本试卷答题和审题的老师有:maths;qiss;zlzhan;翔宇老师;刘长柏;wdnah;lincy;1619495736;wsj1012;szjzl;whgcn;wyz123(排名不分先后)菁优网2014年6月23日。

2014年高考(上海市)真题数学(理)试题及答案解析

2014年高考(上海市)真题数学(理)试题及答案解析

2014年上海市高考数学试卷(理科)解析一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 .2. 若复数z=1+2i ,其中i 是虚数单位,则1()z z+z ⋅=___________.3. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.4. 设⎩⎨⎧+∞∈-∞∈=],,[,),,(,)(2a x x a x x x f 若4)2(=f ,则a 的取值范围为_____________.5. 若实数x,y 满足xy=1,则2x +22y 的最小值为______________.6. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).7. 已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 .8. 设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .9. 若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .10. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).11. 已知互异的复数a,b 满足ab ≠0,集合{a,b}={2a ,2b },则a b += .12. 设常数a 使方程sin 3cos x x a +=在闭区间[0,2π]上恰有三个解123,,x x x ,则123x x x ++= .13. 某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩游戏的得分.若()ξE =4.2,则小白得5分的概率至少为 .14. 已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( ) (A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件16. 如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,,...)2,1(=i P i 是上底面上其余的八个点,则...)2,1(=⋅→→i AP AB i 的不同值的个数为()(A )1 (B)2 (C)4 (D)817. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( ) (A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解18. ⎪⎩⎪⎨⎧>++≤-=,0,1,0,)()(2x a x x x a x x f 若)0(f 是)(x f 的最小值,则a 的取值范围为( ). (A)[-1,2] (B)[-1,0] (C)[1,2] (D) [0,2]三.解答题(本大题共5题,满分74分) 19、(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面 展开图是三角形321p p p ,如图,求△321p p p 的各边长及此三棱锥的体积V .zxxk20.(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分。

2014年上海高考数学文理科卷解析版

2014年上海高考数学文理科卷解析版

李老师作品数学(理)2014 第1页(共4页)2014年全国普通高等学校招生统一考试上海 数学试卷一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数212cos (2)y x =-的最小正周期是____________.12π 2. 若复数12z i =+,其中i 是虚数单位,则1z z z ⎛⎫+⋅= ⎪⎝⎭____________.考点:复数代数形式的乘除运算分析:把复数代入表达式,利用复数代数形式的混合运算化简求解即可 解答:解:复数z=1+2i,其中i 是虚数单位11(12)(12)612z zi i i z ⎛⎫+⋅=++-= ⎪-⎝⎭3. 若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为分析215y +=的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p ,再由抛物线的性质求出它的准线方程2 解答215y =,故它的右焦点坐标是(2,0),215y =故P=4∴抛物线的准线方程为x=-2.4. 设2,(,),(),[,).x x a f x x x a ∈-∞⎧=⎨∈+∞⎩若(2)4f =,则a 的取值范围为____________.5. 若实数,x y 满足1xy =,则222x y +的最小值为____________. 分析:由已知可得y =1=得222222x y x x+=+≥。

得x =答案是6. 若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为__________(结果用反三角函数值表示)3径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.cos θ==得arccos θ=半径的3倍,是解答的关键.7. 已知曲线C 的极坐标方程为(3cos 4sin )1ρθθ-=,则C 与极轴的交点到极点的距离是____________.∴C 与极轴的交点到极点的距离是13ρ=8. 设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++,则q =________.分析:由已知条件推导出11111a a a a q q=---由此能求出q 的值.411111112(1)lim 111011n x a q aa a a q a a qq qq q q q →∞⎛⎫-=--=-- ⎪--⎝⎭∴+-=--==得或(舍)9. 若32()f x x x-=-,则满足()0f x <的x 的取值范围是_____________.()036621()0,1x x x x f x x -<<==得得;是增函数得x 得解集为10. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_______________(结果用最简分数表示). 恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案. 解答:解:在未来的连续10天中随机选择3天共有310120C =种情况,其中选择的3天恰好为连续3天的情况有8种, 115= 11. 已知互异的复数,a b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +=__________.5}{}22,,a b a b=2201b a b b a b⎨⎨⎨====⎪⎪⎩⎩⎩或得:或 ∵ab ≠0,∴a ≠0且b ≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a 2,a=b 2,则两式相减得a 2-b 2=b-a , ∵互异的复数a ,b , ∴b-a ≠0,即a+b=-1, 故答案为:-1.的关键,注意要进行分类讨论. 12. 设常数a 使方程sin cos x x a =在闭区间[0,2]π上恰有三个解123,,x x x ,则123xx x ++=____________.分析:先利用两角和公式对函数解析式化简,画出函数2sin()3y x π=+的图象,直线与三角函数图象恰有三个交点,进而求得此时x 1,x 2,x 3最后相加即可.123sin 0,,2323x x x x πππ⎛⎫+==== ⎪⎝⎭12373x x x π++=13. 某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分. 若() 4.2E ξ=,6 则小白得5分的概率至少为____________.此能求出结果.则由题意知小白得4分的概率为1-x ,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分, E (ξ)=4.2, ∴4(1-x )+5x=4.2, 解得x=0.2. 故答案为:0.2.变量的数学期望的合理运用14. 已知曲线:C x =,直线:6l x =. 若对于点(,0)A m ,存在C 上的点P和l上的Q 使得0AP AQ +=,则m 的取值范围为____________. 分析:通过曲线方程判断曲线特征,通过0AP AQ +=说明A 是PQ 的中点,结合x 的范围,求出m 的范围即可.解答:解:曲线:C x =[]2,0p x ∈-对于点A (m ,0),存在C 上的点P 和l 上的Q 使得0AP AQ +=, 说明A 是PQ 的中点,Q 的横坐标x=6,[]62,32xpm +=∈ 故答案为:[2,3]7P 2P 5P 6P 7P 8P 4P 3P 1BA二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 设,a b ∈R ,则“4a b +>”是“2a >且2b >”的[答]( )(A) 充分条件. (B) 必要条件.16. 如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,(1,2,,8)i P i = 是上底面上其余的八个点,则(1, 2, , 8)i AB AP i ⋅=的不同值的个数为[答]( ) (A) 1. (B) 2. (C) 4.(D) 8.计算可得答案.则A (2,0,0),B (2,0,1),P 1(1,0,1),P 2(0,0,1),P 3(2,1,1),P 4(1,1,1),P 5(0,1,1),P 6(2,2,1),P 7(1,2,1),8 P 8(0,2,1),11(1,2,,8)AB AP i ==故选择A数量积运算是解题的常用手段.17. 已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x和y 的方程组11221,1a xb y a x b y +=⎧⎨+=⎩的解的情况是[答]( )(A) 无论12,,k P P 如何,总是无解. (B) 无论12,,k P P 如何,总有唯一解. (C) 存在,,k P P ,使之恰有两解.(D) 存在,,k P P ,使之有无穷多解.111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上且斜率存在。

高三理科数学六校联考试题 及答案

高三理科数学六校联考试题 及答案

主视图左视图22高三理科数学六校联考试题本试卷共4页,21小题,满分150分.考试用时120分钟. 参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.第 Ⅰ 卷一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,A B 是非空集合,命题甲:A B B = ,命题乙:A B ⊂≠,那么 ( )A.甲是乙的充分不必要条件B. 甲是乙的必要不充分条件C.甲是乙的充要条件D. 甲是乙的既不充分也不必要条件 2.复数21i i =- ( )A . 1i - B. 1i -+ C. 1i + D. 1i --3.已知点(,)N x y 在由不等式组002x y x y x +≥⎧⎪-≥⎨⎪≤⎩确定的平面区域内,则(,)N x y 所在平面区域的面积是( ) A .1B .2C .4D .84.等差数列{a n }中,已知35a =,2512a a +=,29n a =,则n 为 ( ) A. 13 B. 14 C. 15 D. 165. 函数21lo g 1x y x+=-的图像 ( )A . 关于原点对称 B. 关于主线y x =-对称 C. 关于y 轴对称 D. 关于直线y x =对称6.若某空间几何体的三视图如图所示,则该几何体的体积是 ()A.B.C.3D.37.已知平面,,αβγ,直线,m l ,点A ,有下面四个命题: A . 若l α⊂,m A α= 则l 与m 必为异面直线;B. 若,l l m α 则m α ;C. 若 , , ,l m l m αββα⊂⊂ 则 αβ ;D. 若 ,,,m l l m αγγαγβ⊥==⊥ ,则l α⊥.其中正确的命题是 ( )8.某种游戏中,黑、黄两个“电子狗”从棱和为1的正方体ABCD -A 1B 1C 1D 1的顶点A 出发沿棱向前爬行,每爬完一条棱称为“爬完一段”,黑“电子狗”爬行的路线是AA 1→A 1D 1→…,黄“电子狗”爬行的路线是AB →BB 1→…,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须异面直线(其中i 是正整数).设黑“电子狗”爬完2012段、黄“电子狗”爬完2011段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 ( ) A. 0B. 1C.2D. 3第 Ⅱ 卷二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题:第9、10、11、12、13题是必做题,每道试题考生都必须做答.9. 0-=⎰.10.函数2()sin cos 2f x x x =+,x R ∈的最小正周期为 11.在直角ABC ∆中, 90=∠C ,30=∠A , 1=BC ,D 为斜边AB 的中点,则 CD AB ⋅= .12.若双曲线22219x ya-=(0)a >的一条渐近线方程为320x y -=,则以双曲线的顶点和焦点分别为焦点和顶点的椭圆的离心率为__________.13.将“杨辉三角”中的数从左到右、从上到下排 成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…, 右图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S 的值是__________.(二)选做题:第14、15题是选做题,考生只能从中选做一题.ONMBA14.(坐标系与参数方程选做题)已知曲线1C 、2C 的极坐标方程分别为2cos()2πρθ=-+,cos()104πθ-+=,则曲线1C 上的点与曲线2C 上的点的最远距离为________.15.(几何证明选讲选做题)如图,点M 为O 的弦A B 上的一点,连接M O .M N O M ⊥,M N 交圆于N ,若2M A =,4M B =,则M N = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在A B C ∆中,角,,A B C 的对边分别为,,a b c ,S 是该三角形的面积,(1)若(2sin cos ,sin cos )2B a B B B =- ,(sin cos ,2sin )2Bb B B =+ ,//a b ,求角B 的度数;(2)若8a =,23B π=,S =b 的值.17 (本小题满分12分)甲、乙两人各射击一次,击中目标的概率分别是32和43假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击3次,至少1次未击中...目标的概率; ⑵假设某人连续2次未击中...目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少?⑶设甲连续射击3次,用ξ表示甲击中目标时射击的次数,求ξ的数学期望E ξ. (结果可以用分数表示)18. (本小题满分14分)如图,四边形A B C D 中(图1),E 是B C 的中点,2D B =,1,DC=BC =,AB AD ==将(图1)沿直线B D 折起,使二面角A B D C --为60(如图2)(1)求证:A E ⊥平面B D C ;(2)求异面直线A B 与C D 所成角的余弦值; (3)求点B 到平面A C D 的距离.19(本小题满分14分)已知函数()241(12)ln(21)22xa f x a x x +=-+++ .(1)设1a =时,求函数()f x 极大值和极小值; (2)a R ∈时讨论函数()f x 的单调区间.20.(本小题满分l4分)如图,P 是抛物线C :212y x =上横坐标大于零的一点,直线l 过点P 并与抛物线C 在点P 与抛物线C 相交于另一点Q .(1)当点P 的横坐标为2时,求直线l 的方程;(2)若0O P O Q ⋅=,求过点,,P Q O 的圆的方程.21. (本小题满分l4分)已知数列{}n a 的前n 项和为n S ,正数数列{}n b 中 ,2e b =(e 为自然对数的底718.2≈)且*N n ∈∀总有12-n 是n S 与n a 的等差中项,1 1++n n n b b b 与是的等比中项.(1) 求证: *N n ∈∀有nn n a a 21<<+;(2) 求证:*N n ∈∀有13ln ln ln )1(2321-<+++<-n n n a b b b a .2012届第三次六校联考试题答案一.选择题:1、B ;2、A ;3、C ;4、C ;5、A ;6、B ;7、D ;8、D二、填空题:9. 4π; 10.π; 11. -1 ; 12.13; 13. 15;选做题:14. 1+ 15.三、解答题:16.解:(1)//a b24c o s s i n c o s 202BBB ∴⋅+= 21cos 4cos 2cos 102BB B -∴⋅+-= 1cos 2B ∴=(0,180)B ∠∈ 60B ∴∠=……………………6分(2)S = 1sin 2ac B ∴=7分得 4c =……………………8分2222cos b a c ac B =+-2284284cos120=+-⋅⋅……………………10分b ∴=12分17.解:(1)记“甲连续射击3次,至少1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1- P (1A )=1-32()3=1927答:甲射击3次,至少1次未击中目标的概率为1927;……………………4分(2) 记“乙恰好射击4次后,被中止射击”为事件A 2,由于各事件相互独立,故P (A 2)=41×41×43×41+41×41×43×43 =364,答:乙恰好射击4……………………8分(3)根据题意ξ服从二项分布,2323E ξ=⨯=……………………12分(3)方法二:03311(0)()327p C ξ==⋅=123216(1)()()3327p C ξ==⋅⋅=22132112(2)()()3327p C ξ==⋅⋅=333218(1)()()3327p C ξ==⋅⋅=161280123227272727E ξ=⨯+⨯+⨯+⨯=……………………12分说明:(1),(2)两问没有文字说明分别扣1分,没有答,分别扣1分。

