黑龙江省哈尔滨市2017届九年级12月月考数学试卷有答案
黑龙江省哈尔滨市2024-2025学年高三10月月考试题 数学含答案
哈2024—2025学年度上学期高三学年十月月考数学试卷(答案在最后)考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。
黑龙江省哈尔滨市第四十七中学2021-2022学年九年级上学期12月月考数学试题(含答案解析)
黑龙江省哈尔滨市第四十七中学2021-2022学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.7-的倒数是( )A .17B .17-C .7D .7-2.下列运算一定正确的是( )A .623a a a ÷=B .325235a a a +=C .()326a a -=D .22()()a b a b a b +-=-3.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图的几何体是由一些小正方体组合而成的,则这个几何体的主视图是( )A .B .C .D .5.如图,AB 是O 的直径,CD 是O 的弦,连接AD 、DB 、BC ,若55ABD ∠=︒,则BCD ∠的度数为( )A .65︒B .55︒C .45︒D .35︒6.某商品原价168元,经过连续两次降价后的售价为128元,设平均每次降价的百分数为x ,则下面所列方程中正确的是( )A .2168(1)128x +=B .2168(1)128x -=C .2168(12)128x -=D .()21681128x -= 7.如图,将△ABC 绕点A 逆时针旋转得到△AB ′C ′,若B ′落在BC 边上,△B =50°,则△CB ′C ′为( )A .80︒B .70︒C .60︒D .50︒8.一个不透明的袋子中装有10个小球,其中6个红球、4个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为( )A .35B .23C .25D .1109.如图,在ABCD 中,点E 、F 分别在AD 、CD 边上,连接BE 、AF ,它们相交于点G ,延长BE 、CD ,相交于点H ,下列结论中正确的是( )A .EG AE BG BC =B .AE BE ED EH=C .=EH DH EB CHD .=AG BG FG FH10.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有( )千米到达甲地.A .70B .80C .90D .100二、填空题 11.将122000000用科学记数法表示为____________.12.在函数y =1x x +中,自变量x 的取值范围是_____. 13.已知反比例函数k y x =的图象经过点(﹣2,3),则k 的值为 ___.14.计算_________. 15.把多项式329a ab -分解因式的结果是______________________.16.抛物线22(1)1y x =++与y 轴的交点坐标为_________.17.不等式组21462x x ->⎧⎨-≤-⎩的解集是__________. 18.一个扇形的弧长是6cm π,面积是215cm π,则此扇形的半径为__________. 19.在ABC 中,5AB AC ==,ABC 的面积为10,则sin ACB ∠的值为_________.20.如图,在四边形ABCD 中,△ADC =△ABC =45°,CD =2,BC AC 、BD ,若AC △AB ,则BD 的长度为________.三、解答题21.先化简,再求代数式231(1)22xx x--÷++的值,其中x=4sin45°﹣2cos60°.22.如图,在59⨯的正方形网格中,每个小正方形的边长均为1,线段AB和DE的端点A B D E、、、均在小正方形的顶点上.()1画出以AB为一边且面积为2的,Rt ABC顶点C必须在小正方形的顶点上;()2画出一个以DE为一边的平行四边形,DEFG满足:45DGF EF DE F G∠=︒>,,、两点必须在小正方形的顶点上;()3连接CG,请直接写出CG的长.23.为了了解游客对某市冰雪旅游服务满意度,从某景区中随机抽取部分游客进行调查,调查结果分为:A.非常满意;B.满意;C.基本满意;D.不满意四个等级.请根据如图所示的两幅统计图中的信息回答下列问题:(1)求本次调查共抽取了多少名游客?(2)请通过计算补全条形统计图;(3)若该景区累计接待游客90万人次,请你估计对该景区服务表示不满意的游客有多少万人次.24.己知△ABC和△ADE均为等边三角形,点F、D分别在AC、BC上,AF=CD,连接BF、EF.(1)如图1,求证:四边形BFED为平行四边形;(2)如图2,延长EF交AB于点H,连接CE,请直接写出图2中所有长度等于BD的线段.(不包括BD本身)25.哈尔滨市热网改造工程指挥部,要对某小区工程进行招标,接到了甲乙两个工程队的投标书,从投标书中得知:甲队单独完成这项工作所需天数比乙队单独完成这项工程所需天数少6天,乙队做6天的工作量,甲队只需5天就可以完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)已知甲队每天的施工费用为14万元,乙队每天的施工费用为10万元,该工程由甲乙两队合作若干天后,再由乙队完成剩余工作,若要求完成此项工程的工作款不超过380万元,则甲、乙两队最多合作多少天.26.己知AB为O的直径,CD为O的弦,AB交CD于点E,点E为CD的中点,PQ 切O于点A.(1)如图1,求证:PQ CD∥;(2)如图2,连接AD,点F为O上一点,连接BF,若2=BF EO,求证:2∠=∠B BAD;(3)如图3,在(2)的条件下,连接DF,若:11:25,9==DF AD BE,求O的半径的长.27.在平面直角坐标系中,点O为坐标系的原点,抛物线223y ax ax a=--交x轴于点A 和点B,交y轴于点C,12OC OB=.(1)如图1,求抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接BD,点E为线段BD上一点,连接AE,设点E的横坐标为t,ABE△的面积为s.求s与t的函数解析式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接AD ,点G 在第四象限,连接AG 、DG ,AG AD =,点F 为直线AG 下方一点,,⊥⊥FG DG FA DA .若,:8:9∠=∠=FAG DAE DE AF ,求点E 的坐标.参考答案:1.B【解析】【分析】直接利用倒数的定义:乘积是1的两数互为倒数得出答案.【详解】解:-7的倒数是:-17.故选:B.【点睛】本题主要考查了倒数的定义,正确掌握倒数定义是解题的关键.2.D【解析】【分析】由同底数幂除法、合并同类项、幂的乘方、平方差公式,分别进行判断,即可得到答案.【详解】解:A、624a a a÷=,故A错误;B、3223a a+,不能合并,故B错误;C、()326a a-=-,故C错误;D、22()()a b a b a b+-=-,故D正确;故选:D.【点睛】本题考查了同底数幂除法、合并同类项、幂的乘方、平方差公式,解题的关键是掌握运算法则进行判断.3.A【解析】【分析】根据中心对称图形和轴对称图形(在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形)的概念,对各个选项逐个分析,即可得到答案.【详解】A、是轴对称图形,也是中心对称图形,故选项A正确;B、不是轴对称图形,是中心对称图形,故选项B不正确;C、是轴对称图形,不是中心对称图形,故选项C不正确;D、是轴对称图形,不是中心对称图形,故选项D不正确;故选:A.【点睛】本题考查了轴对称和中心对称图形的知识;解题的关键是熟练掌握轴对称和中心对称图形的性质,从而完成求解.4.C【解析】【分析】结合题意,根据立体图形视图的性质分析,即可得到答案.【详解】几何体的主视图是:故选:C.【点睛】本题考查了立体图形的知识;解题的关键是熟练掌握视图的性质,从而完成求解.5.D【解析】【分析】先根据圆周角定理求出△ADB的度数,再由直角三角形的性质求出△A的度数,进而可得出结论.【详解】解:△AB是△O的直径,△△ADB=90°.△△ABD=55°,△△A =90°-55°=35°,△△BCD =△A =35°.故选:D .【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.6.B【解析】【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1-降低的百分率)=128,把相应数值代入即可求解.【详解】解:第一次降价后的价格为168×(1−x ),两次连续降价后售价在第一次降价后的价格的基础上降低x ,为168×(1−x )×(1−x ),则列出的方程是2168(1)128x -=.故选:B.【点睛】考查由实际问题抽象出一元二次方程,读懂题目,找出等量关系是解题的关键. 7.A【解析】【分析】依据旋转的性质可求得AB =AB ′,△AB ′C ′的度数,依据等边对等角的性质可得到△B =△BB ′A ,于是可得到△CB ′C ′的度数.【详解】解:由旋转的性质可知:AB =AB ′,△B =△AB ′C ′=50°,△AB =AB ′,△△B =△BB ′A =50°.△△BB ′C ′=50°+50°=100°,△△CB ′C ′=180°-100°=80°,故选:A .【点睛】本题主要考查的是旋转的性质,等腰三角形的性质,求得△AB′C′和△BB′A的度数是解题的关键.8.A【解析】【分析】根据概率的求法,找准两点:△全部情况的总数;△符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:△一个不透明的袋子中装有10个小球,其中6个红球、4个绿球,△从袋子中随机摸出一个小球,则摸出的小球是红球的概率为63 105=.故选:A.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.9.B【解析】【分析】根据相似三角形的性质和平行四边形的性质可以判断各个选项中的比值是否成立,从而可以解答本题.【详解】解:由图可知,EG AEBG BC≠,故选项A错误;△AB△CD,△△ABE△△DHE,△AE BEED EH⋅=,故选项B正确;△DE△BC,△EH DHEB DC=,故选项C错误;△AB△CD,△△ABG△△FHG,△AG BGFG HG=,故选项D错误;故选:B.【点睛】本题考查相似三角形的判定与性质、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.10.A【解析】【详解】分析:求出相遇前y与x的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可确定出所求.详解:设第一段折线解析式为y=kx+b,把(1.5,70)与(2,0)代入得:1.570 20k bk b+=⎧⎨+=⎩,解得:140280kb=-⎧⎨=⎩,即y=−140x+280,令x=0,得到y=280,即甲乙两对相距280千米,设两车相遇时,乙行驶了x千米,则甲行驶了(x+40)千米,根据题意得:x+x+40=280,解得:x=120,即两车相遇时,乙行驶了120千米,则甲行驶了160千米,△甲车的速度为80千米/时,乙车速度为60千米/时,根据题意得:(280−160)÷80=1.5(小时),1.5×60=90(千米),280−120−90=70(千米),则快车到达乙地时,慢车还有70千米到达甲地.故选A.点睛:考查一次函数的应用,掌握待定系数法求一次函数的解析式.11.81.2210⨯【解析】【分析】结合题意,根据科学记数法的一般表达形式分析,即可得到答案.【详解】122000000用科学记数法表示为:81.2210⨯.故答案为:81.2210⨯.【点睛】本题考查了科学记数法的知识,解题的关键是熟练掌握科学记数法的性质,从而完成求解.12.x≠﹣1【解析】【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x+1≠0,解得x≠﹣1,故答案为:x≠﹣1.【点睛】本题考查了函数自变量取值范围的求法.要使得本题式子有意义,必须满足分母不等于0.13.-6【解析】【分析】将点(-2,3)代入解析式可求出k 的值.【详解】把(-2,3)代入函数k y x =中, 得3=2k-,解得k =-6,故答案为:-6.【点睛】主要考查了用待定系数法求反比例函数的解析式,属于基础题,将点(-2,3)代入解析式是解题关键.14.【解析】【分析】根据二次根式的性质计算,即可得到答案.【详解】3===【点睛】本题考查了二次根式的知识;解题的关键是了熟练掌握二次根式的性质,从而完成求解. 15.a (3a+b )(3a -b )【解析】【详解】试题分析:329a ab -=22(9)a a b -=a (3a+b )(3a ﹣b ).故答案为a (3a+b )(3a ﹣b ). 考点:提公因式法与公式法的综合运用.16.()0,3【解析】【分析】根据二次函数图像的性质,0x =时,通过计算即可得到答案.【详解】当0x =时,22(1)13y x =++=△抛物线22(1)1y x =++与y 轴的交点坐标为()0,3故答案为:()0,3.【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.17.52<x ≤4##2.54x < 【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:解214x ->得:x >52; 解62x -≤-得:x ≤4;△不等式组的解集为:52<x ≤4. 故答案为:542x < 【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握各自的解法是解本题的关键.18.5cm【解析】【分析】设此扇形的半径为:cm x ,扇形的圆心角为θ,根据弧长公式和扇形面积计算公式的性质,分别得6180cm x πθπ=,2215360cm x πθπ=,再通过求解一元一次方程,即可得到答案. 【详解】设此扇形的半径为:cm x ,扇形的圆心角为θ 根据题意,得:6180cm x πθπ=,2215360cm x πθπ= 将6180cm x πθπ=代入到2215360cm x πθπ=,得:6152x ππ⨯= △5x =故答案为:5cm .【点睛】本题考查了扇形面积、弧长公式、一元一次方程的知识,解题的关键是熟练掌握扇形面积、弧长的性质,从而完成求解.19 【解析】【分析】作AD △BC 于D ,如图,根据等腰三角形的性质得BD =CD ,设AD =x ,BD =CD =y ,利用三角形面积公式和勾股定理得到xy =10,x 2+y 2=52,再利用代数式变形得到x +y x -y =±x y x y【详解】解:作AD △BC 于D ,如图,则BD =CD ,设AD =x ,BD =CD =y , △12AD •BC =10,AD 2+BD 2=AC 2,△xy =10,x 2+y 2=52,△(x +y )2-2xy =25,(x -y )2+2xy =25,△x +y x -y△x y x y在Rt △ACD 中,,当x sin ACB ∠=AD AC ==当x sin ACB ∠=AD AC =.即sin ACB ∠【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.20.【解析】【分析】作辅助线求得CF=DF AC,AF DE=6,根据边角边证明△CAE△△BAD,其性质得EC=BD,最后在Rt△EDC中,由勾股定理求得EC求得BD的长为2.【详解】解:过点A作AE△AD,且AE=AD,CF△AD,连接EC、ED,如图所示:△AE△AD,△△DAE=90°,又△AE=AD,△△ADE=45°,又△CF△AD,△△CFD=90°,又△△FDC=45°,CD=2,△CF=DF又△AC△AB,△△CAB=90°,又△△ABC=45°,BC△AC在Rt△AFC中,由勾股定理得:AF,又△AD =DF +AF ,△AD,△DE •AD =6, 又△△CAE =△CAD +△DAE ,△BAD =△CAD +△CAB ,△△CAE =△BAD ,在△CAE 和△BAD 中,AE AD CAE BAD AC AB =⎧⎪∠=∠⎨⎪=⎩,△△CAE △△BAD (SAS ),△EC =BD ,又△△CDE =△ADE +ADC ,△△EDC =90°,在Rt △EDC 中,由勾股定理得;EC,△BD 故答案为:【点睛】本题综合考查了垂直的定义,等腰三角的判定与性质,全等三角形的判定与性质,角的和差,勾股定理等相关知识点,重点掌握全等三角形的判定与性质,难点是作辅助线构建等腰三角形和全等三角形.21.11x +. 【解析】【分析】分别化简代数式和x 的值,代入计算.【详解】原式=2321·2(1)(1)1x xx x x x+-+=+-++.△x=4sin45°﹣2cos60°=14212⨯=,△原式=.22.(1)图详见解析;(2)详见解析;(3)CG=【解析】【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用平行四边形的性质结合勾股定理得出答案;(3)利用勾股定理求出CG的长.【详解】解:(1)如图所示:Rt△ABC即为所求;△AC、BC均为正方形的对角线△△ACB=90︒△每个小正方形的边长均为1△111321122132222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=(2)连接DF2223110FG =+=2223110FD =+=2224220DG =+=△222FG FD DG +=△FC FD =△45DGF ∠=︒(3)CG =【点睛】本题主要考查作图、应用与设计,勾股定理及逆定理,解题的关键是学会用数形结合的思想解决问题,学会用转化的思想解决问题.23.(1)50名(2)见解析(3)7.2万人次【解析】【分析】(1)根据A 的人数除以占的百分比,得出调查总数即可;(2)将总人数减去A 、B 、D 的人数即可得C 的人数,从而补全统计图;(3)用总人数乘以表示不满意的游客所占的百分比即可.(1)这次抽样调查的游客有:10÷20%=50(名)答:本次调查共抽取了50名游客;(2)“基本满意”的游客有:50-10-20-4=16(人),补全条形图如图:(3)90×450=7.2(万人),答:估计对该景区服务表示不满意的游客有7.2万人次.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)见解析(2)与BD相等的线段有:BH、CF、EC、EF.【解析】【分析】(1)先证明△ADC△△BF A,推出AD=BF=DE,△DAC=△FBA,再证明△BDG=60°,推出BF△DE,即可证明四边形BFED为平行四边形;(2)根据△ABC和△ADE均为等边三角形,四边形BFED为平行四边形,利用线段的和与差证明得到BH=CF= EF=BD;证明四边形BHEC为平行四边形,推出EC=BH,即可得到所有长度等于BD的线段.(1)证明:△△ABC和△ADE均为等边三角形,△△C=△BAC=△ADE=60°,AB=AC,AD=DE,又△AF=CD,△△ADC△△BF A,△AD=BF=DE,△DAC=△FBA,设AD、BF相交于点G,△△BGD=△BAG+△GBA=△BAG+△DAC=△BAC=60°,△△BGD=△ADE=60°,△BF△DE,又△BF=DE,△四边形BFED为平行四边形;,(2)解:△△ABC和△ADE均为等边三角形,且AF=CD,△BC-CD=AC-AF,即BD=CF;由(1)知四边形BFED为平行四边形,△EF△BD,BD=EF;△△AFH=△C=60°,△△BAC=60°,△△AFH为等边三角形,△AF=AH=HF,△AB-AH=AC-AF,即BH=CF=BD;△EF+HF=BH+AH,即EH=AB=BC,△EF△BD,即EH△BC,△四边形BHEC为平行四边形,△EC=BH= BD;综上,与BD相等的线段有:BH、CF、EC、EF.,【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.25.(1)甲队单独完成这项工程各需30天,乙队单独完成这项工程各需36天(2)甲乙两队最多合做10天【解析】【分析】(1)首先表示出甲、乙两队需要的天数,进而利用乙队做6天的工作量,甲队只需5天就可以完成得出等式求出答案;(2)首先根据题意列出不等式即可求出两队合作需要的天数.(1)设乙队单独完成这项工程需要x 天, 则甲队单独完成这项工程需要(x -6)天,根据题意得,656x x =- 解得,x =36经检验,x =36是原分式方程的解,且符合题意,36-6=30(天)△甲队单独完成这项工程需30天,乙队单独完成这项工程需36天(2)设甲、乙两队合做y 天,根据题意得,111()3630(1410)10380136y y -+++⨯≤ 化简得,220y ≤解得,10y ≤即甲乙两队最多合做10天【点睛】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出等量关系和不等量关系是解题关键.26.