2019年四川省甘洛中学校高考数学选择题专项训练(一模)
2019届高三第一次模拟考试数学(理)试卷.docx
第I 卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分)1. 已知集合 A = |x|log 2(x+1)<1|,B = * xA ・(-1,0) B. (-oo,0) C.(0,1) D. (1,-Ko) 2. 下列函数中,既是偶函数,又在区间(0,+oo)单调递减的函数是()4. 设d>0且GH1,则“函数/(x)=/在/?上是减函数”是“函数g(x) =(2 — dX 在R 上 递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4 2 \_ 5. 已知a = 2§# = 46c = 25§,则( )A. c <a<bB. a <b <cC. b <a <cD. b <c < a6. 若实数满足2" =3,3〃 =2,则函数f{x) = a x +x-b 的零点所在的区间是()A. (-2,-1)B. (-1,0) C ・(0,1) D ・(1,2)7. 已知命题p : " 3x () e 7?,使得谕+2% + l<0成立”为真命题,则实数d 满足()A. [-1,1)B. (—00,—1)kJ(l,4-oo)C. (1,+ oo)D. (—oo,—1)8. 定义在上的奇函数/(x)满足/(x-4) = -/(x),且在区间[0,2]上递增,则()A. /(—25) < /(11) < /(80)B. /(80) < /(11) < /(—25)C. /(-25)</(80)</(11)D. /(11)</(80)</(-25)9. 己知函数y = f{x+1)是定义域为/?的偶函数,且/(x)在[l, + oo)上单调递减,则不等式 /(2x-l)>/(x + 2)的解集为()盯,则A B=()A. y = -x 3B. y = }n xC. y = cosxD. y = 2 一卜cin X3•函数的图象可能是()DA.[B. [1,3)C. <D.10.若曲线G =(无 >())与曲线C 2:y = e x 存在公共点,则Q 的取值范围是() ( 2 ' ( 2' 、 「A. 0,— < 8_ B. C. e ——,+ooD. e —,+oo _4丿 11. 函数 /(x ) = 2加彳一3凡/+10(加>()/>())有两个不同的零点,则 5(lg m )2 +9(lg/i )2 的最小值是()< 5 13 1A. 6B. —C. —D. l 9 9 12. 函数于(兀)是定义在(0,+oc )上的可导函数,导函数记为/(X ),当兀>0且兀Hl 时, 2/(兀)+ 〃(兀)>0,若曲线歹=于(切在x = l 处的切线斜率为-土,则/⑴二() x-1 52 3 4 A. — B. — C. — D. I 5 5 5第II 卷 (非选择题 满分90分)二、填空题(每小题5分,共20分)13. 任意幕函数都经过定点,则函数/'(兀)=卅+log “ (x-7?z )(6z >0且a 丰1)经过定 点 _____ •14. __________________________________________________ 函数/G ) = lnx-a 兀在[1, + oo )上递减,则a 的取值范围是 ___________________________ .— x — 2 r 〉0 '-的零点个数为 X 2+2X ,X <0+ r +116. __________________ 若函数/(兀)满足:V XG /?, /(x ) + /(-x ) = 2,则函数g (x ) = —j- + /(x )的最大 值与最小值的和为 • 三、解答题(本大题共6个小题,共70分) 17. (本小题满分10分)己知命题°:方程x 2^ax^ — = 0有两个不相等的负实数根;命题q :关于Q 的不等式 16丄〉1.如果“ p 或q”为真命题,“ p Hq ”为假命题,求实数°的取值范围. a18. (本小题满分12分)1-%2已知函数f(x)=—. 1 + X⑴判断/(兀)的奇偶性;(2) /令 + /(|) + + /(|) + /(0) + /(I) + /(2) + + /(9) + /(10)的值.19.(本小题满分12分)己知函数/(x) = 2V的定义域是[0,3],设g(x) = /(2x)-/(x + 2)・(1)求g(x)的解析式及定义域;(2)求函数g(x)的最大值和最小值.20.(本小题满分12分)已知函数/(x) = log, (x2— 2祇+ 3)・2(1)若函数/(X)的定义域为/?,值域为(-00,-1],求实数Q的值;⑵若函数/(兀)在(Y0,l]上为增函数,求实数d的取值范围.21.(本小题满分12分)已知函数f\x) = e x(ca-^b)-x2-4x,曲线y二f(x)在点(0,/(0))处的切线方程为y = 4x + 4.(1)的值;(2)讨论/(兀)的单调性,并求/(兀)的极大值.22.(本小题满分12分)已知a > 0,函数f(x) = ax2 -x9g(x) = lnx.(1)若a =-,求函数y = f(x)-2g(x)的极值.2(2)是否存在实数①使得f(x)>g(ax)成立?若存在求出a的取值集合,若不存在,说明理由.理科答案ADAAC BBCDD BA(2,1) a>\ 2 417. 0 v a S —或a 21 21&偶函数;119. g(x) = 22X - 2v+2,x G [0,1];最大值为-3,最小值为-4 20.a = ±1 ; 1 < a < 2(1)当a =—时,y = f(x)-2g(x) = — x 2 -x-21nx 2 2 (兀+1)(兀 - 2)当兀 G (0,2)1 寸,y < 0;当x e (2,+oo )0寸,y >0 .•・在兀=2处取得极小值几2) - 2g ⑵=-In 4 (2 冷/心)=2/(x ) 一 g{ax ) = 6rx 2 一兀一 In (a 兀),即力(尤)罰-0 /.^(x ) = 0有两个不等慚,兀2,(西<0<x 2), /.力(兀旌(0,兀2 )递减k X 2,+°°)递增,/. /z (x J=么才一无2 -ln (a 吃)> 0成立, /. x 2 — 1 代入2°牯—x 2 — 1 = 0得 a = 1 /. a G {1} 21 • Q = 4" = 4; (-OO ,-2),(in 丄 递增, -2,% 递减;极大值为4 - 4幺 •/ 2ax^ -x 2 -1 = 0/. k(x 2) < k(V) = 0。
2019年高考数学一模试题(及答案)
2019年高考数学一模试题(及答案)一、选择题1.已知在ABC 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( )A .14-B .14C .23-D .232.若43i z =+,则zz=( ) A .1B .1-C .4355i + D .4355i - 3.()22x xe ef x x x --=+-的部分图象大致是( )A .B .C .D .4.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0D .存在x 0∈R ,使得x 02<05.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A .13B .12 C .23 D .346.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.若设a 、b 为实数,且3a b +=,则22a b +的最小值是( ) A .6B .8C .26D .428.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}9.已知π,4αβ+=则(1tan )(1tan )αβ++的值是( ) A .-1B .1C .2D .410.sin 47sin17cos30cos17-A .32-B .12-C .12D .3211.函数y ()y ()f x f x ==,的导函数的图像如图所示,则函数y ()f x =的图像可能是A .B .C .D .12.将函数()sin 2y x ϕ=+的图象沿轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ) A .B .C .0D .4π-二、填空题13.函数()22,026,0x x f x x lnx x ⎧-≤=⎨-+>⎩的零点个数是________.14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是15.在ABC 中,60A =︒,1b =3sin sin sin a b cA B C ________.16.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm .17.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 18.