1200六辊可逆冷轧机
1500六辊冷轧机主传动系统设计
1500六辊冷轧机主传动系统设计摘要轧钢机主传动装置的作用是将电动机的运动和力矩传递给轧辊。
在很多轧钢机上,主传动装置由减速机、齿轮座、联接轴和联轴节等部件组成。
本课题1500六辊冷连轧机主传动系统设计按照说明书提供的工艺参数和力能参数确定轧机主电机的参数,选择适合的电机并进行校核验算;确定齿轮座和主减速机的参数,对主要零件的强度进行计算校核,设计齿轮座和主减速机的装配图和主要零件图;确定主连接轴和万向联结轴的参数,选择合适的型号并对其进行校核;对机架进行设计和校核。
最后设计出主传动系统的总装图。
关键词:1500六辊可逆冷轧机;主传动;校核验算Design of the 1500 issue six roller cold rolling mill main drive systemAbstractRolling mill main transmission is the role of motor sports and transfer torque to the roll. In many rolling mill, the main transmission from reducer, gear, with connecting shaft and coupling, and other components.The 1500 issue six roller cold rolling mill main drive system designed in accordance with the project and provide the technical parameters of the mill to identify the main parameters of the motor parameters, select a suitable motor and check Checking; determine gear reducer blocks and the main parameters, The main components to calculate the strength of checking, design and the main gear reducer at the assembly and major parts map; identify the main link connecting shaft and universal axis of the parameters, choose a suitable model and its verification. The final design of the main drive system of hand.Keywords: 1500 6 Roll cold rolling mill;Main Drive; Checking目录第一章绪论 (1)1.1 选题背景及目的 (1)1.2 冷轧在国民经济中的主要地位及作用 (1)1.3 国内外冷轧工艺的发展 (3)1.4 冷轧工艺发展趋势 (4)1.5 课题的研究内容及方法 (5)第二章轧辊参数 (7)2.1设计的原始参数 (7)2.2概述 (7)2.3 轧制规程 (8)2.4轧辊选材 (8)2.5轧辊的尺寸参数: (9)2.5.1工作辊参数确定 (9)2.5.2 中间辊 (10)2.5.3 支承辊 (11)第三章轧制力和轧制力矩的计算 (12)3.1轧制力的计算 (12)3.2总轧制力矩 (13)3.2.1轧制力矩M Z (15)3.2.2工作辊带动支承辊的力矩M R (15)第四章电机的选择 (17)4.1初选电机 (17)4.2 轧机主电机力矩 (18)4.3电动机的校核 (20)4.3.1电动机过载系数校核 (20)4.3.2电机的发热校核 (20)第五章轧辊强度计算 (22)5.1支承辊进行弯曲强度校核 (22)5.2 对工作辊进行切应力校核 (24)5.3中间辊与工作辊和支撑辊的接触应力的校核 (25)5.3.1中间辊与工作辊间的接触应力 (25)5.3.2中间辊与支承辊间的接触应力 (26)第六章轴承的选择 (27)6.1 支承辊轴承的选择与校核 (27)6.1.1 轴承的选择 (27)6.1.2 轴承的校核 (27)6.2中间辊轴承的选择 (28)6.3工作辊轴承的选择 (29)第七章机架的确定 (30)7.1机架类型的选择 (30)7.2 机架主要结构参数的确定 (30)7.3 机架强度和变形计算 (31)7.3.1求出机架横梁截面的惯性矩。
六辊轧机技术规格
卷筒直径:610 mm(正圆)
卷筒涨缩范围:560-620mm
开卷机齿轮:硬齿面、渗碳、淬火、磨削,精度等级 6
开卷电机: Z400-3B 247KW 444/1500r/min
2 上卷车(一台)
上卷车由升降小车、移动盖板、行走机构和缝道卷位组成。小车的升降为液压传动,行走为电机驱动。升降小车车体为焊接结构,升降缸以铰支形式固定在车体上,升降缸推动带升降架的鞍座沿车体方形导向面滑动实现升降, 行走电机通过减速机链轮驱动升降小车将带卷由缝道卷位移动上料。升降小车移动时带动移动盖板将地沟盖上以便于操作。缝道卷位为焊接结构,在地沟缝道上作储卷用。
主要技术参数
上夹送辊规格:¢2751200mm
下矫直辊规格:¢2001200mm
下矫直辊传动电机:AC11KW
液压剪油缸(两个)规格:¢125/63245mm