2014年上海市高三年级六校联考数学(文科)试卷

2014年上海市高三年级六校联考数学(文科)试卷

2014年上海市高三年级六校联考数学(文科)试卷2014年3月6日(完卷时间120分钟,满分150分)一、填空题(本大题满分56分)本大题共有14题,只要求将最终结果直接填写答题纸上相应的横线上,每个空格填对得4分,否则一律得零分. 1. 已知,2παπ⎛⎫∈⎪⎝⎭,4sin 5α=,则tan α= .2. 已知集合{}1,A m =-,{}|1B x x =>,若A B ≠∅ ,则实数m 的取值范围是 .3.设等差数列{}n a 的前项和为n S ,若911a =,119a =,则19S 等于 .4. 若()()2i i a ++是纯虚数(i 是虚数单位),则实数a 的值为 .5. 抛物线24y x =的焦点到双曲线2214x y -=的渐近线的距离是 .6. 已知向量2a = ,1b = ,1a b ⋅=,则向量a 与a b- 的夹角为 .7. 执行右图的程序框图,如果输入6i =,则输出的S 值为 . 8. 不等式1011ax x <+对任意R x ∈恒成立,则实数a 的取值范围是 . 9. 若n a 是()()*2,2,nx n n x +∈≥∈N R 展开式中2x项的系数,则2323222lim nn n a a a →∞⎛⎫++⋅⋅⋅+=⎪⎝⎭. 10. 已知一个圆锥的侧面展开图是一个半径为3,圆心角为23π的扇形,则此圆锥的体积为 .11. 设,x y ∈R ,若不等式组320,220,10x y x y ax y -+≥⎧⎪--≤⎨⎪-+≥⎩所表示的平面区域是一个锐角三角形,则实数a 的取值范围是 .12. 从1,2,,9⋅⋅⋅这10个整数中任意取3个不同的数作为二次函数()2f x ax bx c =++的系数,则使得()12f ∈Z的概率为 .13. 已知点F 为椭圆:C 2212x y +=的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标为()4,3,则P Q P F +取最大值时,点P 的坐标为 .14. 已知A 、B 、C 为直线l 上不同的三点,点O ∉直线l ,实数x 满足关系式220x OA xOB OC ++=,有下列命题:① 20OB OC OA -⋅≥ ; ② 20OB OC OA -⋅<;③ x 的值有且只有一个; ④ x 的值有两个; ⑤ 点B 是线段AC 的中点.则正确的命题是 .(写出所有正确命题的编号)二、选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应的正确代号用2B 铅笔涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.(C )充要条件 (D )既非充分又非必要条件16. 下列函数中,既是偶函数,又在区间()1,2内是增函数的为 ( ) (A )2log y x = (B )cos 2y x =(C )222x x y --= (D )22log 2xy x-=+ 17. 已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m β⊥的是 ( )A )αβ⊥且m α⊂≠(B )αβ⊥且m α∥(C )m n 且n β⊥ (D )m n ⊥且αβ18. 对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”.下列函数中存在唯一“可等域区间”的“可等域函数”为 ( )(A )()sin 2f x x π⎛⎫=⎪⎝⎭(B )()221f x x =- (C )()21xf x =+ (D )()()2log 22f x x =-三、解答题(本大题共5题,满分74分)每题均需写出详细的解答过程.19. (本题满分12分)本题共有2小题,第(1)小题满分6分,第(2)小题满分6分.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且1cos22A C +=. (1)若3a =,b =,求c 的值; (2)若())sin sin f A A A A =-,求()f A 的取值范围.20. (本题满分14分)本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.如图,几何体EF ABCD -中,CDEF 为边长为2的正方形,ABCD 为直角梯形,//AB CD ,90ADF ∠= .AD DC ⊥,2AD =,4AB =,(1)求异面直线BE 和CD 所成角的大小; (2)求几何体EF ABCD -的体积.21. (本题满分14分) 本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y (万元)A与处理量x (吨)之间的函数关系可近似的表示为:250900y x x =-+,且每处理一吨废弃物可得价值为10万元的某种产品,同时获得国家补贴10万元.(1)当[]10,15x ∈时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损? (2)当处理量为多少吨时,每吨的平均处理成本最少?22. (本题满分16分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知各项为正数的数列{}n a 中,11a =,对任意的*k N ∈,21221,,k k k a a a -+成等比数列,公比为k q ;22122,,k k k a a a ++成等差数列,公差为k d ,且12d =.(1)求2a 的值; (2)设11k k b q =-,证明:数列{}k b 为等差数列; (3)求数列{}k d 的前k 项和k D .23. (本题满分18分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如图,圆O与直线20x ++=相切于点P ,与x 正半轴交于点A,与直线y =在第一象限的交点为B . 点C 为圆O 上任一点,且满足OC xOA yOB =+,动点(),D x y 的轨迹记为曲线Γ.(1)求圆O 的方程及曲线Γ的轨迹方程;(2)若直线y x =和y x =-分别交曲线Γ于点A 、C 和B 、D ,求四边形ABCD 的周长;(3)已知曲线Γ为椭圆,写出椭圆Γ的对称轴、顶点坐标、范围和焦点坐标.2014年上海市高三年级 六校联考数学试卷(文科)答案一、填空题1. 43-2. ()1,+∞3. 1904. 126、6π7. 21 8. (]4,0- 9. 8 10. 311、1[2,]3-- 12. 419013. ()0,1- 14.①③⑤二、选择题15. C 16. A 17. C 18. B三、解答题 19. 解:(1)在△ABC 中,A B C π++=. 所以cos cos 22A C B π+-=1sin 22B ==.26B π=,所以3B π=. ………………3分由余弦定理2222cos b a c ac B =+-,得2320c c -+=.解得1c =或2c =. ………………6分(2)()sin sin )f A A A A =-1cos 2sin 222A A -=- 1sin 262A π⎛⎫=+- ⎪⎝⎭. ………………9分由(1)得3B π=,所以23A C π+=,20,3A π⎛⎫∈ ⎪⎝⎭, 则32,662A πππ⎛⎫+∈ ⎪⎝⎭. ∴sin 2(1,1]6A π⎛⎫+∈- ⎪⎝⎭.∴()31,22f A ⎛⎤∈- ⎥⎝⎦.∴()f A 的取值范围是31,22⎛⎤-⎥⎝⎦. ………………12分20. 解:(1)解法一:在CD 的延长线上延长至点M 使得CD DM =,连接,,ME MB BD . 由题意得,AD DC ⊥,AD DF ⊥,,DC DF ⊂≠平面CDEF , ∴AD ⊥平面CDEF ,∴AD DE ⊥,同理可证DE ⊥面ABCD .∵ //CD EF ,CD EF DM ==, ∴EFDM 为平行四边形, ∴//ME DF .则MEB ∠(或其补角)为异面直线DF 和BE所成的角. ………………3分 由平面几何知识及勾股定理可以得ME BE BM ===在MEB △中,由余弦定理得222cos 2ME BE BM MEB ME BE +-∠==⋅.∵ 异面直线的夹角范围为0,2π⎛⎤⎥⎝⎦,∴ 异面直线DF 和BE所成的角为. ………………7分解法二:同解法一得,,AD DC DE 所在直线相互垂直,故以D 为原点,,,DA DC DE 所在直线 分别为,,x y z 轴建立如图所示的空间直角坐标系, ………………2分 可得()()()()0,0,0,0,2,2,2,4,0,0,0,2D F B E ,∴ (0,2,2),(2,4,2)DF BE ==--,得DF BE ==………………4分设向量,DF BE 夹角为θ,则022422cos DF BEDF BEθ⋅-+⋅-+⋅⋅===⋅6-. ∵ 异面直线的夹角范围为0,2π⎛⎤⎥⎝⎦,∴ 异面直线DF 和BE 所成的角为arccos6. ………………7分(2)如图,连结EC ,过B 作CD 的垂线,垂足为N ,则BN ⊥平面CDEF ,且2BN =. ………………9分 ∵EF ABCD V -E ABCD B ECF V V --=+ ……………11分 1133ABCD EFC S DE S BN =⋅+⋅△△ 1111(42)222223232=⋅⋅+⋅⋅+⋅⋅⋅⋅ 163=.MNA∴ 几何体EF ABCD -的体积为163.……14分21. 解:(1)根据题意得,利润P 和处理量x 之间的关系: (1010)P x y =+-22050900x x x =-+-270900x x =-+- ………………2分()235325x =--+,[10,15]x ∈.∵35[10,15]x =∉,()235325P x =--+在[10,15]上为增函数,可求得[300,75]P ∈--. ………………5分 ∴ 国家只需要补贴75万元,该工厂就不会亏损. ………………7分 (2)设平均处理成本为90050y Q x x x==+- ………………9分5010≥=, ………………11分当且仅当900x x=时等号成立,由0x > 得30x =.因此,当处理量为30吨时,每吨的处理成本最少为10万元. ………………14分 22. 解:(1)由题意得2213322a a a a a ⎧=⎪⎨=+⎪⎩,2222a a =+,22a =或21a =-. ………………2分 故数列{}n a 的前四项为1,2,4,6或1,1,1,3-. ………………4分(2)∵21221,,k k k a a a -+成公比为k q 的等比数列, 212223,,k k k a a a +++成公比为1k q +的等比数列∴212k k k a a q +=,22211k k k a a q +++= 又∵22122,,k k k a a a ++成等差数列, ∴212222k k k a a a ++=+. 得21212112k k k k k a a a q q ++++=+,112k kq q +=+, ………………6分 111k k kq q q +-=-, ∴1111111k k k k q q q q +==+---,111111k k q q +-=--,即11k k b b +-=. ∴ 数列数列{}k b 为公差1d =等差数列,且11111b q ==-或111112b q ==--. ……8分 ∴()111k b b k k =+-⋅=或32k b k =-. ………………10分(3)当11b =时,由(2)得11,1k k k k b k q q k+===-. 221211k k a k a k +-+⎛⎫= ⎪⎝⎭,()22222121321121231121111k k k k k a a a k k a a k a a a k k +-+--+⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=+ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭, ()2121k k kaa k k q +==+,()2121231,2k k k k k k k k a d a a k D q +++=-==+=. ………………13分 当112b =-时,同理可得42k d k =-,22k D k =. ………………16分解法二:(2)对1,1,1,3,- 这个数列,猜想()*2123N m m q m m -=∈-, 下面用数学归纳法证明: ⅰ)当1m =时,12111213q ⋅-==-⋅-,结论成立.ⅱ)假设()*N m k k =∈时,结论成立,即2123k k q k -=-.则1m k =+时,由归纳假设,222121212121,2323k k k k k k a a a a k k -+---⎛⎫== ⎪--⎝⎭. 由22122,,k k k a a a ++成等差数列可知()()()222122122121223k k k k k k a a a a k ++--+=-=⋅-,于是221212121k k k a k q a k ++++==-, ∴ 1m k =+时结论也成立.所以由数学归纳法原理知()*2123N m m q m m -=∈-. ………………7分 此时1132112123k k b k k q k ===-----.同理对1,2,4,6, 这个数列,同样用数学归纳法可证1k k q k +=. 此时11111k k b k k q k===+--.∴k b k =或32k b k =-. ………………10分(3)对1,1,1,3,- 这个数列,猜想奇数项通项公式为()22123k a k -=-. 显然结论对1k =成立. 设结论对k 成立,考虑1k +的情形.由(2),()211,23k k q k k k -=≥∈-N 且21221,,k k k a a a -+成等比数列, 故()()22222121212123212323k k k k a a k k k k +---⎛⎫⎛⎫=⋅=-⋅=- ⎪ ⎪--⎝⎭⎝⎭,即结论对1k +也成立.从而由数学归纳法原理知()22123k a k -=-.于是()()22321k a k k =--(易见从第三项起每项均为正数)以及21242k k k d a a k +=-=-,此时()22422k D k k =++-= . ………………13分对于1,2,4,6, 这个数列,同样用数学归纳法可证221k a k -=,此时()22121,1k k k k a k k d a a k +=+=-=+.此时()()32312k k k D k +=++++= . ………………16分23. 解:(1)由题意圆O 的半径1r ==,故圆O 的方程为221x y +=. ………………2分由OC xOA yOB =+ 得,()22OC xOA yOB =+ , 即222222cos60OC x OA y OB xy OA OB =++ ,得221x y xy ++=(,x y ⎡∈⎢⎣⎦)为曲线Γ的方程.(未写,x y 范围不扣分)…4分 (2)由221y x x y xy =⎧⎨++=⎩解得:3x y ⎧=⎪⎪⎨⎪=⎪⎩或3x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以,A),C) 同理,可求得B (1,1),D (-1,-1) 所以,四边形ABCD 的周长为:179(3)曲线Γ的方程为221x y xy ++=(,x y ⎡∈⎢⎣⎦), 它关于直线y x =、y x =-和原点对称,下面证明:设曲线Γ上任一点的坐标为()00,P x y ,则2200001x y x y ++=,点P 关于直线y x =的对称点为()100,P y x ,显然2200001y x y x ++=,所以点1P 在曲线Γ上,故曲线Γ关于直线y x =对称,同理曲线Γ关于直线y x =-和原点对称.可以求得221x y xy ++=和直线yx =的交点坐标为12,3333B B ⎛⎛⎫-- ⎪ ⎪⎝⎭⎝⎭221x y xy ++=和直线y x =-的交点坐标为()()121,1,1,1A A --,1OA =1OB ==3=.在y x =-上取点12,F F ⎛ ⎝⎭⎝⎭ . 曲线Γ为椭圆:其焦点坐标为12,,3333F F ⎛⎛⎫-- ⎪ ⎪⎝⎭⎝⎭.。

2014年上海市高三年级六校联考物理试卷

2014年上海市高三年级六校联考物理试卷

2014年上海市高三年级六校联考物理试卷(完卷时间120分钟,满分150分)全卷包括六大题,第一、二大题为单项选择题,第三大题为多项选择题,第四大题为填空题,第五大题为实验题,第六大题为计算题。

考生注意:1、答卷前,务必用钢笔或圆珠笔在答题纸规定的位置清楚地填写姓名、准考证号。

2、第一、第二和第三大题的作答必须用2B铅笔涂在答题纸上相应区域内与试卷题号对应的位置,需要更改时,必须将原选项用橡皮擦去,重新选择。

第四、第五和第六大题的作答必须用黑色的钢笔或圆珠笔写在答题纸上与试卷题号对应的位置(作图可用铅笔)。

3、第30、31、32、33题要求写出必要的文字说明、方程式和重要的演算步骤。

只写出最后答案,而未写出主要演算过程的,不能得分。

有关物理量的数值计算问题,答案中必须明确写出数值和单位。

一.单项选择题(共16分,每小题2分。

每小题只有一个正确选项。

)1.在国际单位制中,物理量的单位由基本单位和导出单位组成。

下列各组物理量的单位中全部属于基本单位的是()(A)牛顿、秒、安培(B)伏特、秒、千克(C)摩尔、开尔文、安培(D)米、秒、库仑2.下列符合物理学史实的是()(A)卡文迪许利用扭秤巧妙地测得静电力常量k的数值(B)开普勒发现了行星运动的规律,提出了万有引力定律(C)伽利略通过斜面实验的合理外推,得出了自由落体运动的规律(D)法拉第根据小磁针在通电导线周围的偏转发现了电流的磁效应3.2013年6月20日,航天员王亚平进行了太空授课,她用天宫一号上的质量测量仪现身说教。

航天员聂海胜把自己固定在支架一端,王亚平轻轻拉开支架然后把手松开,支架带着聂海胜在恒力的作用下回复原位,此过程被光栅测速系统测出速度随移动距离的关系,通过计算后LED显示器上就显示出了聂海胜的质量是74kg。

此次测质量的原理你认为是利用了()(A)二力平衡(B)牛顿第二定律(C)能量守恒定律(D)惯性4.如图所示的双缝干涉实验,用绿光照射单缝S时,在光屏P上观察到干涉条纹。