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是__________. 19.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.20.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)三、解答题21.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.22.已知椭圆22221(0)x y a b a b +=>>的离心率为63,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为22. (1)求椭圆的方程;(2)如图,斜率为k 的直线l 过椭圆的右焦点F ,且与椭圆交与,A B 两点,以线段AB 为直径的圆截直线1x =所得的弦的长度为5,求直线l 的方程.23.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.24.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.25.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.2.D解析:D 【解析】 【详解】由题意可得 :5z ==,且:43z i =-,据此有:4343555z i i z -==-. 本题选择D 选项.3.A解析:A 【解析】 【分析】根据函数的奇偶性,排除D ;根据函数解析式可知定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1,利用特殊值x=0.01和x=1.001代入即可排除错误选项. 【详解】由函数解析式()22x x e e f x x x --=+-,易知()22x xe ef x x x ---=+-=() f x - 所以函数()22x xe ef x x x --=+-为奇函数,排除D 选项根据解析式分母不为0可知,定义域为{}1x x ≠±,所以y 轴右侧虚线部分为x=1, 当x=0.01时,代入()f x 可得()0f x <,排除C 选项 当x=1.001时,代入()f x 可得()0f x >,排除B 选项 所以选A 【点睛】本题考查了根据函数解析式判断函数的图象,依据主要是奇偶性、单调性、特殊值等,注意图中坐标的位置及特殊直线,属于中档题.4.D解析:D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .5.B解析:B 【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B. 【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.6.D解析:D 【解析】 【分析】 【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.7.D解析:D 【解析】 【分析】2a b+≤转化为指数运算即可求解。
四川省2019届高三第一次诊断性测试数学(理)试题含答案.doc
四川省2019届高三第一次诊断性考试数学试题(理科)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4 = {(x,y)|x+y = 2}, B = {(x,y)|x-y = 4},则集合A B=()A. x = 3, y = —1B. (3,-1) c. {3,-1} D. {(3,-1)}2.复数2 + i的共辘复数是()A. 2-iB. -2-zC. i-2D. z + 23.下列函数中,既是偶函数又在(0,+8)上单调递增的函数是()1A. y =——B. y =COSXC. y ——x~D. y"xTT4.为了得到函数^ = 2sin(x —一)的图像,只需把函数y = 2sinx的图像上所有点()5IT TTA.向左平行移动上个单位长度B.向右平行移动上个单位长度9 7TC.向左平行移动一个单位长度D.向右平行移动一个单位氏度5.某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,英得分的频率分布直方图如图,则下列结论错误的是()▲频率B.从这100名参赛者中随机选取1人,其得分在(60,80)的概率为0.5C. 这100名参赛者得分的中位数为65D. 估计得分的众数为55—r 216. 设椭圆—+ ^ = 1(7« >0,n>0)的焦点与抛物线x 2=8y 的焦点相同,离心率为一,则府 iv 2 m —n=( )A. 2>/3 —4B. 4—3>/3C. 4>/3 —8D. 8-4^57. 执行如图所示的程序框图,若输入x = 8,则输出的y 值为( )&已知等差数列{%}的公差为2,若4,色,勺成等比数列,贝艸色}前10项的和为(9•己知函数/(切的导函数为/(X ),且满足f(x) = 2xf \e) + lnx (其中幺为自然对数的底数),则 f(e )=( )10.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆(X -2)2 + /=1都相切,则 双曲线C的离心率是()?7 cID. 3A. 10B. 8C. 6D. -8C. 一1D. 1A. 2或迹B. 2或羽C.、疗或鱼D.巫或世3 2 3 211.己知函数/(x) = ^(sinx+cosx),记广(兀)是/⑴的导函数,将满足f \x) = 0的所有正数兀从小到大排成数列{%},〃",贝|擞列{/(兀)}的通项公式是( )A. (_1)'匕一俗“B. (一1)卄»必C. (一1)〃八”D. (_1)"5一曲)“12.如图,在RtAABC中,ZACB = 90°, AC = l f BC = x(x>Q), D 是斜边AB 的中点, 将ABCD 沿直线CD翻折,若在翻折过程中存在某个位置,使得CB丄AD,则兀的取值范圉A. (—,2)B. [73,2^3]C. (0,2)D.((),舲]第II卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a = (—1,1), b = (8,k),若allb,则实数R 二_______________ •x-y>014.若满足约束条件< x+y-l<Q ,贝ijz = 2x+y的最大值为__________________ .j + l>09"x _ 2 y < o'一,则/(2019)= _______________ ./(x-2) + l,x>016.已知直线I: y = kx与圆x2 +y2— 2x-2y+ 1 = 0相交于A, B两点,点M (0, h),且MA丄MB,若〃w (1,2),则实数R的収值范围是2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤•)17.MBC的内角A,B,C的对边分别为a,b,c ,己知sinA + cosA = 0.(1)求tan A ;{(2)若b = 2 , c = 3,求\ABC的面积.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:人数兀10152025303540件数y471215202327(1)在给定的能标系屮画出表中数据的散点图,并由散点图判断销售件数y与进店人数兀是否线性相关?(给出判断即可,不必说明理由)(2)建立y关于x的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数)._ _ 7 _ ___ 7参考数据:兀=25 , y = 15.43 ,工彳=5075,7(x)2 = 4375 , Ixy = 2700,工兀% = 3245.1=1 1=1A工I-心_ _参考公式:回归方程y = hx+a,其中 --------------- , a = ^-^x.£彳_论)2/=130252015105O19.如图所示,四棱锥S- ABCD中,SA丄底面ABCD, ZABC = 90° , AE =品,BC = 1,AD = 2^, ZACD = 60°, E 为CD 的中点.5 10 15 20 25 30 35 40 :(1)求证:BCH平面SAE;(2)求直线SD与平面SBC所成角的正弦值.20.已知椭圆C的屮心在原点0,直线/:x+73y-V3= 0与坐标轴的交点是椭圆C的两个顶点.(1)求椭圆C的方程;(2)若M,N是椭圆C上的两点,且满足OMON = 0,求|M/V|的最小值.21.已知函数/(x) = xlnx.(1)求曲线y = /(%)在点(1,/(1))处的切线方程;(2)设b>a>0,证明:0v/(a) + /(b)-2/(仝空)<@ —讪2.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程V在平面直角坐标系兀Oy中,曲线P的参数方程为< 4 (f为参数),在以坐标原点为极点,yhx轴的正半轴为极轴的极坐标系中,曲线C的方程为Q2-8QCOS&+15=0.