剪切力:150KN
上夹送辊传动液压马达:Parker
4 机前卷取机(一台)
机前卷取机在开卷侧,为带侧支撑的四棱锥卷筒结构,由二台DC电机经双级硬齿面减速机拖动卷筒。机前卷取机的压辊装在开头矫直机的出口导板上。为方便卸卷设有推板装置。卷取电机和减速箱采用稀油循环润滑。
主要技术参数
卷筒直径:508 mm(正圆)
最大卷取速度:950m/min
卷取机齿轮:硬齿面、渗碳、淬火、磨削, 精度等级 6级
卷取电机:两台 Z560-4B 728KW 390/1200r/min
钳口开口度:10 mm
5 卸卷车(两台)
结构型式与上卷车基本相同,仅将V型托架改为托辊。
主要技术参数
上升推力:≥200KN
升降行程:1500mm
1050六辊可逆冷轧机组设备技术规格书要点
附件二设备技术规格书2.1机械设备2.1.1机组用途:1050mm六辊可逆冷轧机组是在常温状态下,将厚度为 1.2~4.0mm酸洗后的热轧带卷或退火带卷,经若干道次轧制,轧成0.16~1.2mm的高精度冷轧带卷。
2.1.2单体设备技术性能2.1.2.1 上卷小车 1台(1)功用上卷小车用于将受卷台架上的钢卷上到开卷机的卷筒上,人工进行上卷宽度、高度对中。
(2)设备组成上卷车由升降小车、移动盖板、行走缸和缝道卷位组成。
小车的升降和行走均为液压传动。
升降小车车体为焊接结构,升降缸以铰支形式固定在车体上,升降缸推动带升降架的鞍座沿车体方形导向面滑动实现升降,行走缸固定在地沟内的基础上,行走缸推动升降小车将带卷由缝道卷位移动上料。
升降小车移动时带动移动盖板将地沟盖上以便于操作。
缝道卷位为焊接结构,在地沟缝道上作储卷用。
(3)技术规格上升推力:≥250KN升降行程:1450mm行走行程:5000mm升降缸规格:Φ180×1450mm行走缸规格:Φ140×5000mm受卷台位: 2 个2.1.2.2开卷机 1台(1)功用开卷机位于开头矫直机之前,用于同开头矫直机一起完成开头、开卷喂料工序。
在轧制过程中对带材产生轧制所需的张力、并可通过CPC对中装置使带卷宽度中心线与机组中心线保持重合。
(2)设备组成开卷机由卷筒、本体、对中底座、传动装置、压辊、活动支承等主要部件组成。
开卷方式为上开卷。
卷筒由四块扇形板,四棱锥轴、中空轴、涨缩缸、旋转接头等组成。
涨缩缸拉(推)动四棱锥轴,带动扇形板实现卷筒的涨缩,涨缩缸由旋转接头供油;本体减速箱体为焊接结构,齿轮采用合金锻钢硬齿面;底座为焊接结构,带有减速箱体对中移动的滑道及CPC对中缸;活动支承由摆臂、固定支座、卷筒托轮和液压缸组成,摆臂为焊接结构,托轮采用锻钢制造;压辊由压辊支架、压辊和液压缸组成,压辊支架为焊接结构,固定在开卷机箱体上;传动装置由直流电机、万向联轴器、制动器等组成。
CVC可逆冷轧机设计-工作辊及弯辊资料==
目录摘要 (I)Abstract (III)第1章绪论 (1)1.1 世界及我国钢铁工业的发展 (1)1.1.1 世界钢铁工业发展概况 (1)1.1.2 我国钢铁工业发展现状及展望 (4)1.2 世界及我国冷轧带钢的发展状况 (7)1.2.1 世界冷轧带钢的发展状况 (7)1.2.2 我国冷轧带钢的发展状况 (9)1.3 轧钢先进技术 (10)1.4 HC轧机在冷轧带钢中的应用 (11)第2章 HC轧机工作原理及结构特点 (15)2.1 HC轧机工作原理 (15)2.1.1 HC轧机工作原理 (15)2.1.2 HC轧机的板形控制 (16)2.1.2.1 横向厚度偏差的有效控制 (16)2.1.2.2 中间辊轴移对板形控制的有效性 (17)2.1.2.3 弯辊力调节板形的作用 (18)2.1.2.4 HC轧机板形控制的稳定性 (18)2.1.3 HC轧机的轧辊驱动 (19)2.1.4 HC轧机的类型 (19)2.2 HC轧机结构及特点 (20)2.2.1 HC轧机的结构 (20)2.2.2 HC轧机的特点 (20)第3章 HC轧机主要技术特性及结构说明 (23)3.1 工艺流程图 (23)3.2 轧机主要技术特性 (23)3.3 轧机关键结构说明 (24)第4章轧制规程及相关参数确定 (25)4.1 轧辊主要参数确定 (25)4.2 轧制规程制定 (25)4.3 确定各道次变形抗力 (26)I4.4 计算各道次带钢张力 (27)4.5 各道次轧制力计算 (27)4.6 确定轧制速度制度 (30)4.7 计算轧制力矩 (30)4.8 机架主要结构参数确定 (31)第5章部件校核 (33)5.1 支承辊强度校核 (33)5.2 工作辊强度校核 (34)5.3 机架强度校核 (35)第6章 HC轧机辊系稳定性分析 (39)6.1 工作辊的稳定条件 (39)6.2 中间辊的稳定条件 (41)6.3 支撑辊的稳定条件 (41)6.4 有关角度的计算 (42)6.5 辊系的稳定条件 (43)结论 (45)参考文献 (47)致谢 (50)附录1 开题报告 (I)附录2 文献综述 (V)附录3 英文翻译 (IX)II摘要摘要板带材在国民经济各部门中具有广泛而重要的应用。
浅谈单机架可逆冷轧机上下辊负荷平衡
法根本上改变前滑值为负值和负荷不平衡的现状 。
3乳化 液 系统 在冷 轧 机组 中 , 乳化 液的作 用 是润滑 和冷 却 。 在 轧制过 程 中发生 的一 个 现象引起大家的注意。 喷射在上工作辊乳化液随着工作辊的旋转及自然运动
整, 保证每次换完辊后轧制线恒定不变后上述问题还是没有解决。 因此换辊
2 )浙江 鑫和 1 2 5 0 M M可逆 冷轧机 负荷 平衡 的控 制