(1)见解析(2)见解析 (3)252【解析】【分析】(1)根据切线的性质得AB PQ ⊥,由垂径定理的逆定理得AB CD ⊥,由平行线的判定即可证明;(2)过点C 作直径CG ,连接DO 、DG 、AF ,由直径所对的圆周角为90°得90CDG AFB ∠=∠=︒,由点O 是CG 中点,AB CD ⊥得OE 是CDG 的中位线,即可得2DG OE =,由2=BF EO 推出DG BF =,根据HL 证明Rt CDG Rt AFB ≅,由全等三角形的性质得B G ∠=∠,由OC OD =,AB CD ⊥得22COD COB BOD ∠=∠=∠,由圆周角的性质得122G COD BOD BAD ∠=∠=∠=∠,即可得出2∠=∠B BAD ; (3)过点C 作直径CG ,连接AC 、DG 、AF ,设AF 与CD 相交于M ,由全等三角形的性质得AF CD =,由圆心角、弧、弦的关系推出AFD CDF ∠=∠,ACD CAF ∠=∠,得出MF MD =,MA MC =,可证明MAC MFD ,相似三角形的性质得1125MF MD DF MC MA AC ===,设11MF k =,则25MC k =,求出AF 、AM 、AE 、AB ,求证MAE BAF ,由相似三角形的性质得AE AM AF AB=,求出k 值,即可得出半径. (1) △PQ 与O 相切,△AB PQ ⊥,△AB 是直径,CE DE =,△AB CD ⊥,△PQ CD ∥;(2)如图2,过点C 作直径CG ,连接DO 、DG 、AF ,△CG 、AB 是直径,△90CDG AFB ∠=∠=︒,△点O 是CG 中点,AB CD ⊥,△OE 是CDG 的中位线,△2DG OE =,△2=BF EO ,△DG BF =,在Rt CDG 与Rt AFB 中,CG AB DG FB =⎧⎨=⎩, △()Rt CDG Rt AFB HL ≅,△B G ∠=∠,△OC OD =,AB CD ⊥,△22COD COB BOD ∠=∠=∠, △122G COD BOD BAD ∠=∠=∠=∠, △2∠=∠B BAD ;(3)如图3,过点C 作直径CG ,连接AC 、DG 、AF ,设AF 与CD 相交于M ,△Rt ABF Rt CGD ≅,△AF CD =,△AF CD =,△AD CF =,△AFD CDF ∠=∠,ACD CAF ∠=∠,△MF MD =,MA MC =,△点E 是CD 的中点,AB 是O 的直径,△AB 垂直平分CD ,△AC AD =,90AEM ∠=︒,△:11:25DF AD =,△:11:25DF AC =,根据圆周角的性质得:CAF CDF ∠=∠,ACD AFD ∠=∠,△MAC MFD , △1125MF MD DF MC MA AC ===, 设11MF k =,则25MC k =,△11MD MF k ==,25MA MC k ==,△251136CD MC MD k k k =+=+=,112536AF MF MA k k k =+=+=△点E 是CD 的中点,△11361822CE DE CD k k ===⨯=, △18117ME DE MD k k k =-=-=,在Rt AME 中,90AEM ∠=︒,25AM k =,7ME k =,△24AE k ==,△9BE =,△249AB AE BE k =+=+,△MAE BAF ∠=∠,△MAE BAF , △AE AM AF AB =,即242536249k k k k =+, 解得:23k =, △2249253AB =⨯+=, △半径为252. 【点睛】本题考查垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理,掌握相关知识的应用是解题的关键.27.(1)21322y x x =-++ (2)s =-2t +6(3)点E 坐标为(3115,1415) 【解析】【分析】 (1)根据解析式可得C 点坐标为(0,-3a ),根据12OC OB =可表示出点B 坐标,代入解析式求出a 值即可得答案;(2)根据(1)中解析式可求出A 、B 、D 坐标,可得AB 的长,利用待定系数法可得出直线BD 解析式,根据点E 横坐标可得点E 纵坐标,根据三角形面积公式即可得出s 与t 的函数解析式;(3)如图,过点B 作BH △AF ,交AF 延长线于H ,延长AG 、DG ,分别交BH 于P 、Q ,过点E 作EM △x 轴于M ,连接DF ,根据直线BD 解析式可证明△DAB 是等腰直角三角形,即可证明四边形AHBD 是正方形,利用正方形的性质及ASA 可证明△ADE △△AHP ,可得DE =PH ,根据,⊥⊥FG DG FA DA 可证明点A 、F 、G 、D 四点共圆,进而可得△AFD =△DQB =△PGQ ,PG =PQ ,利用AAS 可证明△ADF △△BDQ ,可得BQ =AF ,设DE =8k ,AF =9k ,根据线段的互相关系及勾股定理可得出AH =15k ,可求出k 值,即可求出BE 的长,根据等腰直角三角形的性质可得EM 、BM 的长,即可得出OM 的长,即可得答案.(1)△抛物线223y ax ax a =--交x 轴于点A 和点B ,交y 轴于点C ,△当x =0时,y=-3a ,△C 点坐标为(0,-3a ), △12OC OB =, △点B 坐标为(-6a ,0),△a (-6a )2-2a (-6a )-3a =0,解得:a 1=0,a 2=16,a 3=12-, △抛物线开口向下, △12a =-, △抛物线的解析式为21322y x x =-++. (2)△抛物线的解析式为21322y x x =-++, △当y =0时,213022x x -++=, 解得:x 1=-1,x 2=3,△A (-1,0),B (3,0),△AB =4,△点D 是抛物线顶点,△D (1,2),设直线BD 解析式为y =kx +b ,△230k bk b+=⎧⎨+=⎩,解得:13kb=-⎧⎨=⎩,△直线BD的解析式为y=-x+3,△点E的横坐标为t,△点E的纵坐标Ey=-t+3,△ABE△的面积为s,△s=12EAB y⋅=14(3)2t⨯⨯-+=-2t+6.(3)如图,过点B作BH△AF,交AF延长线于H,延长AG、DG,分别交BH于P、Q,过点E 作EM△x轴于M,连接DF,△直线BD的解析式为y=-x+3,△△DBA=45°,△点D为抛物线顶点,△AD=BD,△△DAB=45°,△△DAB是等腰直角三角形,△FA DA⊥,BH△AF,△四边形AHBD是正方形,△AB=4,AD=AG,△AD=BD=AH=BH=AGAB=△ADG=△AGD,设DE=8k,△:8:9 DE AF=,△AF=9k,在△ADE和△AHP中,DAE FAG AD AHADE AHP∠=∠⎧⎪=⎨⎪∠=∠⎩,△△ADE△△AHP,△PH =DE =8k ,△,⊥⊥FG DG FA DA ,△点A 、F 、G 、D 四点共圆, △△AFD =△AGD =△PGQ ,△AD //BH ,△△ADQ =△DQB ,△△AFD =△DQB =△PGQ ,△PG =PQ ,在△ADF 和△BDQ 中,90AFD DQB QAF DBQ AD BD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,△△ADF △△BDQ ,△BQ =AF =9k ,△BH =BQ +PH -PQ =17k -PQ ,△AP =AG +PG =BH +PG =17k -PQ +PG =17k , △AHk=解得:k = △BE =BD -DE =15k -8k =7k, △EM =BM=2BE =1415, △OM =OB -BM =3-1415=3115, △点E 坐标为(3115,1415).【点睛】本题考查二次函数与一次函数综合、等腰直角三角形的性质、全等三角形的判定与性质、圆周角定理、四点共圆的证明及正方形的判定与性质,熟练掌握相关性质及判定定理是解题关键.试卷第24页,共24页。
黑龙江省哈尔滨市部分学校2023-2024学年九年级下学期月考数学试题
黑龙江省哈尔滨市部分学校2023-2024学年九年级下学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下面几个数的倒数最大的是( )A .12020B .2021C .2022-D .12023- 2.下列运算正确的是( )A .244a a a +=B .333a b a b ++()=C .21()1)(1a a a +--=D . 32a a a ÷=3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 4.如图所示的四个几何体均由若干个完全相同的小正方体组成的,在它们的俯视图中,小正方形个数最多的是( )A .B .C .D .5.将抛物线241y x =-向右平移1个单位长度,再向上平移4个单位长度得到的新抛物线解析式为( )A .()2415y x =+-B .()2413y x =-+C .()2413y x =++D .()2415y x =++ 6.已知反比例函数2k y x -=的图象位于第二、第四象限,则k 的取值范围是( ) A .2k ≥ B .2k >C .2k ≤D .2k <7.方程5322x x =+-的解是( ) A .8x = B .10x = C .7x = D .5x =8.如图,一架民航客机在飞行途中前方出现雷暴区域,机组请示后决定从C 点处以仰角α直线爬升至云层上方,爬升后客机所在的A 点处相对于C 点处的飞行高度上升了1200AB =米,则客机直线爬升的距离AC 为( )A .1200sin αB .1200sin αC .1200cos αD .1200tan α 9.如图,AB 是O e 的切线,点C 在圆上, BC AC =,线段BC 交O e 于点D ,若30BAD ∠=︒,则DAC ∠的度数为( )A .25︒B .35︒C .45︒D .55︒10.如图,在ABC V 中,D 、E 分别为边AB AC 、边上的点,连接DE ,DE BC ∥,F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是( )A .AD AE AB CE = B .AG AE GF BD =C .BD CE AD AE = D .AG AC AF EC=二、填空题11.将数0.00005用科学记数法可表示为.12.在函数y =x 的取值范围是.1314.把多项式9x 3﹣x 分解因式的结果是.15.不等式组33423x x +≤⎧⎨-->⎩的解集是. 16.某汽车在某速度下刹车后行驶的距离s (单位:m )与刹车后行驶的时间t (单位:s )的函数关系式为2630s t t =-+,则该汽车在该速度下从刹车后到停下来共行驶了米. 17.一个不透明的袋子里装有3个黑球和3个白球,它们除颜色不同外其他都相同,从袋中一次性任意摸出两个球,则两球均为白球的概率是.18.一个圆锥的底面半径为1,它的侧面展开图的圆心角为90︒,则它的母线长为. 19.正方形ABCD 的边长为4,点E 在边CD 上,1CE =,点F 在正方形的一条边上,且ADE V 和AEF V 的面积相等,则CF 的长为.20.如图,在ABC V 中,AB AC AD =,是ABC V 的高,点E 在AD 上,AE CE ==点G 在AC 上, GF CE P 交AB 于点F ,若11AG BF ==,则BC 的长为.三、解答题21.先化简,再求代数式22121()1x x x x x x x++-÷--的值,其中2sin60tan 45x =︒-︒. 22.如图,方格纸中每个小正方形的边长均为1个单位长度,线段AB 、CD 的顶点都在小正方形的顶点上.请按要求画图并解答下列问题:(1)在方格纸中画出以线段AB 为斜边的等腰直角ABE V ,且点E 在小正方形的顶点上;(2)在方格纸中画出以线段CD 为斜边的直角CDF V ,使得 tan 3FDC ∠=,连接EF ,并直接写出线段EF 的长.23.为迎接2025年哈尔滨亚冬会,哈市某学校对一部分学生进行了“你最喜欢的冰雪运动”问卷调查(每名必选且只能选一项),根据收集到的数据,绘制成如下两幅不完整的统计图.(1)在这次问卷调查中,一共抽查了多少名学生?(2)通过计算补全条形统计图;(3)若全校共2400名学生,请估计该校最喜欢“滑雪”运动的学生有多少名. 24.如图,AC 是正方形ABCD 的对角线,点E F 、在AC 上,AE CF EG BC =⊥,于点G FH AD ⊥,于点H ,连接EH GF 、.(1)求证:四边形EGFH 为平行四边形.(2)如图2,连接BE DF 、,若H E A C ⊥,在不添加任何辅助线的前提下,直接写出面积为四边形EGFH 面积的一半的三角形(EHF EFG △、△除外). 25.为了奖励在区模考试中进步的同学,老师将购买一些钢笔和圆规作为奖品,已知购买4支钢笔和5个圆规需要70元,购买6支钢笔和7个圆规需要100元.(1)求购买一支钢笔和一个圆规各需要多少元?(2)若购买圆规的数量比购买钢笔的数量的一半还少1个,要求购买奖品的总价不超过300元,则最多可以购买多少支钢笔?26.已知,AB 是O e 的直径,CD 是O e 的弦(与线段AB 相交),1tan 2DCB ∠=.(1)如图1,求ABD ∠的正切值;(2)如图2,弦C E B D ∥,点F 在OD 上,AF 交CE 于点G ,若O F A O D E C E D ∠+∠=∠.求证:2CGF CBA ∠=∠;(3)如图3,在(2)的条件下,连接AE ,若5CG AG -=,11CD =,求AE 的长. 27.已知,抛物线21y x bx 6=+交x 轴负半轴于点A , B 是抛物线的顶点,BC x P 轴交y轴于点C ,BC =(1)如图1,求抛物线的解析式;(2)如图2,点D 在第一象限的抛物线上,设点D 的横坐标为t ,四边形ADCB 的面积为S ,求S 与t 的函数关系式;(3)如图3,在(2)的条件下,延长CD 交抛物线于点E ,连接AE ,延长BO 、AD 交于点F ,点G 在AE 上,60BFG ∠=︒,连接OG ,若GF 平分OGE ∠,求点D 的坐标.。
2016-2017学年黑龙江省哈尔滨市道里区九年级(上)期末数学试卷
2016-2017学年黑龙江省哈尔滨市道里区九年级(上)期末数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.在△ABC中,∠C=90°,下列选项中的关系式正确的是()A.sin A=ACAB B.cos B=ACBCC.tan A=BCABD.AC=AB•cos A3.如图所示的几何体是由一些小正方体组合而成的,则这个几何体的主视图为()A. B. C. D.4.如图,AB是⊙O的直径,CD是⊙O的弦,连接AD、DB、BC,若∠ABD=55°,则∠BCD的度数为()A.65°B.55°C.45°D.35°5.如图,将△ABC绕点A逆时针旋转得到△AB′C′,若B′落到BC边上,∠B=50°,则∠CB′C′的度数为()A.50°B.60°C.70°D.80°6.在反比例函数y=1−3mx图象上有两点A(x1,y1),B(x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>13B.m<13C.m≥13D.m≤137.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.1 2B.13C.14D.168.如图,l 3∥l 4∥l 5,l 1交l 3,l 4,l 5于E ,A ,C ,l 2交l 3,l 4,l 5于D ,A ,B ,以下结论的错误的为( )A.EA AC =DA ABB.BA BD =CA CEC.CA CE =DA DBD.EA EC =DA DB9.如图,P 为⊙O 外一点,PA 、PB分别切⊙O 于点A 、B ,CD 切⊙O于点E 且分别交PA 、PB 于点C ,D ,若PA=4,则△PCD 的周长为( )A.5B.7C.8D.1010.如图是抛物线y 1=ax 2+bx +c (a ≠0)的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个公共点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a -b =0;②abc <0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个公共点是(-1,0);⑤当1<x <4时,有y 2>y 1;其中正确的有( )个.A.1B.2C.3D.4二、填空题(本大题共10小题,共30.0分)11.点A (-4,1)关于原点对称点A ′的坐标是 ______ .12.反比例函数y =k x 的图象经过点(-2,3),则k 的值为 ______ .13.将二次函数y =x 2+1的图象向左平移2个单位,再向下平移3个单位长度得到的图象对应的二次函数的解析式为y =x 2+ax +b ,则ab = ______ .14.在△ABC 中,∠C=90°,cos A= 32,AC=6 3,则BC= ______ .15.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,∠B=135°,则AC 的长为 ______ . 16.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是13,如再往盒中放进4颗黑色棋子,取得白色棋子的概率变为15,则x 2+y 2= ______ .17.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 出,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B 、C 之间的距离为 ______ .18.某种商品的进价为40元,在某段时间内若以每件x 元出售,可卖出(100-x )件,当x = ______ 时才能使利润最大.19.如图,⊙O 的弦AB 与半径OC 垂直,点D 为垂足,OD=DC ,AB=2 3,点E在⊙O 上,∠EOA=30°,则△EOC的面积为______ .20.如图,△ABC,∠ACB=90°,点D,E分别在AB,BC上,AC=AD,∠CDE=45°,CD与AE交于点F,若∠AEC=∠DEB,CE=710,则CF= ______ .4三、解答题(本大题共7小题,共60.0分)21.通过配方,确定抛物线y=ax2+bx+1的顶点坐标及对称轴,其中a=sin30°-tan45°,b=4tan30°•sin60°.22.如图,在小正方形的边长均为1的方格纸中,有线段AB,点A,B均在小正方形的顶点上.(1)在图1中画出四边形ABCD,四边形ABCD是中心对称图形,且四边形ABCD的面积为6,点C,D均在小正方形的顶点上;(2)在图2中画一个△ABE,点E在小正方形的顶点上,且BE=BA,请直接写出∠BEA 的余弦值.23.在平面直角坐标系内,点O为坐标原点,直线y=x+4交x轴于点A,交y轴于点B,点C(2,m)在直线y=x+4上,反比例函数y=n经过点C.x(1)求m,n的值;的图象上,过(2)点D在反比例函数y=nx点D作X轴的垂线,点E为垂足,若OE=3,连接AD,求tan∠DAE的值.24.如图,正方形ABCD ,点E 在AD 上,将△CDE 绕点C顺时针旋转90°至△CFG ,点F ,G 分别为点D ,E 旋转后的对应点,连接EG ,DB ,DF ,DB 与CE 交于点M ,DF 与CG 交于点N .(1)求证BM=DN ;(2)直接写出图中已经存在的所有等腰直角三角形.25.如图,在平面直角坐标系内,点O 为坐标原点,抛物线y =-14x 2+32x +4交x 轴负半轴于点A ,交x 轴正半轴于点B ,交y 轴于点C .(1)求AB 长;(2)同时经过A ,B ,C 三点作⊙D ,求点D 的坐标;(3)在(2)的条件下,横坐标为10的点E 在抛物线y =-14x 2+32x +4上,连接AE ,BE ,求∠AEB 的度数.26.如图,AB 为⊙O 的直径,弦CD ⊥AB ,点E 为垂足,点F 为BC 的中点,连接DA ,DF ,DF 交AB 于点G .(1)如图1,求证:∠AGD=∠ADG ;(2)如图2,连接AF 交CE 于点H ,连接HG ,求证:CH=HG ;(3)如图3,在(2)的条件下,过点O 作OP ⊥AD ,点P 为垂足,若OP=BG ,DG=4,求HG 长.27.如图,在平面直角坐标系内,点O 为坐标原点,抛物线y =ax 2+bx +2交x 正半轴 于点A ,交x 轴负半轴于点B ,交y 轴于点C ,OB=OC ,连接AC ,tan ∠OCA=2.(1)求抛物线的解析式;(2)点P是第三象限抛物线y=ax2+bx+2上的一个动点,过点P作y轴的平行线交直线AC于点D,设PD的长为d,点P的横坐标为t,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PA,PC,当△ACP的面积为30时,将△APC沿AP折叠得△APC′,点C′为点C的对应点,求点C′坐标并判断点C′是否在抛物线y=ax2+bx+2上,说明理由.。
初三数学期中考试试卷上册附答案2017
初三数学期中考试试卷上册附答案2017期中对我们来说是一次考验,又是一次检验,考验学习态度是否端正,检验前半学期学到的成果。