(1)求曲线P的普通方程和曲线C的直角坐标方程;(2)点M为曲线P上的动点,N为曲线C上的动点,求|MN|的最小值.23.选修4-5:不等式选讲已知f(x) =| x+11 +1 兀一11, g(x) = -a.(1)若a = -4f求不等式f(x)-g(x)<0的解集;(2)若函数/(兀)的图像与函数g(Q 的图像有交点,求G 的取值范围.试卷答案一、 选择题1-5: DADBC 6-10: ABABA 11、 12: CD二、 填空题13. -814.3 15. 1010 16. (1,6-阿)(64-^23,-Foo)三、 解答题17. (1)因为sinA+cosA = \/2cos(A-450) = 0,所以 cos(A-45°) = 0,又0°<A<180°,所以A —45° =90°, 即 4 = 135°,所以 tan A = tan 135° =-1.(2)由(1)得A = 135°,乂 b = 2,(所以S E1, . 4 1 o Q V2 3^2= —bcsm A = —x2x3x ——= ----- . 2 2 2 218. (1)图形(略)由散点图可以判断,商品件数y 与进店人数兀线性相关7 _ _(2)因为工兀y =3245,兀= 25, y = 15.43, /=!7 _ ___工#=5075, 7(x)2=4375, Ixy = 2700, Z=17____A工栩- 7xy所以b= ------------ —丫#-7(疔1=1所以 sin A = sin 135° V2 23245-2700 5075-4375a = = 15.43-0.78x25 = -4.07所以回归方程y = 0.78x 一4.07 , 当x = 80时,y = 0.78x80-4.07 = 58 (件)所以预测进店人数为80时,商品销售的件数为58件.19. (1)证明:因为 AB =羽,BC = 1, ZABC = 90°, 所以 AC = 2f ABC A = 60°,在 AACQ 中,AD = 2羽,AC = 2f ZACD = 60°, 由余弦定理可得:AD 2 = AC 2 + CD 1 -2 AC CD cos ZACD 解得:CD = 4所以AC 2 + AD~ = CD 2,所以AACD 是直角三角形, 又E 为CD 的中点,所以AE = -CD = CE2又ZACD = 60°,所以AACE 为等边三角形, 所以 ZCAE = 60° = ZBCA ,所以 BC//AE, 又AEu 平面SAE f BC Q 平面SAE f 所以BC//平面SAE.(2)解:rtl (1)可知ZBAE = 90°,以点4为原点,以AB, AE f AS 所在直线分别为兀轴,y 轴,z 轴建立空间直角坐标系,则 5(0,0,2), B(A /3,0,0), C(J§,l,0), £>(-73,3,0).所以5B = (>/3,0,-2), SC = (巧,1,一2), 50 = (-73,3,-2).即 fV3x-2z = 0[\/3x+ y-2z = 0设n = (x, y, z)为平面SBC 的法向量,则SB"[/? 5C = 0设兀=1 则严0, 即平面SBC的一个法向量为n = (1,0,所以cos < n, SD >=""-2馆|w|l5D|V21 ~7~所以直线SD与平面SBC所成角的正弦值为—.720.(1)因为l:x+\l^y-羽=0与x轴交点为(、疗,0),与y轴交点为(0,1),又直线/与坐标轴交点为椭圆C的顶点,所以椭圆的顶点为(、疗,0), (0,1),故所求椭圆方程为亍yN(-r2 sin 0. /; cos0),其中 /; =| OM \, r2 =| ON |,从而—+ —r = —+ 1 =—・r; r; 3 31 1 厂2 2又(斥+才)(=+ =)= 2 +七+ (当且仅当时取等号)故所求|MN|的最小值为乔.21.(1)由题意/(I) = 0,又/G) = lnx+1,所以广(1) = 1,因此y = /(兀)在点(1,/(!))处的切线方程为y-0 = lx(x-l),即x-y-l = 0(2)证明:因为Ovcvb,所以->1由于/(d) + /(b)-2/(9^) = alna + blnb-2 匕也n竺么aln2L + bln2-2 2 2 a + b a + b2 2设函数F(Q = In ——+ x\n—— (x > 1)1 + x 1 + x2 YF\x) = [In 2 - ln(l + x) + x In 2x - x ln(l + x)] * = In ----1 + x2 Y当兀>1时,^>1,所以F,(x)>0,1 + x所以F(x)在(1,+oo)上是单调递增函数,又F(l) = 0,所以F(兀)>0(兀>1),所以F(-) > 0 ,即/s)+ /(b) —2/(学)>0a 2bzy A A A② f(a) + f(b) - 2/(——)<(b-a)ln2等价于In —- + — In -^― < 0, "2 1 +八1 +色a a令x = — >1 ,a4 x设两数g(x) = ln ------ + xln — (x>\)1+x1+xxg \x) = [ln4 - ln(l + x) + x\nx -xln(l + x)]1 = In —1 + xX当兀〉1时,0<——<1,所以gd)<0,1 + x所以g(兀)在(l,+oo)上是单调递减函数,又g(l) = 0 ,所以gM < 0 (x > 1)所以g (纟)< 0 ,即/(d) + f(b)— 2/(学)<(b-a)\n2a 2综上①②可得:0 v /⑺)+ /(b) — 2/(出)v @ —a) In 2.22. (1)将曲线P的参数方程消去参数Z,得尸=4兀,将°2=兀2 +丿2, x = pcos0代入曲线C的极坐标方程得%2-8X4-/+15 = 0,即(X-4)2+尸=] (2)由(1)知,圆C的圆心C(4,0),半径r = lt2由抛物线的参数方程,设点M(-,r)4则 | MC|=J(^-4)2+(r-0)2-t2 +16 =£ J(F -8)2 +192所以当尸=8即F = ±2血时,| MC |取得最小值丄V192 =2^3,4此时I MN\的最小值为|MC|inin -r = 2V3-l.23. (1)不等式f(x)-g(x)< 0 可化为|x + l| + |x-l|<4,当%<-1时,不等式化为-2%<4,解得x>—2,故—2vx5—1;当—lvx< 1时,不等式化为2<4成立,故-1<X<1;当兀〉1时,不等式化为2x<4,解得兀<2,故1 <兀<2,综上得若。
2019年数学高考模拟试题含答案
2019年数学高考模拟试题含答案一、选择题1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .1123.函数ln ||()xx f x e=的大致图象是( ) A . B .C .D .4.2532()x x-展开式中的常数项为( ) A .80 B .-80 C .40 D .-40 5.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i6.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0)B .(2,0)C .(0,2)D .(0,0)7.当1a >时, 在同一坐标系中,函数xy a -=与log a y x =-的图像是( )A .B .C .D .8.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为 A .1220B .2755C .2125D .272209.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O 5AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)B .(4,0)C .(6,0)D .(8,0)10.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a αβ∥,b ∥,αβ∥,则a b ∥ C .若a b a b αβ⊂⊂,,,则αβ∥ D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥11.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A .A 与BB .B 与CC .A 与DD .C 与D12.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为( )A.43πB.83πC.163πD.203π二、填空题13.函数log(1)1(01)ay x a a=-+>≠且的图象恒过定点A,若点A在一次函数y mx n=+的图象上,其中,0,m n>则12m n+的最小值为14.等边三角形ABC与正方形ABDE有一公共边AB,二面角C AB D--的余弦值为3,M N,分别是AC BC,的中点,则EM AN,所成角的余弦值等于.15.