1 产生 上述 情况 的篡 因分 析
我们认为解决负荷不平衡问题的关键是先解决前滑值为负值的问题。 对 此种情况, 我们首先采取了将所有可能影响因素全部列出, 并逐个分析排除。
1 )操作 员水 平
浙江鑫和是一家民营企业 , 这套轧机是该公 司第一套冷轧机。 调试结束 后 是一 边轧 制一 边摸 索轧 制方 法 。随着操 作人 员 的水平越 来 越熟练 , 但是 上 述 问题 没有 任何 的改 善 ,所 以判 断该 问题 和操 作员 的操 作经 验无 关 。
的 因数也 被排 除 。
5 )来 料 的问题
来料 有 问题有 可 能影 响到第 1 道次, 但通 过第 1 道 次的 轧制 后板 型有 了 较 大 的改 善 ,应该 不会 影 响到后 面 的道次 ,因此来 料 的问题 也排 除 了。
除去上述的几个因数外 , 还有两个重要的因数: 一是负荷平衡的电控系
重新 测 量 轧机 牌 坊 的平 行度 、垂 直 度 和卷 取机 卷 筒 和主 机机 架 的水 平 度。 没有发 现 与设计 图纸不符 的地 方 。因此也 排除 了设 备安 装偏 差对 电流 偏
差 的影 响 。
4 )换 辊
为了增 加上辊 的负荷人 为 的把直 径 大的工 作辊 换 到上辊 。 经 过上 述 的调
UCM、CVC、VCMS六辊冷轧机机型研究
UCM、CVC、VCMS六辊冷轧机机型研究[我的钢铁] 2010-01-25 08:12:29随着我国钢铁工业的迅速发展,板带材产品的比例在不断扩大,国内新建的许多先进的冷热带钢生产线,尤其是近年来所新建的大型宽带钢冷连轧机。
用户近年来所引进六辊冷轧设备绝大多数都是引进日本三菱一日立公司的UCM系列冷轧机或德国西马克的CVC系列冷轧机。
国内非引进的国产大型六辊冷连轧机目前选用的都是中国一重自主研发、设计制造的VCMS系列冷轧机。
UCM一一日本三菱一日立公司冷轧技术代表用户及机型,有宝钢1550毫米冷连轧机、武钢2140毫米冷连轧机、宝钢1730毫米酸洗冷连轧机。
VCMS一一中国一重冷轧技术代表用户及机型,有鞍钢1780毫米、2130毫米、1500毫米冷连轧机,梅钢1420毫米冷连轧机、武钢1550毫米酸洗冷连轧机目前正在调试和制造中。
一重的VCMS机型是UCM系列的改进。
1UCM、CVC轧机UCM轧机是日本三菱一日立公司开发的一种六辊冷轧机,它是在HC轧机基础上发展起来的新一代冷轧机之一,它相比HCM轧机增加了中间辊弯曲,其中间辊不仅轴向移动还设有正弯辊,工作辊设有正负弯辊,它的进一步演变是增加工作辊轴向移动。
CVC系列六辊冷轧机是德国西马克公司开发的,其中间辊辊面有一定曲线形状(支承辊有的有,有的没有),因其辊面曲线方程由低次方(3次)发展到高次方(5次),并与相关配套的控制软件包结合,发展成了CVCplus(+)轧机,其控制板形的能力得到进一步加强。
UCM轧机与六辊CVC轧机不同在于UCM轧机的中间辊为平辊,通过适当改变中间辊和工作辊的接触长度,可改变作用于中间辊和工作辊压力分布规律,消除由于轧制力引起对带钢横向厚度差的影响。
轧辊在轧制过程中产生的弹性弯曲通过调整中间辊和工作辊的弯曲力得以补偿。
六辊CVC轧机中间辊带有高次方曲线的辊型,通过中间辊的轴向移动改善工作辊的辊缝形状来补偿轧辊弹性变形,再辅以弯曲力从而控制轧制精度。
1100HC六辊可逆式冷轧机的设计-文献综述
附录2 文献综述一、课题的国内外现状HC 轧机全名为HITACHI HIGH CROWNCONT ROLMILL,即日立中心高性能轧辊凸度控制轧机。
该机型是日立公司于1972 年研究开发的轧机,两年后正式投入工业化应用。
它具有普通四辊冷轧机不能达到的性能和优点,首先在日本得到推广使用,继而受到全世界的瞩目,广泛用于热轧和冷轧生产中的单机可逆轧机、连轧机和平整机。
其主要结构特点是:在支撑辊和工作辊之间加入一对能够沿着轧辊轴向相对移动的中间辊,通过中间辊的相对移动来改变轧制压力在带钢方向上的分布,加上工作辊的正负弯辊作用,对改善带钢板形起到了明显的效果。
在国外,除日本各大钢铁公司普遍采用HC轧机机型外,美国、德国、加拿大、瑞典、巴西、墨西哥、韩国等国家均从日本引进了该轧机。
在国内,武汉钢铁公司为生产镀锡板基板,1987年首先引进1250HC六辊轧机,之后上海宝钢、辽宁鞍钢等国内各大钢铁公司先后引进了这种轧机机型。
在引进设备的同时,国内相关单位也开始跟踪并开发国产的HC六辊轧机。
国产大型六辊轧机已成功地用于工业生产,而且主要的技术水平和功能已达到国外同类设备水平。
但是,六辊轧机种工作辊弯辊、中间辊横移、中间辊弯辊三种方式与带材板型的检测、控制相结合,实施有效的闭环控制,目前国内虽然在这方面也取得了不少成绩,但在精确度和稳定性方面仍然需要花大力气研究。
二、现有的主要研究成果随着科学技术的不断进步,日本最近几年又在HC轧机的结构上进行了改进,推出了一些新型的HC轧机。
例如,HCMW 轧机是综合HC轧机和HCM轧机的优点,其特点是中间辊和工作辊都能轴向移动。
在国内,HC轧机方面的研究也取得了很多可喜的成绩:降低轧辊表面缺陷的措施,预防轧辊剥落的措施,预防轧辊断裂的措施。
近几年来,随着控制理论的发展,人们不断把一些新型控制方法引入板形自动控制系统中,以弥补PID控制中很难满足高精度控制要求的不足,比如基于动态负荷分配的板形控制方法。
1200六辊可逆冷轧机电气自动化系统控制方案