2014年上海市高考数学试卷(理科)答案与解析

2014年上海市高考数学试卷(理科)答案与解析

2014年上海市高考数学试卷〔理科〕参考答案与试题解析一、填空题〔共14题,总分值56分〕1.〔4分〕〔2014•上海〕函数y=1﹣2cos2〔2x〕的最小正周期是.考点:二倍角的余弦;三角函数的周期性及其求法.专题:三角函数的求值.分析:由二倍角的余弦公式化简,可得其周期.解答:解:y=1﹣2cos2〔2x〕=﹣[2cos2〔2x〕﹣1]=﹣cos4x,∴函数的最小正周期为T==故答案为:点评:此题考查二倍角的余弦公式,涉及三角函数的周期,属基础题.2.〔4分〕〔2014•上海〕假设复数z=1+2i,其中i是虚数单位,则〔z+〕•=6.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把复数代入表达式,利用复数代数形式的混合运算化简求解即可.解答:解:复数z=1+2i,其中i是虚数单位,则〔z+〕•==〔1+2i〕〔1﹣2i〕+1=1﹣4i2+1=2+4=6.故答案为:6点评:此题考查复数代数形式的混合运算,基本知识的考查.3.〔4分〕〔2014•上海〕假设抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为x=﹣2.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题设中的条件y2=2px〔p>0〕的焦点与椭圆+=1的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程解答:解:由题意椭圆+=1,故它的右焦点坐标是〔2,0〕,又y2=2px〔p>0〕的焦点与椭圆+=1的右焦点重合,故得p=4,∴抛物线的准线方程为x=﹣=﹣2.故答案为:x=﹣2点评:此题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.4.〔4分〕〔2014•上海〕设f〔x〕=,假设f〔2〕=4,则a的取值范围为〔﹣∞,2].考点:分段函数的应用;真题集萃.专题:分类讨论;函数的性质及应用.分析:可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.解答:解:当a>2时,f〔2〕=2≠4,不合题意;当a=2时,f〔2〕=22=4,符合题意;当a<2时,f〔2〕=22=4,符合题意;∴a≤2,故答案为:〔﹣∞,2].点评:此题考察了分段函数的应用,渗透了分类讨论思想,此题是一道基础题.5.〔4分〕〔2014•上海〕假设实数x,y满足xy=1,则x2+2y2的最小值为2.考点:基本不等式.专题:不等式的解法及应用.分析:由已知可得y=,代入要求的式子,由基本不等式可得.解答:解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2点评:此题考查基本不等式,属基础题.6.〔4分〕〔2014•上海〕假设圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos〔结果用反三角函数值表示〕.考点:旋转体〔圆柱、圆锥、圆台〕.专题:空间位置关系与距离.分析:由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.解答:解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下列图所示:则cosθ==,∴θ=arccos,故答案为:arccos点评:此题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.7.〔4分〕〔2014•上海〕已知曲线C的极坐标方程为ρ〔3cosθ﹣4sinθ〕=1,则C与极轴的交点到极点的距离是.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:由题意,θ=0,可得C与极轴的交点到极点的距离.解答:解:由题意,θ=0,可得ρ〔3cos0﹣4sin0〕=1,∴C与极轴的交点到极点的距离是ρ=.故答案为:.点评:正确理解C与极轴的交点到极点的距离是解题的关键.8.〔4分〕〔2014•上海〕设无穷等比数列{a n}的公比为q,假设a1=〔a3+a4+…a n〕,则q=.考点:极限及其运算.专题:等差数列与等比数列.分析:由已知条件推导出a1=,由此能求出q的值.解答:解:∵无穷等比数列{a n}的公比为q,a1=〔a3+a4+…a n〕=〔﹣a1﹣a1q〕=,∴q2+q﹣1=0,解得q=或q=〔舍〕.故答案为:.点评:此题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用.9.〔4分〕〔2014•上海〕假设f〔x〕=﹣,则满足f〔x〕<0的x的取值范围是〔0,1〕.考点:指、对数不等式的解法;其他不等式的解法.专题:不等式的解法及应用.分析:直接利用已知条件转化不等式求解即可.解答:解:f〔x〕=﹣,假设满足f〔x〕<0,即<,∴,∵y=是增函数,∴的解集为:〔0,1〕.故答案为:〔0,1〕.点评:此题考查指数不等式的解法,函数的单调性的应用,考查计算能力.10.〔4分〕〔2014•上海〕为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是〔结果用最简分数表示〕.考点:古典概型及其概率计算公式.专题:概率与统计.分析:要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案.解答:解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,分别是〔1,2,3〕,〔2,3,4〕,〔3,4,5〕,〔4,5,6〕,〔5,6,7〕,〔6,7,8〕,〔7,8,9〕,〔8,9,10〕,∴选择的3天恰好为连续3天的概率是,故答案为:.点评:此题考查古典概型以及概率计算公式,属基础题.11.〔4分〕〔2014•上海〕已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=﹣1.考点:集合的相等.专题:集合.分析:根据集合相等的条件,得到元素关系,即可得到结论.解答:解:根据集合相等的条件可知,假设{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.假设b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.点评:此题主要考查集合相等的应用,根据集合相等得到元素相同是解决此题的关键,注意要进行分类讨论.12.〔4分〕〔2014•上海〕设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.考点:正弦函数的图象;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:先利用两角和公式对函数解析式化简,画出函数y=2sin〔x+〕的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.解答:解:sinx+cosx=2〔sinx+cosx〕=2sin〔x+〕=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin〔x+〕=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:点评:此题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.13.〔4分〕〔2014•上海〕某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,假设E〔ξ〕=4.2,则小白得5分的概率至少为0.2.考点:离散型随机变量的期望与方差.专题:概率与统计.分析:设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果.解答:解:设小白得5分的概率至少为x,则由题意知小白得1,2,3,4分的概率为1﹣x,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,E〔ξ〕=4.2,∴4〔1﹣x〕+5x=4.2,解得x=0.2.故答案为:0.2.点评:此题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用.14.〔4分〕〔2014•上海〕已知曲线C:x=﹣,直线l:x=6,假设对于点A〔m,0〕,存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].考点:直线与圆的位置关系.专题:直线与圆.分析:通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可.解答:解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且x P∈[﹣2,0],对于点A〔m,0〕,存在C上的点P和l上的Q使得+=,说明A是PQ的中点,Q的横坐标x=6,∴m=∈[2,3].故答案为:[2,3].点评:此题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想.二、选择题〔共4题,总分值20分〕每题有且只有一个正确答案,选对得5分,否则一律得零分15.〔5分〕〔2014•上海〕设a,b∈R,则“a+b>4”是“a>2且b>2”的〔〕A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判定.解答:解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,假设a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B.点评:此题主要考查充分条件和必要条件的判断,根据不等式的性质是解决此题的关键,比较基础.16.〔5分〕〔2014•上海〕如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i〔i=1,2,…8〕是上底面上其余的八个点,则•〔i=1,2,…,8〕的不同值的个数为〔〕A.1B.2C.3D.4考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:建立空适当的间直角坐标系,利用坐标计算可得答案.解答:解:=,则•=〔〕=||2+,∵,∴•=||2=1,∴•〔i=1,2,…,8〕的不同值的个数为1,故选A.点评:此题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段.17.〔5分〕〔2014•上海〕已知P1〔a1,b1〕与P2〔a2,b2〕是直线y=kx+1〔k为常数〕上两个不同的点,则关于x和y的方程组的解的情况是〔〕A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解考点:一次函数的性质与图象.专题:函数的性质及应用;直线与圆.分析:判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可.解答:解:P1〔a1,b1〕与P2〔a2,b2〕是直线y=kx+1〔k为常数〕上两个不同的点,直线y=kx+1的斜率存在,∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:〔a1b2﹣a2b1〕x=b2﹣b1,即〔a1﹣a2〕x=b2﹣b1.∴方程组有唯一解.故选:B.点评:此题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解额指数的应用.18.〔5分〕〔2014•上海〕设f〔x〕=,假设f〔0〕是f〔x〕的最小值,则a的取值范围为〔〕A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]考点:分段函数的应用.专题:函数的性质及应用.分当a<0时,显然f〔0〕不是f〔x〕的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,析:得﹣1≤a≤2,问题解决.解答:解;当a<0时,显然f〔0〕不是f〔x〕的最小值,当a≥0时,f〔0〕=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.点评:此题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.三、解答题〔共5题,总分值72分〕19.〔12分〕〔2014•上海〕底面边长为2的正三棱锥P﹣ABC,其外表展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积.解答:解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,∴∠P1=60°,同理∠P2=∠P3=60°,∴△P1P2P3是等边三角形,P﹣ABC是正四面体,∴△P1P2P3的边长为4,V P﹣ABC==点评:此题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法.20.〔14分〕〔2014•上海〕设常数a≥0,函数f〔x〕=.〔1〕假设a=4,求函数y=f〔x〕的反函数y=f﹣1〔x〕;〔2〕根据a的不同取值,讨论函数y=f〔x〕的奇偶性,并说明理由.考点:反函数;函数奇偶性的判断.专题:函数的性质及应用.分析:〔1〕根据反函数的定义,即可求出,〔2〕利用分类讨论的思想,假设为偶函数求出a的值,假设为奇函数,求出a的值,问题得以解决.解答:解:〔1〕∵a=4,∴∴,∴,∴调换x,y的位置可得,x∈〔﹣∞,﹣1〕∪〔1,+∞〕.〔2〕假设f〔x〕为偶函数,则f〔x〕=f〔﹣x〕对任意x均成立,∴=,整理可得a〔2x﹣2﹣x〕=0.∵2x﹣2﹣x不恒为0,∴a=0,此时f〔x〕=1,x∈R,满足条件;假设f〔x〕为奇函数,则f〔x〕=﹣f〔﹣x〕对任意x均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵a≥0,∴a=1,此时f〔x〕=,满足条件;综上所述,a=0时,f〔x〕是偶函数,a=1时,f〔x〕是奇函数.点评:此题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.21.〔14分〕〔2014•上海〕如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.〔1〕设计中CD是铅垂方向,假设要求α≥2β,问CD的长至多为多少〔结果精确到0.01米〕?〔2〕施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长〔结果精确到0.01米〕.考点:解三角形的实际应用.专题:解三角形.分析:〔1〕设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论.〔2〕利用正弦定理,建立方程关系,即可得到结论.解答:解:〔1〕设CD的长为x米,则tanα=,tanβ=,∵0,∴tanα≥tan2β>0,∴tan,即=,解得0≈28.28,即CD的长至多为28.28米.〔2〕设DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43°,由正弦定理得,即a=,∴m=≈26.93,答:CD的长为26.93米.点评:此题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决此题的关键.22.〔16分〕〔2014•上海〕在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1〔x1,y1〕,P2〔x2,y2〕,记η=〔ax1+by1+c〕〔ax2+by2+c〕,假设η<0,则称点P1,P2被直线l分隔,假设曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.〔1〕求证:点A〔1,2〕,B〔﹣1,0〕被直线x+y﹣1=0分隔;〔2〕假设直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;〔3〕动点M到点Q〔0,2〕的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.考点:直线的一般式方程;真题集萃.专题:计算题;直线与圆.分析:〔1〕把A、B两点的坐标代入η=〔ax1+by1+c〕〔ax2+by2+c〕,再根据η<0,得出结论.〔2〕联立直线y=kx与曲线x2﹣4y2=1可得〔1﹣4k2〕x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围.〔3〕设点M〔x,y〕,与条件求得曲线E的方程为[x2+〔y﹣2〕2]x2=1 ①.由于y 轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×〔﹣1〕=﹣1<0,可得x=0是一条分隔线.解答:〔1〕证明:把点〔1,2〕、〔﹣1,0〕分别代入x+y﹣1 可得〔1+2﹣1〕〔﹣1﹣1〕=﹣4<0,∴点〔1,2〕、〔﹣1,0〕被直线x+y﹣1=0分隔.〔2〕解:联立直线y=kx与曲线x2﹣4y2=1可得〔1﹣4k2〕x2=1,根据题意,此方程无解,故有1﹣4k2≤0,∴k≤﹣,或k≥.曲线上有两个点〔﹣1,0〕和〔1,0〕被直线y=kx分隔.〔3〕证明:设点M〔x,y〕,则•|x|=1,故曲线E的方程为[x2+〔y﹣2〕2]x2=1 ①.y轴为x=0,显然与方程①联立无解.又P1〔1,2〕、P2〔﹣1,2〕为E上的两个点,且代入x=0,有η=1×〔﹣1〕=﹣1<0,故x=0是一条分隔线.假设过原点的直线不是y轴,设为y=kx,代入[x2+〔y﹣2〕2]x2=1,可得[x2+〔kx﹣2〕2]x2=1,令f〔x〕=[x2+〔kx﹣2〕2]x2﹣1,∵f〔0〕f〔2〕<0,∴f〔x〕=0有实数解,即y=kx与E有公共点,∴y=kx不是E的分隔线.∴通过原点的直线中,有且仅有一条直线是E的分隔线.点评:此题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档题.23.〔16分〕〔2014•上海〕已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.〔1〕假设a2=2,a3=x,a4=9,求x的取值范围;〔2〕设{a n}是公比为q的等比数列,S n=a1+a2+…a n,假设S n≤S n+1≤3S n,n∈N*,求q的取值范围.〔3〕假设a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差.考等比数列的性质;数列的求和.点:等差数列与等比数列.专题:分〔1〕依题意:,又将已知代入求出x的范围;析:〔2〕先求出通项:,由求出,对q分类讨论求出S n分别代入不等式S n≤S n+1≤3S n,得到关于q的不等式组,解不等式组求出q 的范围.〔3〕依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…a k 的公差.解解:〔1〕依题意:,答:∴;又∴3≤x≤27,综上可得:3≤x≤6〔2〕由已知得,,,∴,当q=1时,S n=n,S n≤S n+1≤3S n,即,成立.当1<q≤3时,,S n≤S n+1≤3S n,即,∴不等式∵q>1,故3q n+1﹣q n﹣2=q n〔3q﹣1〕﹣2>2q n﹣2>0对于不等式q n+1﹣3q n+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴q n+1﹣3q n+2=q n〔q﹣3〕+2≤q〔q﹣3〕+2=〔q﹣1〕〔q﹣2〕≤0成立,∴1<q≤2,当时,,S n≤S n+1≤3S n,即,∴此不等式即,3q﹣1>0,q﹣3<0,3q n+1﹣q n﹣2=q n〔3q﹣1〕﹣2<2q n﹣2<0,q n+1﹣3q n+2=q n〔q﹣3〕+2≥q〔q﹣3〕+2=〔q﹣1〕〔q﹣2〕>0∴时,不等式恒成立,上,q的取值范围为:.〔3〕设a1,a2,…a k的公差为d.由,且a1=1,得即当n=1时,﹣≤d≤2;当n=2,3,…,k﹣1时,由,得d≥,所以d≥,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…a k的公差为﹣.点评:此题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决此题的关键,属于一道难题.。

2014年上海市高考数学试卷(文科)答案与解析

2014年上海市高考数学试卷(文科)答案与解析

2014年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是.=故答案为:2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=6.z+=4.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为x=)的焦点与椭圆+解:由题意椭圆++=1得=牙齿健康状况2y=y=≥=2,=±27.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为arcsin(结果用反三角函数值表示)==3==arcsinarcsin9.(4分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为(﹣∞,x综合得出x+x+≥10.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.,由此能求出((﹣,q=q=故答案为:11.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1).﹣,若满足<,y=的解集为:(12.(4分)(2014•上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于.x+==2k+=2k+sinx+sinx+cosx=x+=x+=2k,或x+,x=,+=故答案为:.选择的3天恰好为连续3天的概率是(结果用最简分数表示).天共有种情况,,故答案为:.14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].通过曲线方程判断曲线特征,通过+,说明﹣+=,∈则17.(5分)(2014•上海)如图,四个边长为1的小正方形排成一个大正方形,AB是大正方形的一条边,P i(i=1,2,…,7)是小正方形的其余顶点,则•(i=1,2,…,7)的不同值的个数为()∴=),),),),==∴=0=2,=4=0,,=4∴(18.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()k=,19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3=20.(14分)(2014•上海)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);的位置可得=,整理可得=,整理可得21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC 长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?,tan,,由正弦定理得a=≈22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为)联立.当≥,﹣][,23.(18分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)若{a n}是等比数列,且a m=,求正整数m的最小值,以及m取最小值时相应{a n}的公比;)由题意可得:,,由已知可得,,由于,可得,可得,由已知可得,解出即可.)由题意可得:;,由已知可得,,又.因此,1000===,由已知可得,时,不等式即,..。