如图,长方体1111ABCD A B C D-的体积是120,E为1CC的中点,则三棱锥E-BCD的体积是_____.16.若x,y满足约束条件22010x yx yy--≤⎧⎪-+≥⎨⎪≤⎩,则32z x y=+的最大值为_____________.17.高三某班一学习小组的,,,A B C D四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A不在散步,也不在打篮球;②B不在跳舞,也不在散步;③“C在散步”是“A在跳舞”的充分条件;④D不在打篮球,也不在散步;⑤C不在跳舞,也不在打篮球.以上命题都是真命题,那么D在_________.18.锐角△ABC中,若B=2A,则ba的取值范围是__________.19.设函数21()ln2f x x ax bx=--,若1x=是()f x的极大值点,则a取值范围为_______________.20.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 三、解答题21.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程.22.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷,现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)已知抽取的100个使用A 未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(2)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数;(3)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?23.已知菱形ABCD 的顶点A ,C 在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(1)当直线BD 过点(0,1)时,求直线AC 的方程. (2)当60ABC ∠=︒时,求菱形ABCD 面积的最大值. 24.已知函数()ln f x x x =. (1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1xf x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈) 25.已知函数()|1|f x x =+(1)求不等式()|21|1f x x <+-的解集M (2)设,a b M ∈,证明:(ab)()()f f a f b >--.26.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I内的地块形状为矩形ABCD,大棚II内的地块形状为CDP,要求,A B均在线段MN上,,C D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚II内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z,然后求解复数的模.详解:()()()()1i1i1i2i2i 1i1i1iz---=+=+ +-+i2i i=-+=,则1z=,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.B解析:B【解析】【分析】求得基本事件的总数为222422226C Cn AA=⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A==,利用古典概型及其概率的计算公式,即可求解.由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.3.A解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0e e--> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.4.C解析:C 【解析】 【分析】先求出展开式的通项,然后求出常数项的值 【详解】2532()x x -展开式的通项公式为:53251()2()r rr r T C x x-+-=,化简得10515(2)r r r r T C x -+=-,令1050r -=,即2r ,故展开式中的常数项为25230(42)T C ==-.故选:C. 【点睛】本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.5.C【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.6.B解析:B 【解析】 【分析】设圆和x 轴相交于M 点,根据圆的定义得到CA =CM =R ,因为x=-2,是抛物线的准线,结合抛物线的定义得到M 点为焦点. 【详解】圆心C 在抛物线上,设与直线20x +=相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线20x +=为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点()2,0.故选B 【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.7.D解析:D 【解析】 【分析】根据指数型函数和对数型函数单调性,判断出正确选项. 【详解】由于1a >,所以1xxa y a -=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合.【点睛】本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.8.D解析:D 【解析】 【分析】旧球个数x=4即取出一个新球,两个旧球,代入公式即可求解. 【详解】因为从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数为x=4,即旧球增加一个,所以取出的三个球中必有一个新球,两个旧球,所以129331227(4)220C C P X C ===,故选D . 【点睛】本题考查离散型随机变量的分布列,需认真分析P(X=4)的意义,属基础题.9.B解析:B 【解析】 【分析】由题意可得2ba=,设点A 位于第一象限,且(),A m n ,结合图形的对称性列出方程组确定p 的值即可确定焦点坐标. 【详解】2222222215c a b b e a a a+===+=,∴2b a =, 设点A 位于第一象限,且(),A m n ,结合图形的对称性可得:22322nm mn n pm ⎧=⎪⎪=⎨⎪=⎪⎩,解得:8p =,∴抛物线的焦点为()4,0,故选B . 【点睛】本题主要考查圆锥曲线的对称性,双曲线的渐近线,抛物线焦点坐标的求解等知识,意在考查学生的转化能力和计算求解能力.10.D解析:D 【解析】【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.11.C解析:C 【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可. 详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的. 综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.12.C解析:C 【解析】 【分析】根据三视图知几何体是三棱锥,且一侧面与底面垂直,结合图中数据求出三棱锥外接球的半径,从而求出球的表面积公式. 【详解】由三视图知,该几何体是如图所示的三棱锥,且三棱锥的侧面SAC ⊥底面ABC ,高为3SO =;其中1OA OB OC ===,SO ⊥平面ABC ,其外接球的球心在SO 上,设球心为M ,OM x =,根据SM=MB 得到:在三角形MOB 中,21SM 3x x +=,213x x +=, 解得3x =∴外接球的半径为33R ==;∴三棱锥外接球的表面积为21643S ππ=⨯=.故选:C . 【点睛】本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.二、填空题13.8【解析】∵函数(且)的图象恒过定点A ∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误解析:8 【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中0mn >,∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n mm n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.14.