以下是店铺为大家搜索整理的初三数学试卷上册附答案2017,希望能给大家带来帮助!更多精彩内容请及时关注我们应届毕业生!一、选择题(本大题共15个小题,每小题3分,共45分)1.一元二次方程x2-3x+2=0的两根为x1,x2,则x1+x2的值是( )A.2B.-2C.3D.-32.一元二次方程x2-4x+5=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.如果2是方程x2-3x+c=0的一个根,那么c的值是( )A.4B.-4C.2D.-24.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.45.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )A.14B.12C.12或14D.以上都不对6.下列命题正确的是( )A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为( )A.x(x-11)=180B.2x+2(x-11)=180C.x(x+11)=180D.2x+2(x+11)=1808.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.359.关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是( )A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠210.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )A.4B.6C.8D.1011.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( )A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢12.将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8 000元,则售价应定为( )A.60元B.80元C.60元或80元D.70元13.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是( )A.70°B.75°C.80°D.95°14.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使平行四边形ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )A.①②B.②③C.①③D.②④15.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG=12(BC-AD);⑤四边形EFGH是菱形,其中正确的个数是( )A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每小题5分,共25分)16.一元二次方程x2+x=0的解是________________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=________.18.若x1、x2是方程2x2-3x-4=0的两个根,则x1x2+x1+x2的值为________.19.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.20.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)用适当的方法解方程:(1)x2-4x+3=0; (2)(x-2)(3x-5)=1.22.(8分)如图,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB.23.(10分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.24.(12分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法或列表法求出他恰好买到雪碧和奶汁的概率.25.(12分)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.26.(14分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表(不需化简):时间第一个月第二个月清仓时单价(元) 80 40销售量(件) 200(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?27.(16分)已知: ABCD的两边AB,AD的长是关于x的方程x2-mx+m2-14=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么 ABCD的周长是多少?参考答案1.C2.D3.C4.C5.B6.D7.C8.C9.D 10.C 11.B12.C 13.C 14.B 15.C 16.x1=0,x2=-1 17.5 18.-12 19.2320.2221.(1)x1=1,x2=3.(2)x1=11+136,x2=11-136.22.证明:∵四边形ABCD为矩形,∴∠A=∠B=90°,AD=BC.∵∠AOC=∠BOD,∴∠AOC-∠DOC=∠BOD-∠DOC,即∠AOD=∠BOC.∴△AOD≌△BOC(AAS).∴AO=OB.23.设这个增长率为x.依题意得20(1+x)2-20(1+x)=4.8.解得x1=0.2,x2=-1.2(不合题意,舍去).0.2=20%.答:这个增长率是20%.24.(1)14(2)画树状图:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16. 25.证明:连接MC.∵在正方形ABCD中,AD=CD,∠ADM=∠CDM,又∵DM=DM,∴△ADM≌△CDM.∴AM=CM.∵ME∥CD,MF∥BC,∴四边形CEMF是平行四边形.又∵∠ECF=90°,∴ CEMF是矩形.∴EF=MC。
黑龙江省哈尔滨市新区九年级上学期数学月考试题及答案
黑龙江省哈尔滨市新区九年级上学期数学月考试题及答案一、选择题(共30分)1. ﹣6的倒数是( )A. ﹣16 B. 16 C. ﹣6 D. 6【答案】A【解析】【详解】解:﹣6的倒数是﹣16.故选A .2. 下列运算正确的是( )A. 248m m m ⋅= B. ()222m n m n -=-C. ()428m m = D. 422m m -=【答案】C【解析】【分析】根据同底数幂的乘法,完全平方公式,幂的乘方,合并同类项逐项分析判断,即可求解.【详解】解:A. 246m m m ⋅=,故该选项不正确,不符合题意;B. ()2222m n m mn n -=-+,故该选项不正确,不符合题意;C. ()428m m =,故该选项正确,符合题意;D. 422m m m -=,故该选项不正确,不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法,完全平方公式,幂的乘方,合并同类项,掌握以上知识是解题的关键.3. 下列图形中,不是轴对称图形的是( )A. B.C.D.【答案】C【解析】【分析】本题考查了轴对称图形的概念;根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;C选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:C.4. 反比例函数y=kx的图象经过点(﹣1,3),则该函数的图象位于第( )象限.A. 一、三B. 二、四C. 一、四D. 二、三【答案】B【解析】【分析】将点(﹣1,3)代入y=kx求出k的值,再判断函数图象所在象限.【详解】解:将点(﹣1,3)代入y=kx得,k=﹣3,可知函数图象位于二、四象限.故选:B.【点睛】本题主要考查了反比例函数图像上点的坐标特征.所以在反比例函数上的点的横坐标的积应等于比例系数.5.将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为( )A. y=5(x+3)2+2B. y=5(x+3)2﹣2C. y=5(x﹣3)2+2D. y=5(x﹣3)2﹣2【答案】C【解析】【分析】根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵y=5x2先向右平移3个单位,再向上平移2个单位后的顶点坐标为(3,2),∴所得的抛物线的解析式为y =5(x﹣3)2+2.故选C .【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式求解更简便.6.某工厂一月份生产零件50万个,由于引进新技术提高了生产效率,三月份的产量达到了72万个,设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( )A. ()501272x += B. ()5050172x ++=C. ()250172x += D. ()()25050150172x x ++++=【答案】C【解析】【分析】根据增长率公式列方程即可.【详解】∵一月份生产零件50万个,三月份的产量达到了72万个,∴()250172x +=,故选:C.【点睛】此题考查增长率问题的一元二次方程,熟记公式:2(1)a x b +=,a 表示前量,b 表示后量,x 是增长率,根据题意找到a 、b 的值是解题的关键.7. 方程31512x x=+的解为( )A. =1x - B. 0x = C. 2x = D. 1x =【答案】D【解析】【分析】本题考查了解分式方程,先化为整式方程,再解方程,最后要检验【详解】解:31512x x=+∴651x x =+解得:1x =,经检验是原方程的解,故选:D .8. 如图,融创乐园彩虹滑梯的高度为h ,滑梯的坡角为α,那么彩虹滑梯的长度l 为( )A. cos hα B. sin h α⋅ C. tan hα D. sin hα【答案】D【解析】【分析】本题考查了解直角三角形;根据三角函数的定义即可求解.【详解】解:依题意,∵sin h l α=,∴sin hl α=故选:D .9. 如图,在ABC 中,D 、E 分别为AB 、AC 的中点,连接DE 、BE 、CD ,BE 与CD 相交于点F ,则下列结论一定正确的是( )A. AE DE BD BC= B. DF AE FC CE = C. AD AE AB AC = D.DF EF BF CF =【答案】C【解析】【分析】本题考查平行线分线段成比例定理以及相似三角形的判定与性质,中位线的性质;根据中位线的性质,可得DE BC ∥根据平行线分线段成比例定理以及相似三角形的判定与性质逐项验证即可得到答案.【详解】解: D 、E 分别为AB 、AC 的中点,∴DE BC∥ADE ABC ∴∠=∠,A A ∠=∠ ,ADE ABC ∴△△∽,AD DE AB BC∴=,故A 错误; DE BC ∥,∴AD AE AB AC =,故C 正确; DE BC ∥,EDF BCF ∴∠=∠,DFE CFB ∠=∠ ,DEF CBF ∴∽△△,DF DE CF BC∴=,由ADE ABC △△∽知AE DE AC BC =,DF AE CF AC∴=,故B 错误;由DEF CBF ∽△△知DF EF CF BF =,即DF CF EF BF=,故D 错误;故选:C .10.小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,判断下列说法中错误的是( )A. 小明从家步行到学校共用了20分钟B. 小明从家步行到学校平均速度是90米/分C. 当t <8时,s 与t 的函数解析式是s =120tD. 小明从家出发去学校步行15分钟时,到学校还需步行360米【答案】D【解析】的【分析】利用坐标轴t 轴数据可判断A ,利用纵轴1800米与横轴20分钟,可判断B ,根据当1<8时,小明走的路程为960米,可判断C ,根据已知信息求出当8≤t≤20时,利用待定系数法s =70t +400;求15分钟函数值可判断D 即可.【详解】解:由图象可知,小明从家步行到学校共用了20分钟,故A 正确;根据图象可得到两条选项小明从家步行到学校共用了20分钟和行走了1800米到学校,所以小明的平均速度为1800÷20=90(米/分),故B 正确;当1<8时,小明走路程为960米,速度为960÷8=120(米/分),s 与t 的函数解析式是s =120t ,故C 正确;当8≤t≤20时,设s =kt +b ,将(8,960)、(20,1800)代入,得:8960201800k b k b +=⎧⎨+=⎩,解得:70400k b =⎧⎨=⎩,∴s=70t +400;当t =15时,s =1450,1800﹣1450=350(米),∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故D 错误.故选:D .【点睛】本题考查利用函数图像信息解决问题,会看图像,捕捉信息,从横轴获取是间信息,从纵轴获取路程性质,利用速度,时间,路程公式可获取速度,利用时间点与图像关系或函数值信息.二、填空题(共30分)11. 将27500000用科学计数法表示为________.【答案】72.7510⨯【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值大于1与小数点移动的位数相同.的【详解】解:727500000 2.7510=⨯,故答案为:72.7510⨯.12. 在函数11x y x +=-中,自变量x 的取值范围是________.【答案】1x ≠【解析】【分析】本题考查了函数自变量的取值范围,根据分式有意义的条件进行求解即可.【详解】解:在函数11x y x +=-中,10x -≠,解得:1x ≠,故答案为:1x ≠.13. ______.【答案】【解析】【分析】先将二次根式化简及分母有理化,再合并同类二次根式解题.=-=故答案为:【点睛】本题考查二次根式的减法、二次根式分母有理化等知识,是重要考点,难度较易,掌握相关知识是解题关键.14. 把多项式22ax ax a -+分解因式的结果是_____.【答案】()21a x -【解析】【分析】先提公因式,再利用完全平方公式分解因式即可.【详解】解:()()2222211ax ax a a x x a x -+=-+=-,故答案为:()21a x -.【点睛】本题考查了综合运用提公因式法和公式法因式分解,熟练掌握知识点是解题的关键.15. 不等式组23535x x x x+⎧>⎪⎨⎪-<+⎩的解集为________.【答案】12x <<##21x >>【解析】【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,然后把解集表示在数轴上,根据数轴即可确定不等式的解集.【详解】解:23535x x x x +⎧>⎪⎨⎪-<+⎩①②解不等式①得:1x >解不等式②得:2x <∴不等式解集为:12x <<,故答案为:12x <<.16. 二次函数242y x x =-+-的顶点坐标是________.【答案】()2,2【解析】【分析】本题考查了二次函数顶点式2()y a x h k =-+的顶点坐标为(),h k ,将解析式化为顶点式即可求解.【详解】解:()224222y x x x =-+-=--+,∴顶点坐标为()2,2,故答案为:()2,2.17.如图,在Rt ABC △中,90C BC AC ∠=︒<,.点D ,E 分别在边AB ,BC 上,连接DE ,将BDE 沿DE 折叠,点B 的对应点为点B '.若点B '刚好落在边AC 上,303CB E CE '∠=︒=,,则BC 的长为__________.的【答案】9【解析】【分析】根据折叠的性质以及含30度角的直角三角形的性质得出26B E BE CE '===,即可求解.【详解】解:∵将BDE 沿DE 折叠,点B 的对应点为点B '.点B '刚好落在边AC 上,在Rt ABC △中,90C BC AC ∠=︒<,,303CB E CE '∠=︒=,,∴26B E BE CE '===,∴369BC CE BE =+=+=,故答案为:9.【点睛】本题考查了折叠的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.18.一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28km/时的速度向正东航行,半小时到B 处,在B 处看见灯塔M 在北偏东30°方向,此时,灯塔M 与渔船的距离是_____.【答案】14km .【解析】【分析】作BH⊥AM于H ,根据题意标注方向角,根据等腰三角形的性质和锐角三角函数的概念进行计算即可【详解】解:如图,由题意得,∠MAB=30°,∠MBC=60°,∵∠CBM=∠BAM+∠AMB,∴∠AMB=∠BAM=30°,∴BM=BA ,∵AB=28×0.5=14(km ),∴BM=AB =14km .故答案为14km .【点睛】本题考查了解直角三角形的应用——方向角问题.正确画出图形,准确标注方向角,掌握锐角三角函数的定义是解题的关键.19. 在ABC 中,4BC BA ==,90ABC ∠=︒,点M 在直线AB 上,2AB AM =,则CM =________.【答案】【解析】【分析】本题考查了勾股定理,根据题意画出图形,分情况讨论,勾股定理,即可求解.【详解】解:如图所示,当M 在AB 上时,则2AM MB ==,在Rt BMC △中,CM ===当M 在BA 的延长线上时,246BM AB AM ''=+=+=在BM C ' 中,CM ===故答案为:20.如图,在△ABC中,AB =AC ,点D 在AB 上,点E 在AC 延长线上,且BD =CE ,连接DE 交BC 于点F ,作DH⊥BC于点H ,连接CD .若tan∠DFH=12,S △BCD =18,则DE 的长为_____.【答案】【解析】【分析】如图,作EJ⊥BC交BC的延长线于J.利用全等三角形的性质证明DH=DJ,FH=FJ,BC=HJ=2FH,设DH=m,FH=2m,构建方程即可解决问题.【详解】解:如图,作EJ⊥BC交BC的延长线于J.∵AB=AC,∴∠B=∠ACB=∠ECJ,∵BD=EC,∠DHB=∠J=90°,∴△DHB≌△EJC(AAS),∴DH=EJ,BH=CJ,∴BC=HJ,∵∠DHF=∠J=90°,∠DFH=∠EFJ,∴△DHF≌△EJF(AAS),∴BC=HJ=2FH,DF=EF,∵tan∠DFH=DHFH=12,∴可以假设DH=m,FH=2m,则CB=4m,∵S△BCD=18,∴12×4m×m =18,∴m=3或﹣3(舍弃),∴DH=3,FH =6,∴DF=EF =,∴DE=2DF =故答案为【点睛】本题考查的主要是全等三角形以及三角函数,需要根据题意正确添加辅助线,构造方程来解答.三、解答题(其中21、22题各7分,23、24题各8分,25、26、27题各10分,共60分)21. 先化简,再求代数式222392x x x x x x x -÷----的值,其中2tan 452sin 60x =︒+︒.【答案】32x -【解析】【分析】先根据分式的混合运算化简,再根据特殊角的三角函数值求得x 的值代入,进行计算即可求解.【详解】解:222392x x x x x x x -÷----()()()33322x x x x x x x x +-=⋅----322x x x x +=---32x =-;∵2tan 452sin 60x =︒+︒2122=⨯+=+∴原式==.22. 如图,在每个小正方形的边长均为1的方格纸中有条线段AB ,线段AB 的两个端点均在小正方形的顶点上,请按要求画出图形,使得它们的顶点均在小正方形的顶点上.(1)在图中面一个以AB 为底面积为12的等腰ABC ;(2)在图中画出平行四边形ABDE ,点D 和点E 均在小正方形顶点上,且2tan 3EAB ∠=;(3)连接CD ,则线段CD 的长为?【答案】(1)见解析 (2)见解析(3)【解析】【分析】(1)作一个高为4的等腰三角形ABC ,即可求解;(2)找到32⨯的格点E ,然后作出平行四边形,即可求解;(3)根据勾股定理,即可求解.【小问1详解】解:如图所示,ABC 即为所求;【小问2详解】解:如图所示,平行四边形ABDE 即为所求,2tan 3EAB ∠=【小问3详解】解:如图所示,CD ==的【点睛】本题考查了网格作图,作等腰三角形,正切的定义,平行四边形的性质,勾股定理与网格问题,熟练掌握以上知识是解题的关键.23.某中学为评估九年级学生的学习状况,抽取了部分参加考试的学生的成绩进行样本分析,并绘制成了如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)求该中学抽取参加考试的学生的人数;(2)通过计算将条形统计图补充完整;(3)若该中学九年级共有450人参加了这次考试,请估计该中学九年级共有多少名学生的成绩达到成绩类别为优.