上海市六校2014届高三下学期第二次联考数学(理)试题--含答案

上海市六校2014届高三下学期第二次联考数学(理)试题--含答案

上海市六校2014届高三下学期第二次联考数学(理)试题(完卷时间120分钟,满分150分)一、填空题(本大题满分56分)本大题共有14题,只要求将最终结果直接填写答题纸上相应的横线上,每个空格填对得4分,否则一律得零分. 1. 已知,2παπ⎛⎫∈⎪⎝⎭,4sin 5α=,则tan α= .2. 已知集合{}1,A m =-,{}|1B x x =>,若A B ≠∅I ,则实数m 的取值范围 是 .3. 设等差数列{}n a 的前项和为n S ,若911a =,119a =,则19S 等于 .4. 若()()2i i a ++是纯虚数(i 是虚数单位),则实数a 的值为 .5. 抛物线24y x =的焦点到双曲线2214x y -=的渐近线的距离是 .6. 执行右图的程序框图,如果输入6i =,则输出的S 值为 . 7. 不等式1011ax x <+对任意R x ∈恒成立,则实数a的取值范围是 . 8. 若n a 是()()*2,2,nx n n x +∈≥∈N R 展开式中2x项的系数,则2323222lim n n n a a a →∞⎛⎫++⋅⋅⋅+=⎪⎝⎭ . 9. 已知一个圆锥的侧面展开图是一个半径为3,圆心角为23π的扇形,则此圆锥的体积为 .10. 若点(,)P x y 在曲线cos ,2sin ,x y θθ=⎧⎨=+⎩(θ为参数,θ∈R )上,则yx 的取值范围是 .11. 从0,1,2,,9⋅⋅⋅这10个整数中任意取3个不同的数作为二次函数()2f x ax bx c =++的系数,则使得()12f ∈Z 的概率为 . 12. 已知点F 为椭圆:C 2212x y +=的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标为()4,3,则PQ PF +取最大值时,点P 的坐标为 . 13、已知A 、B 、C 为直线l 上不同的三点,点O ∉直线l ,实数x 满足关系式220x OA xOB OC ++=u u u r u u u r u u u r r,有下列命题:①20OB OC OA -⋅≥u u u r u u u r u u u r ; ② 20OB OC OA -⋅<u u u r u u u r u u u r;③ x 的值有且只有一个; ④ x 的值有两个; ⑤ 点B 是线段AC 的中点.则正确的命题是 .(写出所有正确命题的编号)14、已知数列{}n a 的通项公式为52nn a -=,数列{}n b 的通项公式为n b n k =+,设,,,,n n n n n n n b a b c a a b ≤⎧=⎨>⎩若在数列{}n c 中,5n c c ≤对任意*n ∈N 恒成立,则实数k 的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应的正确代号用2B 铅笔涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.16、下列函数中,既是偶函数,又在区间()1,2内是增函数的为( )(A )2log y x = (B )cos 2y x =(C )222x x y --= (D )22log 2xy x-=+ 17、已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m β⊥的是( )(A )αβ⊥且m α⊂≠(B )αβ⊥且m α∥P(C )m n P 且n β⊥ (D )m n ⊥且αβP 18、对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=, 则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”. 给出下列4个函数: ①()sin 2f x x π⎛⎫=⎪⎝⎭;②()221f x x =-; ③()12x f x =-; ④()()2log 22f x x =-.其中存在唯一“可等域区间”的“可等域函数”为 ( )(A )①②③ (B )②③ (C )①③ (D )②③④三、解答题(本大题共5题,满分74分)每题均需写出详细的解答过程. 19、(本题满分12分)本题共有2小题,第(1)小题满分6分,第(2)小题满分6分.在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,且1cos22A C +=. (1)若3a =,b =c 的值;(2)若())sin sin f A AA A =-,求()f A 的取值范围.20、(本题满分14分)本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.如图,几何体EF ABCD -中,CDEF 为边长为2的正方形,ABCD 为直角梯形,AB CD P ,AD DC ⊥,2AD =,4AB =,90ADF ∠=o .(1)求异面直线DF 和BE 所成角的大小; (2)求几何体EF ABCD -的体积.A21、(本题满分14分) 本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y (万元)与处理量x (吨)之间的函数关系可近似的表示为:250900y x x =-+,且每处理一吨废弃物可得价值为10万元的某种产品,同时获得国家补贴10万元.(1)当[]10,15x ∈时,判断该项举措能否获利?如果能获利,求出最大利润; 如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损? (2)当处理量为多少吨时,每吨的平均处理成本最少?22、(本题满分16分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知数列{}n a 中,11a =,对任意的*k ∈N ,21k a -、2k a 、21k a +成等比数列,公比为k q ;2k a 、21k a +、22k a +成等差数列,公差为k d ,且12d =.(1)写出数列{}n a 的前四项; (2)设11k k b q =-,求数列{}k b 的通项公式; (3)求数列{}k d 的前k 项和k D .23、(本题满分18分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如图,圆O与直线20x ++=相切于点P ,与x 正半轴交于点A,与直线y =在第一象限的交点为B . 点C 为圆O 上任一点,且满足OC xOA yOB =+u u u r u u u r u u u r,动点(),D x y 的轨迹记为曲线Γ.(1)求圆O 的方程及曲线Γ的方程; (2)若两条直线1:l y kx =和21:l y x k=-分别交曲线Γ于点A 、C 和B 、D ,求四边形ABCD 面积的最大值,并求此时的k 的值.(3)证明:曲线Γ为椭圆,并求椭圆Γ的焦点坐标.2014年上海市高三年级 六校联考数学试卷(理科)答案一、填空题1. 43-2. ()1,+∞3. 1904. 126. 217. (]4,0-8. 89. 10. (),-∞+∞U11.419012. ()0,1- 13.①③⑤ 14.[]5,3--二、选择题15. C 16. A 17. C 18. B三、解答题 19. 解:(1)在△ABC 中,A B C π++=. 所以cos cos 22A C B π+-=1sin 22B ==.26B π=,所以3B π=. ………………3分由余弦定理2222cos b a c ac B =+-,得2320c c -+=.解得1c =或2c =. ………………6分(2)()sin sin )f A A A A =-1cos 222A A -=-1sin 262A π⎛⎫=+- ⎪⎝⎭. ………………9分由(1)得3B π=,所以23A C π+=,20,3A π⎛⎫∈ ⎪⎝⎭, 则32,662A πππ⎛⎫+∈ ⎪⎝⎭.∴sin 2(1,1]6A π⎛⎫+∈- ⎪⎝⎭.∴()31,22f A ⎛⎤∈- ⎥⎝⎦.∴()f A 的取值范围是31,22⎛⎤- ⎥⎝⎦. ………………12分20. 解:(1)解法一:在CD 的延长线上延长至点M 使得CD DM =,连接,,ME MB BD . 由题意得,AD DC ⊥,AD DF ⊥,,DC DF ⊂≠平面CDEF ,∴AD ⊥平面CDEF ,∴AD DE ⊥,同理可证DE ⊥面ABCD .∵ //CD EF ,CD EF DM ==, ∴EFDM 为平行四边形, ∴//ME DF .则MEB ∠(或其补角)为异面直线DF 和BE所成的角. ………………3分由平面几何知识及勾股定理可以得ME BE BM === 在MEB △中,由余弦定理得222cos 2ME BE BM MEB ME BE +-∠==⋅.∵ 异面直线的夹角范围为0,2π⎛⎤⎥⎝⎦,∴ 异面直线DF 和BE所成的角为arccos ………………7分解法二:同解法一得,,AD DC DE 所在直线相互垂直,故以D 为原点,,,DA DC DE 所在直线 分别为,,x y z 轴建立如图所示的空间直角坐标系, ………………2分可得()()()()0,0,0,0,2,2,2,4,0,0,0,2D F B E , ∴ (0,2,2),(2,4,2)DF BE ==--u u u r u u u r,得DF BE ==u u u r u u u r………………4分M设向量,DF BE u u u r u u u r夹角为θ,则022422cos DF BEDF BEθ⋅-+⋅-+⋅⋅===⋅u u u r u uu ru u u r u u u r ∵ 异面直线的夹角范围为0,2π⎛⎤ ⎥⎝⎦,∴ 异面直线DF 和BE 所成的角为arccos………………7分(2)如图,连结EC ,过B 作CD 的垂线,垂足为N ,则BN ⊥平面CDEF ,且2BN =. ………………9分 ∵EF ABCD V -E ABCD B ECF V V --=+ ……………11分 1133ABCD EFC S DE S BN =⋅+⋅△△ 1111(42)222223232=⋅⋅+⋅⋅+⋅⋅⋅⋅ 163=. ∴ 几何体EF ABCD -的体积为163.……14分21. 解:(1)根据题意得,利润P 和处理量x 之间的关系: (1010)P x y =+-22050900x x x =-+-270900x x =-+- ………………2分()235325x =--+,[10,15]x ∈.∵35[10,15]x =∉,()235325P x =--+在[10,15]上为增函数,可求得[300,75]P ∈--. ………………5分 ∴ 国家只需要补贴75万元,该工厂就不会亏损. ………………7分 (2)设平均处理成本为90050y Q x x x==+- ………………9分 5010≥=, ………………11分当且仅当900x x=时等号成立,由0x > 得30x =.因此,当处理量为30吨时,每吨的处理成本最少为10万元. ………………14分 22. 解:(1)由题意得2213322a a a a a ⎧=⎪⎨=+⎪⎩,2222a a =+,22a =或21a =-. ………………2分N故数列{}n a 的前四项为1,2,4,6或1,1,1,3-. ………………4分 (2)∵21221,,k k k a a a -+成公比为k q 的等比数列, 212223,,k k k a a a +++成公比为1k q +的等比数列∴212k k k a a q +=,22211k k k a a q +++= 又∵22122,,k k k a a a ++成等差数列, ∴212222k k k a a a ++=+. 得21212112k k k k k a a a q q ++++=+,112k kq q +=+, ………………6分 111k k kq q q +-=-, ∴1111111k k k k q q q q +==+---,111111k k q q +-=--,即11k k b b +-=. ∴ 数列数列{}k b 为公差1d =等差数列,且11111b q ==-或111112b q ==--. ……8分 ∴()111k b b k k =+-⋅=或32k b k =-. ………………10分(3)当11b =时,由(2)得11,1k k k k b k q q k+===-. 221211k k a k a k +-+⎛⎫= ⎪⎝⎭,()22222121321121231121111k k k k k a a a k k a a k a a a k k +-+--+⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, ()2121k k kaa k k q +==+,()2121231,2k k k k k k k k a d a a k D q +++=-==+=. ………………13分 当112b =-时,同理可得42k d k =-,22k D k =. ………………16分解法二:(2)对1,1,1,3,-L 这个数列,猜想()*2123N m m q m m -=∈-, 下面用数学归纳法证明: ⅰ)当1m =时,12111213q ⋅-==-⋅-,结论成立.ⅱ)假设()*N m k k =∈时,结论成立,即2123k k q k -=-.则1m k =+时,由归纳假设,222121212121,2323k k k k k k a a a a k k -+---⎛⎫== ⎪--⎝⎭. 由22122,,k k k a a a ++成等差数列可知()()()222122122121223k k k k k k a a a a k ++--+=-=⋅-,于是221212121k k k a k q a k ++++==-,∴ 1m k =+时结论也成立.所以由数学归纳法原理知()*2123N m m q m m -=∈-. ………………7分 此时1132112123k k b k k q k ===-----.同理对1,2,4,6,L 这个数列,同样用数学归纳法可证1k k q k +=. 此时11111k k b k k q k===+--.∴k b k =或32k b k =-. ………………10分(3)对1,1,1,3,-L 这个数列,猜想奇数项通项公式为()22123k a k -=-. 显然结论对1k =成立. 设结论对k 成立,考虑1k +的情形. 由(2),()211,23k k q k k k -=≥∈-N 且21221,,k k k a a a -+成等比数列, 故()()22222121212123212323k k k k a a k k k k +---⎛⎫⎛⎫=⋅=-⋅=- ⎪ ⎪--⎝⎭⎝⎭,即结论对1k +也成立. 从而由数学归纳法原理知()22123k a k -=-.于是()()22321k a k k =--(易见从第三项起每项均为正数)以及21242k k k d a a k +=-=-,此时()22422k D k k =++-=L . ………………13分 对于1,2,4,6,L 这个数列,同样用数学归纳法可证221k a k -=,此时()22121,1k k k k a k k d a a k +=+=-=+.此时()()32312k k k D k +=++++=L . ………………16分23. 解:(1)由题意圆O 的半径1r ==,故圆O 的方程为221x y +=. ………………2分由OC xOA yOB =+u u u r u u u r u u u r得,()22OC xOA yOB =+u u u r u u u r u u u r , 即222222cos60OC x OA y OB xy OA OB =++ou u u r u u u r u u u r u u u r u u u r ,得221x y xy ++=(,x y ⎡∈⎢⎣⎦)为曲线Γ的方程.(未写,x y 范围不扣分)…4分(2)由221y kx x y xy =⎧⎨++=⎩得E ⎛⎫,F ⎛⎫ ⎝,所以EF =MN ==………………6分 由题意知12l l ⊥ ,所以四边形EMFN 的面积12S EF MN =⋅.2S ====∵ 221224k k ++≥=,∴223S S ≥=≤ . ………………8分当且仅当221k k=时等号成立,此时1k =±.∴ 当1k =±时,四边形EMFN 的面积最大值为3. ………………10分(3)曲线Γ的方程为221x y xy ++=(,,33x y ⎡∈-⎢⎣⎦),它关于直线y x =、y x =-和原点对称,下面证明:设曲线Γ上任一点的坐标为()00,P x y ,则2200001x y x y ++=,点P 关于直线y x =的对称点为()100,P y x ,显然2200001y x y x ++=,所以点1P 在曲线Γ上,故曲线Γ关于直线y x =对称, 同理曲线Γ关于直线y x =-和原点对称.可以求得221x y xy ++=和直线yx =的交点坐标为12,B B ⎛ ⎝⎭⎝⎭221x y xy ++=和直线y x =-的交点坐标为()()121,1,1,1A A --,1OA =13OB =3=3=. 在y x=-上取点12,,3333F F ⎛⎛-- ⎝⎭⎝⎭.下面证明曲线Γ为椭圆:ⅰ)设(),P x y 为曲线Γ上任一点,则12PF PF +=======43xy ≤)12A A ==.即曲线Γ上任一点P 到两定点12,F F ⎛ ⎝⎭⎝⎭的距离之和为定值ⅱ)若点P 到两定点12,F F ⎛ ⎝⎭⎝⎭的距离之和为定值,可以求得点P 的轨迹方程为221x y xy ++=(过程略).故曲线Γ是椭圆,其焦点坐标为12,,3333F F ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. ………………18分 第(3)问说明:1. ⅰ)、ⅱ)两种情形只需证明一种即可,得5分,2. 直接写出焦点12,F F 的坐标给3分,未写出理由不扣分.。

上海版(第03期)-2014届高三名校数学(理)_专题05_数列、数学归纳法与极限(解析版)Word版含解析

上海版(第03期)-2014届高三名校数学(理)_专题05_数列、数学归纳法与极限(解析版)Word版含解析

一.基础题组1. 【上海市黄浦区2014届高三上学期期末考试(即一模)数学(理)试题】已知数列{}n a 是公差为2的等差数列,若6a 是7a 和8a 的等比中项,则n a =________.2. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(理)试卷】已知数列}{n a 的前n 项和2n S n =(*N ∈n ),则8a 的值是__________.3. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(理)试卷】若nn r r ⎪⎭⎫ ⎝⎛+∞→12lim 存在,则实数r 的取值范围是_____________.4. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】在n n n C B A ∆中,记角n A 、n B 、n C 所对的边分别为n a 、n b 、n c ,且这三角形的三边长是公差为1的等差数列,若最小边1+=n a n ,则=∞→n n C lim ( )..A 2π .B 3π .C 4π .D 6π5. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(理卷)】221lim 2n n n n→∞+=-___________. 6. 【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d lim .【答案】1 【解析】试题分析:圆心为(0,1),21n n d n =+,221limlim1111n n n n n→∞→∞==++. 考点:点到直线距离公式,极限.7. 【2013学年第一学期十二校联考高三数学(理)考试试卷】计算:2(1)(13)lim(2)(1)n n n n n n →∞+-=-++________.8. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(理卷)】已知数列{}n a 中,11a =,*13,(2,)n n a a n n N -=+≥∈,则n a =___________.9. 【2013学年第一学期十二校联考高三数学(理)考试试卷】设正项数列}{n a 的前n 项和是n S ,若}{n a 和}{n S 都是等差数列,且公差相等,则1a =_______________. 【答案】14【解析】试题分析:等差数列}{n a 的公差为d ,则21()22n d dS n a n =+-,21()22n d dS n a n =+-,数列}{n S 是等差数列,则n S 是关于n 的一次函数(或者是常函数),则102d a -=,2n d S n =,从而数列}{n S 的公差是2d,那么有2d d =,0d =(舍去)或12d =,114a =. 考点:等差数列的通项公式.10. 【上海市十三校2013年高三调研考数学试卷(理科)】计算:2211lim[()]12n n n n n →+∞--++=_________.11. 【上海市十三校2013年高三调研考数学试卷(理科)】设正数数列{}n a 的前n 项和是n S ,若{}n a 和{n S }都是等差数列,且公差相等,则=+d a 1__ _.12. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)】计算:210lim323x n n →∞++= .【答案】23【解析】试题分析:这属于“∞∞”型极限问题,求极限的方法是分子分母同时除以n (n 的最高次幂),化为一般可求极限型,即210lim 323x n n →∞++1022lim 2333n n n→∞+==+. 考点:“∞∞”型极限13. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)】如果()1111112312n f n n n =++++++++(*n N ∈)那么()()1f k f k +-共有 项. 14. 【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(理科)】计算:=+∞→133lim nnn . 15.【上海市长宁区2013—2014第一学期高三教学质量检测数学试卷(理科)】已知数列{}{}n n b a ,都是公差为1的等差数列,其首项分别为11,b a ,且,511=+b a,,11N b a ∈设),(N n a c n b n ∈=则数列{}n c 的前10项和等于______.【答案】85 【解析】试题分析:数列{}n c 到底是什么暂时不知,因此我们试着把其前10项的和10S 表示出来,1210b b S a a =++10b a +11121[(1)][(1)][(1)]n a b a b a b =+-++-+++-1121010()10a b b b =++++-=111091010102a b ⨯++-1110()451085a b =++-=. 考点:等差数列的通项公式与前n 和公式.二.能力题组1. 【上海市黄浦区2014届高三上学期期末考试(即一模)数学(理)试题】已知数列{}na 满足()()*+∈=-+N n n a a n nn ,11,则数列{}na 的前2016项的和2016S 的值是___________.可行,由此我们可得2016S =12344342414()()k k k k a a a a a a a a ---+++++++++20132014(a a ++2015a +2016)a +(222)(226)(22(42))(222014)k =+⨯++⨯+++⨯-+++⨯25044(13=⨯+⨯++5+1007)+=1017072.考点:分组求和.2. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(理)试卷】某种平面分形图如下图所示,一级分形图是一个边长为1的等边三角形(图(1));二级分形图是将一级分形图的每条线段三等分,并以中间的那一条线段为一底边向形外作等边三角形,然后去掉底边(图(2));将二级分形图的每条线段三等边,重复上述的作图方法,得到三级分形图(图(3));…;重复上述作图方法,依次得到四级、五级、…、n 级分形图.则n 级分形图的周长为__________.3. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知函数2sin)(2πn n n f =,且)1()(++=n f n f a n ,则=++++2014321a a a a . 【答案】4032- 【解析】试题分析:考虑到sin2n π是呈周期性的数列,依次取值1,0,1,0,-,故在122014a a a +++时要分组求和,又由n a 的定义,知1352013a a a a ++++(1)(2)(3)(4)(2013)(2014)f f f f f f =++++++2222221357200920112013=-+-++-+1(53)(53)(97)(97)=+-++-++(20132011)+-⋅(20132011)+12(357920112013)=+++++++110062016=+⨯,242014a a a +++(2)(3)(4)f f f =+++(5)(2014)(2015)f f f +++22223520132015=-+++-22(352013)2015=+++-2100620062015=⨯-,从而122014a a a +++1210062016=+⨯⨯图(1)图(2)图(3)……22015-4032=-.考点:周期数列,分组求和.4. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知{}n a 是各项均为正数的等比数列,且1a 与5a 的等比中项为2,则42a a +的最小值等于 .5. 【上海市长宁区2013—2014第一学期高三教学质量检测数学试卷(理科)】数列{}n a 满足*,5221...2121221N n n a a a n n ∈+=+++,则=n a . 6. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(理卷)】已知函数,1)(22+=x x x f 则 ()()()111112(2013)20142320132014f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )(A) 201021 (B) 201121 (C) 201221 (D) 201321 7. 【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】数列}{n a 中,若11=a ,n n n a a 211=++(*N n ∈),则=+++∞→)(lim 221n n a a a . 8. 【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】数列}{n a 的前n 项和为n S ,若2cos 1πn n a n +=(*N n ∈),则=2014S . 【答案】1006 【解析】试题分析:组成本题数列的通项公式中,有式子cos2n π,它是呈周期性的,周期为4,因此在求和2014S 时,想象应该分组,依次4个为一组,12341(12)1(14)a a a a +++=+-+++6=,56781(16)1(18)6a a a a +++=+-+++=,43424141[1(42)]1(14)k k k k a a a a k k ---+++=+--+++6=,最后还剩下20131a =,2014120142013a =-=-,所以20146503120131006S =⨯+-=.考点:分组求和.9. 【2013学年第一学期十二校联考高三数学(理)考试试卷】若数列{}n a 满足:111,2()n n a a a n N *+==∈,则前6项的和6S = .(用数字作答)10. 【上海市十三校2013年高三调研考数学试卷(理科)】等差数列{}n a 中,1102,15a S ==,记2482n n B a a a a =++++,则当n =____时,n B 取得最大值.11. 【上海市十三校2013年高三调研考数学试卷(理科)】已知函数()(2318,3133,3x tx x f x t x x ⎧-+≤⎪=⎨-->⎪⎩,记()()*n a f n n N =∈,若{}n a 是递减数列,则实数t 的取值范围是______________.12. 【上海市十三校2013年高三调研考数学试卷(理科)】已知无穷数列{}n a 具有如下性质:①1a 为正整数;②对于任意的正整数n ,当n a 为偶数时,12nn a a +=;当n a 为奇数时,112n n a a ++=.在数列{}n a 中,若当n k ≥时,1n a =,当1n k ≤<时,1n a >(2k ≥,*k N ∈),则首项1a 可取数值的个数为 (用k 表示)三.拔高题组1. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】数列{}n a 是递增的等差数列,且661-=+a a ,843=⋅a a . (1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S 的最小值; (3)求数列{}n a 的前n 项和n T .【答案】(1) 210n a n =-;(2)20-;(3)229,15,*,940,6,*,n n n n n N T n n n n N ⎧-+≤≤∈⎪=⎨-+≥∈⎪⎩.【解析】2.【上海市普陀区2014届高三上学期12月质量调研数学(理)试题】已知数列{}a中,n13a =,132n n n a a ++=⋅,*n N ∈.(1)证明数列{}2n n a -是等比数列,并求数列{}n a 的通项公式;(2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;(3)若1r s <<且r ,*s N ∈,求证:使得1a ,r a ,s a 成等差数列的点列(),r s 在某一直线上.(2)假设在数列{}n a 中存在连续三项成等差数列,不妨设连续的三项依次为1k a -,k a ,1k a +(2k ≥,*k N ∈),由题意得,112+-+=k k k a a a ,将1)1(2--+=k k k a ,211)1(2----+=k k k a ,kk k a )1(211-+=++代入上式得……7分])1(2[])1(2[])1(2[21211k k k k k k -++-+=-++---………………8分化简得,21)1(42---⋅=-k k ,即11)1(42---⋅=k k ,得4)2(1=--k ,解得3=k所以,存在满足条件的连续三项为2a ,3a ,4a 成等比数列。

2014年高考上海卷数学(文)试卷解析(精编版)(解析版)

2014年高考上海卷数学(文)试卷解析(精编版)(解析版)