由于本机组负荷较小,因此不设负荷中心。本机组负荷MCC(即马达控制中心)将采用GGD3柜,包含MCC的受电、馈出回路、UPS系统、比例、伺服阀控制回路和照明开关柜,开关柜额定短路短时承受能>80kA/s。
额定短路分断能力与电网短路电流相适应,Icu >50kA
根据需要配置必要的电流、电压表计,端子板采用Phoenix端子。
22
4
DI(16)
6ES7 321-1BL02-0AA0
5
5
DO(16)
6ES7 321-1BH01-0AA0
4
6
AI(8)
6ES7 331-7KF01-0AB0
1
7
AO(4)
6ES7 332-5HD01-0AB0
2
8
PROFIBUS连接器
6ES7 972-0BA41-0XA0
2
9
轧机区域ET200(9个子站)
(4)传动供电用全数字晶闸管整流装置
为主传动电动机供电的全数字晶闸管整流装置将采用SIEMENS公司6RA70系列全数字控制系统,装置配置有PROFIBUS-DP网卡,可实现与simatic S7-400PLC(或WINAC)自动化系统快速地通讯。
主轧机上、下工作辊分别由一台电机驱动,两台电机独立供电调速,考虑负荷均衡和速度匹配。
台
1
18
轧机区域ET200站控制箱
台
4
19
出口区域ET200站操作台
台
1
20
液压、润滑和乳化区域ET200站操作控制箱
台
3
21
端子箱
台
5
22
乳化液系统管道过滤器PLC柜
六辊可逆冷轧机组轧辊常见缺陷分析及改善2
六辊可逆冷轧机组轧辊常见缺陷分析及改善2六辊可逆冷轧机组轧辊表面剥落原因分析及改善摘要:以六辊可逆冷轧机组为研究对象,介绍常见轧辊的缺陷,主要是轧辊的表面剥落缺陷。
从轧辊的使用、磨削、检测等方面,提出了相应的预防措施和消除措施.关键词:轧辊、剥落、措施THE ANALYSIS AND IMPROVEMENT FOR THE CAUSATION OF ROLLER SURFACE PEELING OFF OF THE SIX-ROLL REVERSING COLDROLLING MILLAbstract :This thesis takes the Six-roll Reversing cold rolling Mill group as its object of study, it introduces the common defect of the roller, mainly for the defect of peeling off from the suface of the roller. On the other hand, it proposes the provention and elimination methods accordingly from several aspects such as the roller usage, grinding inspection and etc.key words: roller, peel off, method前言:轧辊是轧机的重要部件,轧辊的质量好坏直接影响轧机的运行,影响产品的产量质量和成本,冷轧过程中,轧辊表面承受着很大的挤压应力和强烈的磨损,高速轧制时,卡钢、过烧等会出现一些质量问题和质量缺陷,会造成辊面裂纹,因此,冷轧工作辊应具有极高而均匀的硬度,一定深度的硬化层,以及良好的耐磨性与抗裂性。
以保证轧辊的使用要求和质量要求。
冷轧工艺措施原则
六辊可逆冷轧机1. 头几道次尽量多轧,充分利用材料的塑性,并减少头尾几何废料长度,提高成品率;2. 最终道次压延率控制在40~50%范围内,以提高板形质量和厚度精度;3. 中间道次压延率尽可能接近,以提高轧制过程的稳定,并采用最大速度轧制,使板卷温度在90~120℃之间,满足轧制硬合金辊形的需要;4. 末二道次压延率控制在40%左右,以控制板形为主,为终道次提供平直的带材,从而提高终轧道次的速度,以减少断带和波浪;5. 通过理论计算,最大轧制力不超过额定轧制力,以满足轧辊强度的需要,但各道次尽量采用大压下量轧制,减少轧制道次,提高劳动生产率;6. 前几道次轧制时,由于板带较厚,采用前张力大于后张力轧制,后几道次轧制时,由于板带较薄,采用后张力大于前张力轧制,带材不易拉断,并防止跑偏。
冷轧板带生产(cold rolling of strip and sheet)将热轧板卷在常温下轧制成板带材的生产工艺过程。
冷轧板带产品的厚度为0.1~3.0mm、宽度为600~2000mm表面光洁、平直,尺寸公差和力学性能应符合有关标准规定的要求。
在工业发达国家,冷轧板带钢产量占钢材总产量的30%左右。
产品品种有各种有色金属合金板带及普通碳素钢板、合金和低合金钢板、不锈钢板、电工钢板、专用钢板及涂镀层钢板等(表1)。
冷轧板生产可以追溯到16世纪,用于轧制造币用的金板和银板。
19世纪中叶仅能生产宽度20~50mm的冷轧窄带钢。
1920年在美国第一次冷轧宽带钢成功,很快由单机架不可逆式轧机发展到单机架可逆式轧机。
第一套三机架四辊式冷轧机于1926年在美国建成,以后相继出现4~6机架连轧机。
中国冷轧窄带钢(宽度≤600mm)生产始于20世纪40年代连续冷轧窄带钢的五机架350冷连轧机已在上海建成。
冷轧宽带钢(宽度>600mm)生产是从50年代末期建成第一台单机架四辊可逆式轧机时开始的。
70年代以后又建成五机架四辊连轧机和全连续式冷轧机。
综合实训--六辊板带可逆冷轧机液压伺服控制系统