【答案】(1)该中学抽取参加考试的学生的人数为50人;(2)见解析;(3)该中学九年级450人参加了这次考试的学生中,数学成绩类别为“优”的大约有90人【解析】【分析】(1)从两个统计图中可知,“良”的人数为22人,占调查人数的44%,可求出调查人数;(2)求出“中”的人数,即可补全条形统计图;(3)求出样本中“优”的所占的百分比,估计总体450人中“优”的人数即可.【小问1详解】÷=(人),解:2244%50答:该中学抽取参加考试的学生的人数为50人;【小问2详解】解:由题意得成绩为“中”的人数为5020%=10⨯(人),补全条形统计图如图所示:【小问3详解】解:104509050⨯=(人),答:该中学九年级450人参加了这次考试的学生中,数学成绩类别为“优”的大约有90人.【点睛】本题考查扇形统计图、条形统计图,理解两个统计图中数量之间的关系是正确解答的关键,样本估计总体是统计中常用的方法.24.目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB 为600米,远处有一栋大楼,某人在楼底C 处测得塔顶B 的仰角为45︒,在楼顶D 处测得塔顶B 的仰角为30°.(1)求大楼与电视塔之间的距离AC ;(2)求大楼的高度CD (结果保留根号).【答案】(1)大楼与电视塔之间的距离AC 为600米(2)大楼的高度CD 约为(600-米【解析】【分析】(1)由于45ACB ∠=︒,90A ∠=︒,因此ABC 是等腰直角三角形,所以600AC AB ==;(2)根据矩形的对边相等可知:610DE AC ==米,在Rt BDE △中,运用直角三角形的边角关系即可求出BE 的长,用AB 的长减去BE 的长度即可.【小问1详解】解:由题意,45ACB ∠=︒,90A ∠=︒,ABC ∴ 是等腰直角三角形,600(AC AB ∴==米);答:大楼与电视塔之间的距离AC 为600米;【小问2详解】解:依题意,四边形AEDC 是矩形∴600DE AC ==(米),在Rt BDE △中, tan BE BDE DE∠=,∴tan 30600BE DE =︒==CD AE = ,∴600CD AB BE =-=-(米)答:大楼的高度CD 约为(600-米.25.一汽车销售商店经销A 、B 两种型号轿车,用400万元可购进A 型轿车10辆和B 型轿车20辆;用300万元可购进A 型轿车9辆和B 型轿车14辆.(1)求A 型与B 型轿车每辆的进价分别为名少万元?(2)若该汽车销售商店购进A 、B 两种型号的轿车共60辆,且购车资金不超过700万元,求该汽车销售商店至少购进A 型轿车几辆?【答案】(1)每辆A 型轿车10万元,每辆B 型轿车15万元;(2)该汽车销售商店至少购进A 型轿车40辆.【解析】【分析】(1)等量关系为:10辆A 轿车的价钱+20辆B 轿车的价钱=400万元;9辆A 轿车的价钱+14辆B 轿车的价钱=300万元;(2)根据(1)中求出AB 轿车的单价,然后根据关键语“用不超过700万元购进A 、B 两种型号轿车共60辆”列出不等式,解出不等式即可;【详解】(1)设每辆A 型轿车x 万元,每辆B 型轿车y 万元由题意得1020400914300x y x y +=⎧⎨+=⎩,解得1015x y =⎧⎨=⎩答:每辆A 型轿车10万元,每辆B 型轿车15万元;(2)设该汽车销售商店购进A 型轿车a 辆由题意得()101560700a a +-≤,解得40a ≥,答:该汽车销售商店至少购进A 型轿车40辆;【点睛】此题考查二元一次方程组和一元一次不等式运用,找出题目蕴含的数量关系是解决问题的关键;26. 已知菱形ABCD 中,120ADC ∠=︒,E 、F 为射线AB 和BC 上一点,60ADE FDC ∠+∠=︒.(1)若11ADE ∠=︒,求BDF ∠的度数;(2)如图2,连接EF 交BD 于点G ,求证:BGE BFD ∠=∠;(3)在(2)条件下,如图3,EF 交BD 于点G ,4=AD ,1BE =,求FG 的长度.【答案】(1)11BDF ∠=︒(2)见解析 (3【解析】【分析】(1)证明ADE BDF ≌V V ,根据全等三角形的性质,即可求解;(2)证明DEF 是等边三角形,进而根据全等三角形的性质得出CDF BDE ∠=∠,根据三角形的外角的性质即可得证;(3)证明EBG DBF ∽得出34BG =,3GF EG =,证明EGB DGF ∠∠∽,根据相似三角形的性质得出EG BG DG GF =,进而求得EG =,即可求解.的【小问1详解】解:∵菱形ABCD 中,120ADC ∠=︒,∴60ADB CDB ∠=∠=︒,AD BD =,∴,ADB BDC 是等边三角形,∴60A DBC ∠=∠=︒,∵60BDF FDC ∠+∠=︒,60ADE FDC ∠+∠=︒,∴ADE BDF ∠=∠,∴()ASA ADE BDF ≌,∴11A BDF DE ∠=︒∠=;【小问2详解】证明:∵ADE BDF≌V V ∴DE DF =,BDF ADE∠=∠∵60ADE FDC ∠+∠=︒,120ADC ∠=︒∴60EDF ∠=︒,∴DEF 是等边三角形,∴60DEG EFD ∠=∠=︒,∵BDF ADE ∠=∠,∴CDF BDE ∠=∠,∴60BGE BDE ABD BDE ∠=∠+∠=︒+∠,60BFD C CDF CDF ∠=∠+∠=︒+∠,∴BGE BFD ∠=∠;【小问3详解】解:由(2)可得BGE BFD ∠=∠,又∵60EBG DBF ∠=∠=︒,∴EBG DBF ∽,∴EB BG EG DB BF DF==,∵4=AD ,1BE =,∴4BD BC ==,1CF BE ==,∴143BG EG DF==,∴34BG =,1144EG DF EF ==,则3GF EG =∴313444DG BD BG =-=-=∵60,EBG GFD EGB DGF∠=∠=︒∠=∠∴EGB DGF ∠∠∽,∴EG BG DG GF=∴341334EG EG=解得:EG =(负值舍去)∴3FG EG ==.【点睛】本题考查了菱形的性质,全等三角形的性质与判定,等边三角形的性质与判定,三角形的外角的性质,相似三角形的性质与判定,熟练掌握菱形的性质,等边三角形的性质与判定是解题的关键.27.在平面直角坐标系中,抛物线22y ax ax a =--交y 轴于点A ,点B 为抛物线的顶点,对称轴BC 已知直交x 轴于点C ,2BC =.(1)如图1,求抛物线的解析式(2)如图2,点P 是抛物线对称轴上的动点,过点P 作PD BC ⊥交抛物线的对称轴左侧于点D ,设D 的横坐标为t ,线段BP 的长为d ,求d 与t 的函数解析式.(3)在(2)的条件下,如图3,DP 交y 轴于点E ,点N 在第四象限内抛物线上一点,连接BN ,过点作PM BN ⊥于点M ,若tan PE PBN AE ∠=,23MN BN =,求点N的坐标.【答案】(1)221y x x =-++(2)221d t t =-+(3)Q 【解析】【分析】(1)先求得顶点坐标,根据2BC =,得出1a =-,即可求解;(2)根据D 的横坐标为t ,线段BP 的长为d ,得出D 点的纵坐标为221t t -++,结合图形,即可求解;(3)过点N 作NQ y ⊥轴于点Q ,根据已知条件可得BN AP ∥,()1,2P d -,设直线AP 的解析式为1y kx =+,得出1k d =-,设直线BN 的解析式为()()211y d x -=--,联立()22111y x x y d x d ⎧=-++⎪⎨=-++⎪⎩得出()2,21Q d d d -++,设EAP PBN α∠=∠=,进而得出1tan 1d α=-,分别表示出,,BP BQ BN ,根据23MN BN =,建立方程,根据换元法解方程,进而根据点N 在第四象限内抛物线上一点,得出d =,即可求解.【小问1详解】解:()()222221212y ax ax a a x x a a x a =--=-+-=--∴顶点坐标为B ()1,2a -,∵对称轴BC 已知直交x 轴于点C ,2BC =.∴22a -=解得:1a =-,∴抛物线解析式为221y x x =-++,【小问2详解】解:∵D 的横坐标为t ,线段BP 的长为d ,∴D 点的纵坐标为221t t -++,由(1)可得()1,2B ,∴()2222121d t t t t =--++=-+【小问3详解】解:如图所示,过点N 作NQ y ⊥轴于点Q ,∵tan ,tan PE PE EAP PBN AE AE∠=∠=∴EAP PBN∠=∠设EAP PBN α∠=∠=又∵BP AE∥∴BPA PAE∠=∠∴BPA PBN∠=∠∴BN AP∥由(2)可得221PB t t =-+,由221y x x =-++,当0x =时,1y =,则()0,1A ,∴11AO BC ==-∴1AE d =-22t t=-∴()1,2P d -,设直线AP 的解析式为1y kx =+,则21d k -=+,解得:1k d=-∵BN AP ∥,()1,2B ,∴直线BN 的解析式为()()211y d x -=--即()11y d x d =-++联立()22111y x x y d x d ⎧=-++⎪⎨=-++⎪⎩解得:221x d y d d =⎧⎨=-++⎩或12x y =⎧⎨=⎩∴()2,21Q d d d -++,则1QN d =-在Rt AEP △中,1,1AE d EP =-=∴1tan 1d α=-, ∵1tan 1EP PAE AE d ∠==-∴()2111tan tan 1QN QN d BQ d PBN d α-====-∠-∴BN ==∵23MN BN =∴13BM BN =∵tan tan MBP QBN∠=∠∴BM BQ BP BN=∴213BN BP BQ =⨯即()()()42211113d d d d ⎡⎤-+-=⨯-⎣⎦解得:12341,d d d d ====根据点N 在第四象限内抛物线上一点,可得d=∴222121d d -++=-++=∴Q.【点睛】本题考查了二次函数的综合运用,待定系数法求解析式,线段周长问题,正切的定义,解直角三角形,熟练掌握以上知识是解题的关键.。
2015届黑龙江省哈尔滨市第六十九中学(五四学制)九年级12月月考数学试题【新课标人教版】
2014–2015学年度(上)学期69中学校初四12月考数学试卷一、选择题(每题3分,共30分) 1、下列运算正确的是( )A.55-=- B.1)32(0=- C.612131=- D. 1)1(3=- 2、下列计算正确的是( )A .xy yx 532=+ B. 44x x x =⋅ C. 428x x x =÷ D. 3632)(y x y x =3、用科学记数法表示5320000正确的是( )A .5.32610⨯ B. 5.32510⨯ C. 532410⨯ D. 0.532710⨯ 4、下列图形中是中心对称图形,但不是轴对称图形的是( )5、如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( ).6、反比例函数xm y 1-=的图像在第一、三象限,则m 的取值范围是( ) A . m ≥1 B. m ≤1 C. 1>m D. 1<m7、如图、将ABC ∆绕着点C 按顺时针方向旋转o20,B 点落在'B 位置,点A 落在'A 位置,若'A C AB ⊥.则C A B ''∠的度数是( )A. ︒50B.︒60C.︒70D.︒80 8、如图,⊙O 中∠ABC=︒45,则∠AOC 等于( )A. ︒55B.︒80C.︒90D.︒1359、如图,AB 为⊙O 的直径,AB=4,点C 在⊙O 上,则扇形ACB 的面积是( ) A.π B. π2 C. π4 D. π2310、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(米)与挖掘时间x (小时)之间的关系如图所示,请根据图像判断下列信息正确的有( )①乙队开挖到30米,用了2小时。
②开挖6小时甲队比乙队多挖了10米。
③甲队在0≤x ≤6的时段内,y 与x 的函数关系式为y=101x.④当x=4时,甲乙两队在施工过程中所挖河渠的长度相等。
A.1个 B.2个 C.3个 D.4个CBBBA/时7题图 8题图 9题图 10题图 二、填空题(每题3分,共30分) 11、计算:3812-=_______ 12、因式分解:2333ab a -=________13、如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,过点O 作EF ∥BC ,交AB 于E 。
黑龙江省哈尔滨市2017-2018学年八年级数学下册月考试卷(五四学制)(3月份)含答案解析
2017-2018学年黑龙江省八年级(下)月考数学试卷(3月份)一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的为()A. +x=1 B.3x(x+1)=3 C.x3﹣3x=4 D.=52.若关于x的方程x2﹣2x+c=0有一个根是1,那么c的值为()A.1 B.2 C.3 D.43.若关于x的一元二次方程3x2+k=0有实数根,则()A.k>0 B.k<0 C.k≥0 D.k≤04.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对5.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为206.若线段a,b,c组成Rt△,则它们的比可能为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:77.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm28.已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx﹣c(1﹣x2)=0的两根相等,则△ABC为()A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形9.如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则()A.S1=S2B.S1<S2C.S1>S2D.无法确定10.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.4二、填空题(每题3分,共30分)11.方程2x2﹣1=x的二次项系数是.12.方程(x﹣3)(x+1)=0的较小的根是x=.13.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是.14.直角三角形两直角边长分别为5和12,则它斜边上的高为.15.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为cm.16.如图,一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A 点爬到B点,则最少要爬行cm.17.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是.18.在平面直角坐标系中,已知点A的坐标为(2,1),点B的坐标为(5,2),在x轴上找一点P,满足AP=BP,则P点的坐标为.19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,则图中标记为正方形A,B,C,D的面积之和为cm2.20.四边形ABCD中,∠BAC=∠BDC=90°,AB=AC,BD=2,DC=4,则AD=.三、解答题(其中21、22、23、24、25题各8分,26题10分,27题10分,共计60分)21.解方程:(1)(x+5)2=25(2)x2+10x+16=0(3)x2+4x+8=2x+11(4)(2x﹣1)2=(3﹣x)2.22.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形的面积为10,且分别满足以下要求:(1)在图1中画一个直角三角形ABC;(2)在图2中画一个钝角等腰三角形ABC;(3)图2中△ABC的周长为.(请直接写出答案)23.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD.24.如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.25.如图,∠ABD=∠C=90°,AD=9,AC=BC,∠DAB=30°,求BC的长.26.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF(1)如图1,求证:∠BED=∠AFD;(2)求证:BE2+CF2=EF2;(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.27.如图,在平面直角坐标系中,等边△OAB的顶点O为坐标原点,B点坐标为(4,0),且△OAB的面积为4.点P从A点出发沿着射线AB运动,点Q从B点出发沿X轴正半轴运动,点P、点Q同时出发,速度均为每秒2个单位长度,运动时间为x秒,过点P作PH⊥X轴于点H,设HQ的长度为y个单位长度.(1)求A点的坐标;(2)当点P在线段AB上运动时,取BQ的中点M,求HM的长度;(3)在点P、点Q的运动过程中,当∠PQB=30°时,求点P、点Q运动时间x 的值,并直接写出此时H点的坐标.参考答案与试题解析一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的为()A. +x=1 B.3x(x+1)=3 C.x3﹣3x=4 D.=5【考点】A1:一元二次方程的定义.【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:A、是分式方程,故A不符合题意;B、是一元二次方程,故B符合题意;C、是一元三次方程,故C不符合题意;D、是无理方程,故D不符合题意;故选:B.2.若关于x的方程x2﹣2x+c=0有一个根是1,那么c的值为()A.1 B.2 C.3 D.4【考点】A3:一元二次方程的解.【分析】把x=1代入已知方程,列出关于c的一元一次方程,通过解该方程来求c的值.【解答】解:∵关于x的方程x2﹣2x+c=0有一个根是1,∴12﹣2×1+c=0,即﹣1+c=0,解得c=1.故选:A.3.若关于x的一元二次方程3x2+k=0有实数根,则()A.k>0 B.k<0 C.k≥0 D.k≤0【考点】A5:解一元二次方程﹣直接开平方法;AA:根的判别式.【分析】先根据3x2+k=0得出3x2=﹣k,再根据﹣k≥0即可得出答案.【解答】解:∵3x2+k=0∴3x2=﹣k,∴若方程3x2+k=0有实数根则﹣k≥0,∴k≤0,故选D.4.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对【考点】A1:一元二次方程的定义.【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.据此即可得到m2﹣7=2,m﹣3≠0,即可求得m的范围.【解答】解:由一元二次方程的定义可知,解得m=﹣3.故选C.5.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为20【考点】KQ:勾股定理.【分析】利用勾股定理求出后直接选取答案.【解答】解:两直角边长分别为3和4,∴斜边==5;故选A.6.若线段a,b,c组成Rt△,则它们的比可能为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:7【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理,得:要能够组成一个直角三角形,则三边应满足:两条较小边的平方和等于最大边的平方.【解答】解:A、22+32=4+9=13≠42,故不是直角三角形.故错误;B、32+42=25≠62,故不是直角三角形.故错误;C、52+122=169=132,故是直角三角形,故正确;D、42+62=52≠72,故不是直角三角形.故错误.故选C.7.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【考点】KQ:勾股定理;4C:完全平方公式.【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选A.8.已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx﹣c(1﹣x2)=0的两根相等,则△ABC为()A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形【考点】AA:根的判别式;KS:勾股定理的逆定理.【分析】方程a(1+x2)+2bx﹣c(1﹣x2)=0的两根相等,即△=0,结合直角三角形的判定和性质确定三角形的形状.【解答】解:原方程整理得(a+c)x2+2bx+a﹣c=0,因为两根相等,所以△=b2﹣4ac=(2b)2﹣4×(a+c)×(a﹣c)=4b2+4c2﹣4a2=0,即b2+c2=a2,所以△ABC是直角三角形.故选C9.如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则()A.S1=S2B.S1<S2C.S1>S2D.无法确定【考点】KQ:勾股定理.【分析】因为是直角三角形,所以可以直接运用勾股定理,然后运用圆的面积公式来求解.