【解析】【分析】【详解】设AB=2作CO⊥面ABDEOH⊥AB 则CH⊥AB∠CHO 为二面角C −AB −D 的平面角CH=3√OH=CHcos∠CHO=1结合等边三角形ABC 与正方形ABDE 可知此四棱锥为解析:16【解析】 【分析】 【详解】设AB =2,作CO ⊥面ABDEOH ⊥AB ,则CH ⊥AB ,∠CHO 为二面角C −AB −D 的平面角, CH =3√,OH =CH cos ∠CHO =1,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,3,11(),2212AN EM CH AN AC AB EM AC AEAN EM ====+=-∴⋅=故EM ,AN 112633=⋅,15.【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积【详解】因为长方体的体积为120所以因为为的中点所以由长方体的性质知底面所以是三棱锥的底面上的高所以三棱锥的体积【点睛】本题蕴解析:【解析】 【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点, 所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.16.6【解析】【分析】首先根据题中所给的约束条件画出相应的可行域再将目标函数化成斜截式之后在图中画出直线在上下移动的过程中结合的几何意义可以发现直线过B 点时取得最大值联立方程组求得点B 的坐标代入目标函数 解析:6 【解析】 【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式3122y x z =-+,之后在图中画出直线32y x =-,在上下移动的过程中,结合12z 的几何意义,可以发现直线3122y x z =-+过B 点时取得最大值,联立方程组,求得点B 的坐标代入目标函数解析式,求得最大值. 【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由32z x y =+,可得3122y x z =-+, 画出直线32y x =-,将其上下移动, 结合2z的几何意义,可知当直线3122y x z =-+在y 轴截距最大时,z 取得最大值,由220x yy--=⎧⎨=⎩,解得(2,0)B,此时max3206z=⨯+=,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.17.画画【解析】以上命题都是真命题∴对应的情况是:则由表格知A在跳舞B 在打篮球∵③C在散步是A在跳舞的充分条件∴C在散步则D在画画故答案为画画解析:画画【解析】以上命题都是真命题,∴对应的情况是:则由表格知A在跳舞,B在打篮球,∵③“C在散步”是“A在跳舞”的充分条件,∴C在散步,则D 在画画, 故答案为画画18.【解析】【分析】【详解】因为为锐角三角形所以所以所以所以所以 解析:(2,3)【解析】 【分析】 【详解】因为ABC ∆为锐角三角形,所以02202B A A B πππ⎧<=<⎪⎪⎨⎪<--<⎪⎩,所以0463A A πππ⎧<<⎪⎪⎨⎪<<⎪⎩,所以(,)64A ππ∈,所以sin 2cos sin b B A a A==,所以(2,3)ba ∈. 19.【解析】试题分析:的定义域为由得所以①若由得当时此时单调递增当时此时单调递减所以是的极大值点;②若由得或因为是的极大值点所以解得综合①②:的取值范围是故答案为考点:1利用导数研究函数的单调性;2利用 解析:【解析】试题分析:()f x 的定义域为()()10,,'f x ax b x+∞=--,由()'00f =,得1b a =-,所以()()()11'ax x f x x+-=.①若0a ≥,由()'0f x =,得1x =,当01x <<时,()'0f x >,此时()f x单调递增,当1x >时,()'0f x <,此时()f x 单调递减,所以1x =是()f x 的极大值点;②若0a <,由()'0f x =,得1x =或1x a=-.因为1x =是()f x 的极大值点,所以11a->,解得10a -<<,综合①②:a 的取值范围是1a >-,故答案为()1,-+∞. 考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值. 20.【解析】试题分析:原式=考点:1指对数运算性质解析:278【解析】 试题分析:原式=344332542727log log 134588-⎡⎤⎛⎫+⨯=+=⎢⎥⎪⎝⎭⎢⎥⎣⎦ 考点:1.指对数运算性质.三、解答题21.(1) x2+y2-2x-2y-2=0 (2) ρsin(θ+)=【解析】(1)∵ρ=2,∴ρ2=4,即x2+y2=4.∵ρ2-2ρcos(θ-)=2,∴ρ2-2ρ (cosθcos+sinθsin)=2.∴x2+y2-2x-2y-2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即ρsin(θ+)=.22.(1)12;(2)40;(3)选B款订餐软件.【解析】【分析】⑴运用列举法给出所有情况,求出结果⑵由众数结合题意求出平均数⑶分别计算出使用A款订餐、使用B款订餐的平均数进行比较,从而判定【详解】(1)使用A款订餐软件的商家中“平均送达时间”不超过20分钟的商家共有1000.006106⨯⨯=个,分别记为甲,,,,,,a b c d e从中随机抽取3个商家的情况如下:共20种.{},a b甲,,{},a c甲,,{},a d甲,,{},a e甲,,{},b c甲,,{},b d甲,,{},b e甲,, {}{},,c d c e甲,甲,,{},d e甲,,{},,a b c,{},,a b d,{},,a b e,{},,a c d,{},,a c e, {},,a d e,{},,b c d,{},,b c e,{},,b d e,{},,c d e.甲商家被抽到的情况如下:共10种.{},a b甲,,{},a c甲,,{},a d甲,,{},a e甲,,{},b c甲,,{},b d甲,,{},b e甲,, {},c d甲,,{},c e甲,,{},d e甲,记事件A为甲商家被抽到,则()101 202P A==.(2)依题意可得,使用A款订餐软件的商家中“平均送达时间”的众数为55,平均数为150.06250.34350.12450.04550.4650.0440⨯+⨯++⨯+⨯+⨯=.(3)使用B款订餐软件的商家中“平均送达时间”的平均数为150.04250.2350.56450.14550.04650.023540⨯+⨯+⨯+⨯+⨯+⨯=<所以选B款订餐软件.【点睛】本题主要考查了频率分布直方图,平均数和众数,古典概率等基础知识,考查了数据处理能力以及运算求解能力和应用意识,属于基础题.23.(1)20x y ++=(2)【解析】 【分析】 【详解】Ⅰ)由题意得直线BD 的方程为1y x =+. 因为四边形ABCD 为菱形,所以AC BD ⊥. 于是可设直线AC 的方程为y x n =-+.由2234{x y y x n+==-+,得2246340x nx n -+-=. 因为A C ,在椭圆上,所以212640n ∆=-+>,解得33n -<<. 设A C ,两点坐标分别为1122()()x y x y ,,,, 则1232n x x +=,212344n x x -=,11y x n =-+,22y x n =-+.所以122n y y +=. 所以AC 的中点坐标为344n n ⎛⎫⎪⎝⎭,. 由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭,在直线1y x =+上, 所以3144n n=+,解得2n =-. 所以直线AC 的方程为2y x =--,即20x y ++=.(Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=, 所以AB BC CA ==.所以菱形ABCD 的面积2S AC =.由(Ⅰ)可得2223162-+==n AC ,所以2(316)433S n n ⎛=-+-<< ⎝⎭,故当0n =时,有max 16==S24.(1)见解析;(2)见证明 【解析】 【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为证e x ﹣x 2﹣xlnx ﹣1>0,根据xlnx ≤x (x ﹣1),问题转化为只需证明当x >0时,e x ﹣2x 2+x ﹣1>0恒成立,令k (x )=e x ﹣2x 2+x ﹣1,(x ≥0),根据函数的单调性证明即可. 【详解】 (1)()()21ln 1(0)f x x g x x xx x x=-=->,()22ln 'x g x x -=,当()20,x e ∈,()'0g x >,当()2,x e ∈+∞,()'0g x <,()g x ∴在()20,e上递增,在()2,e +∞上递减,()g x ∴在2x e =取得极大值,极大值为21e,无极大值. (2)要证f (x )+1<e x ﹣x 2. 