2014年上海市高考数学试卷(文科)解析一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 .4. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________. 【答案】2x =-.【解析】椭圆22195x y +=的右焦点为(2,0),因此22p =,4p =,准线方程为2x =-. 【考点】椭圆与抛物线的几何性质.5. 某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为.8. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为2(51)324⨯-⨯=.【考点】三视图,几何体的体积..9. 设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围是 . 【答案】(,2]-∞【解析】由题意,当0x >时,()f x 的极小值为(1)2f =,当0x ≤时,()f x 极小值为(0)f a =,(0)f 是()f x 的最小值,则2a ≤.【考点】函数的最值问题..10.设无穷等比数列{n a }的公比为q ,若)(lim 431Λ++=∞→a a a n ,则q= .12. 方程sin 3cos 1x x +=在区间[0,2]π上的所有解的和等于 .【答案】73π 【解析】原方程可变形为2sin()13x π+=,即1sin()32x π+=,(1),36k x k k Z πππ+=+-⋅∈,由于[0,2]x π∈,所以12x π=,2116x π=,所以1273x x π+=. 【考点】解三角方程.13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 已知曲线C :24x y =--l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r ,则m 的取值范围为 .【答案】[2,3]【解析】由0AP AQ +=u u u r u u u r r 知A 是PQ 的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.【考点】向量的坐标运算.二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件【答案】B【解析】若2,2a b >>,则4a b +>,但当4,1a b ==时也有4a b +>,故本题就选B .【考点】充分必要条件.17. 如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =L 是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=u u u r u u u r L 的不同值的个数为( ) (A )7 (B )5 (C )3 (D )118. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( ) (A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解(C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解【答案】B【解析】由题意,直线1y kx =+一定不过原点O ,,P Q 是直线1y kx =+上不同的两点,则OP uuu r 与OQ uuu r 不平行,因此12210a b a b -≠,所以二元一次方程组112211a xb y a x b y +=⎧⎨+=⎩一定有唯一解.选B. 【考点】向量的平行与二元一次方程组的解.三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)19. (本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .20. (本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.设常数0≥a ,函数a a x f x x -+=22)( (1)若a =4,求函数)(x f y =的反函数)(1x f y -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在AB 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设AB 、在同一水平面上,从A 和B 看D 的仰角分别为βα和. (1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后.CD 与铅垂方向有偏差,现在实测得,,οο45.1812.38==βα求CD 的长(结果精确到0.01米)?【答案】(1)28.28CD ≈米;(2)26.93CD ≈米.【解析】22. (本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分. 在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.【答案】(1)证明见解析;(2)11(,][,)22k ∈-∞-+∞U ;(3)证明见解析.【解析】(3)由题得,设(,)M x y 22(2)1x y x +-=,化简得,点M 的轨迹方程为222[(2)]1x y x +-⋅=当过原点的直线斜率不存在时,其方程为0x =.因为对任意的0y R ∈,点0(0,)y 不是方程222[(2)]1x y x +-⋅=的解,所以直线0x =与曲线E 没有交点,又曲线E 上的两点(1,2),(1,2)-对于直线0x =满足110η=-⋅<,即点(1,2),(1,2)-被直线0x =分隔.所以直线y 轴是E 分隔线.【考点】新定义,直线与曲线的公共点问题.23. (本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是等比数列,且11000m a =,正整数m 的最小值,以及m 取最小值时相应{}n a 的仅比; (3)若12100,,,a a a L 成等差数列,求数列12100,,,a a a L 的公差的取值范围.。

上海市闵行区2014学年第二学期高三年级质量调研考试数学(文理答案)

上海市闵行区2014学年第二学期高三年级质量调研考试数学(文理答案)

闵行区2014学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准一. 填空题 1.[]1,4-; 2.1i -+; 3.12-; 4.14; 5.(理)1,(文)32; 6.54-; 7.33π;8.(理)58,(文)12;9.(理) 9632+,(文)4; 10.(理)1,12⎡⎤⎢⎥⎣⎦,(文) 1; 11.(理)5,(文) 14x =;12. 833; 13.(文理) ④; 14.(理){}1,3,67---,(文)1-或3-或67-二. 选择题 15. B ; 16. B ; 17.D ; 18. A . 三. 解答题19.(文)[解] 11111183323A ABC BC V S AA BC AC AA -=⋅=⋅⋅⋅⋅=△A 11822411323AA AA =⋅⋅⋅⋅=⇒= ………………………………4分11//BB CC , 11A BB ∴∠是直线B A1与直线1CC 所成的角 ……6分 11111222tan 2A B A BB BB y ∴∠===………………………10分 112arctan2A BB ∴∠= 所以直线B A 1与1CC 所成的角为2arctan 2………………12分 19.(理)[解]法一:1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角.…………………4分 设1CC y =222114BC CC BC y =+=+,11112121tan 454AC A BC y BC y ∴∠===⇒=+, ……………8分 所以111111111111183323C A BC A C BC C BC V V S A C BC CC A C --==⋅=⋅⋅⋅⋅=△.…12分法二:如图,建立空间直角坐标系,设1CC y =. 得点(020)B ,,, 1(00)C y ,,,1(20)A y ,,. 则1(22)A B y =--,,,平面C C BB 11的法向量为(100)n =,,. …………………4分 设直线B A 1与平面C C BB 11所成的角为θ,则12126sin 468A B ny A B n yθ⋅===⇒=⋅+,……………8分所以111111111111183323C A BC A C BC C BC V V V S A C BC CC A C --===⋅=⋅⋅⋅⋅=△.…12分 20.[解] (1) 40000()(1640)164360W xR x x x x=-+=--+10100x <<,……6分 (2) 解400001643602760W x x=--+≥ ………………12分 得2(50)0x -≤时, 所以50x =.答:为了让年利润W 不低于2760万元,年产量50x =. …………………14分 21.(文)[解](1) 2222a a =⇒=………………3分将点P 的坐标代入方程22212x y b+=得281199b +=⇒21b = ………6分 所以椭圆Γ的方程为2212x y +=.…………………………………7分 (2)法一:设点C D 、的坐标分别为1122(,)(,)x y x y 、则2222112222,22x y x y +=+=,且12122,1x x y y +=+= ………9分 由2222112222,22x y x y +=+=得:12121212()()2()()0x x x x y y y y +-++-=121212122()2()01y y x x y y x x --+-=⇒=-- ………………12分所以直线CD 的方程为32y x =-+………………14分 法二:设点C D 、的坐标分别为1122(,)(,)x y x y 、 设直线CD 的方程为1(1)2y k x =-+ ………………9分 将1(1)2y k x =-+代入2222x y += CB 1C 1B1AA yzx得22223(21)(42)2202k x k k x k k +--+--= 由212242221k kx x k -+==+得1k =- ………………12分 所以直线CD 的方程为32y x =-+………………14分 21.[解](理)(1)因为椭圆Γ过点4(,)33b P ,所以2161199a+=,解得22a = ……3分 又以AP 为直径的圆恰好过右焦点2F ,所以220F A F P ⋅= 又24(,),(,0),(0,)33bP F c A b得2(,)F A c b =-,24(,)33b F P c =-,所以24()033b c c --+= 而22222b a c c =-=-,所以2210c c -+=得1c = ………………6分故椭圆Γ的方程是2212x y +=. ………………………………7分 (2)法一:设点C D 、的坐标分别为1122(,)(,)x y x y 、,则2222112222,22x y x y +=+=,且12122,1x x y y +=+= ………9分 由2222112222,22x y x y +=+=得:12121212()()2()()0x x x x y y y y +-++-=121212122()2()01y y x x y y x x --+-=⇒=--所以CD 所在直线的方程为32y x =-+………………11分 将32y x =-+代入2222x y +=得253602x x -+=21212121023||2||2()42433CD x x x x x x =-=⋅+-=⋅-=………14分 法二:设点C D 、的坐标分别为1111(,)(2,1)x y x y --、,………9分 则2222111122,(2)2(1)2x y x y +=-+-= 两等式相减得1132y x =-+………………11分将32y x =-+代入2222x y +=得253602x x -+= 21212121023||2||2()42433CD x x x x x x =-=⋅+-=⋅-=.……14分 22.[解](1)(文理)2213()cos 2sin 2sin cos +222f x x x x x =++- 13πcos 2sin 2cos 2+2sin 2+2226x x x x ⎛⎫=+-=- ⎪⎝⎭,……………2分 函数()f x 的最小正周期T π= ………………………………4分(2)当,123t ππ⎡⎤∈⎢⎥⎣⎦时,20,62t ππ⎡⎤-∈⎢⎥⎣⎦,π()sin 2+22,216f t t ⎛⎫⎡⎤=-∈+ ⎪⎣⎦⎝⎭6分 []22()[()]22()[()2]22,1F t f t f t f t ⇒=-=--∈-- …………………8分(理)存在,123t ππ⎡⎤∈⎢⎥⎣⎦满足()0F t m ->的实数m 的取值范围为(),1-∞-.……10分 (文)存在,123t ππ⎡⎤∈⎢⎥⎣⎦满足()0F t m -=的实数m 的取值范围为[]2,1--.……10分 (3)(理)存在唯一的2,63x ππ⎡⎤∈-⎢⎥⎣⎦,使12()()1f x f x ⋅=成立. ………………12分 (文理)当1,63x ππ⎡⎤∈-⎢⎥⎣⎦时,12,622x πππ⎡⎤-∈-⎢⎥⎣⎦,11π()sin 2+221,216f x x ⎛⎫⎡⎤=-∈-+ ⎪⎣⎦⎝⎭ 2211π()sin 2+221,21()6f x x f x ⎛⎫⎡⎤==-∈-+ ⎪⎣⎦⎝⎭[]21π1sin 2=21,16()x f x ⎛⎫⇒--∈- ⎪⎝⎭ ………………14分设112()a f x -=,则[]1,1a ∈-,由2πsin 2=6x a ⎛⎫- ⎪⎝⎭ 得22ππ22arcsin 2=2arcsin ,66x k a x k a k πππ-=+-+-∈Z 或所以2x 的集合为2221π17π|arcsin +arcsin +,212212x x k a x k a k ππ⎧⎫=+⋅=-⋅∈⎨⎬⎩⎭Z 或 ∵1π17π5arcsin +,arcsin +6212332126a a ππππ-≤⋅≤≤-⋅≤ ∴2x 在,63ππ⎡⎤-⎢⎥⎣⎦上存在唯一的值21πarcsin 212x a =⋅+使12()()1f x f x ⋅=成立. 16分23.(文)[解] (1)法1:由142()n n a a n n *++=+∈N 得12236,10a a a a +=+= 所以31242a a d d -==⇒=,所以12a =故2,n a n = ……………………………2分 因为2112233(1)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+ ① 对任意的n *∈N 恒成立则1112233-1-1(2)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+(2n ≥) ② ①-②得12(2)n n n a b n n +=⋅≥又114a b =,也符合上式,所以12()n n n a b n n +*=⋅∈N所以2n n b = ……………………………4分 法2:由于{}n a 为等差数列,令n a kn b =+, 又142()n n a a n n *++=+∈N ,所以(1)2242()kn b k n b kn b k n k *++++=++=+∈N所以24,222,0k k b k b =+=⇒==故2n a n = ………………2分 因为2112233(1)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+ ① 对任意的n *∈N 恒成立则1112233-1-1(2)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+(2n ≥) ②①-②得12(2)n n n a b n n +=⋅≥又114a b =,也符合上式,所以12()n n n a b n n +*=⋅∈N所以2n n b = ……………………………4分 (2)假设存在,p q *∈N 满足条件,则244)2392q p +-=(化简得2324472q p p -+-= ……………………………6分 由p *∈N 得22447p p +-为奇数,所以32q -为奇数,故3q =得22244712240p p p p +-=⇒+-= ……………………8分 故46()p p ==-或舍去所以存在满足题设的正整数=4,=3p q . ……………………………10分(3)易得2n S n n =+,则22n nn S n n b +=, ……………………12分 下面考察数列2()2nn nf n +=的单调性, 因为2211(1)1(1)(2)(1)()222n n n n n n n n n f n f n +++++++-+-=-=……………14分所以3n ≥时,(1)()f n f n +<,又(1)1,f =3(2)(3)2f f ==,5(4),4f =15(5),16f =21(6),32f =……………………………16分 因为M 中的元素个数为5,所以不等式,nnS n b λ*≥∈N 解的个数为5, 故λ的取值范围是2115,3216⎛⎤⎥⎝⎦. ……………………………18分 23.(理)[解] (1)法1:设数列{}n a 的公差为d ,数列{}n b 的公比为q 。