【解答】解:∵△ABC为直角三角形,∴AB2=AC2+BC2又∵∴S1=π=π•,=()=π•=S1∴S1=S2,故选A.10.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.4【考点】KQ:勾股定理.【分析】利用两次勾股定理即可解答.【解答】解:∵AD⊥BC∴∠ADC=∠ADB=90°∵AB=3,BD=2,∴AD==∵DC=1∴AC==.故选B.二、填空题(每题3分,共30分)11.方程2x2﹣1=x的二次项系数是2.【考点】A2:一元二次方程的一般形式.【分析】先移项,即可得出答案.【解答】解:2x2﹣1=x,2x2﹣x﹣1=0,所以方程2x2﹣1=x的二次项系数是2,故答案为:2.12.方程(x﹣3)(x+1)=0的较小的根是x=﹣1.【考点】A8:解一元二次方程﹣因式分解法.【分析】根据方程即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x+1)=0,x﹣3=0,x+1=0,x1=3,x2=﹣1,所以方程较小的根是﹣1,故答案为:﹣1.13.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是12.【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系;KH:等腰三角形的性质.【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【解答】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2(不合题意舍去),x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.14.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】KQ:勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.15.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为3cm.【考点】PB:翻折变换(折叠问题).【分析】由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE.【解答】解:由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2即CD2+42=(8﹣CD)2,解得:CD=3cm.16.如图,一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A 点爬到B点,则最少要爬行5cm.【考点】KV:平面展开﹣最短路径问题.【分析】要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将圆柱展开,侧面为矩形,如图所示:∵底面⊙O的周长为6cm,∴AC=3cm,∵高BC=4cm,∴AB==5cm.故答案为:5.17.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是32或42.【考点】KQ:勾股定理.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故填:42或32.18.在平面直角坐标系中,已知点A的坐标为(2,1),点B的坐标为(5,2),在x轴上找一点P,满足AP=BP,则P点的坐标为(4,0).【考点】D5:坐标与图形性质.【分析】设点P(x,0),由AP=BP可得=,解之得出x的值即可.【解答】解:设点P(x,0),∵点A的坐标为(2,1),点B的坐标为(5,2),∴由AP=BP可得=,解得:x=4,∴点P的坐标为(4,0),故答案为:(4,0).19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,则图中标记为正方形A,B,C,D的面积之和为100 cm2.【考点】KQ:勾股定理.【分析】根据正方形的性质和勾股定理的几何意义解答即可.【解答】解:如图,根据勾股定理的几何意义,可知:S E=S F+S G=S A+S B+S C+S D=10×10=100(cm2).即四个正方形A,B,C,D的面积之和为100cm2.故答案为:100.20.四边形ABCD中,∠BAC=∠BDC=90°,AB=AC,BD=2,DC=4,则AD=3.【考点】KD:全等三角形的判定与性质.【分析】过B作BF⊥AD于F,过C作CE⊥AD于E,得到∠AEC=∠AFB=90°,根据余角的性质得到∠BAF=∠ACE,推出△ABF≌△ACE,根据全等三角形的性质得到CE=AF,AE=BF,由∠BAC=∠BDC=90°,得到A,B,C,D四点共圆,根据圆周角定理得到∠ADB=∠ADC=45°,解直角三角形即可得到结论.【解答】解:过B作BF⊥AD于F,过C作CE⊥AD于E,∴∠AEC=∠AFB=90°,∵∠BAC=90°,∴∠BAF+∠CAE=∠CAE+∠ACE=90°,∴∠BAF=∠ACE,在△ABF与△ACE中,,∴△ABF≌△ACE,∴CE=AF,AE=BF,∵∠BAC=∠BDC=90°,∴A,B,C,D四点共圆,∴∠ADB=∠ADC=45°,∴BF=DF=BD=,CE=DE=CD=2,∴AD=AE+DE=BF+CE=3.故答案为:3.三、解答题(其中21、22、23、24、25题各8分,26题10分,27题10分,共计60分)21.解方程:(1)(x+5)2=25(2)x2+10x+16=0(3)x2+4x+8=2x+11(4)(2x﹣1)2=(3﹣x)2.【考点】A8:解一元二次方程﹣因式分解法;A5:解一元二次方程﹣直接开平方法.【分析】(1)直接开方即可求出x的值(2)利用十字相乘法即可求出x的值(3)先将原方程化为一般式,然后利用十字相乘法即可求出x的值(4)两边直接开方即可求出x的值.【解答】解:(1)x+5=±5∴x=0或x=﹣10(2)(x+2)(x+8)=0∴x=﹣2或x=﹣8(3)x2+2x﹣3=0(x+3)(x﹣1)=0∴x=1或x=﹣3(4)2x﹣1=±(3﹣x)∴x=或x=﹣222.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形的面积为10,且分别满足以下要求:(1)在图1中画一个直角三角形ABC;(2)在图2中画一个钝角等腰三角形ABC;(3)图2中△ABC的周长为10+4.(请直接写出答案)【考点】KQ:勾股定理;KH:等腰三角形的性质.【分析】(1)在图1中画出直角边为5和4的直角三角形即为所求;(2)在图2中画出腰长为5的钝角等腰三角形ABC即为所求;(3)先根据勾股定理得到AC的长,再根据周长的定义求解即可.【解答】解:(1)如图1所示:(2)如图2所示:(3)AC==4,△ABC的周长为5+5+4=10+4.故答案为:10+4.23.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD.【考点】KU:勾股定理的应用;IH:方向角.【分析】根据方向角的定义及余角的性质求出∠CAD=30°,∠CBD=60°,再由三角形外角的性质得到∠CAD=30°=∠ACB,根据等角对等边得出AB=BC=20,然后解Rt△BCD,求出CD的长即可.【解答】解:根据题意可知∠CAD=30°,∠CBD=60°,∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=20海里,在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC=,∴sin60°=,∴CD=12×sin60°=20×=10(海里).答:海岛C到航线AB的距离CD长为10海里.24.如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.【考点】KS:勾股定理的逆定理.【分析】根据勾股定理求得AC的长,再根据勾股定理的逆定理判定△ABC为直角三角形,从而不难求得这块地的面积.【解答】解:连接AC.∵AD=4m,CD=3m,AD⊥DC∴AC=5m∵122+52=132∴△ACB为直角三角形∴S△ACB=×AC×BC=×5×12=30m2,S△ACD=AD•CD=×4×3=6m2,∴这块地的面积=S△ACB ﹣S△ACD=30﹣6=24m2.25.如图,∠ABD=∠C=90°,AD=9,AC=BC,∠DAB=30°,求BC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形;KW:等腰直角三角形.【分析】在直角△ABD中,先根据30°角所对的直角边等于斜边的一半得出BD=AD=4.5,再根据勾股定理求出AB=,然后解等腰直角△ABC就可以求出BC的长.【解答】解:在直角△ABD中,∵∠ABD=90°,∠DAB=30°,AD=9,∴BD=AD=4.5,∴AB==.在直角△ABC中,∵∠C=90°,CA=CB,∴BC=AB=×=.26.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF(1)如图1,求证:∠BED=∠AFD;(2)求证:BE2+CF2=EF2;(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.【考点】KY:三角形综合题.【分析】(1)利用四边形AEDF的内角和为360°,可求得∠AFD+∠AED=180°,再利用邻补角可得∠BED+∠AED=180°,根据等角的补角相等可求得∠BED=∠AFD;(2)延长ED到P,使DP=DE,连接FP,CP,利用SAS得到三角形BED与三角形CPD全等,利用全等三角形对应边相等得到BE=CP,再利用SAS得到撒尿性EDF和三角形PDF全等,利用全等三角形对应边相等得到EF=FP,利用等角的余角相等得到∠FCP为直角,在直角三角形FCP中,利用勾股定理列出关系式,等量代换即可得证;(3)连接AD,由AB=AC,且D为BC的中点,利用三线合一得到AD垂直于BC,AD为角平分线,再由三角形ABC为等腰直角三角形,得到一对角相等,利用同角的余角相等得到一对角相等,再由AD=CD,利用ASA得到三角形AED 与三角形CFD全等,利用全等三角形对应边相等得到AE=CF=5,DE=DF,由AE+EB求出AB的长,即为AC的长,再由AC﹣CF求出AF的长,在直角三角形AEF中,利用勾股定理求出EF的长,再根据三角形DEF为等腰直角三角形求出DE与DF的长,即可确定出三角形DEF的面积.【解答】(1)证明:∵DE⊥DF,∴∠EDF=90°,∵∠BAC=90°,∴∠AFD+∠AED=180°,∵∠BED+∠AED=180°,∴∠BED=∠AFD;(2)证明:如图1,延长ED到P,使DP=DE,连接FP,CP,在△BED和△CPD中,,∴△BED≌△CPD(SAS),∴BE=CP,∠B=∠CPD,在△EDF和△PDF中,∴△EDF≌△PDF(SAS),∴EF=FP,∵∠B=∠DCP,∠A=90°,∴∠B+∠ACB=90°,∴∠ACB+∠DCP=90°,即∠FCP=90°,在Rt△FCP中,根据勾股定理得:CF2+CP2=PF2,∵BE=CP,PF=EF,∴EF2=BE2+CF2;(3)如图2,连接AD,∵△ABC为等腰直角三角形,D为BC的中点,∴∠BAD=∠FCD=45°,AD=BD=CD,AD⊥BC,∵ED⊥FD,∴∠EDA+∠ADF=90°,∠ADF+∠FDC=90°,∴∠EDA=∠FDC,在△AED和△CFD中,,∴△AED≌△CFD(ASA),∴AE=CF=5,DE=DF,即△EDF为等腰直角三角形,∴AB=AE+EB=5+12=17,∴AF=AC﹣FC=AB﹣CF=17﹣5=12,在Rt△EAF中,根据勾股定理得:EF==13,设DE=DF=x,根据勾股定理得:x2+x2=132,解得:x=,即DE=DF=,=DE•DF=.则S△DEF27.如图,在平面直角坐标系中,等边△OAB的顶点O为坐标原点,B点坐标为(4,0),且△OAB的面积为4.点P从A点出发沿着射线AB运动,点Q从B点出发沿X轴正半轴运动,点P、点Q同时出发,速度均为每秒2个单位长度,运动时间为x秒,过点P作PH⊥X轴于点H,设HQ的长度为y个单位长度.(1)求A点的坐标;(2)当点P在线段AB上运动时,取BQ的中点M,求HM的长度;(3)在点P、点Q的运动过程中,当∠PQB=30°时,求点P、点Q运动时间x 的值,并直接写出此时H点的坐标.【考点】KY:三角形综合题.【分析】(1)作AH⊥OB于H,根据等边三角形的性质求出OH、AH,确定A 点的坐标;(2)作AE⊥OB于E,证明△BPH∽△BAE,根据相似三角形的性质计算即可;(3)当点P在线段AB上时,由△ABO是等边三角形,得到∠ABO=60°,推出△PBQ是等腰三角形,根据等腰三角形的性质列方程即可得到结论;当P在射线AB上时,连接PQ,由△ABO是等边三角形,得到∠PBQ=∠ABO=60°,推出△PQB是直角三角形,由直角三角形的性质列方程即可得到结论.【解答】解:(1)作AH⊥OB于H,∵△OAB是等边三角形,OB=4,∴OH=2,AH=2,∴A点的坐标为(2,2);(2)作AE⊥OB于E,则PH∥AE,∴△BPH∽△BAE,∴=,即=,解得,BH=2﹣t,∴HM=BH+BM=2﹣t+t=2;(3)当点P在线段AB上时,如图3,∵△ABO是等边三角形,∴∠ABO=60°,∵∠PQB=30°,∴∠BPQ=30°,∴∠PQB=∠BPQ,∴PB=BQ,即4﹣2t=2t,∴t=1,当P在射线AB上时,如图4,连接PQ,∵△ABO是等边三角形,∴∠ABO=60°,∴∠PBQ=∠ABO=60°,∵∠PQB=30°,∴∠BPQ=90°,∴BQ=2PB,即2t=2(2t﹣4),∴t=4,∴当t=1或4时,∠PQB=30°.2017年5月25日。
黑龙江省哈尔滨市部分学校2023-2024学年九年级上学期月考数学试题
黑龙江省哈尔滨市部分学校2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣3的相反数是()A .13-B .13C .3-D .32.下列各式运算正确的是()A .33mn n m -=B .33y y y ÷=C .()236x x =D .236a a a = 3.下列所给图形是中心对称图形但不是轴对称图形的是()A .B .C .D .4.如图,在圆O 中,圆心角80BOC ∠=︒,则圆周角BAC ∠=()A .30︒B .40︒C .50︒D .60︒5.反比例函数3m y x-=(其中3m ≠),当0x >时,y 随x 的增大而增大,那么m 的取值范围是()A .3m <B .3m >C .3m <-D .3m >-6.关于x 的二次函数()212y x =--+,下列说法正确的是()A .图象的开口向上B .图象与y 轴的交点坐标为()0,2A.78.如图,四边形ABCD 连接BF、EF,BFA.FG DHBG CE=B.DGAG=9.关于圆有如下的命题:①平分弦的直径垂直于弦;②不在同一直线上的三个点确定一个圆;③三角形的内心到三角形三条边的距离相等;④圆的切线垂直于半径;⑤在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等.个.A.2B.310.甲、乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠;进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为千克,若在甲园采摘需总费用1y数图象如图所示,则下列说法中错误的是(A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘草莓更多二、填空题19.在平行四边形ABCD周长等于.20.如图,平行四边形三、解答题21.先化简,再求值:22 1a a -⎛-⎝22.如图,在78⨯的正方形网格中,每个小正方形的边长均为C均在小正方形的顶点上.(1)将线段AB绕着点C逆时针旋转请画出线段DE;(2)在(1)的条件下,连接AEADEF,并直接写出平行四边形23.某中学八年级学生对本校学生会倡导的调查,得到了一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:共有42人(1)求他们一共调查了多少人?(2)这组数据的众数和中位数各是多少?(1)如图1,求证:四边形AFCE 是菱形;(2)如图2.若F 是BC 的中点,在不添加任何辅助线的情况下,请直接写出图中与四边形AFCE 面积相等的所有三角形和四边形(四边形AFCE 除外)25.乐乐商店准备从希望机械厂购进甲、乙两种零件进行销售,若一个甲种零件的进价比一个乙种零件的进价多50元,用4000元购进甲种零件的数量是用零件的数量的2倍.(1)求每个甲种零件,每个乙种零件的进价分别为多少元?(2)乐乐商店将甲种零件每件售价定为260元,乙种零件每件售价定为市场需求,决定向该厂购进一批零件。
黑龙江省哈尔滨市第九中学校2024-2025学年高一上学期10月月考 数学试卷(含答案)
哈九中2024级高一学年10月月考数学试卷(时间:120分钟 满分:150分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表示正确的是()A. B. C.2.若集合,则应满足()A. B. C. D.3.对于集合,若不成立,则下列理解正确的是()A.集合的任何一个元素都属于B.集合的任何一个元素都不属于C.集合中至少有一个元素属于D.集合中至少有一个元素不属于4.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件5.若命题是假命题,则实数的取值范围是()A.B.C. D.6.若函数的定义域是,则函数的定义域是( )A. B. C. D.7.《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.下图是我国古代数学家赵爽创作的弦图,弦图由四个全等的直角三角形与一个小正方形(边长可以为0)拼成的一个大正方形.若直角三角形的直角边长分别为和,则该图形可以完成的无字证明为( )*0∈N 12∈Z π∈Q R{},A x x =-x 0x >0x <0x =0x ≤,A B B A ⊆B AB AB AB Ax ∈R 05x <<01x <<2:,40p x x x a ∃∈++=R a 04a <<4a >0a <4a ≥()y f x =[]1,2y f=[]1,2⎡⎣[]1,4[]2,4a bA.B.8.若函数的部分图象如图所示,则( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分.9.下列各组函数表示不同函数的是()A.B.C.D.)0,02a b a b +≥>>()2220,0a b ab a b +≥>>()20,011a b a b ≥>>+()0,02a b a b +≥>>()22f x ax bx c=++()1f =23-112-16-13-()()0,f x g x ==+()()01,f x g x x==()()f x g x x==()()211,1x f x x g x x -=+=-10.已知,则下列命题正确的是( )A.若且,则B.若,则C.若,则D.若且,则11.已知集合,则可能是( )A. B.C.或 D.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合,则__________.13.若正数满足,则的最小值是__________.14.表示不大于的最大整数,例,则的的取值范围__________,方程的解集是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题13分)已知集合(1)求;(2)若,求实数的取值范围.16.(本题15分)已知函数的解析式(1)求(2)画出的图像,并写出函数的单调区间和值域(直接写出结果即可).,,a b c ∈R 0ab ≠a b <11a b >01a <<2a a<0a b >>11b b a a+>+c b a <<0ac <22bc ac <(){}{}2110,1,0A x ax a x a B x x =-++><=>∣∣A B ⋂10x x a ⎧⎫<<⎨⎬⎩⎭{01}x x <<∣{01x x <<∣1x a ⎫>⎬⎭11x x a ⎧⎫<<⎨⎬⎩⎭{}{}2340,230A xx x B x x =+-<=+≥∣∣A B ⋂=,x y 35x y xy +=34x y +[]x x ][2.32, 5.66⎡⎤=-=-⎣⎦[]2x =x []22x x ={}20,21,2x A xB x a x a a x ⎧⎫-=≤=≤≤+∈⎨⎬+⎩⎭R ∣A B A ⊆a ()f x ()350501281x x f x x x x x +≤⎧⎪=+<<⎨⎪-+>⎩12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()f x(3)若,求的值.17.(本题15分)(1)已知关于的不等式的解集为,求的解集;(2)若不等式对于任何实数恒成立,求实数的取值范围.18.