1150mm六辊板带可逆冷轧机液压伺服控制系统目录目录第1章绪论 (1)1.1轧机位置控制系统发展情况 (1)1.1.1 液压位置控制系统发展情况 (1)1.1.2 控制理论及技术的发展 (1)1.2国内外研究情况简介 (6)1.2.1 国外概况 (6)1.2.2 国内概况 (7)第2章液压系统原理的设计 (8)2.1技术及工艺要求 (8)2.1.1 系统的要求 (8)第3章液压伺服控制系统设计 (9)3.1液压伺服板厚控制的基本原理 (9)3.2轧机数字闭环厚度控制 (10)1.1 轧机位置控制系统发展情况:第一种是手动压下调节板厚。
最早的轧机是靠手动调节压下螺丝来进行辊缝调节的。
这种调节方式仅能设定原始辊缝,无法达到厚度控制精度的要求,因而在板带轧机上已经基本不再采用。
第二种是电动压下调节板厚。
手动压下的调节方式缺点很多,所以在电机出现之后,人们就将它用到轧机上.不仅采用电机驱动,而且压下调节也采用电动方式,由电机通过减速装置驱动压下螺丝来设定原始辊缝。
这种调节方式一般不能在线调节,无法保证严格的厚度精度,因而目前只在开坯和厚板轧机上使用,板带轧机上很少用。
第三种是液压压下调节板厚。
1.1.1液压位置控制系统发展情况:(1)是电—液双压下系统调节装置。
电—液双压下系统也是由粗调和精调两部分组成的,其中粗调部分就是一般的电动压下装置,用它来设定原始辊缝。
精调部分采用液压系统,其具体结构方式有多种。
如用液压缸推动扇形齿轮以带动压下螺丝以及将液压缸直接放在轴承座与压下螺丝或压下横粱之间等方式。
这种调节方式的精调系统较为灵活,调节精度高。
特别是这种系统的粗调系统可以是一般的电动压下,因而这种方式特别适用于对旧轧机的改造,目前仍在采用。
(2)是全液压压下调节装置。
全液压压下的厚度调节系统取消了传统的压下螺丝,用液压缸直接压下,这种厚度调节方式结构简单,灵敏度高,能够满足很严格的厚度精度要求.并可根据需要,改变轧机的当量刚度,是现代化轧机上普遍采用的厚度调节方式。
第四组 1450mm单机架六辊可逆冷轧机组总承包项目
17
2014-8-14
用心铸造世界
责任分配矩阵
责任者(单位)
编码 工作任务 工艺 设计 经理 自动化 设计经 理 设备 设计 经理 采购 经理 商务 经理 客户 经理 预算 工程 师 财务 经理 施工 经理 质量 经理 安全 工程 师 秘书 项目 经理
110 111 112 113 114 120 121 122 123 130 131 132 133 140 141 142 143 150
项目目标
交付物 交付物完成准则 工作描述 所需资源估计
重大里程碑
项目负责人审核意见:按要求保质保量完成任务 签字:蒋晓亮 日期: 2008年2 月15日
11
2014-8-14
用心铸造世界
上级公司组织结构
公司总经理
公司副总经理
管理者代表
项 目 管 理 部
采 购 部
财 务 部
客 户 联 络 部
科 技 管 理 部
5、项目内部管理采用项目例会制。 6、深圳特区管理的政策性。
用心铸造世界
项目实施理念
采用了 项目经理负责制
系统工程的思想 目标管理的方式
质量 质量规划,质量保证 质量控制,PDCA循环法
费用 资源规划,成本估算 成本预算,成本控制,挣值法
进度 活动排序,时间估计 网络计划,进度控制
组织 组织设计,责任分配 团队建设,沟通管理
0
349
349 143 9 349
121 机械设备 采购 209 88 0 297
FF5
132 70 232
设备施工 0 302
冷负荷试车 0 315
热负荷试车 0 349
竣工验收 0 358
FS55 SS99
1100HC六辊可逆式冷轧机的设计-文献综述
附录2 文献综述一、课题的国内外现状HC 轧机全名为HITACHI HIGH CROWNCONT ROLMILL,即日立中心高性能轧辊凸度控制轧机。
该机型是日立公司于1972 年研究开发的轧机,两年后正式投入工业化应用。
它具有普通四辊冷轧机不能达到的性能和优点,首先在日本得到推广使用,继而受到全世界的瞩目,广泛用于热轧和冷轧生产中的单机可逆轧机、连轧机和平整机。
其主要结构特点是:在支撑辊和工作辊之间加入一对能够沿着轧辊轴向相对移动的中间辊,通过中间辊的相对移动来改变轧制压力在带钢方向上的分布,加上工作辊的正负弯辊作用,对改善带钢板形起到了明显的效果。
在国外,除日本各大钢铁公司普遍采用HC轧机机型外,美国、德国、加拿大、瑞典、巴西、墨西哥、韩国等国家均从日本引进了该轧机。
在国内,武汉钢铁公司为生产镀锡板基板,1987年首先引进1250HC六辊轧机,之后上海宝钢、辽宁鞍钢等国内各大钢铁公司先后引进了这种轧机机型。
在引进设备的同时,国内相关单位也开始跟踪并开发国产的HC六辊轧机。
国产大型六辊轧机已成功地用于工业生产,而且主要的技术水平和功能已达到国外同类设备水平。
但是,六辊轧机种工作辊弯辊、中间辊横移、中间辊弯辊三种方式与带材板型的检测、控制相结合,实施有效的闭环控制,目前国内虽然在这方面也取得了不少成绩,但在精确度和稳定性方面仍然需要花大力气研究。
二、现有的主要研究成果随着科学技术的不断进步,日本最近几年又在HC轧机的结构上进行了改进,推出了一些新型的HC轧机。
例如,HCMW 轧机是综合HC轧机和HCM轧机的优点,其特点是中间辊和工作辊都能轴向移动。
在国内,HC轧机方面的研究也取得了很多可喜的成绩:降低轧辊表面缺陷的措施,预防轧辊剥落的措施,预防轧辊断裂的措施。
近几年来,随着控制理论的发展,人们不断把一些新型控制方法引入板形自动控制系统中,以弥补PID控制中很难满足高精度控制要求的不足,比如基于动态负荷分配的板形控制方法。