上海市六校2014届高三下学期第二次联考数学(文)试题--含答案

上海市六校2014届高三下学期第二次联考数学(文)试题--含答案

上海市六校2014届高三下学期第二次联考数学(文)试题 数学试卷(文科) 2014年3月6日(完卷时间120分钟,满分150分)一、填空题(本大题满分56分)本大题共有14题,只要求将最终结果直接填写答题纸上相应的横线上,每个空格填对得4分,否则一律得零分. 1. 已知,2παπ⎛⎫∈⎪⎝⎭,4sin 5α=,则tan α= .2. 已知集合{}1,A m =-,{}|1B x x =>,若AB ≠∅,则实数m 的取值范围是 .3.设等差数列{}n a 的前项和为n S ,若911a =,119a =,则19S 等于 .4. 若()()2i i a ++是纯虚数(i 是虚数单位),则实数a 的值为 .5. 抛物线24y x =的焦点到双曲线2214x y -=的渐近线的距离是 .6. 已知向量2a =,1b =,1a b ⋅=,则向量a 与a b -的夹角为 .7. 执行右图的程序框图,如果输入6i =,则输出的S 值为 . 8. 不等式1011ax x <+对任意R x ∈恒成立,则实数a 的取值范围是 . 9. 若n a 是()()*2,2,nx n n x +∈≥∈N R 展开式中2x项的系数,则2323222lim n n n a a a →∞⎛⎫++⋅⋅⋅+=⎪⎝⎭ . 10. 已知一个圆锥的侧面展开图是一个半径为3,圆心角为23π的扇形,则此圆锥的体积为 .11. 设,x y ∈R ,若不等式组320,220,10x y x y ax y -+≥⎧⎪--≤⎨⎪-+≥⎩所表示的平面区域是一个锐角三角形,则实数a 的12. 从1,2,,9⋅⋅⋅这10个整数中任意取3个不同的数作为二次函数()2f x ax bx c =++的系数,则使得()12f ∈Z 的概率为 . 13. 已知点F 为椭圆:C 2212x y +=的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标为()4,3,则PQ PF +取最大值时,点P 的坐标为 . 14. 已知A 、B 、C 为直线l 上不同的三点,点O ∉直线l ,实数x 满足关系式220x OA xOB OC ++=,有下列命题:① 20OB OC OA -⋅≥; ② 20OB OC OA -⋅<;③ x 的值有且只有一个; ④ x 的值有两个; ⑤ 点B 是线段AC 的中点.则正确的命题是 .(写出所有正确命题的编号)二、选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应的正确代号用2B 铅笔涂黑,选对得5分,不16. 下列函数中,既是偶函数,又在区间()1,2内是增函数的为 ( ) (A )2log y x = (B )cos 2y x =(C )222x x y --= (D )22log 2x y x-=+ 17. 已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m β⊥的是( )A )αβ⊥且m α⊂≠(B )αβ⊥且mα∥ (C )m n 且n β⊥ (D )m n ⊥且αβ18. 对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”.下列函数中存在唯一“可等域区间”的“可等域函数”为 ( ) (A )()sin 2f x x π⎛⎫=⎪⎝⎭(B )()221f x x =- (C )()21x f x =+ (D )()()2log 22f x x =-三、解答题(本大题共5题,满分74分)每题均需写出详细的解答过程.19. (本题满分12分)本题共有2小题,第(1)小题满分6分,第(2)小题满分6分.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且1cos22A C +=. (1)若3a =,b =c 的值;(2)若())sin sin f A A A A =-,求()f A 的取值范围.20. (本题满分14分)本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.如图,几何体EF ABCD -中,CDEF 为边长为2的正方形,ABCD 为直角梯形,//AB CD ,AD DC ⊥,2AD =,4AB =,90ADF ∠=.(1)求异面直线BE 和CD 所成角的大小; (2)求几何体EF ABCD -的体积.A21. (本题满分14分) 本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y (万元)与处理量x (吨)之间的函数关系可近似的表示为:250900y x x =-+,且每处理一吨废弃物可得价值为10万元的某种产品,同时获得国家补贴10万元.(1)当[]10,15x ∈时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损? (2)当处理量为多少吨时,每吨的平均处理成本最少?22. (本题满分16分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知各项为正数的数列{}n a 中,11a =,对任意的*k N ∈,21221,,k k k a a a -+成等比数列,公比为k q ;22122,,k k k a a a ++成等差数列,公差为k d ,且12d =. (1)求2a 的值; (2)设11k k b q =-,证明:数列{}k b 为等差数列; (3)求数列{}k d 的前k 项和k D .23. (本题满分18分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如图,圆O与直线20x ++=相切于点P ,与x 正半轴交于点A,与直线y =在第一象限的交点为B . 点C 为圆O 上任一点,且满足OC xOA yOB =+,动点(),D x y 的轨迹记为曲线Γ.(1)求圆O 的方程及曲线Γ的轨迹方程;(2)若直线y x =和y x =-分别交曲线Γ于点A 、C 和B 、D ,求四边形ABCD 的周长;(3)已知曲线Γ为椭圆,写出椭圆Γ的对称轴、顶点坐标、范围和焦点坐标.2014年上海市高三年级 六校联考数学试卷(文科)答案一、填空题1. 43-2. ()1,+∞3. 1904. 126、6π7. 21 8. (]4,0- 9. 8 10. 3 11、1[2,]3-- 12. 419013. ()0,1- 14.①③⑤二、选择题15. C 16. A 17. C 18. B三、解答题 19. 解:(1)在△ABC 中,A B C π++=. 所以cos cos 22A C B π+-=1sin 22B ==.26B π=,所以3B π=. ………………3分由余弦定理2222cos b a c ac B =+-,得2320c c -+=.解得1c =或2c =. ………………6分(2)()sin sin )f A A A A =-1cos 2222A A -=- 1sin 262A π⎛⎫=+- ⎪⎝⎭. ………………9分由(1)得3B π=,所以23A C π+=,20,3A π⎛⎫∈ ⎪⎝⎭,则32,662A πππ⎛⎫+∈ ⎪⎝⎭. ∴sin 2(1,1]6A π⎛⎫+∈- ⎪⎝⎭.∴()31,22f A ⎛⎤∈- ⎥⎝⎦.∴()f A 的取值范围是31,22⎛⎤- ⎥⎝⎦. ………………12分20. 解:(1)解法一:在CD 的延长线上延长至点M 使得CD DM =,连接,,ME MB BD . 由题意得,AD DC ⊥,AD DF ⊥,,DC DF ⊂≠平面CDEF ,∴AD ⊥平面CDEF ,∴AD DE ⊥,同理可证DE ⊥面ABCD .∵ //CD EF ,CD EF DM ==, ∴EFDM 为平行四边形, ∴//ME DF .则MEB ∠(或其补角)为异面直线DF 和BE所成的角. ………………3分由平面几何知识及勾股定理可以得ME BE BM === 在MEB △中,由余弦定理得222cos 26ME BE BM MEB ME BE +-∠==-⋅.∵ 异面直线的夹角范围为0,2π⎛⎤⎥⎝⎦,∴ 异面直线DF 和BE所成的角为arccos6. ………………7分解法二:同解法一得,,AD DC DE 所在直线相互垂直,故以D 为原点,,,DA DC DE 所在直线 分别为,,x y z 轴建立如图所示的空间直角坐标系, ………………2分 可得()()()()0,0,0,0,2,2,2,4,0,0,0,2D F B E , ∴ (0,2,2),(2,4,2)DF BE ==--,得22,26DF BE ==………………4分 设向量,DFBE 夹角为θ,则022422cos DF BE DF BEθ⋅-+⋅-+⋅⋅===⋅6-∵ 异面直线的夹角范围为0,2π⎛⎤⎥,M∴ 异面直线DF 和BE所成的角为arccos6. ………………7分(2)如图,连结EC ,过B 作CD 的垂线,垂足为N ,则BN ⊥平面CDEF ,且2BN =. ………………9分 ∵EF ABCD V -E ABCD B ECF V V --=+ ……………11分 1133ABCD EFC S DE S BN =⋅+⋅△△ 1111(42)222223232=⋅⋅+⋅⋅+⋅⋅⋅⋅ 163=. ∴ 几何体EF ABCD -的体积为163.……14分21. 解:(1)根据题意得,利润P 和处理量x 之间的关系: (1010)P x y =+-22050900x x x =-+-270900x x =-+- ………………2分()235325x =--+,[10,15]x ∈.∵35[10,15]x =∉,()235325P x =--+在[10,15]上为增函数,可求得[300,75]P ∈--. ………………5分 ∴ 国家只需要补贴75万元,该工厂就不会亏损. ………………7分 (2)设平均处理成本为90050y Q x x x==+- ………………9分5010≥=, ………………11分当且仅当900x x=时等号成立,由0x > 得30x =.因此,当处理量为30吨时,每吨的处理成本最少为10万元. ………………14分 22. 解:(1)由题意得2213322a a a a a ⎧=⎪⎨=+⎪⎩,2222a a =+,22a =或21a =-. ………………2分 故数列{}n a 的前四项为1,2,4,6或1,1,1,3-. ………………4分(2)∵21221,,k k k a a a -+成公比为k q 的等比数列, 212223,,k k k a a a +++成公比为1k q +的等比数列∴212k k k a a q +=,22211k k k a a q +++= N∴212222k k k a a a ++=+. 得21212112k k k k k a a a q q ++++=+,112k kq q +=+, ………………6分 111k k kq q q +-=-, ∴1111111k k k k q q q q +==+---,111111k k q q +-=--,即11k k b b +-=. ∴ 数列数列{}k b 为公差1d =等差数列,且11111b q ==-或111112b q ==--. ……8分 ∴()111k b b k k =+-⋅=或32k b k =-. ………………10分(3)当11b =时,由(2)得11,1k k k k b k q q k+===-. 221211k k a k a k +-+⎛⎫= ⎪⎝⎭,()22222121321121231121111k k k k k a a a k k a a k a a a k k +-+--+⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, ()2121k k kaa k k q +==+,()2121231,2k k k k k k k k a d a a k D q +++=-==+=. ………………13分 当112b =-时,同理可得42k d k =-,22k D k =. ………………16分解法二:(2)对1,1,1,3,-这个数列,猜想()*2123N m m q m m -=∈-, 下面用数学归纳法证明: ⅰ)当1m =时,12111213q ⋅-==-⋅-,结论成立.ⅱ)假设()*N m k k =∈时,结论成立,即2123k k q k -=-.则1m k =+时,由归纳假设,222121212121,2323k k k k k k a a a a k k -+---⎛⎫== ⎪--⎝⎭. 由22122,,k k k a a a ++成等差数列可知()()()222122122121223k k k k k k a a a a k ++--+=-=⋅-,于是221212121k k k a k q a k ++++==-,∴ 1m k =+时结论也成立.所以由数学归纳法原理知()*2123N m m q m m -=∈-. ………………7分 此时1132112123k k b k k q k ===-----.同理对1,2,4,6,这个数列,同样用数学归纳法可证1k k q k +=. 此时11111k k b k k q k===+--.∴k b k =或32k b k =-. ………………10分(3)对1,1,1,3,-这个数列,猜想奇数项通项公式为()22123k a k -=-.显然结论对1k =成立. 设结论对k 成立,考虑1k +的情形. 由(2),()211,23k k q k k k -=≥∈-N 且21221,,k k k a a a -+成等比数列, 故()()22222121212123212323k k k k a a k k k k +---⎛⎫⎛⎫=⋅=-⋅=- ⎪ ⎪--⎝⎭⎝⎭,即结论对1k +也成立. 从而由数学归纳法原理知()22123k a k -=-.于是()()22321k a k k =--(易见从第三项起每项均为正数)以及21242k k k d a a k +=-=-,此时()22422k D k k =++-=. ………………13分对于1,2,4,6,这个数列,同样用数学归纳法可证221k a k -=,此时()22121,1k k k k a k k d a a k +=+=-=+.此时()()32312k k k D k +=++++=. ………………16分23. 解:(1)由题意圆O 的半径1r ==,故圆O 的方程为221x y +=. ………………2分 由OC xOA yOB =+得,()22OC xOA yOB =+, 即222222cos60OC x OA y OB xy OA OB =++,得221x y xy++=(,x y ⎡∈⎢⎣⎦)为曲线Γ的方程.(未写,x y 范围不扣分)…4分(2)由221y xx y xy =⎧⎨++=⎩解得:33xy ⎧=⎪⎪⎨⎪=⎪⎩或33x y ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以,A,C,-) 同理,可求得B (1,1),D (-1,-1)所以,四边形ABCD 的周长为:179(3)曲线Γ的方程为221x y xy ++=(,x y ⎡∈⎢⎣⎦), 它关于直线y x =、y x =-和原点对称,下面证明:设曲线Γ上任一点的坐标为()00,P x y ,则2200001x y x y ++=,点P 关于直线y x =的对称点为()100,P y x ,显然2200001y x y x ++=,所以点1P 在曲线Γ上,故曲线Γ关于直线y x =对称, 同理曲线Γ关于直线y x =-和原点对称.可以求得221x y xy ++=和直线y x =的交点坐标为12,3333B B ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭221x y xy ++=和直线y x =-的交点坐标为()()121,1,1,1A A --,1OA =13OB =3=3=.在y x =-上取点12,F F ⎛ ⎝⎭⎝⎭. 曲线Γ为椭圆:其焦点坐标为12,,3333F F ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.。

人教版数学高三期中测试精选(含答案)8

人教版数学高三期中测试精选(含答案)8

【答案】A
9.设 a, b, c 是互不相等的整数,则下列不等式中不恒成立的是( )
A.| a b || a c | | b c |
C.
|
a
b
|
a
1
b
2
B. a2
1 a2
a
1 a
D. a 3 a 1 a 2 a
【来源】上海市上海中学 2018-2019 学年高三上学期期中数学试题
x [2, 4] ,不等式 f (x) t 2 恒成立,则 t 的取值范围为__________.
【来源】山东省菏泽一中、单县一中 2016-2017 学年高二下学期期末考试数学(文)试
题 【答案】 (,10]
2x y 1 0,
12.设关于
x

y
的不等式组
x m 0,
表示的平面区域为 D ,若存在点
【答案】(1)见解析;(2) 2- n 2 n n2
2n
2
7x 5y 23 0
30.已知
x,y
满足条件:
x
7
y
11
0
,求:
4x y 10 0
(1) 4x 3y 的最小值; x y 1
(2) x 5 的取值范围.
【来源】上海市上海中学 2015-2016 学年高二上学期期中数学试卷
an
2n
的前
n
项和
Sn

【来源】江西省抚州市临川一中 2019-2020 届高三上学期第一次联合考试数学(文科)
试题
【答案】(1) an
1 2
n
;(2)
Sn
2n1
n2
n
2
.
34.已知等差数列an 的前 n 项和为 Sn , a2 a8 82 , S41 S9 .

2014年高考理科数学上海卷(含答案解析)

2014年高考理科数学上海卷(含答案解析)

数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前2014年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数212cos (2)y x =-的最小正周期是 .2.若复数12i z =+,其中i 是虚数单位,则1(z )z z+= .3.若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为 .4.设2,(,),(),[,),x x a f x x x a ∈-∞⎧=⎨∈+∞⎩若(2)4f =,则a 的取值范围为 .5.若实数x ,y 满足1xy =,则222x y +的最小值为 .6.若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).7.已知曲线C 的极坐标方程为(3cos 4sin )1ρθθ-=,则C 与极轴的交点到极点的距离是 .8.设无穷等比数列{}n a 的公比为q .若134lim()n n a a a a →∞=+++,则q = .9.若2132()f x x x =-,则满足()0f x <的x 的取值范围是 .10.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 (结果用最简分数表示). 11.已知互异的复数a ,b 满足0ab ≠,集合22{,}{,}a b a b =,则a b += . 12.设常数a使方程sin x x a =在闭区间[0,2π]上恰有三个解1x ,2x ,3x ,则123x x x ++= .13.某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分.若() 4.2E ξ=,则小白得5分的概率至少为 .14.已知曲线C:x =,直线l :6x =.若对于点(,0)A m ,存在C 上的点P 和l 上的点Q 使得AP AQ +=0,则m 的取值范围为 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.设,a b ∈R ,则“4a b +>”是“2a >且2b >”的( ) A .充分条件 B .必要条件C .充分必要条件D .既非充分又非必要条件16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =是上底面上其余的八个点,则(1,2,,8)i AB AP i =的不同值的个数为( )A .1B .2C .4D .817.已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组11221,1,a x b y a x b y +=⎧⎨+=⎩的解的情况是 ( )A .无论k ,1P ,2P 如何,总是无解B .无论k ,1P ,2P 如何,总有唯一解姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)C .存在k ,1P ,2P ,使之恰有两解D .存在k ,1P ,2P ,使之有无穷多解18.设2(),0,()1,0,x a x f x x a x x ⎧-⎪=⎨++⎪⎩≤>若(0)f 是()f x 的最小值,则a 的取值范围为 ( )A .[1,2]-B .[1,0]-C .[1,2]D .[0,2]三、解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图.求123PP P △的各边长及此三棱锥的体积V .20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.设常数0a ≥,函数2()2x x af x a+=-.(Ⅰ)若4a =,求函数()y f x =的反函数1()y f x -=;(Ⅱ)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A ,B 两地连线上的定点C 处建造广告牌,其中D 为顶端,AC 长35 米,CB 长80 米.设点A ,B 在同一水平面上,从A 和B 看D 的仰角分别为α和β.(Ⅰ)设计中CD 是铅垂方向,若要求2αβ≥,问CD 的长至多为多少(结果精确到0.01 米)?(Ⅱ)施工完成后,CD 与铅垂方向有偏差.现在实测得38.12α=,18.45β=,求CD 的长(结果精确到0.01 米).22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点111(,)P x y ,222(,)P x y ,即1122()(c)ax by c ax by η=++++.若0η<,则称点1P ,2P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点1P ,2P 被直线l 分隔,则称直线l 为曲线C 的一条分隔线.(Ⅰ)求证:点(1,2)A ,(1,0)B -被直线10x y +-=分隔;(Ⅱ)若直线y kx =是曲线2241x y -=的分隔线,求实数k 的取值范围;(Ⅲ)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E .求证:通过原点的直线中,有且仅有一条直线是E 的分隔线.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1133n n n a a a +≤≤,*n ∈N ,11a =. (Ⅰ)若22a =,3a x =,49a =,求x 的取值范围; (Ⅱ)设{}n a 是公比为q 的等比数列,12n n S a a a =+++,1133n n n S S S +≤≤,*n ∈N ,求q 的取值范围;(Ⅲ)若1a ,2a ,⋅⋅⋅,k a 成等差数列,且121000k a a a +++=,求正整数k 的最大值,以及k 取最大值时相应数列1a ,2a ,⋅⋅⋅,k a 的公差.数学试卷 第5页(共14页) 数学试卷 第6页(共14页)1(1z z z ⎫=+=+⎪⎭【提示】把复数代入表达式,利用复数代数形式的混合运算化简求解即可),n a ++即【提示】由已知条件推导出a ,由此能求出数学试卷 第7页(共14页) 数学试卷 第8页(共14页)【提示】要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连33π⎛⎫【解析】解:设小白得5分的概率至少为x ,则由题意知小白得1,2,3,4分的概率为1x -,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,() 4.2E ξξ=,∴4(1)5 4.2x x -+=,解得0.2x =.,又因为0AP AQ +=,数学试卷 第9页(共14页) 数学试卷 第10页(共14页)【提示】通过曲线方程判断曲线特征,通过0AP AQ +=,说明23568(0,0,1)(0,1,1)(0,2,1)(1,0,1)(1,1,1)(1,2,1)(2,0,1)(2,2,1)B P P P P P ,,,,,,,,,,则(0,0,1)AB =,1(0,1,1)AP =,2(0,2,1)AP =,3(1,0,1)AP =(1,1,1)AP =5(1,2,1)AP =,(2,0,1)AP =7(2,1,1)AP =8(2,2,1)AP =i(i 1,2,,8)AB AP =的值均为1,故选A.根据向量数量积的几何意义,i AB AP 等于AB 乘以i AP 在AB 方向上的投影,而AP 在AB 方向上的投影是定值,||AB 也是定值,∴i AB AP 为定值【提示】建立空适当的间直角坐标系,利用坐标计算可得答案.数学试卷 第11页(共14页) 数学试卷 第12页(共14页)223ABC PQ =【提示】利用侧面展开图三点共线,判断,0)(0,),+∞2)(log ,)a +∞关于原点不对称,)根据反函数的定义,即可求出cos BC BD β,【提示】(1)利用三角函数的关系式建立不等式关系即可得到结论.1,2⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭2(2)||1y x +-=,即2]1x =)不是上述方程的解,即1,2)(1,2)-和2]10x -=得2]10x -=,21-,2(0)(2)(1)[16(1)15]0f k =--+<,所以方程与曲线E 有公共点,故直线综上可得,通过原点的直线中,有且仅有一条直线是【提示】(1)把A.B 两点的坐标代入η,再根据0η<,得出结论. (2)联立直线y kx =与曲线2241x y -=可解.2]1x =数学试卷 第13页(共14页) 数学试卷 第14页(共14页)131nq q-- ,,k a 的公差为(1)]1,2,,1n d k -≤-.1,2,,1k -2,3,,1k -时,由1(1)221k k ka k -=+-,即12,,,k a a a 的公差为的范围(3)依题意得到关于k 的不等式,得出k 的最大值,并得出k 取最大值时12,,,k a a a 的公差.【考点】等比数列的性质,数列的求和。

2014年上海市高考数学试卷及解析(理科)

2014年上海市高考数学试卷及解析(理科)