(本题17分)已知函数,且(1)求的解析式;(2)已知:当时,不等式恒成立;:当时,是单调函数,若和只有一个是真命题,求实数的取值范围.19.(本题17分)若存在实数使得,则称是区间的一内点.(1)若是区间的一内点,求的值;(2)求证:的充要条件是存在,使得是区间的一内点;(3)给定实数,若对于任意区间是区间的一内点,是区间的一内点,且不等式和不等式对于任意都恒成立,求证:()2f a =a x 220ax x c ++>11,32⎛⎫- ⎪⎝⎭220cx x a -+->()()()211310m x m x m +--+->x m ()2f x x bx c =++()()()11,02f x f x f +=-=-()f x ,a p ∈R 01x <<()32f x x a +<+q []2,2x ∈-()()g x f x ax =-p q a ()0,1λ∈()1x a b λλ=+-x (),()a b a b <λ2x =()1,3λλ(),x a b ∈()0,1λ∈x (),a b λ()0,1ω∈()1,(),a b a b x <1λ2x 2λ()22211x a b ωω≤+-()22221x a b ωω≤-+a b ∈R 、121λλ+=答案1-8DADB BCBD9.ABD 10.BCD11.BC 12. 13.5 14.;15.(1)由题意得,解得,则.(2)因为,当时,,解得,满足题意,当时,因为,所以,解得,综上所述,实数的取值范围为.16.【详解】(1)解:因为,所以,则.(2)解:如图所示,当时,函数最大值为6,无最小值,所以值域为单调递增区间,单调递减区间最大值无法取到(3)解:当时,,解得;当时,,解得,不符合题意;当时,,解得,综上所述,或3.17.(1)由题意得:是方程的两个根,3,12⎡⎫-⎪⎢⎣⎭[)2,3{}2()()22020x x x ⎧-+≤⎨+≠⎩22x -<≤{22}A xx =-<≤∣B A ⊆B =∅21a a >+1a <-B ≠∅B A ⊆212212a a a a ≤+⎧⎪>-⎨⎪+≤⎩112a -≤≤a 1,2∞⎛⎤- ⎥⎝⎦1012<<111122f ⎛⎫=> ⎪⎝⎭11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1x =(),6∞-(],1∞-[)1,∞+0a ≤()352f a a =+=1a =-01a <≤()52f a a =+=3a =-1a >282a -+=3a =1a =-11,32-220ax x c ++=所以,解得,所以不等式即为,即,解得,所以不等式的解集为.(2)因为不等式对任何实数恒成立,①当即时,不等式为,不满足题意,舍去,②当时,则解得,综上所述,实数的取值范围为.18.(1)因为,则的对称轴是,解得,又因为,所以.(2)若为真,,则对任意的恒成立,可知的图象开口向上,对称轴为,可知在内单调递减,且,则;若为真,,可知的图象开口向上,对称轴为,因为在内是单调函数,则或,解得或;120931104a c a c ⎧-+=⎪⎪⎨⎪++=⎪⎩122a c =-⎧⎨=⎩220cx x a -+->222120x x -++>()()2230x x -+->23x -<<{23}xx -<<∣()()()211310m x m x m +--+->x 10m +=1m =-260x ->1m ≠-()()210Δ(1)12110m m m m +>⎧⎨=--+-<⎩1m >m ()1,∞+()()11f x f x +=-()f x 12b x =-=2b =-()02f c ==-()222f x x x =--p ()32f x x a +<+()22341a f x x x x >-+=-+()0,1x ∈()241h x x x =-+2x =()241h x x x =-+()0,1()01h =1a ≥q ()()()222g x f x ax x a x =-=-+-()g x 22a x +=()g x []2,2-222a +≤-222a +≥6a ≤-2a ≥若与真假性相反,则或,解得或,所以实数的取值范围为或.19.解:(1)(2)①若是区间的一内点,则存在实数使得,,则,②若,取,则,且,则是区间的一内点,故的充要条件是存在,使得是区间的一内点;(3)因为是区间的一内点,则,则恒成立,则恒成立,当时,上式不可能恒成立,因此,所以,即,即同理,故.p q 162a a ≥⎧⎨-<<⎩162a a a <⎧⎨≤-≥⎩或6a ≤-12a ≤<a 6a ≤-12a ≤<12λ=x (),()a b a b <λ()0,1λ∈()1x a b λλ=+-()()()1,x a b a b b a b λλλ=+-=-+∈(),x a b ∈b x b a λ-=-()1x a b λλ=+-01b x b a b a b a--<<=--x (),()a b a b <λ(),x a b ∈()0,1λ∈x (),a b λ1x 1λ()1111x a b λλ=+-()()2221111a b a b λλωω⎡⎤+-≤+-⎣⎦()()()2222211111220a ab b ωλλλλλω---+-+-≥210ωλ-≤210ωλ->()()()222211111Δ4420λλωλλλω=----+-≤()210λω-≤1,λω=21λω=-121λλ+=。
2017年黑龙江省哈尔滨市中考数学试卷(2017)
2017年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣7的倒数是()A.7 B.﹣7 C. D.﹣【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣7的倒数是﹣,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a3,不符合题意;B、原式=5a3,不符合题意;C、原式=a6,符合题意;D、原式=a2+2ab+b2,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:y=﹣(x+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.【点评】此题主要考查了二次函数的性质,关键是熟记:抛物线y=a(x﹣h)2+k 的顶点坐标是(h,k),对称轴是x=h.5.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.(3分)方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣5【分析】根据分式方程的解法即可求出答案.【解答】解:2(x﹣1)=x+3,2x﹣2=x+3,x=5,令x=5代入(x+3)(x﹣1)≠0,故选(C)【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.7.(3分)如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B 的大小是()A.43°B.35°C.34°D.44°【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等是解答此题的关键.8.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A. B. C. D.【分析】利用锐角三角函数定义求出cosB的值即可.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A【点评】此题考查了锐角三角函数定义,熟练掌握锐角三角函数定义是解本题的关键.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.= B.= C.= D.=【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选:C.【点评】本题考查相似三角形的判定与性质,解题的关键是熟练运用相似三角形的性质,本题属于中等题型10.(3分)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【分析】根据特殊点的实际意义即可求出答案.【解答】解:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选:D.【点评】本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)将57600000用科学记数法表示为 5.76×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:57600000用科学记数法表示为5.76×107,故答案为:5.76×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)函数y=中,自变量x的取值范围是x≠2.【分析】根据分式有意义的条件:分母不为0进行解答即可.【解答】解:由x﹣2≠0得,x≠2,故答案为x≠2.【点评】本题考查了函数自变量的取值范围问题,掌握分式有意义的条件:分母不为0是解题的关键.13.(3分)把多项式4ax2﹣9ay2分解因式的结果是a(2x+3y)(2x﹣3y).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y),故答案为:a(2x+3y)(2x﹣3y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(3分)计算﹣6的结果是.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.15.(3分)已知反比例函数y=的图象经过点(1,2),则k的值为1.【分析】直接把点(1,2)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,2),∴2=3k﹣1,解得k=1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16.(3分)不等式组的解集是2≤x<3.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.故答案为2≤x<3.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.17.(3分)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为;故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(3分)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为15度.【分析】利用扇形的弧长公式计算即可.【解答】解:设扇形的圆心角为n°,则=4π,解得,n=15,【点评】本题考查的是弧长的计算,掌握弧长公式l=是解题的关键.19.(3分)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为4或2.【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB=BD=3,∴OC=OA==3,∴AC=2OA=6,∵点E在AC上,OE=,∴当E在点O左边时CE=OC+=4当点E在点O右边时CE=OC﹣=2,∴CE=4或2;故答案为:4或2.【点评】本题考查了菱形的性质、勾股定理、等边三角形的判定与性质;熟练掌握菱形的性质,由勾股定理求出OA是解决问题的关键.20.(3分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE ⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt△DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.【点评】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理;熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问题的关键.三、解答题(本大题共60分)21.(7分)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷﹣===,当x=4sin60°﹣2=4×=﹣2时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;(2)首先根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;【解答】解:(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD==.【点评】本题考查﹣应用与作图设计、勾股定理、等腰三角形的性质和判定、平行四边形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,利用数形结合的思想思考问题,属于中考常考题型.23.(8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚.洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.【分析】(1)根据条形统计图与扇形统计图求出总人数即可;(2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)10÷20%=50(名),答:本次调查共抽取了50名学生;(2)50﹣10﹣20﹣12=8(名),补全条形统计图如图所示,(3)1350×=540(名),答:估计最喜欢太阳岛风景区的学生有540名.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8分)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)【点评】本题考查全等三角形,解题的关键是熟练运用全等三角形的判定条件,本题属于基础题型.25.(10分)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y 元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y元.由题意,得,解得:答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.【点评】本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.26.(10分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM ≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.【解答】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT ∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.【点评】本题主要考查了垂径定理,圆周角定理,全等三角形的判定与性质定理,三角函数的定义等相关知识,作出恰当的辅助线构建全等三角形是解答此题的关键.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c 交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD 于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.【分析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;=S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;(2)根据S△ABC(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD 于点K,OG⊥OS交KB于G,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,可得四边形OHQI为矩形,可证△OBG≌△OCS,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,得到P(t,﹣t﹣3),可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.【解答】解:(1)∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∴∠EMB=∠EBM=45°,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,∵S=S△AMC+S△AMB,△ABC∴AB•OC=AC•MN+AB•EM,∴×4×3=×d+×4(3﹣t),∴d=t;(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,OG ⊥OS交KB于G,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBG=∠OCS,∵OB=OC,∠BOG=∠COS,∴△OBG≌△OCS,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.【点评】本题是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、解方程(方程组)、相似三角形(或三角函数)、勾股定理等重要知识点.。
黑龙江省哈尔滨市哈十七中学2024届中考数学模拟精编试卷含解析
黑龙江省哈尔滨市哈十七中学2024届中考数学模拟精编试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一副直角三角板如图放置,其中C DFE 90∠=∠=,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上若//DE CF ,则BDF ∠等于( )A .35°B .25°C .30°D .15°2.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为( )A .5.46×108B .5.46×109C .5.46×1010D .5.46×10113.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=60°,则∠2的度数是( )A .60°B .50°C .40°D .30°4.如图,是一个工件的三视图,则此工件的全面积是( )A .60πcm 2B .90πcm 2C .96πcm 2D .120πcm 25.抛物线y =3(x ﹣2)2+5的顶点坐标是( )A .(﹣2,5)B .(﹣2,﹣5)C .(2,5)D .(2,﹣5)6.下列式子一定成立的是( )A .2a+3a=6aB .x 8÷x 2=x 4C .121a a =D .(﹣a ﹣2)3=﹣61a7.下列计算正确的是( )A .a 2+a 2=2a 4B .(﹣a 2b )3=﹣a 6b 3C .a 2•a 3=a 6D .a 8÷a 2=a 48.如图,在Rt ABC ∆中,90ACB ∠=︒,3tan 3CAB ∠=,3AB =,点D 在以斜边AB 为直径的半圆上,点M 是CD 的三等分点,当点D 沿着半圆,从点A 运动到点B 时,点M 运动的路径长为( )A .π或2πB .2π或3πC .3π或πD .4π或3π 9.2017年,太原市GDP 突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为( )A .3382×108元B .3.382×108元C .338.2×109元D .3.382×1011元10.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()A .B .C .D .11.数据”1,2,1,3,1”的众数是( )A .1B .1.5C .1.6D .312.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( )A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:﹣22÷(﹣14)=_____.14.如图,点A、B、C 在⊙O 上,⊙O 半径为1cm,∠ACB=30°,则AB的长是________.15.分解因式:3x2-6x+3=__.16.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是__km/h.17x1+x的取值范围是.18.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.