即证e x ﹣x 2﹣xlnx ﹣1>0,先证明lnx ≤x ﹣1,取h (x )=lnx ﹣x+1,则h ′(x )=,易知h (x )在(0,1)递增,在(1,+∞)递减,故h (x )≤h (1)=0,即lnx ≤x ﹣1,当且仅当x =1时取“=”, 故xlnx ≤x (x ﹣1),e x ﹣x 2﹣xlnx ≥e x ﹣2x 2+x ﹣1, 故只需证明当x >0时,e x ﹣2x 2+x ﹣1>0恒成立,令k (x )=e x ﹣2x 2+x ﹣1,(x ≥0),则k ′(x )=e x ﹣4x+1,令F (x )=k ′(x ),则F ′(x )=e x ﹣4,令F ′(x )=0,解得:x =2ln2, ∵F ′(x )递增,故x ∈(0,2ln2]时,F ′(x )≤0,F (x )递减,即k ′(x )递减, x ∈(2ln2,+∞)时,F ′(x )>0,F (x )递增,即k ′(x )递增, 且k ′(2ln2)=5﹣8ln2<0,k ′(0)=2>0,k ′(2)=e 2﹣8+1>0,由零点存在定理,可知∃x 1∈(0,2ln2),∃x 2∈(2ln2,2),使得k ′(x 1)=k ′(x 2)=0,故0<x <x 1或x >x 2时,k ′(x )>0,k (x )递增,当x 1<x <x 2时,k ′(x )<0,k (x )递减,故k (x )的最小值是k (0)=0或k (x 2),由k ′(x 2)=0,得=4x 2﹣1, k (x 2)=﹣2+x 2﹣1=﹣(x 2﹣2)(2x 2﹣1),∵x 2∈(2ln2,2),∴k (x 2)>0,故x >0时,k (x )>0,原不等式成立. 【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题.25.(1){1M x x =<-或 }1x >;(2)证明见解析. 【解析】 【分析】(1)先根据绝对值定义将不等式化为三个不等式组,分别求交集,最后求并集(2)利用分析法证明,先根据绝对值三角不等式将不等式转化为证明1ab a b +>+,再两边平方,因式分解转化为证明()()22110a b -->,最后根据条件221,1a b >>确定()()22110ab -->成立.【详解】(1)∵()211f x x <+-,∴12110x x +-++<. 当1x <-时,不等式可化为()12110x x --+++<, 解得1x <-,∴1x <-; 当112x -≤≤-,不等式可化为()12110x x ++++<,解得1x <-, 无解; 当12x >-时,不等式可化为()12110x x +-++<,解得1x >,∴1x >. 综上所述,{1M x x =<-或}1x >.(2)∵()()()1111f a f b a b a b a b --=+--++--+=+≤, 要证()()()f ab f a f b >--成立, 只需证1ab a b +>+, 即证221ab a b +>+, 即证222210a b a b --+>, 即证()()22110a b -->.由(1)知,{1M x x =<-或}1x >, ∵a b M ∈、,∴221,1a b >>, ∴()()22110a b -->成立.综上所述,对于任意的a b M ∈、都有()()()f ab f a f b >--成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.26.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+.令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数;当θ∈(π6,π2)时,()'<0fθ,所以f(θ)为减函数,因此,当θ=π6时,f(θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.。
2019年数学高考一模试题(含答案)
2019年数学高考一模试题(含答案)一、选择题1.设1i 2i 1i z -=++,则||z = A .0B .12C .1D .2 2.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .3.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥B .若a αβ∥,b ∥,αβ∥,则a b ∥C .若a b a b αβ⊂⊂,,,则αβ∥D .若a b αβ⊥⊥,,αβ⊥,则a b ⊥4.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .5.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是A .23B .43C .32D .36.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )A .A 与B B .B 与C C .A 与D D .C 与D7.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④8.若角α的终边在第二象限,则下列三角函数值中大于零的是( )A .sin(+)2πα B .s(+)2co πα C .sin()πα+ D .s()co πα+9.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A .2B .3C .22D .3210.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件11.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 312.在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .0二、填空题13.如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.14.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.15.函数2()log 1f x x =-________.16.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.17.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.18.在ABC ∆中,若13AB =3BC =,120C ∠=︒,则AC =_____.19.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________. 20.已知向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2 b |= ______ .三、解答题21.已知直线352:{132x t l y t =+=+(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求MA MB ⋅的值.22.若不等式2520ax x +->的解集是122xx ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.23. 在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 20l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.24.如图,边长为2的正方形ABCD 中,E 、F 分别是AB 、BC 边的中点,将AED ,DCF 分别沿DE ,DF 折起,使得A ,C 两点重合于点M .(1) 求证:MD EF ⊥;(2) 求三棱锥M EFD -的体积.25.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π224⎛⎫ ⎪⎝⎭,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i 2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=, 则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.A解析:A【解析】【分析】由函数解析式代值进行排除即可.【详解】解:由()x ln x f x =e ,得()f 1=0,()f 1=0- 又()1f e =0e e >,()1f e =0e e--> 结合选项中图像,可直接排除B ,C ,D故选A【点睛】本题考查了函数图像的识别,常采用代值排除法.3.D解析:D【解析】【分析】【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误;B 项中两直线a b ,还可能相交或异面,错误;C 项两平面αβ,还可能是相交平面,错误;故选D.4.C解析:C【解析】【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C 选项.故选C .