可逆冷轧机带钢跑偏分析
带钢的镰刀弯也会使带钢向曲率中心的反方 向跑偏,如图 7 所示。跑偏量与镰刀弯的程度相 一致,而且带钢张力大小和两辊之间的距离大小 对实际跑偏量也有影响。 2. 4 机组工艺对跑偏的影响
2. 2. 3 两卷取机卷筒不平行 卷取机的安装精度对设备的运行影响较大。
由表 1 可以看出该机组左右卷取机的水平度垂直 度均未 达 到 安 装 精 度, 从 操 作 侧 看, 相 对 于 主 机,左右 两 卷 取 机 呈 内“八 ”字 状, 此 时, 带 钢 卷取时就会出现一侧紧一侧松的现象,带材在卷 筒压力、张力、表面摩擦力的作用下,卷取时向 松的一侧滑动,造成了如图 5 所示的跑偏。 2. 3 来料因素
在根据实践经验,带钢轧制过程中出现的经常性 的、规律性的跑偏现象往往是由设备制造安装精 度不合格引起的。因此初步判断,设备的安装精
( 1) 带钢在卷取机上总是固定的往操作侧方 向偏移,使得带卷逐圈外移,钢卷不齐。
( 2) 带钢高速轧制时,特别是轧制厚料时,
度有可能没有达到安装规范要求。委托专业的检 测公司对设备重要的安装空间尺寸进行检测,实 测的检测结果如表 1 所示。
2 单机架可逆冷轧机带钢跑偏原因 分析
2. 1 跑偏机理 带钢在轧制过程中,带钢受到的横向扰动力
大于带钢与辊子的横向静摩擦力,带钢将偏离轧 制中心线,发生跑偏,直到横向扰动力又小于横 向静摩擦力,带钢停止跑偏,在新的中心线上继 续运动[1]。
图 1 为宝钢特钢分公司 1450 mm 单机架六辊可 逆冷轧机组主要设备示意图。带钢在轧制运行过程
左张力辊 0. 06 ±0
上支承辊 - 0. 05 0. 27
六辊可逆轧机生产中出现的问题解答
轧钢中出现的问题解答1怎样控制轧制力?轧制力大板型不好控制,轧辊温度不均,轧辊承受能力下降。
新换工作辊一般用大张力可以减少轧制力,轧制2-3卷以后可以减小。
相对而言轧制力太小厚度不好控制。
可以减小张力轧辊阻力增大轧制力相对也能大一些.2怎样控制厚度波动?轧制过程中出现厚度波动大首先降速和减少张力差,厚度波动大的可以把监控取消。
对于厚度波动在20ym以内速度应该在500米以下,波动在20ym以上速度在300米以下。
3裂边怎样造成的?1轧辊边部粗糙度低。
2带钢边部出现色差。
3总变形量太高,最后道次压下量太大,有可能轧后产生边裂。
4原料有边浪起鼓涨裂。
5酸洗剪边不好。
4怎样控制裂边断带?裂边严重时减少工作辊弯辊力,降低轧制速度,减少出口张力。
使带钢边部承受的张力减小,不会把裂边拉断。
发现带钢边部起鼓及时更换工作辊。
\5在轧制过程中,带纲出现跑偏错卷的原因是什么?如何处理?在轧制过程中,带钢出现跑偏一般在穿带或甩尾时发生,造成带钢跑偏的主要原因有以下几个方面:1由于来料的原因来料板形不好,有严重的边浪或错边,使开卷机对中装臵不能准确及时地进行有效调节,造成第一道次带钢跑偏,采取措施是轧制速度不要太高,及时调节压下量侧位臵或及时停车。
2操作原因由于操作压下摆动调节不合理,造成带钢跑偏。
3电气原因由于在轧制过程卷取机张力突然减小或消失造成带钢跑偏、断带。
4轧辊由于轧辊磨削后有严重的锥度,使压下找不准,在轧制中给操作压下摆动增加了难度,轻者会产生严重一边浪造成板形缺陷,重者造成跑偏断带。
5开卷对中装臵故障、灯管或接受装臵污染等,使跑偏装臵失效造成第一道次跑偏。
6主控工、机前、机后怎样控制头尾勒辊?1在轧制带头、带尾时,主控工应该及时的加大出口张力5KN左右,启车后轧制力减小时,在把出口张力调整到工艺要求的数量。
由于带头、带尾速度较低,造成轧制力大、厚度不好控制,弯辊跟不上易勒辊。
2机前、机后要及时观察轧制力、板型。
六辊可逆轧机
冷轧是19世纪中叶始于德国,美国1859年建立了25 mm冷轧机, 1887年生产出宽度为150mm的低碳钢带。1880年以后冷轧钢带生 产在德国、美国发展很快,产品宽度不断扩大,产品质量也有了 提高。宽的冷轧薄板(钢带)是在热轧成卷带钢的基础上发展起 来的。首先是美国早在1920年第一次成功地轧制出宽带钢,并很 快由单机不可逆式轧制而跨入单机可逆式轧制。1926年阿姆柯公 司巴特勒工厂建成四机架冷连轧机。原苏联开始冷轧生产是在30 年代中期,1938年在查波罗什工厂开始安装从国外引进的三机架 1680 mm冷连轧及1680 mm可逆式冷轧机,生产厚度为0.5~2.5 mm,宽度为1500 mm的钢板。该厂又建立了一台2180 mm的可逆 式冷轧机。我国冷轧宽带钢的生产开始于1960年,首200 mm单机可逆 式冷轧机,MKW1400 mm偏八辊轧机、1150 mm二十辊冷轧机和 1250 mm HC单机可逆式冷轧机等,70年代投产了我国第一套 1700mm连续式五机架冷轧机,1988年建立了2030五机架全连续 冷轧机。在这30多年中,我国冷轧薄板生产能力增加了20多倍, 生产装备技术水平已由只能生产低碳薄板而发展到能生产高碳钢、 合金钢、高合金钢、不锈耐热冷轧板镀锌板、涂层钢板、塑料复 合薄板和硅钢片等。
单机架可逆轧机分类
可逆式冷轧机主要有两大类型,即四辊轧机和六辊轧机
四辊轧机: 典型的冷轧机机型,一直沿用至今。由于板形控制的需 要,还发展了以四辊轧机为基础的CVC、VC、PC 和HCW等。 六辊轧机: HC六辊系列、CVC六辊和3S六辊轧机等。HC六 辊轧机为目前应用最广的可逆式六辊轧机系列。