2014年上海市高考数学试卷(理科)一、填空题(共14题,满分56分)1、(4分)函数y=1﹣2cos2(2x)的最小正周期是、2、(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•=、3、(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程、4、(4分)设f(x)=,若f(2)=4,则a的取值范围为、5、(4分)若实数x,y满足xy=1,则x2+2y2的最小值为、6、(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示)、7、(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是、8、(4分)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=、9、(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是、10、(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示)、11、(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=、12、(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=、13、(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为、14、(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为、二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15、(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A、充分非必要条件B、必要非充分条件C、充要条件D、既非充分又非必要条件16、(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A、1B、2C、3D、417、(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A、无论k,P1,P2如何,总是无解B、无论k,P1,P2如何,总有唯一解C、存在k,P1,P2,使之恰有两解D、存在k,P1,P2,使之有无穷多解18、(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A、[﹣1,2]B、[﹣1,0]C、[1,2]D、[0,2]三、解答题(共5题,满分72分)19、(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V、20、(14分)设常数a≥0,函数f(x)=、(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由、21、(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B 看D的仰角分别为α和β、(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米)、22、(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l 分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线、(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线、23、(16分)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1、(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围、(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差、参考答案与试题解析一、填空题(共14题,满分56分)1、(4分)函数y=1﹣2cos2(2x)的最小正周期是、题目分析:由二倍角的余弦公式化简,可得其周期、试题解答解:y=1﹣2cos2(2x)=﹣[2cos2(2x)﹣1]=﹣cos4x,∴函数的最小正周期为T==故答案为:点评:本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题、2、(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•=6、题目分析:把复数代入表达式,利用复数代数形式的混合运算化简求解即可、试题解答解:复数z=1+2i,其中i是虚数单位,则(z+)•==(1+2i)(1﹣2i)+1=1﹣4i2+1=2+4=6、故答案为:6点评:本题考查复数代数形式的混合运算,基本知识的考查、3、(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程x=﹣2、题目分析:由题设中的条件y2=2px(p>0)的焦点与椭圆的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程试题解答解:由题意椭圆,故它的右焦点坐标是(2,0),又y2=2px(p>0)的焦点与椭圆右焦点重合,故=2得p=4,∴抛物线的准线方程为x=﹣=﹣2、故答案为:x=﹣2点评:本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题、4、(4分)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2] 、题目分析:可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围、试题解答解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2]、点评:本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题、5、(4分)若实数x,y满足xy=1,则x2+2y2的最小值为2、题目分析:由已知可得y=,代入要求的式子,由基本不等式可得、试题解答解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2点评:本题考查基本不等式,属基础题、6、(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos (结果用反三角函数值表示)、题目分析:由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角、试题解答解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则cosθ==,∴θ=arccos,故答案为:arccos点评:本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键、7、(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是、题目分析:由题意,θ=0,可得C与极轴的交点到极点的距离、试题解答解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1,∴C与极轴的交点到极点的距离是ρ=、故答案为:、点评:正确理解C与极轴的交点到极点的距离是解题的关键、8、(4分)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=、题目分析:由已知条件推导出a1=,由此能求出q的值、试题解答解:∵无穷等比数列{a n}的公比为q,a 1=(a3+a4+…a n)=(﹣a 1﹣a1q)=,∴q2+q﹣1=0,解得q=或q=(舍)、故答案为:、点评:本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用、9、(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1)、题目分析:直接利用已知条件转化不等式求解即可、试题解答解:f(x)=﹣,若满足f(x)<0,即<,∴,∵y=是增函数,∴的解集为:(0,1)、故答案为:(0,1)、点评:本题考查指数不等式的解法,指数函数的单调性的应用,考查计算能力、10、(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示)、题目分析:要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案、试题解答解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴选择的3天恰好为连续3天的概率是,故答案为:、点评:本题考查古典概型以及概率计算公式,属基础题、11、(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=﹣1、题目分析:根据集合相等的条件,得到元素关系,即可得到结论、试题解答解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件、若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1、点评:本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论、12、(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=、题目分析:先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可、试题解答解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=、故答案为:点评:本题主要考查了三角函数图象与性质、运用了数形结合的思想,较为直观的解决问题、13、(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为0.2、题目分析:设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果、试题解答解:设小白得5分的概率至少为x,则由题意知小白得1,2,3,4分的概率为1﹣x,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,E(ξ)=4.2,∴4(1﹣x)+5x=4.2,解得x=0.2、故答案为:0.2、点评:本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用、14、(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3] 、题目分析:通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可、试题解答解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且x P∈[﹣2,0],对于点A(m,0),存在C上的点P和l上的Q使得+=,说明A是PQ的中点,Q的横坐标x=6,∴m=∈[2,3]、故答案为:[2,3]、点评:本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想、二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15、(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A、充分非必要条件B、必要非充分条件C、充要条件D、既非充分又非必要条件题目分析:根据不等式的性质,利用充分条件和必要条件的定义进行判定、试题解答解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B、点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础、16、(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A、1B、2C、3D、4题目分析:建立空适当的间直角坐标系,利用坐标计算可得答案、试题解答解:=,则•=()=||2+,∵,∴•=||2=1,∴•(i=1,2,…,8)的不同值的个数为1,故选:A、点评:本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段、17、(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A、无论k,P1,P2如何,总是无解B、无论k,P1,P2如何,总有唯一解C、存在k,P1,P2,使之恰有两解D、存在k,P1,P2,使之有无穷多解题目分析:判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可、试题解答解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:(a1b2﹣a2b1)x=b2﹣b1,即(a1﹣a2)x=b2﹣b1、∴方程组有唯一解、故选:B、点评:本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解和指数的应用、18、(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A、[﹣1,2]B、[﹣1,0]C、[1,2]D、[0,2]题目分析:当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决、试题解答解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D、点评:本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题、三、解答题(共5题,满分72分)19、(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V、题目分析:利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积、试题解答解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,∴∠P1=60°,同理∠P2=∠P3=60°,∴△P1P2P3是等边三角形,P﹣ABC是正四面体,∴△P1P2P3的边长为4,V P﹣ABC==点评:本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法、20、(14分)设常数a≥0,函数f(x)=、(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由、题目分析:(1)根据反函数的定义,即可求出,(2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决、试题解答解:(1)∵a=4,∴∴,∴,∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞)、(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,∴=,整理可得a(2x﹣2﹣x)=0、∵2x﹣2﹣x不恒为0,∴a=0,此时f(x)=1,x∈R,满足条件;若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵a≥0,∴a=1,此时f(x)=,满足条件;当a>0且a≠1时,f(x)为非奇非偶函数综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数、当a>0且a≠1时,f(x)为非奇非偶函数点评:本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题、21、(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B 看D的仰角分别为α和β、(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米)、题目分析:(1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论、(2)利用正弦定理,建立方程关系,即可得到结论、试题解答解:(1)设CD的长为x米,则tanα=,tanβ=,∵0,∴tanα≥tan2β>0,∴tan,即=,解得0≈28.28,即CD的长至多为28.28米、(2)设DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43°,由正弦定理得,即a=,∴m=≈26.93,答:CD的长为26.93米、点评:本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键、22、(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l 分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线、(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线、题目分析:(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论、(2)联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围、(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①、由于y轴为x=0,显然与方程①联立无解、把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线、试题解答(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,∴点(1,2)、(﹣1,0)被直线x+y﹣1=0分隔、(2)解:联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据题意,此方程无解,故有1﹣4k2≤0,∴k≤﹣,或k≥、曲线上有两个点(﹣1,0)和(1,0)被直线y=kx分隔、(3)证明:设点M(x,y),则•|x|=1,故曲线E的方程为[x2+(y ﹣2)2]x2=1 ①、y轴为x=0,显然与方程①联立无解、又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有η=1×(﹣1)=﹣1<0,故x=0是一条分隔线、若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx ﹣2)2]x2=1,令f(x)=[x2+(kx﹣2)2]x2﹣1,∵k≠2,f(0)f(1)=﹣(k﹣2)2<0,∴f(x)=0没有实数解,k=2,f(x)=[x2+(2x﹣2)2]x2﹣1=0没有实数解,即y=kx与E有公共点,∴y=kx不是E的分隔线、∴通过原点的直线中,有且仅有一条直线是E的分隔线、点评:本题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档题、23、(16分)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1、(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围、(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差、题目分析:(1)依题意:,又将已知代入求出x 的范围;(2)先求出通项:,由求出,对q分类讨论求出S n分别代入不等式S n≤S n+1≤3S n,得到关于q的不等式组,解不等式组求出q的范围、(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…a k的公差、试题解答解:(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,S n=n,S n≤S n+1≤3S n,即,成立、当1<q≤3时,,S n≤S n+1≤3S n,即,∴不等式∵q>1,故3q n+1﹣q n﹣2=q n(3q﹣1)﹣2>2q n﹣2>0对于不等式q n+1﹣3q n+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴q n+1﹣3q n+2=q n(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,S n≤S n+1≤3S n,即,∴此不等式即,3q﹣1>0,q﹣3<0,3q n+1﹣q n﹣2=q n(3q﹣1)﹣2<2q n﹣2<0,q n+1﹣3q n+2=q n(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,上,q的取值范围为:、(3)设a1,a2,…a k的公差为d、由,且a1=1,得即当n=1时,﹣≤d≤2;当n=2,3,…,k﹣1时,由,得d≥,所以d≥,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…a k 的公差为﹣点评:本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题21/ 21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年上海市高三年级 六校联考数学试卷(理科) 2014年3月6日(完卷时间120分钟,满分150分)一、填空题(本大题满分56分)本大题共有14题,只要求将最终结果直接填写答题纸上相应的横线上,每个空格填对得4分,否则一律得零分. 1. 已知,2παπ⎛⎫∈⎪⎝⎭,4sin 5α=,则tan α= .2. 已知集合{}1,A m =-,{}|1B x x =>,若AB ≠∅,则实数m 的取值范围是 .3.设等差数列{}n a 的前项和为n S ,若911a =,119a =, 则19S 等于 .4. 若()()2i i a ++是纯虚数(i 是虚数单位),则实数a 的值为 .5. 抛物线24y x =的焦点到双曲线2214x y -=的渐近线的距离是 .6. 执行右图的程序框图,如果输入6i =,则输出的S 值为 . 7. 不等式1011ax x <+对任意R x ∈恒成立,则实数a的取值范围是 . 8. 若n a 是()()*2,2,nx n n x +∈≥∈N R 展开式中2x项的系数,则2323222lim n n n a a a →∞⎛⎫++⋅⋅⋅+=⎪⎝⎭ . 9. 已知一个圆锥的侧面展开图是一个半径为3,圆心角为23π的扇形,则此圆锥的体积为 .10. 若点(,)P x y 在曲线cos ,2sin ,x y θθ=⎧⎨=+⎩(θ为参数,θ∈R )上,则yx 的取值范围是 .11. 从0,1,2,,9⋅⋅⋅这10个整数中任意取3个不同的数作为二次函数()2f x ax bx c=++的系数,则使得()12f ∈Z 的概率为 . 12. 已知点F 为椭圆:C 2212x y +=的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标为()4,3,则PQ PF +取最大值时,点P 的坐标为 . 13. 已知A 、B 、C 为直线l 上不同的三点,点O ∉直线l ,实数x 满足关系式220x OA xOB OC ++=,有下列命题:①20OB OC OA -⋅≥; ② 20OB OC OA -⋅<; ③ x 的值有且只有一个; ④ x 的值有两个; ⑤ 点B 是线段AC 的中点.则正确的命题是 .(写出所有正确命题的编号)14. 已知数列{}n a 的通项公式为52nn a -=,数列{}n b 的通项公式为n b n k =+,设,,,,n n n n n n n b a b c a a b ≤⎧=⎨>⎩若在数列{}n c 中,5n c c ≤对任意*n ∈N 恒成立,则实数k 的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应的正确代号用2B 铅笔涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.(C )充要条件 (D )既非充分又非必要条件16. 下列函数中,既是偶函数,又在区间()1,2内是增函数的为( )(A )2log y x = (B )cos 2y x =(C )222x x y --= (D )22log 2xy x-=+ 17. 已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m β⊥的是( )(A )αβ⊥且m α⊂≠(B )αβ⊥且mα∥(C )m n 且n β⊥ (D )m n ⊥且αβ18. 对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”. 给出下列4个函数: ①()sin 2f x x π⎛⎫=⎪⎝⎭;②()221f x x =-; ③()12x f x =-; ④()()2log 22f x x =-.其中存在唯一“可等域区间”的“可等域函数”为 ( )(A )①②③ (B )②③ (C )①③ (D )②③④三、解答题(本大题共5题,满分74分)每题均需写出详细的解答过程.19. (本题满分12分)本题共有2小题,第(1)小题满分6分,第(2)小题满分6分.在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c , 且1cos22A C +=.(1)若3a =,b =c 的值;(2)若())sin sin f A A A A =-,求()f A 的取值范围.20. (本题满分14分)本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.如图,几何体EF ABCD -中,CDEF 为边长为2的正方形,ABCD 为直角梯形,ABCD ,AD DC ⊥,2AD =,4AB =,90ADF ∠=.(1)求异面直线DF 和BE 所成角的大小; (2)求几何体EF ABCD -的体积.21. (本题满分14分) 本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y (万元)与处理量x (吨)之间的函数关系可近似的表示为:250900y x x =-+,且每处理一吨废弃物可得价值为10万元的某种产品,同时获得国家补贴10万元.