点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.考点:三视图.5.C解析:C【解析】 函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 所以有43332013222w k k k w w k w ππ=∴=>∴≥∴=≥ 故选C 6.C解析:C【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可.详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的.综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.7.C解析:C【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y >不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用. 8.D解析:D【解析】【分析】利用诱导公式化简选项,再结合角α的终边所在象限即可作出判断.【详解】解:角α的终边在第二象限,sin +2πα⎛⎫ ⎪⎝⎭=cos α<0,A 不符; s +2co πα⎛⎫ ⎪⎝⎭=sin α-<0,B 不符; ()sin πα+=sin α-<0,C 不符;()s co πα+=s co α->0,所以,D 正确故选D【点睛】本题主要考查三角函数值的符号判断,考查了诱导公式,三角函数的符号是解决本题的关键.9.C解析:C【解析】【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解.【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0,两式相减得20x y --=,即公共弦所在的直线方程.圆C 1:x 2+y 2=4,圆心到公共弦的距离为2d =, 所以公共弦长为:22222l r d =-=.故选:C【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.10.A解析:A【解析】【分析】根据充分条件和必要条件的定义,结合祖暅原理进行判断即可.【详解】根据祖暅原理,当12,S S 总相等时,12,V V 相等,所以充分性成立;当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的面积未必相等,所以必要性不成立.所以“12,S S 总相等”是“12,V V 相等”的充分不必要条件.故选:A【点睛】本题考查充分条件与必要条件的判断,属于基础题.11.B解析:B【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选B .考点:由三视图求面积、体积.12.C解析:C【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA == 可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点, 则()33BC MN ON OM ==-,由题意可知: 2211OM ==,12cos1201OM ON ⋅=⨯⨯=-,结合数量积的运算法则可得: ()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-.本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.二、填空题13.【解析】【分析】将平移到和相交的位置解三角形求得线线角的余弦值【详解】过作过作画出图像如下图所示由于四边形是平行四边形故所以是所求线线角或其补角在三角形中故【点睛】本小题主要考查空间两条直线所成角的 解析:64【解析】【分析】将AC 平移到和1BC 相交的位置,解三角形求得线线角的余弦值.【详解】过B 作//BD AC ,过C 作//CD AB ,画出图像如下图所示,由于四边形ABCD 是平行四边形,故//BD AC ,所以1C BD ∠是所求线线角或其补角.在三角形1BC D 中,1122,23BC C D BD ===16cos 22223C BD ∠==⨯⨯.【点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.14.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人解析:60【解析】【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的.【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++. 故答案为60. 15.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.16.【解析】【分析】首先根据题中所给的类比着写出两式相减整理得到从而确定出数列为等比数列再令结合的关系求得之后应用等比数列的求和公式求得的值【详解】根据可得两式相减得即当时解得所以数列是以-1为首项以2 解析:63-【解析】【分析】首先根据题中所给的21n n S a =+,类比着写出1121n n S a ++=+,两式相减,整理得到12n n a a +=,从而确定出数列{}n a 为等比数列,再令1n =,结合11,a S 的关系,求得11a =-,之后应用等比数列的求和公式求得6S 的值.【详解】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以-1为首项,以2为公比的等比数列, 所以66(12)6312S --==--,故答案是63-. 点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.17.y=sinx (答案不唯一)【解析】分析:举的反例要否定增函数可以取一个分段函数使得f (x )>f (0)且(02]上是减函数详解:令则f (x )>f (0)对任意的x ∈(02]都成立但f (x )在[02]上不解析:y =sin x (答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令0,0()4,(0,2]x f x x x =⎧=⎨-∈⎩,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f(x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可.通常举分段函数.18.1【解析】【分析】由题意利用余弦定理得到关于AC 的方程解方程即可确定AC 的值【详解】由余弦定理得解得或(舍去)【点睛】本题主要考查余弦定理解三角形的方法方程的数学思想等知识意在考查学生的转化能力和计 解析:1【解析】【分析】由题意利用余弦定理得到关于AC 的方程,解方程即可确定AC 的值.【详解】由余弦定理得21393AC AC =++,解得1AC =或4AC =-(舍去).【点睛】本题主要考查余弦定理解三角形的方法,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.19.【解析】试题分析:的定义域为由得所以①若由得当时此时单调递增当时此时单调递减所以是的极大值点;②若由得或因为是的极大值点所以解得综合①②:的取值范围是故答案为考点:1利用导数研究函数的单调性;2利用 解析:【解析】试题分析:()f x 的定义域为()()10,,'f x ax b x +∞=--,由()'00f =,得1b a =-,所以()()()11'ax x f x x+-=.①若0a ≥,由()'0f x =,得1x =,当01x <<时,()'0f x >,此时()f x单调递增,当1x >时,()'0f x <,此时()f x 单调递减,所以1x =是()f x 的极大值点;②若0a <,由()'0f x =,得1x =或1x a=-.因为1x =是()f x 的极大值点,所以11a->,解得10a -<<,综合①②:a 的取值范围是1a >-,故答案为()1,-+∞. 考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值. 20.【解析】【分析】【详解】∵平面向量与的夹角为∴∴故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式(2)常用来求向量的模解析:23【解析】【分析】【详解】∵平面向量a 与b 的夹角为060,21a b ==,∴021cos601a b ⋅=⨯⨯=.∴2222(2)4(2)44423a b a b a a b b +=+=+⋅+=++=故答案为23.点睛:(1)求向量的夹角主要是应用向量的数量积公式.(2) a a a =⋅ 常用来求向量的模.三、解答题21.(1);(2).