8)中间辊是由4列锥形滚柱轴承支承的,径向轴承的润滑是通过油 气滑系统进行的。 9)中间辊装有串动装置,串动系统位于操作侧,串动系统也是位置 控制。 10)支承辊平衡缸放在缸座的固定部分里,用于上支承辊,采用油 膜润换系统。 11)一套中间辊传动系统(齿轮机架)安装在机架上,并通过万向 接轴操作。 12)全自动工作辊换辊以及上中间辊换辊是通过一个安装在操作侧 的带有侧移装置的换辊小车来进行的。在换辊小车的帮助下, 下中间辊的更换是以半自动的操作方式实现的。支承辊托辊辊 是在半自动方式下完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1200六辊可逆冷轧机电气自动化系统控制方案1概述根据《1200六辊可逆冷轧机技术规格电气招标书》所提供的工艺设备和技术要求,并参考了同类型的单机架六辊可逆冷轧机的工艺技术,编写了本电气传动及基础自动化控制的技术方案。
2 供电2.1 电气设备运行条件1)电气设备运行环境要求环境温度现场:0~40︒C电气室:10~35︒C操作室:25±5︒C空气湿度:相对湿度≤95%且无凝露;污染等级:III级,无火灾爆炸危险、无导电性尘埃、不腐蚀金属物及不破坏绝缘介质的环境。
2)电气设备运输及储存环境要求环境温度-20~65︒C ;空气湿度及污染等级要求与运行时相同。
3)电气设备使用的电压等级及技术条件本机组所使用电气设备电压等级符合我国国家标准,主要用电设备的电压等级为:◆供电电压及频率:10±5%kV,50±1Hz◆低压供电电压:AC380/220V◆交流电动机电压:AC380V◆直流电动机电压:DC440~660V◆电磁阀:DC24V◆电磁抱闸:AC220V◆控制电压:AC220V,DC24V◆保护地:接地电阻<4Ω◆系统地:接地电阻<4Ω2.2低压供配电辅传动供电系统(1)辅传动供电系统单线图见MCC单线图。
(2)MCC设备(见附表)由于本机组负荷较小,因此不设负荷中心。
本机组负荷MCC(即马达控制中心)将采用GGD3柜,包含MCC的受电、馈出回路、UPS 系统、比例、伺服阀控制回路和照明开关柜,开关柜额定短路短时承受能>80kA/s。
额定短路分断能力与电网短路电流相适应,Icu >50kA根据需要配置必要的电流、电压表计,端子板采用Phoenix端子。
单机架可逆冷轧机组设一套MCC,不同容量不同控制类型的回路至少有一个备用回路。
注①:主传动电动机均配置有空间加热器,这些加热器是在长期停机时防止电机绕组受潮而设置的。
由本MCC供电。
注②:为了保证乳化液站的检修供电,需要检修电源或者备用一路供电回路。
(3) UPS电源为保证控制系统运行的可靠性,机组设置一套容量为10kV A的UPS 电源为机组控制系统(PLC、AGC控制器、HMI设备等)提供可靠稳定电源。
电池和逆变器选用进口产品。
容量:10kV A,30min;进线:220V ACMCC设备供货清单表3 电气传动:3.1 整流变压器技术参数轧机主传动油浸式整流变压器,1台ZS9-4000/10,4000kV A,10±2×2.5%/0.69kV,U d=6.5%,Dy11/d0 左右卷取机主传动油浸式整流变压器,2台ZS9-2000/10,2000kV A,10±2×2.5%/0.69kV,U d=6.5%,Dd0/y11 开卷机主传动油浸式整流变压器,1台ZS9-630/10,630kV A,10±2×2.5%/0. 46kV,U d=6.5%,Dy113.2 主传动系统机组主传动电动机指开卷机、入口卷取机、轧机和出口卷取机。
主传动电动机采用直流电动机,相应地为主传动电动机供电的调速装置采用西门子(6RA70系列)全数字控制的晶闸管整流装置。
(1)主传动电动机技术参数如下:自动化系统通过16路热电阻信号放大器(FCS-1002T)循回检测Pt100的阻值,以实现对电动机绕组和轴承温度的监控。
(2)传动系统主要功能性能指标动态速降:1%静态精度:±0.1%恢复时间:130ms调节精度:0.01%(速度反馈用脉冲码盘为1024P/RPM,增量型,DP网数字量给定)(3)全数字直流传动装置主要功能冷轧机组直流电动机驱动装置内部的混装直流模块采用SIEMENS 公司6RA70全数字控制单元,保证动态、静态调节品质,提高系统的抗干扰能力。
混装直流模块与SIEMENS公司的6RA70全数字控制单元完美配合,使装置具有完善的故障保护功能;具有过压、过流、超速、失速、电网电压过高、过低、速度反馈故障等等。
便于判断、检查、维护。
励磁控制单元与之配套,为非独立励磁系统。
传动装置配置PROFIBUS卡,完成与控制系统的通讯;通讯内容有设备起/停、速度设定、速度反馈、故障信息等。
(4) 传动供电用全数字晶闸管整流装置为主传动电动机供电的全数字晶闸管整流装置将采用SIEMENS 公司6RA70系列全数字控制系统,装置配置有PROFIBUS-DP网卡,可实现与simatic S7-400PLC(或WINAC)自动化系统快速地通讯。
主轧机上、下工作辊分别由一台电机驱动,两台电机独立供电调速,考虑负荷均衡和速度匹配。
入、出口卷取机各由两台电机同轴驱动,卷取机的两台电机独立供电调速,考虑负荷均衡并带有张力控制。
主传动装置的主要技术参数为:(5)传动装置控制原理图(见附图)4 基础自动化:4.1 概述1200六辊可逆冷轧机基础自动化系统选用一块CPU414-2DP模块作为处理器,完成整个机组的信息采集及逻辑顺序控制。
S7-400 PLC通过PROFIBUS-DP网与功能PLC从站(FM458)以及ET200M形成分布式结构,使得整个系统的配置简单、可靠、实用,便于调试和维护。