(1)求证:△PMN是等腰三角形;(2)将△ADE绕点A逆时针旋转,①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.20.(6分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下(1)样本中D级的学生人数占全班学生人数的百分比是;(2)扇形统计图中A级所在的扇形的圆心角度数是;(3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.21.(6分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?22.(8分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.23.(8分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.24.(10分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O 点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C距 )运动员乙要抢到第二个落点D,他应再向前跑多少米?守门员多少米?(取43725.(10分)如图,已知在△ABC中,AB=AC=5,cosB=45,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.(1)求△ABC的面积;(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果△APD是直角三角形,求PB的长.26.(12分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元(1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.27.(12分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.(1)若顾客选择方式一,则享受优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.【题目详解】解:由题意可得:∠EDF=30°,∠ABC=45°,∵DE∥CB,∴∠BDE=∠ABC=45°,∴∠BDF=45°-30°=15°.故选D.【题目点拨】此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.2、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【题目详解】解:将546亿用科学记数法表示为:5.46×1010,故本题选C.【题目点拨】本题考查的是科学计数法,熟练掌握它的定义是解题的关键.3、D【解题分析】由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【题目详解】解:在△DEF中,∠1=60°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=30°.∵AB∥CD,∴∠2=∠D=30°.故选D.【题目点拨】本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.4、C【解题分析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【题目详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长,所以此工件的全面积=π⋅62+12⋅2π⋅6⋅10=96π(cm2).故答案选C.【题目点拨】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.5、C【解题分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【题目详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【题目点拨】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.6、D【解题分析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【题目详解】解:A:2a+3a=(2+3)a=5a,故A错误;B :x 8÷x 2=x 8-2=x 6,故B 错误;C :12a =a ,故C 错误;D :(-a -2)3=-a -6=-61a,故D 正确. 故选D. 【题目点拨】 本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.7、B【解题分析】解:A .a 2+a 2=2a 2,故A 错误;C 、a 2a 3=a 5,故C 错误;D 、a 8÷a 2=a 6,故D 错误;本题选B.考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方8、A【解题分析】根据平行线的性质及圆周角定理的推论得出点M 的轨迹是以EF 为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.【题目详解】当点D 与B 重合时,M 与F 重合,当点D 与A 重合时,M 与E 重合,连接BD ,FM ,AD ,EM ,∵2,33CF CM CE EF AB BC CD CA AB ===== ∴//,//,2FM BD EM AD EF =,FMC BDC CME CDA ∴∠=∠∠=∠∵AB 是直径90BDA ∴∠=︒即90BDC CDA ∠+∠=︒∴90FMC CME ∠+∠=︒∴点M 的轨迹是以EF 为直径的半圆,∵2EF =∴以EF 为直径的圆的半径为1∴点M 运动的路径长为1801=180ππ 当1'3CM CD = 时,同理可得点M 运动的路径长为12π 故选:A .【题目点拨】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.9、D【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】3382亿=338200000000=3.382×1.故选:D .【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10、A【解题分析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A .11、A【解题分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【题目详解】在这一组数据中1是出现次数最多的,故众数是1.故选:A .【题目点拨】本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.12、B【解题分析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:10010060x x -=.故选B . 点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】解:原式=4(4)-⨯-=1.故答案为1.14、3cm π.【解题分析】根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.【题目详解】∵∠ACB=30°,∴∠AOB=60°,∵OA=1cm ,∴AB 的长=60111803ππ⨯=cm. 故答案为:3cm π. 【题目点拨】本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=180n r π. 15、3(x-1)2【解题分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【题目详解】 ()()22236332131x x x x x -+=-+=-.故答案是:3(x-1)2.【题目点拨】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16、3.6【解题分析】分析:根据题意,甲的速度为6km/h ,乙出发后2.5小时两人相遇,可以用方程思想解决问题.详解:由题意,甲速度为6km/h .当甲开始运动时相距36km ,两小时后,乙开始运动,经过2.5小时两人相遇. 设乙的速度为xkm/h4.5×6+2.5x=36解得x=3.6故答案为3.6点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.17、x 1≥-且x 0≠【解题分析】∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.18、2481632378x x x x x x +++++=;【解题分析】设第一天走了x 里,则第二天走了2x 里,第三天走了4x 里…第六天走了32x 里,根据总路程为378里列出方程可得答案. 【题目详解】解:设第一天走了x 里, 则第二天走了2x 里,第三天走了4x 里…第六天走了32x 里, 依题意得:3782481632x x x x x x +++++=, 故答案:3782481632x x x x x x +++++=.【题目点拨】本题主要考查由实际问题抽象出一元一次方程.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)①见解析;②.【解题分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM 的长,可得结论【题目详解】(1)如图1,∵点N,P是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如图2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵点M、N、P分别是线段DE、BC、CD的中点,∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如图4,连接AM,∵M是DE的中点,N是BC的中点,AB=AC,∴A、M、N共线,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如图3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【题目点拨】此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC20、(1)10%; (2)72; (3)5,见解析; (4)330.【解题分析】解:(1)根据题意得:D级的学生人数占全班人数的百分比是:1-20%-46%-24%=10%;(2)A级所在的扇形的圆心角度数是:20%×360°=72°;(3)∵A等人数为10人,所占比例为20%,∴抽查的学生数=10÷20%=50(人),∴D级的学生人数是50×10%=5(人),补图如下:(4)根据题意得:体育测试中A级和B级的学生人数之和是:500×(20%+46%)=330(名),答:体育测试中A级和B级的学生人数之和是330名.【题目点拨】本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.21、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.【解题分析】试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;(2)令y=40000代入解析式,求出满足条件的x的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值.试题解析:(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;(2)令w=-2x2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=-2x2+1400x-200000=-2(x-350)2+45000,当x=250时y=-2×2502+1400×250-200000=25000;故最高利润为45000元,最低利润为25000元.22、(1)y1=﹣15t(t﹣30)(0≤t≤30);(2)∴y2=2(020)4120(2030)t tt t≤<⎧⎨-+≤≤⎩;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.【解题分析】(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0≤t<20、t=20和20≤t≤30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.【题目详解】解:(1)由图表数据观察可知y1与t之间是二次函数关系,设y1=a(t﹣0)(t﹣30)再代入t=5,y1=25可得a=﹣1 5∴y1=﹣15t(t﹣30)(0≤t≤30)(2)由函数图象可知y 2与t 之间是分段的一次函数由图象可知:0≤t <20时,y 2=2t ,当20≤t≤30时,y 2=﹣4t+120,∴y 2=()2(020)41202030t t t t ≤<⎧⎨-+≤≤⎩,(3)当0≤t <20时,y=y 1+y 2=﹣15t (t ﹣30)+2t=80﹣15(t ﹣20)2 , 可知抛物线开口向下,t 的取值范围在对称轴左侧,y 随t 的增大而增大,所以最大值小于当t=20时的值80, 当20≤t≤30时,y=y 1+y 2=﹣15t (t ﹣30)﹣4t+120=125﹣15(t ﹣5)2 , 可知抛物线开口向下,t 的取值范围在对称轴右侧,y 随t 的增大而减小,所以最大值为当t=20时的值80, 故上市第20天,国内、外市场的日销售总量y 最大,最大值为80万件.23、路灯高CD 为5.1米.【解题分析】根据AM ⊥EC ,CD ⊥EC ,BN ⊥EC ,EA =MA 得到MA ∥CD ∥BN ,从而得到△ABN ∽△ACD ,利用相似三角形对应边的比相等列出比例式求解即可.【题目详解】设CD 长为x 米,∵AM ⊥EC ,CD ⊥EC ,BN ⊥EC ,EA =MA ,∴MA ∥CD ∥BN ,∴EC =CD =x 米,∴△ABN ∽△ACD , ∴BN CD =AB AC ,即1.8 1.21.8x x =-, 解得:x =5.1.经检验,x =5.1是原方程的解,∴路灯高CD 为5.1米.【题目点拨】本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.24、(1)21(6)412y x =--+.(或21112y x x =-++)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.【解题分析】(1)依题意代入x 的值可得抛物线的表达式.(2)令y=0可求出x 的两个值,再按实际情况筛选.(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD ,相当于将抛物线AEMFC 向下平移了2个单位可得解得x 的值即可知道CD 、BD .【题目详解】解:(1)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =. 即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)令210(6)4012y x =--+=,. 212(6)48436134360x x x ∴-==≈=-<.,(舍去). ∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得12626626x x =-=+,. 124610CD x x ∴=-=≈.1361017BD ∴=-+=(米). 答:他应再向前跑17米.25、(1)12(2)y=21212255x x -+(0<x <5)(3)3532或12532 【解题分析】试题分析:(1)过点A 作AH ⊥BC 于点H ,根据cosB=45求得BH 的长,从而根据已知可求得AH 的长,BC 的长,再利用三角形的面积公式即可得;(2)先证明△BPD ∽△BAC ,得到BPD S =21225x ,再根据APD BPD S AP S BP= ,代入相关的量即可得; (3)分情况进行讨论即可得. 试题解析:(1)过点A 作AH ⊥BC 于点H ,则∠AHB=90°,∴cosB=BH AB, ∵cosB=45,AB=5,∴BH=4,∴AH=3, ∵AB=AC ,∴BC=2BH=8, ∴S △ABC =12×8×3=12 (2)∵PB=PD ,∴∠B=∠PDB ,∵AB=AC ,∴∠B=∠C ,∴∠C=∠PDB ,∴△BPD ∽△BAC ,∴2BPD BAC S PB SAB ⎛⎫= ⎪⎝⎭ , 即2125BPD S x ⎛⎫= ⎪⎝⎭, 解得BPD S =21225x , ∴APDBPD SAP S BP= , ∴251225y x x x -= ,解得y=21212255x x -+(0<x <5); (3)∠APD <90°, 过C 作CE ⊥AB 交BA 延长线于E ,可得cos ∠CAE=725 , ①当∠ADP=90°时,cos ∠APD=cos ∠CAE=725, 即7525x x =- , 解得x=3532; ②当∠PAD=90°时, 5725x x -= , 解得x=12532, 综上所述,PB=3532或12532. 【题目点拨】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.26、(1)笔记本单价为14元,钢笔单价为15元;(2)y 1=14×0.9x=12.6x ,y 2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.【解题分析】(1)设每个文具盒z 元,每支钢笔y 元,可列方程组得解之得 答:每个文具盒14元,每支钢笔15元.(2)由题意知,y 1关于x 的函数关系式是y 1=14×90%x ,即y 1=12.6x .买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y 2=15x :当买10支以上时,超出的部分有优惠,故此时的函数关系式为y 2=15×10+15×80%(x -10), 即y 2=12x +1.(3)因为x >10,所以y 2=12x +1.当y 1<y 2,即12.6x <12x +1时,解得x <2;当y 1=y 2,即12.6x =12x +1时,解得x =2;当y 1>y 2,即12.6x >12x +1时,解得x >2.综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱.27、(1)12;(2)16. 【解题分析】(1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;(2)根据题意可以画出相应的树状图,从而可以求得相应的概率.【题目详解】解:(1)由题意可得,顾客选择方式一,则享受优惠的概率为:21 42 =,故答案为:12;(2)树状图如下图所示,则顾客享受折上折优惠的概率是:21 346=⨯,即顾客享受折上折优惠的概率是16.【题目点拨】本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.。
2024-2025学年广东省珠海市上学期9月月考九年级数学试卷(含答案)
2024-2025学年广东省珠海市上学期9月月考九年级数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程是一元二次方程的是( )=4A. (x2+3)2=9B. ax2+bx+c=0C. x2+3=0D. x2+1x22.已知点P(a,−1)在二次函数y=x2+2x−1的图象上,则a的值可能为( )A. –3B. –2C. –1D. 13.抛物线y=−x2+bx+3的部分图象如图所示,则一元二次方程−x2+bx+3=0的根为( )A. x1=x2=1B. x1=1,x2=−1C. x1=1,x2=−2D. x1=1,x2=−34.对于抛物线y=(x−1)2−2,下列说法正确的是( )A. 开口向下B. 对称轴是直线x=−1C. 顶点坐标(−1,−2)D. 与x轴有交点=0配方后可化为( )5.一元二次方程y2−y−34A. (y+12)2=1B. (y−12)2=1C. (y+12)2=34D. (y−12)2=346.嘉淇准备解一元二次方程4x2+7x+■=0时,发现常数项被污染,若该方程有实数根,则被污染的数可能是( )A. 3B. 5C. 6D. 87.《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板离地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”若设秋千绳索长为x尺,则可列方程为().A. x2+102=(x+1)2B. (x+1)2+102=x2C. x2+102=(x−4)2D. (x−4)2+102=x28.已知点A(−2,a),B(12,b),C(52,c)都在二次函数y=−x2+2x+3的图象上,那么a、b、c的大小是( )A. a<b<cB. b<c<aC. a<c<bD. c<b<a9.已知三角形的三条边为a,b,c,且满足a2−10a+b2−16b+89=0,则这个三角形的最大边c的取值范围是( )A. c>8B. 5<c<8C. 8≤c<13D. 5<c<1310.如图,抛物线y=ax2+bx+c(a≠0)与轴交于点(−3,0),其对称轴为直线x=−12,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程ax2+bx+c=0的两根分别为x1=−3,x2=2;⑤若m,n(m<n)为方程a(x+3)(x−2)+3=0的两个根,则m<−3且n>2,其中正确的结论有()个.A. 2B. 3C. 4D. 5二、填空题:本题共6小题,每小题3分,共18分。