(1)当[]10,15x ∈时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损? (2)当处理量为多少吨时,每吨的平均处理成本最少?A22. (本题满分16分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知数列{}n a 中,11a =,对任意的*k ∈N ,21k a -、2k a 、21k a +成等比数列,公比为k q ;2k a 、21k a +、22k a +成等差数列,公差为k d ,且12d =. (1)写出数列{}n a 的前四项; (2)设11k k b q =-,求数列{}k b 的通项公式; (3)求数列{}k d 的前k 项和k D .23.(本题满分18分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如图,圆O与直线20x++=相切于点P,与x正半轴交于点A,与直线y=在第一象限的交点为B. 点C为圆O上任一点,且满足OC xOA yOB=+,动点(),D x y的轨迹记为曲线Γ.(1)求圆O的方程及曲线Γ的方程;(2)若两条直线1:l y kx=和21:l y xk=-分别交曲线Γ于点A、C和B、D,求四边形ABCD面积的最大值,并求此时的k的值.(3)证明:曲线Γ为椭圆,并求椭圆Γ的焦点坐标.2014年上海市高三年级 六校联考数学试卷(文科) 2014年3月6日(完卷时间120分钟,满分150分)一、填空题(本大题满分56分)本大题共有14题,只要求将最终结果直接填写答题纸上相应的横线上,每个空格填对得4分,否则一律得零分. 1. 已知,2παπ⎛⎫∈⎪⎝⎭,4sin 5α=,则tan α= .2. 已知集合{}1,A m =-,{}|1B x x =>,若AB ≠∅,则实数m 的取值范围是 .3.设等差数列{}n a 的前项和为n S ,若911a =,119a =,则19S 等于 .4. 若()()2i i a ++是纯虚数(i 是虚数单位),则实数a 的值为 .5. 抛物线24y x =的焦点到双曲线2214x y -=的渐近线的距离是 .6. 已知向量2a =,1b =,1a b ⋅=,则向量a 与a b-的夹角为 .7. 执行右图的程序框图,如果输入6i =,则输出的S 值为 . 8. 不等式1011ax x <+对任意R x ∈恒成立,则实数a 的取值范围是 . 9. 若n a 是()()*2,2,nx n n x +∈≥∈N R 展开式中2x项的系数,则2323222lim n n n a a a →∞⎛⎫++⋅⋅⋅+=⎪⎝⎭ . 10. 已知一个圆锥的侧面展开图是一个半径为3,圆心角为23π的扇形,则此圆锥的体积为 .11. 设,x y ∈R ,若不等式组320,220,10x y x y ax y -+≥⎧⎪--≤⎨⎪-+≥⎩所表示的平面区域是一个锐角三角形,则实数a 的取值范围是 .12. 从1,2,,9⋅⋅⋅这10个整数中任意取3个不同的数作为二次函数()2f x ax bx c =++的系数,则使得()12f ∈Z 的概率为 . 13. 已知点F 为椭圆:C 2212x y +=的左焦点,点P 为椭圆C 上任意一点,点Q 的坐标为()4,3,则PQ PF +取最大值时,点P 的坐标为 . 14. 已知A 、B 、C 为直线l 上不同的三点,点O ∉直线l ,实数x 满足关系式220x OA xOB OC ++=,有下列命题:① 20OB OC OA -⋅≥; ② 20OB OC OA -⋅<; ③ x 的值有且只有一个; ④ x 的值有两个; ⑤ 点B 是线段AC 的中点.则正确的命题是 .(写出所有正确命题的编号)二、选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应的正确代号用2B 铅笔涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.(C )充要条件 (D )既非充分又非必要条件16. 下列函数中,既是偶函数,又在区间()1,2内是增函数的为( )(A )2log y x = (B )cos 2y x =(C )222x x y --= (D )22log 2xy x-=+ 17. 已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m β⊥的是( )A )αβ⊥且m α⊂≠(B )αβ⊥且mα∥(C )m n 且n β⊥ (D )m n ⊥且αβ18. 对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”.下列函数中存在唯一“可等域区间”的“可等域函数”为 ( )(A )()sin 2f x x π⎛⎫=⎪⎝⎭(B )()221f x x =- (C )()21xf x =+ (D )()()2log 22f x x =-三、解答题(本大题共5题,满分74分)每题均需写出详细的解答过程.19. (本题满分12分)本题共有2小题,第(1)小题满分6分,第(2)小题满分6分.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c , 且1cos22A C +=.(1)若3a =,b =c 的值;(2)若())sin sin f A A A A =-,求()f A 的取值范围.20. (本题满分14分)本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.如图,几何体EF ABCD -中,CDEF 为边长为2的正方形,ABCD 为直角梯形,//AB CD ,AD DC ⊥,2AD =,4AB =,90ADF ∠=. (1)求异面直线BE 和CD 所成角的大小; (2)求几何体EF ABCD -的体积.21. (本题满分14分) 本题共有2小题,第(1)小题满分7分,第(2)小题满分7分.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y (万元)与处理量x (吨)之间的函数关系可近似的表示为:250900y x x =-+,且每处理一吨废弃物可得价值为10万元的某种产品,同时获得国家补贴10万元.(1)当[]10,15x ∈时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损? (2)当处理量为多少吨时,每吨的平均处理成本最少?A22. (本题满分16分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知各项为正数的数列{}n a 中,11a =,对任意的*k N ∈,21221,,k k k a a a -+成等比数列,公比为k q ;22122,,k k k a a a ++成等差数列,公差为k d ,且12d =. (1)求2a 的值; (2)设11k k b q =-,证明:数列{}k b 为等差数列; (3)求数列{}k d 的前k 项和k D .23.(本题满分18分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.如图,圆O与直线20x++=相切于点P,与x正半轴交于点A,与直线y=在第一象限的交点为B. 点C为圆O上任一点,且满足OC xOA yOB=+,动点(),D x y的轨迹记为曲线Γ.(1)求圆O的方程及曲线Γ的轨迹方程;(2)若直线y x=和y x=-分别交曲线Γ于点A、C和B、D,求四边形ABCD的周长;(3)已知曲线Γ为椭圆,写出椭圆Γ的对称轴、顶点坐标、范围和焦点坐标.2014年上海市高三年级 六校联考数学试卷(理科)答案一、填空题1. 43-2. ()1,+∞3. 1904. 125. 56. 217. (]4,0-8. 89. 310. (),3,⎡-∞+∞⎣11.419012. ()0,1- 13.①③⑤ 14.[]5,3--二、选择题15. C 16. A 17. C 18. B三、解答题 19. 解:(1)在△ABC 中,A B C π++=. 所以cos cos 22A C B π+-=1sin 22B ==.26B π=,所以3B π=. ………………3分由余弦定理2222cos b a c ac B =+-,得2320c c -+=. 解得1c =或2c =. ………………6分(2)()sin sin )f A A A A =-1cos 222A A -=- 1sin 262A π⎛⎫=+- ⎪⎝⎭. ………………9分由(1)得3B π=,所以23A C π+=,20,3A π⎛⎫∈ ⎪⎝⎭, 则32,662A πππ⎛⎫+∈ ⎪⎝⎭.∴sin 2(1,1]6A π⎛⎫+∈- ⎪⎝⎭.∴()31,22f A ⎛⎤∈- ⎥⎝⎦.∴()f A 的取值范围是31,22⎛⎤- ⎥⎝⎦. ………………12分 20. 解:(1)解法一:在CD 的延长线上延长至点M 使得CD DM =,连接,,ME MB BD .由题意得,AD DC ⊥,AD DF ⊥,,DC DF ⊂≠平面CDEF ,∴AD ⊥平面CDEF ,∴AD DE ⊥,同理可证DE ⊥面ABCD . ∵ //CD EF ,CD EF DM ==, ∴EFDM 为平行四边形, ∴//ME DF .则MEB ∠(或其补角)为异面直线DF 和BE 所成的角. ………………3分 由平面几何知识及勾股定理可以得ME BE BM === 在MEB △中,由余弦定理得222cos 2ME BE BM MEB ME BE +-∠==⋅.∵ 异面直线的夹角范围为0,2π⎛⎤⎥⎝⎦,∴ 异面直线DF 和BE所成的角为………………7分解法二:同解法一得,,AD DC DE 所在直线相互垂直,故以D 为原点,,,DA DC DE 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系, ………………2分M可得()()()()0,0,0,0,2,2,2,4,0,0,0,2D F B E , ∴ (0,2,2),(2,4,2)DF BE ==--, 得22,26DF BE ==. ………………4分设向量,DFBE 夹角为θ,则(022422cos DF BE DF BEθ⋅-+⋅-+⋅⋅===⋅ ∵ 异面直线的夹角范围为0,2π⎛⎤ ⎥⎝⎦,∴ 异面直线DF和BE所成的角为………………7分(2)如图,连结EC ,过B 作CD 的垂线,垂足为N ,则BN ⊥平面CDEF ,且2BN =.………………9分∵EF ABCD V -E ABCD B ECF V V --=+ ……………11分 1133ABCD EFC S DE S BN =⋅+⋅△△ 1111(42)222223232=⋅⋅+⋅⋅+⋅⋅⋅⋅ 163=. ∴ 几何体EF ABCD -的体积为163.……14分21. 解:(1)根据题意得,利润P 和处理量x 之间的关系: (1010)P x y =+-22050900x x x =-+-270900x x =-+- ………………2分()235325x =--+,[10,15]x ∈.∵35[10,15]x =∉,()235325P x =--+在[10,15]上为增函数,N可求得[300,75]P ∈--. ………………5分 ∴ 国家只需要补贴75万元,该工厂就不会亏损. ………………7分(2)设平均处理成本为90050y Q x x x==+- ………………9分5010≥=, ………………11分当且仅当900x x=时等号成立,由0x > 得30x =. 因此,当处理量为30吨时,每吨的处理成本最少为10万元. ………………14分22. 解:(1)由题意得2213322a a a a a ⎧=⎪⎨=+⎪⎩,2222a a =+,22a =或21a =-. ………………2分故数列{}n a 的前四项为1,2,4,6或1,1,1,3-. ………………4分 (2)∵21221,,k k k a a a -+成公比为k q 的等比数列,212223,,k k k a a a +++成公比为1k q +的等比数列∴212k k k a a q +=,22211k k k a a q +++= 又∵22122,,k k k a a a ++成等差数列, ∴212222k k k a a a ++=+. 得21212112k k k k ka a a q q ++++=+,112k kq q +=+, ………………6分 111k k kq q q +-=-, ∴1111111k k k k q q q q +==+---,111111k k q q +-=--,即11k k b b +-=.∴ 数列数列{}k b 为公差1d =等差数列,且11111b q ==-或111112b q ==--. ……8分 ∴()111k b b k k =+-⋅=或32k b k =-. ………………10分(3)当11b =时,由(2)得11,1k k k k b k q q k+===-. 221211k k a k a k +-+⎛⎫= ⎪⎝⎭,()22222121321121231121111k k k k k a a a k k a a k a a a k k +-+--+⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=+ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭, ()2121k k kaa k k q +==+,()2121231,2k k k k k k k k a d a a k D q +++=-==+=. ………………13分 当112b =-时,同理可得42k d k =-,22k D k =. ………………16分解法二:(2)对1,1,1,3,-这个数列,猜想()*2123N m m q m m -=∈-, 下面用数学归纳法证明:ⅰ)当1m =时,12111213q ⋅-==-⋅-,结论成立.ⅱ)假设()*N m k k =∈时,结论成立,即2123k k q k -=-.则1m k =+时,由归纳假设,222121212121,2323k k k k k k a a a a k k -+---⎛⎫== ⎪--⎝⎭. 由22122,,k k k a a a ++成等差数列可知()()()222122122121223k k k k k k a a a a k ++--+=-=⋅-,于是221212121k k k a k q a k ++++==-,∴ 1m k =+时结论也成立.所以由数学归纳法原理知()*2123N m m q m m -=∈-. ………………7分 此时1132112123k k b k k q k ===-----.同理对1,2,4,6,这个数列,同样用数学归纳法可证1k k q k+=. 此时11111k k b k k q k===+--.∴k b k =或32k b k =-. ………………10分(3)对1,1,1,3,-这个数列,猜想奇数项通项公式为()22123k a k -=-.显然结论对1k =成立. 设结论对k 成立,考虑1k +的情形. 由(2),()211,23k k q k k k -=≥∈-N 且21221,,k k k a a a -+成等比数列, 故()()22222121212123212323k k k k a a k k k k +---⎛⎫⎛⎫=⋅=-⋅=- ⎪ ⎪--⎝⎭⎝⎭,即结论对1k +也成立. 从而由数学归纳法原理知()22123k a k -=-.于是()()22321k a k k =--(易见从第三项起每项均为正数)以及21242k k k d a a k +=-=-,此时()22422k D k k =++-=. ………………13分对于1,2,4,6,这个数列,同样用数学归纳法可证221k a k -=,此时()22121,1k k k k a k k d a a k +=+=-=+.此时()()32312k k k D k +=++++=. ………………16分23. 解:(1)由题意圆O 的半径1r ==,故圆O 的方程为221x y +=. ………………2分由OC xOA yOB =+得,()22OC xOA yOB =+, 即222222cos60OC x OA y OB xy OA OB =++,得221x yxy ++=(,x y ⎡∈⎢⎣⎦)为曲线Γ的方程.(未写,x y 范围不扣分)…4分 (2)由221y kxx y xy =⎧⎨++=⎩得E⎛⎫,F ⎛⎫⎝, 所以EF=同理MN ==………………6分由题意知12l l ⊥ ,所以四边形EMFN的面积12SEF MN =⋅. 2S ====, ∵ 221224k k ++≥=,∴2,23S S ≥=≤ . ………………8分 当且仅当221k k=时等号成立,此时1k =±.∴ 当1k =±时,四边形EMFN 的面积最大值为. ………………10分 (3)曲线Γ的方程为221x y xy ++=(,33x y ⎡∈-⎢⎣⎦),它关于直线y x =、y x =-和原点对称,下面证明:设曲线Γ上任一点的坐标为()00,P x y ,则2200001x y x y ++=,点P 关于直线y x =的对称点为()100,P y x ,显然2200001y x y x ++=,所以点1P 在曲线Γ上,故曲线Γ关于直线y x =对称,同理曲线Γ关于直线y x =-和原点对称.可以求得221x y xy ++=和直线y x =的交点坐标为12,,3333B B ⎛⎛-- ⎝⎭⎝⎭221x y xy ++=和直线y x =-的交点坐标为()()121,1,1,1A A --,1OA =13OB =3=3=.在y x =-上取点12,,3333F F ⎛⎫⎛-- ⎪ ⎪ ⎝⎭⎝⎭ .下面证明曲线Γ为椭圆:ⅰ)设(),P x y 为曲线Γ上任一点,则12PF PF +=======43xy ≤)12A A ==.即曲线Γ上任一点P 到两定点12,F F ⎛ ⎝⎭⎝⎭的距离之和为定值ⅱ)若点P 到两定点12,,3333F F ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭的距离之和为定值,可以求得点P 的轨迹方程为221x y xy ++=(过程略). 故曲线Γ是椭圆,其焦点坐标为12,F F ⎛ ⎝⎭⎝⎭. ………………18分 第(3)问说明:1. ⅰ)、ⅱ)两种情形只需证明一种即可,得5分,2. 直接写出焦点12,F F 的坐标给3分,未写出理由不扣分.2014年上海市高三年级 六校联考数学试卷(文科)答案一、填空题 1. 43-2. ()1,+∞3. 1904. 125.6.6π7. 21 8. (]4,0- 9. 8 10.311. 12,3⎛⎫-- ⎪⎝⎭12. 112113.()0,1- 14.①③⑤二、选择题15. C 16. A 17. C 18. B三、解答题19. 解:(1)在△ABC 中,A B C π++=. 所以coscos 22A C B π+-=1sin 22B ==. 26B π=,所以3B π=. ………………3分由余弦定理2222cos b a c ac B =+-, 得2320c c -+=. 解得1c =或2c =. ………………6分(2)()sin sin )f A A A A =-1cos 222A A -=- 1sin 262A π⎛⎫=+- ⎪⎝⎭. ………………9分由(1)得3B π=,所以23A C π+=,20,3A π⎛⎫∈ ⎪⎝⎭, 则32,662A πππ⎛⎫+∈ ⎪⎝⎭. ∴sin 2(1,1]6A π⎛⎫+∈- ⎪⎝⎭. ∴()31,22f A ⎛⎤∈-⎥⎝⎦. ∴()f A 的取值范围是31,22⎛⎤- ⎥⎝⎦. ………………12分20. 解:(1)连结BD ,由题意得,AD DC ⊥,AD DF ⊥,,DC DF ⊂≠平面CDEF ,∴AD ⊥平面CDEF ,∴AD DE ⊥,同理可证DE ⊥面ABCD . ∵//AB CD ,∴ ABE ∠(或其补角)为异面直线BE 和CD 所成的角. ………………3分在Rt ADE △中,AE ==,在Rt DAB △中,BD == 在Rt EDB △中,BE =在AEB △中,由余弦定理得222cos 2AB BE AE ABE AB BE +-∠==⋅.∴ 异面直线DF 和BE所成的角为………………7分 (2)如图,连结EC ,过B 作CD 的垂线,垂足为N ,则BN ⊥平面CDEF ,且2BN =.………………9分∵ EF ABCD E ABCD B ECF V V V ---=+ ……………11分1133ABCD EFC S DE S BN =⋅+⋅△△ 1111(42)222223232=⋅⋅+⋅⋅+⋅⋅⋅⋅ 163=. ∴几何体EF ABCD-的体积为163. ………………14分21. 解:(1)根据题意得,利润P 和处理量x 之间的关系:(1010)P x y =+-22050900x x x =-+-270900x x =-+- ………………2分ANA()235325x =--+,[10,15]x ∈.∵35[10,15]x =∉,()235325P x =--+在[10,15]上为增函数, 可求得[300,75]P ∈--. ………………5分∴ 国家只需要补贴75万元,该工厂就不会亏损. ………………7分(2)设平均处理成本为90050y Q x x x==+- ………………9分5010≥=, ………………11分当且仅当900x x=时等号成立,由0x > 得30x =. 因此,当处理量为30吨时,每吨的处理成本最少为10万元. ………………14分 22. 解:(1)由题意得2213322a a a a a ⎧=⎪⎨=+⎪⎩,2222a a =+,22a =或21a =-. ………………3分由0n a >,得22a =. ………………4分(2)∵21221,,k k k a a a -+成公比为k q 的等比数列, 212223,,k k k a a a +++成公比为1k q +的等比数列 ∴212k k k a a q +=,22211k k k a a q +++= 又∵22122,,k k k a a a ++成等差数列, ∴212222k k k a a a ++=+.得21212112k k k k ka a a q q ++++=+,112k kq q +=+, ………………7分 111k k kq q q +-=-, ∴1111111k k k k q q q q +==+---,111111k k q q +-=--,即11k k b b +-=. ∴ 数列数列{}k b 为公差1d =等差数列,且11111b q ==-. ………………10分 (3)由(2)得11,1k k k k b k q q k+===-. ………………12分 221211k k a k a k +-+⎛⎫= ⎪⎝⎭,()22222121321121231121111k k k k k a a a k k a a k a a a k k +-+--+⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=+ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭, ()2121k k ka a k k q +==+, ∴212121k k k k ka d a a k q ++=-==+, ………………14分 ∴()32k k k D +=. ………………16分法二:(2)对1,2,4,6,这个数列,猜想()*1N m m q m m+=∈, 下面用数学归纳法证明:ⅰ)当1m =时,11121q +==,结论成立. ⅱ)假设()*N m k k =∈时,结论成立,即1k k q k+=. 则1m k =+时,由归纳假设,2221212111,k k k k k k a a a a k k -+-++⎛⎫=⋅= ⎪⎝⎭. 由22122,,k k k a a a ++成等差数列可知()()22212212122k k k k k k a a a a k ++-++=-=⋅,于是2212121k k k a k qa k ++++==+, ∴ 1m k =+时结论也成立. 所以由数学归纳法原理知()*1N m m q m m+=∈. ………………7分 此时11111k k b k k q k===+--. ∴111k k b b k k +-=+-=.∴数列数列{}k b 为首项11b =,公差1d =等差数列. ………………10分 (3)对1,2,4,6,这个数列,猜想奇数项通项公式为221k a k -=.显然结论对1k =成立. 设结论对k 成立,考虑1k +的情形. 由(2),()*1N k k q k k+=∈且21221,,k k k a a a -+成等比数列, 故()22222121111k k k k a a k k k k +-++⎛⎫⎛⎫=⋅=⋅=+ ⎪ ⎪⎝⎭⎝⎭,即结论对1k +也成立.从而由数学归纳法原理知221k a k -=. ………………13分于是()22121,1k k k k a k k d a a k +=+=-=+, ………………14分 此时()()32312k k k D k +=++++=. ………………16分23. 解:(1)由题意圆O 的半径1r ==,故圆O 的方程为221x y +=. ………………2分由OC xOA yOB =+得,()22OC xOA yOB =+, 即222222cos60OC x OA y OB xy OA OB =++,得221x yxy ++=(,x y ⎡∈⎢⎣⎦)为曲线Γ的方程.(未写,x y 范围不扣分)………4分 (2)由221y xx y xy =⎧⎨++=⎩得E⎝⎭,F ⎛ ⎝⎭, ………6分由221y x x y xy =-⎧⎨++=⎩得()1,1M -,()1,1N -, ………8分由题意知12l l ⊥ ,得四边形EMFN 为菱形. 所以四边形EMFN 的周长44l EM ====.………10分(3)由曲线Γ为椭圆及曲线Γ的方程为221x y xy ++=(,x y ⎡∈⎢⎣⎦),它关于直线y x =、y x =-和原点对称,下面证明:设曲线Γ上任一点的坐标为()00,P x y ,则2200001x y x y ++=,点P 关于直线y x =的对称点为()100,P y x ,显然2200001y x y x ++=,所以点1P 在曲线Γ上,故曲线Γ关于直线y x =对称,同理曲线Γ关于直线y x =-和原点对称.即直线y x =和y x =-为椭圆Γ的对称轴,原点为椭圆Γ的中心.可以求得221x y xy ++=和直线y x =的交点坐标为12,B B ⎛⎝⎭⎝⎭221x y xy ++=和直线y x =-的交点坐标为()()121,1,1,1A A --,1OA =1OB ===.在y x =-上取点12,F F ⎛ ⎝⎭⎝⎭即为椭圆Γ的焦点. ∴ 椭圆Γ的对称轴为直线y x =和y x =-; ………12分椭圆Γ的顶点坐标为()11,1A -,()21,1A -,1B ⎛⎝⎭,2B ⎝⎭;………14分 椭圆Γ的范围为,x y ⎡∈⎢⎣⎦; ………16分椭圆Γ的焦点坐标为12,F F ⎛ ⎝⎭⎝⎭. ………18分 说明:第(3)问过程未写不扣分.。

相关文档
最新文档