基础自动化系统由三部分组成:(1)P LC控制,主要完成以下功能:◆顺序控制◆操作运转连锁◆生产辅助设备(液压、润滑、乳化液等)运转控制◆传动控制◆轧机前、后张力控制◆机组速度主令控制◆自动甩尾控制◆带钢缺陷点(多点)跟踪和减速◆带钢长度、卷取长度计算◆带钢头位跟踪、钢卷跟踪◆轧制社钉值的管理与分配(2)机架控制,主要完成以下功能:◆轧机压下控制◆AGC控制◆弯辊控制◆串辊控制(3)H MI,主要完成以下功能:◆原始钢卷资料录入及轧制计划表存储◆轧机预设定计算(有表格式和数学模型两种)◆轧制模型自适应和自学习功能(有模型时)◆生产过程监控◆设备状态监控◆辅助设备操作◆生产准备条件◆生产统计报表◆历史资料存储◆故障报警◆报警记录与打印等4.2 PLC控制系统自动化配置清单5 操作设备及操作运转方式5.1主要设备操作运转方式机组设备的操作运转方式分为以下3种:(1) 手动方式:主要用于调试、检修与维护等,设备将完全根据操作人员的操作指令运行;机组所有设备均可手动操作。
手动操作主要在机旁操作,部分设备或设备组设有操作台集中操作。
对于机组辅助生产设备,如液压、润滑设备等,除可以机旁操作外,亦可在HMI上集中操作和监视。
(2) 自动方式:机组设备或设备组根据实际状况和检测器状态自动顺序运行。
自动方式投入时,设备的起停由检测器的状态与连锁条件决定。
(3) 半自动方式:指设备或设备组中的部分过程“一个周期”的自动运行。
通常是在自动方式不能投入(如个别检测器故障或不具备投入自动方式的条件)的情况下为简化操作时所有,半自动方式需要由操作员触发。
根据本机组的特点,将按照手动优先、机旁优先的原则设计操作运转方案。
机组主要设备的操作运转方式参见下表:注:本表在与用户商量后最终确定。
5.2操作设备机组配置4机旁操作箱和1个主操作台(主操作台采用不锈钢台面,机旁操作箱面板采用碳钢喷漆),11个控制箱,1个主PLC柜。
共计17个。
6 自动化系统主要功能说明6.1 机组设备控制功能(1)机组设备顺序控制机组设备的顺序控制功能就是机组的各个设备根据带钢生产工艺流程和外部连锁条件自动地顺序起动/停止。
热轧酸洗卷通过行车由轧前库运输到轧机入口侧#1号或#2号鞍座位置。
带卷放下时第一圈处于上开卷位置,带头靠近鞍座以便解捆后外圈不致于松卷。
开卷机钢卷小车移入,接受钢卷,将钢卷横移。
在横移过程中自动进行钢卷宽度和直径的测量。
随后,开卷机卷筒收缩,对中设备中心线,外支撑轴承打开。
在小车横移过程中,钢卷和开卷机卷筒自动对中,并将钢卷装入卷筒。
钢卷装入卷筒后,外支撑闭合,卷筒胀大以便把持住带卷,压辊压下到带卷表面以防止外圈松卷。
钢卷小车降下,开卷机反向点动直至带头处于开卷位置。
随后,穿带导板抬起并伸出到钢卷带头下的开卷位置。
通过旋转开卷机卷筒,带头在穿带导板的引导下停在打开的夹送辊和直头机下。
此时缩回穿带导板,直头机压下到带钢头部,往上弯曲带钢头部。
根据带头情况,可反向运行带钢,使带钢头部平直,利于后续工序顺利穿带。
在开卷机的卷筒和穿带导板之间安装有CPC(中间位置控制)装置,用其控制卷筒和机组中心线对齐,在正常轧制过程防止带钢跑偏。
经过直头后的带钢,穿过降下的过渡导板,并穿过准备好的入口挡板进入轧机对中导卫,随后穿过打开的轧机,并停止在轧机出口侧。
联合点动开卷机、夹送辊,带钢继续穿过打开的出口挡板,从出口转向辊上穿过。
在带头穿过出口转向辊时,上辊(偏导辊)压靠在带钢表面,带头进入出口卷取机的钳口,并让带头在出口卷取机上缠绕2~3圈,在缠绕过程对开卷机和出口卷取机之间对带钢施加静张力,以便带钢紧紧缠绕在卷筒上。
穿带完毕后,出口穿带导板缩回。
轧机前后的X射线测厚仪开进,出口安全罩关闭,开始轧制。
穿带过程中,如果出现带钢偏离设备中心线,可以手动启用导位装置,轻轻排击带钢,使带钢靠近设备中心线继续穿带。
轧制前或穿带过程中,由操作工在主操作室的HMI中对轧机以及机组的各个设备核定张力、辊缝、导位的开口度等初始设定值。
轧机启动时,自动同步启动轧机的乳化液系统和空气吹扫系统。
轧机和张力卷取机(第一道次为出口卷取机和开卷机)同步加速到设定的速度,并建立给定的轧制张力,AGC自动投入,带钢的厚度逐道减少。
带钢的板形通过操作正弯和负弯辊、轧辊乳化液喷嘴集管的开启和AGC 油缸的不对称调整进行手动控制。
在换辊后开始轧制前应进行轧机的调零。
当第一道次的轧制快结束时,机组降速到甩尾速度。
当带钢尾部在开卷机卷筒上剩下2~3圈时,将轧机入口侧的夹板降下并夹持住带钢,以便在轧机和压板之间形成张力,同时轧机入口侧的夹板和开卷机之间的带钢失去张力。
带尾出开卷机后停止在切断剪后方的过渡导板上切尾。
同时,开卷机卷筒收缩,外支承打开,进行下个钢卷开卷的准备工作。
如果上一卷带钢尚未轧制完毕,开卷机开卷后的带头,经过直头停止在直头机的出口。
当第一道次轧制完毕时,入口卷取机区域的相关设备已经准备就绪,其中包括外支承闭合,卷筒钳口自动定位,穿带导板准备就绪。
然后选择入口穿带导板相关按扭或选择开关,移动经切尾后的带尾直至入口卷取机的钳口上,卷筒膨胀夹紧带尾,转动卷筒并让带钢在卷筒上缠绕2~3圈后,建立起静张力,穿带导板缩回,入口和出口X射线测厚仪开进。
然后选择轧机运行模式按扭,轧制过程将继续,带钢经过反复轧制直至目标厚度。
其中除了最末道次外,带头和带尾从不离开卷筒。
在轧制过程中,带钢跟踪以及卷径自动记忆功能自动地将轧机停止并以在卷筒上剩下圈数最少(通常为2至3圈)来进行每个道次的反向。