黑龙江省哈尔滨市2022-2023学年九年级数学上册第三次月考测试题(附答案)
2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.﹣2的相反数是()A.2B.﹣2C.D.2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图的几何体其左视图是()A.B.C.D.5.如图,已知AB为⊙O的直径,点C在⊙O上,∠BOC=60°,则∠C的度数为()A.15°B.30°C.45°D.60°6.已知抛物线的解析式为,则该抛物线的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(1,2)7.用150张铁皮做罐头盒,每张铁皮可制盒身15个或盒底45个,1个盒身与2个盒底配成一套罐头盒,为使制成的盒身与盒底恰好配套,可设用x张铁皮制盒底,则可列方程为()A.2×15x=45(150﹣x)B.15x=2×45(150﹣x)C.2×15(150﹣x)=45x D.15(150﹣x)=2×45x8.方程的解为()A.x=3B.x=4C.x=5D.x=﹣59.已知反比例函数y=(k≠0)经过点(2,5)和点(1,a),则a的值为()A.2B.5C.10D.10.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.二、填空题(共30分)11.将59800000用科学记数法表示为.12.函数y=的自变量x的取值范围是.13.分解因式:x3﹣2x2y+xy2=.14.不等式组的解集是.15.计算:=.16.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.17.如图,在△ABC中,∠ABC=60°,AB=6,BC=10,将△ABC绕点B顺时针旋转得到△A1BC1(点A的对应点是点A1,点C的对应点是点C1),A1落在边BC上,连接AC1,则AC1的长为.18.在△ABC中,AB=AC,∠B的角平分线与AC边所夹锐角为60°,则∠A的度数为.19.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为.20.如图,矩形ABCD中,E为BC边上一点,DE交AC于点F,若∠BAC=2∠DEC,CE =15,BE=9,则线段ED的长为.三、解答题(共60分)21.先化简,再求代数式的值,其中.22.如图,在小正方形的边长均为1的方格纸中,有线段AB,点A,B均在小正方形的顶点上.(1)在图中画出一个以线段AB为一边的等腰△ABC,且△ABC为钝角三角形;(2)在图中画一个△BCD,点D在小正方形的顶点上,tan∠CBD=,且△BCD的面积等于14;(3)连接AD,请直接写出AD的长.23.为了解学生线上学习的需求,某校随机对本校的部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果,绘制成如图两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对“在线阅读”最感兴趣的学生人数.24.已知,在平行四边形ABCD中,点E、F在分别边BC、AD上,且BE=DF,EH⊥CF 于点H,FG⊥AE于点G.(1)求证:GE=FH;(2)在不添加任何辅助线的情况下,请直接写出图中与∠AFG互余的所有角.25.某中学为了创建书香校园,去年购买了一批图书.其中故事书的单价比文学书的单价多4元,用1200元购买的故事书与用800元购买的文学书数量相等.(1)求去年购买的文学书和故事书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,故事书的单价与去年相同,这所中学今年计划再购买文学书和故事书共200本,且购买文学书和故事书的总费用不超过2120元,这所中学今年至少要购买多少本文学书?26.如图,AB为⊙O直径,弦CD交AB于点E,G为上一点,连接CG交AB于点F,交AD于点H,连接DG,且∠AFH﹣∠GDH=∠BAD.(1)如图1,求证:AB⊥CD;(2)如图2,若∠ADE=2∠ADG,求证:=;(3)如图3,在(2)的条件下,若AF=BF,AH=10,求⊙O的半径.27.如图1,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A、B两点(A左B右),与y轴交于点C,连接AC,tan∠CAO=2.(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,射线BP交y轴正半轴于点N,设点P的横坐标为t,线段ON的长为d,求d与t的函数解析式;(3)在(2)的条件下,过点P作PF⊥x轴于点F,过点F作直线FD⊥BP于点D,过点A作AH⊥x轴交直线DF于点H,连接PH交x轴于点E,点G为线段AC上一点,连接PG、GE,PG交y轴于点K,点M为PG延长线上一点,连接MH,延长HM、EG 交于点R,若PF=AH,MR=MG,HR=,求K点的坐标.参考答案一、选择题(共30分)1.解:﹣2的相反数是:﹣(﹣2)=2,故选:A.2.解:A、原式=a5,故A不符合题意.B、原式=a6,故B不符合题意.C、原式=a2+2ab+b2,故C不符合题意.D、原式=a2﹣b2,故D符合题意.故选:D.3.解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:A.4.解:从左面看,底层是两个小正方形,上层的左边是一个小正方形.故选:B.5.解:∠A=∠BOC=×60°=30°,∵OA=OC,∴∠C=∠A=30°.故选:B.6.解:由抛物线解析式可知,抛物线顶点坐标为(2,1),故选:A.7.解:设用x张铁皮制盒底,则把(150﹣x)张铁皮制盒身,根据题意得:2×15(150﹣x)=45x.故选:C.8.解:,方程两边都乘(3x﹣2)(x+1),得2(x+1)=3x﹣2,解得:x=4,检验:当x=4时,(3x﹣2)(x+1)≠0,所以x=4是原方程的解,即原方程的解是x=4,故选:B.9.解:∵反比例函数y=(k≠0)经过点(2,5)和点(1,a),∴k=2×5=a,解得:a=10.故选:C.10.解:A、∵AB∥CD,∴=,故本选项不符合题目要求;B、∵AE∥DF,∴△CEG∞△CDH,∴=,∴=,∵AB∥CD,∴=,∴=,∴=,∴=,故本选项不符合题目要求;∵AB∥CD,AE∥DF,∴四边形AEDF是平行四边形,∴AF=DE,∵AE∥DF,∴,∴=,故本选项不符合题目要求;D、∵AE∥DF,∴△BFH∞△BAG,∴,故本选项符合题目要求;故选:D.二、填空题(共30分)11.解:59800000=5.98×107.故答案为:5.98×107.12.解:由题意可知:x+2≠0,解得:x≠﹣2;所以,函数y=的自变量x的取值范围是x≠﹣2.13.解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.14.解:解不等式≤1,得:x≥1,解不等式3x+2≥1,得:x≥﹣,∴不等式组的解集为x≥1.故答案为:x≥1.15.解:原式=2×﹣2=﹣2=﹣.故答案为:﹣16.解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.17.解:过C1作AB的垂线交AB延长线于C1,∵∠ABC=60°,AB=6,BC=10,∵BD=BC,由旋转性质得:BC=BC1,∴BD=5,AD=BD+AB=11,∴CD==5,∴AC1==14.故答案为:14.18.解:设∠B的角平分线交AC于点E,当∠BEC=60°时,如图1,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A),∴∠ABE=∠ABC=(180°﹣∠A),∵∠ABE+∠A=∠BEC,∴(180°﹣∠A)+∠A=60°,∴∠A=20°;当∠AEB=60°时,如图2,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A),∴∠ABE=∠ABC=(180°﹣∠A),∵∠ABE+∠A+∠BEC=180°,∴(180°﹣∠A)+∠A+60°=180°,∴∠A=100°,综上所述,∠A的度数为20°或100°.19.解:∵AD为BC边上的高,∴△ABD为Rt△ABD,在Rt△ABD中,∠ABC=60°,AD=6,∴BD===6,如图1所示,当点D在BC上时,BC=BD+CD=6+1=7,如图2所示,当点D在BC的延长线上时,BC=BD﹣CD=6﹣1=5,故答案为:7或5.20.解:延长DC至G,DC=CG,连接EG,作DH⊥EG,如图,,设AB=a,则DC=CG=a,∵DC=CG,CE⊥DG,∴∠GEC=∠DEC,EG=ED,∴∠BAC=∠GED,∵S,EG=ED,∴,在Rt△ECD中,DE=,在Rt△ABC中,sin∠BAC=,在Rt△EDH中,sin∠GED=,∵∠BAC=∠GED,∴sin∠BAC=sin∠GED,∴,化简整理得:a4﹣800a2﹣90000=0,解得:a=10,在Rt△ECD中,DE==5,故答案为5.三、解答题(共60分)21.解:==﹣==﹣,当=2×﹣2×=﹣2时,原式=﹣=﹣.22.解:(1)如图,△ABC即为所求.(2)如图,△BCD即为所求.(3)AD==4.23.解:(1)18÷20%=90(人),90﹣24﹣18﹣12=36(人),答:调查的学生总人数是90人,补全条形统计图如图所示:(2)360°×=48°,答:扇形统计图中“在线讨论”对应的扇形圆心角的度数为48°;(3)2100×=560(人),答:该校2100名学生中对“在线阅读”最感兴趣的大约有560人.24.(1)证明:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AD:DF=BC:BE,∴AF=CE,AF∥CE,∴四边形AECF是平行四边形∴AE∥CF,∴∠AEH+∠FHE=180°,∵EH⊥CF,FG⊥AE,∴∠FGE=∠FHE=∠GEG=90°,∴四边形EHFG为矩形,∴GE=FH;(2)∵GF⊥AE,∴∠GAF+∠AFG=90°,∵AD∥BC,AE∥FC,∴∠AEB=∠GAF,∠HCE=∠CFD=∠GAF,与∠AFG互余的角有:∠F AG、∠AEB、∠DFC、∠FCB.25.解:(1)设去年文学书单价为x元,则故事书单价为(x+4)元,根据题意得:,解得:x=8,经检验x=8是原方程的解,当x=8时x+4=12,答:去年文学书单价为8元,则故事书单价为12元.(2)设这所学校今年购买y本文学书,根据题意得.8×(1+25%)y+12(200﹣y)≤2120,y≥140,∴y最小值是140;答:这所中学今年至少要购买140本文学书.26.(1)证明:如图(1),连接AC、AG,∵∠AFH﹣∠GDH=∠BAD,即∠AFH=∠BAD+∠GDH,∴∠AFH+∠BAD=2∠BAD+∠GDH,∵∠AFH+∠F AH=∠HGD+∠GDH,∴∠HGD=2∠BAD,∵∠HGD=∠CAD,∴2∠BAD=∠CAD,∴∠CAB=∠DAB,∴,∴AB⊥CD.(2)证明:由(1)得:,∴,∴∠ADE=∠ACD,∵∠ADE=2∠ADG,∴∠ACD=2∠ADG,∵∠ADG=∠ACG,∠ACD=∠ACG+∠GCD,∴∠ACD=∠GCD,∴.(3)解:连接AC、BC、BG、BD、AG,作HN⊥AG于点N,∵,,∴∠GCD=∠GBD=∠ABG=∠ADG,∠CGB=∠CDB=∠BAD=∠BGD,∴∠ABD=∠ACD=∠ADC=∠AGC,∵∠FCB=∠GCD+∠BCD,∠F AG=∠BAD+∠DAG,∠AFG=∠CFB=∠ABG+∠CGB,∴∠FCB=∠F AG=∠AFG=∠CFB,∴BF=BC,AG=FG,∵AF=BF,设AF=4k,BF=6k,则:AB=10k,BC=BF=BD=6k,∴AD=,∴tan∠ABD=,∴,∵BD=6k,ED2+EB2=DB2,∴ED=EC=,EB=,∴EF=,∴tan∠FCE=,∴tan∠NAH=,tan∠NGH=,∵AH=1,解直角三角形ANH和直角三角形GNH,得,AN=4,HN=2,NG=,∴AG=AN+NG=,∵tan∠ABG=tan∠FCE=,∴BG=11,∴AB2=AG2+BG2=()2+(11)2=,∴AB=,∴⊙O的半径为.27.解:(1)在y=ax2﹣3ax﹣4a(a<0)中,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),∴OA=1,在直角△AOC中,tan∠CAO==2,∴OC=2,由已知a<0,∴C(0,2),代入y=ax2﹣3ax﹣4a得:﹣4a=2,∴a=﹣,∴抛物线的解析式为;(2)∵点P的横坐标为t,∴P纵坐标为﹣t2+t+2,设直线BP的解析式为y=mx+n,则,解得,∴直线BP的解析式为y=﹣x+2t+2,令x=0得y=2t+2,∴N(0,2t+2),∵线段ON的长为d,N在y轴正半轴,∴d=2t+2,(3)延长GE到G',使EG'=EG,连接HG',如图:设P(m,﹣m2+m+2),则F(m,0),∴PF=﹣m2+m+2,BF=4﹣m,AF=m+1,∵PF⊥x轴,FD⊥BP,AH⊥x轴,∴∠AFH=∠DFB=90°﹣∠PFD=∠FPB,∴tan∠AFH=tan∠FPB,∴=,∴=,∴AH=2,H(﹣1,﹣2),∴PF=AH=2,即y P=2,在中,令y=2得x=0(与C重合,舍去)或x=3,∴P(3,2),∵∠AEH=∠FEP,∠HAE=∠PFE=90°,AH=PF,∴△AEH≌△FEP(AAS),∴PE=HE,∵∠GEP=∠G'EH,GE=G'E,∴△GEP≌△G'EH(SAS),∴PG=G'H,∠G'=∠PGE,∵MR=MG,∴∠R=∠MGR,∴∠R=∠MGR=∠PGE=∠G',∴HR=G'H,∴PG=HR,∵HR=,∴PG=,由A(﹣1,0),C(0,2)可得直线AC解析式为y=2x+2,设G(n,2n+2),而P(3,2),∴(n﹣3)2+(2n+2﹣2)2=()2,解得n=﹣或n=(G在二象限,舍去),∴G(﹣,1),由P(3,2),G(﹣,1)得直线PG的解析式为,∵点K是直线PG和y轴的交点,当x=0时,y=,∴点K坐标为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. 3a2 2a3 5a5
D. a a a
3.如图是几个小正方体组成的一个几何体,这个几何体的俯视图是(
6). 2
8
A.
B.
C.
D.
4.下列图形中,既是轴对称图形,又是中心对称图形的是(
).
y
P
1
A
B
C
D
5.如图,某个反比例函数的图象经过点 P,则它的解析式为(
A.
y
1 x
(x
B
-1 O
x
第 5 题图 l2
D A
第 6 题图
l3 l4
C l5
7. 如图,AC是电杆 AB的一根拉线,测得 BC=6米,∠ACB=52°,
则拉线 AC的长为(
).
A.
6 sin 52
米
B.
C. 6·cos52°米
D.
6 cos 52
米
第 7 题图
8.如图,将△ABC 绕点 C 顺时针方向旋转 40°得到△A′CB′,
22.如图,在每个小正方形的边长均为 1 的方格纸中,
有线段 AB和线段 CD,点 A、B、C、D 均在小正方形的顶点上.C
(1) 在方格纸中画出以 AB为对角线的正方形 AEBF,
点 E、F 在小正方形的顶点上;
(2) 在方格纸中画出以 CD为一边的菱形 CDMN,
点 M、N 在小正方形的顶点上,且菱形面积为 8;
A A
B
O
CB
FO
C
E
D
D
第 24 题图 1
第 24 题图 2
25. 哈市某中学图书馆近日购进甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高 20
元,花 780元购进甲图书的数量与花 540元购进乙图书的数量相同.
第 3 页(共 4 页)
(1)求甲、乙两种图书每本的进价分别是多少元; (2)该中学计划购进甲、乙两种图书共 70本,总购书费用不超过 4000元,则最多购进甲种图书 多少本? 26.如图,四边形 ABCD内接于⊙O ,AC⊥BD 于点 E,连接 OA、OD,OA交 BD于点 F. (1)如图 1,求证:∠BAC=∠OAD; (2)如图 2,当 AC=CD时,求证:AB=BF;
0)
B.
y
1 x
(x
0)
C.
y
1 x
(x
0)
D. y 1x (x 0)
6.如图,已知 l ∥3l ∥l4 ,它5 们依次交直线 l 、l 于1 点2E、A、C 和
点 D、A、B,如果 AD=2,AE=3,AB=4,那么 CE=().
A.6
3 B. 2
C.9
D. 8 3
).
l1 E
24.如图,△ABC≌△DBC,AD平分∠BAC,AD交 BC于点 O. (1)如图 1,求证:四边形 ABDC是菱形; (2)如图 2,点 E 为 BD边的中点,连接 AE交 BC于点 F,若∠AFO=∠ADC,在不添加任何辅助线 和字母的条件下,请直接写出图 2 中所有长度是线段 EF长度的偶数倍的线段.
2 或 24
3 21. a 1
22.(1)略 23.(1)40 24.(1)略
25.(1)65 45
26. 略 27. 略
32 2
(2)4
(2)126°
(3)360
(2)BF AF CF BC
(2)
a
42 1 2
a 为整数 a 最大为 42
2<x≤4
8 10 5
第 5 页(共 4 页)
若 AC⊥A′B′,连接 A A′, 则∠A A′B′等于(
).
A.60°
B.50°
C.40°
D.20°
9.在一个不透明的口袋中装有 2 个红球、2 个黑球,这些球除颜色外 其他都相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,放回后再随第机8摸题出图一个
球,两次摸到都是红球的概率是(
).
第 1 页(共 4 页)
2016—2017学年度九年级上学期 12月考试
数学试卷
一、选择题(每小题 3 分,共计 30分)
1.我市 4 月份某天的最高气温是 6℃,最低气温是-2℃,那么这天的温差(最高气温减最低气
温)是(
).
A.-2℃
B.8℃
C.-8℃
D.2℃
2.下列运算正确的是(
).
A. 6a 5a 1 B. (a2 )3 a5
S△ PRD S△ RQE S△EFD 时y ,求点 P 坐标.
y
G
E
G
E
FA
O
D
C
Bx
FA
ODΒιβλιοθήκη CBx第 27 题图 1
第 27 题图 2 第 4 页(共 4 页)
参考答案:
选择题:BDCAD
CDDCC
填空题:x≠2
32
3.12×10 6
3(x+3)(x-3)
2
18π
25%
(10,3)
1
7
(3)如图 3, 在(2)的条件下,当 BD=11,AF=2 5 时,求 OF的长.
A
A
A
B
E
F
DB
E
F
D
B
E
F
D
O
O
O
C
C
C
第 26 题图 1
第 26 题图 2
第 26 题图 3
27.如图,在平面直角坐标中,点 O 为坐标原点,抛物线 y a(x 2)2 10a 与 x 轴交于 A、B 两
点,与 y 轴交于点 C. (1)如图 1,求 AB的长;
(2)如图 1,直线 y kx 与抛物线 y a(x 2)2 10a 交于点 E,点 E 的横坐标为 6,过点 E 作
EG∥AB 交抛物线于另一点 G,作 GD∥y 轴交 x 轴于点 F,交直线 EO于点 D,求证:GF=3DF; (3)如图 2,在(2)的条件下,连接 EC,当∠ECO=45°时,点 P 为第四象限抛物线上一点,过 点 P 作直线 PQ⊥x 轴于点 R,直线 PQ交直线 DE于点 Q,连接 PD、DR、ER、EF,当
D
请直接写出△EFN 的面积.
A B
第 22 题图
23.某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽 样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题: (1)本次抽样调查的书籍有多少本?请通过计算补全条形统计图; (2)求出图 1 中表示文学类书籍的扇形圆心角度数; (3)本次活动师生共捐书 1200本,请估计有多少本科普类书籍?