【解析】【分析】【详解】试题分析:(1)在方程=2cos ρθ两边同乘以极径ρ可得2=2cos ρρθ,再根据222=,cos x y x ρρθ+=,代入整理即得曲线C 的直角坐标方程;(2)把直线的参数方程代入圆的直角坐标方程整理,根据韦达定理即可得到MA MB ⋅的值.试题解析:(1)=2cos ρθ等价于2=2cos ρρθ①将222=,cos x y x ρρθ+=代入①既得曲线C 的直角坐标方程为 2220x y x +-=,②(2)将5212x t y t ⎧=+⎪⎪⎨⎪=⎪⎩代入②得2180t ++=, 设这个方程的两个实根分别为12,,t t则由参数t 的几何意义既知,1218MA MB t t ⋅==.考点:圆的极坐标方程与直角坐标方程的互化及直线参数方程的应用.22.132x x ⎧⎫-<<⎨⎬⎩⎭【解析】【分析】 由不等式的解集和方程的关系,可知12,2是方程520ax x +-=的两根,利用韦达定理求出a ,再代入不等式22510ax x a -+->,解一元二次不等式即可.【详解】解:由已知条件可知0a <,且方程520ax x +-=的两根为12,2; 由根与系数的关系得55221a a⎧-=⎪⎪⎨⎪-=⎪⎩解得2a =-. 所以原不等式化为2530x x +-<解得132x -<<所以不等式解集为132x x ⎧⎫-<<⎨⎬⎩⎭【点睛】本题主要考查一元二次不等式的解法,还考查一元二次不等式解集与一元二次方程的关系以及利用韦达定理求值.23.(1)()2240x y y -=≠(2【解析】(1)消去参数t 得1l 的普通方程()1:2l y k x =-;消去参数m 得l 2的普通方程()21:2l y x k=+. 设(),P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠. (2)C 的极坐标方程为()()222cos sin 402π,πρθθθθ-=<<≠. 联立()()222cos sin 4,cos sin 0ρθθρθθ⎧-=⎪⎨+=⎪⎩得()cos sin 2cos sin θθθθ-=+. 故1tan 3θ=-, 从而2291cos ,sin 1010θθ==. 代入()222cos sin 4ρθθ-=得25ρ=,所以交点M【名师点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.24.(1)见解析;(2)13 【解析】【分析】(1)在正方形ABCD 中,有AB AD ⊥,CD BC ⊥,在三棱锥M DEF -中,可得MD MF ⊥,MD ME ⊥,由线面垂直的判定可得MD ⊥面MEF ,则MD EF ⊥; (2)由E 、F 分别是AB 、BC 边的中点,可得1BE BF ==,求出三角形MEF 的面积,结合()1及棱锥体积公式求解.【详解】(1)证明:在正方形ABCD 中,AB AD ⊥,CD BC ⊥,∴在三棱锥M DEF -中,有MD MF ⊥,MD ME ⊥,且ME MF M ⋂=, MD ∴⊥面MEF ,则MD EF ⊥;(2)解:E 、F 分别是边长为2的正方形ABCD 中AB 、BC 边的中点,1BE BF ∴==,111122MEF BEF S S ∴==⨯⨯=, 由(1)知,111123323M DEF MEF V S MD -=⋅=⨯⨯=.【点睛】本题考查线面垂直的判定定理及性质定理的应用,考查棱锥体积的求法,是中档题.25.(1)340x y -+=;(2)2105【解析】【分析】 (1)求得()04A ,,()22B --,,问题得解. (2)利用直线AB 和曲线C 相切的关系可得:圆心到直线A B 的距离等于圆的半径r ,列方程即可得解.【详解】(1)分别将()π42A ,,()5π224B ,转化为直角坐标为()04A ,,()22B --,, 所以直线AB 的直角坐标方程为340x y -+=.(2)曲线C 的方程为r ρ=(0r >),其直角坐标方程为222x y r +=.又直线A B 和曲线C 有且只有一个公共点,即直线与圆相切,所以圆心到直线A B 的距离等于圆的半径r .又圆心到直线A B 22210431=+r 210. 【点睛】本题主要考查了极坐标与直角坐标互化,还考查了直线与圆相切的几何关系,考查计算能力及点到直线距离公式,属于中档题.。
2019年数学高考一模试卷(含答案)
2019年数学高考一模试卷(含答案)一、选择题1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知二面角l αβ--的大小为60°,b 和c 是两条异面直线,且,b c αβ⊥⊥,则b 与c 所成的角的大小为( )A .120°B .90°C .60°D .30°3.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .35 4.已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是( ) A .2B .1C .-2D .-15.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有 A .4种B .10种C .18种D .20种6.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.如图所示,程序据图(算法流程图)的输出结果为( )A .34 B .16C .1112D .25248.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( )A .1-iB .-1-iC .1+iD .-1+i9.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6}B .{3,5,6}C .{1,3,5,6}D .{1,2,3,4}10.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则 A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-11.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m α,m n ⊥,则n α⊥; ②若m α⊥,n α,则m n ⊥;③若,m n 是异面直线,m α⊂,m β,n β⊂,n α,则αβ∥; ④若,m n 不平行,则m 与n 不可能垂直于同一平面. 其中为真命题的是( ) A .②③④B .①②③C .①③④D .①②④12.若奇函数()f x 在[1,3]上为增函数,且有最小值0,则它在[3,1]--上 ( ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0 D .是增函数,有最大值0二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.15.在ABC 中,60A =︒,1b =3sin sin sin a b cA B C________.16.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 17.已知0x >,0y >,0z >,且36x z ++=,则323x y z ++的最小值为_________.18.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.19.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.20.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .三、解答题21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.22.已知复数12i z m =-,复数21i z n =-,其中i 是虚数单位,m ,n 为实数. (1)若1m =,1n =-,求12z z +的值; (2)若212z z =,求m ,n 的值.23.在平面直角坐标系xOy 中,已知直线l 的参数方程为12312x t y t ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是22sin 4πρθ⎛⎫=+⎪⎝⎭. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点()0,1P -.若直l 与曲线C 相交于两点,A B ,求PA PB +的值. 24.若不等式2520ax x +->的解集是122x x ⎧⎫<<⎨⎬⎩⎭,求不等式22510ax x a -+->的解集.25.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点,求证: (1)DE∥平面BCP ; (2)四边形DEFG 为矩形.26.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模.详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.C解析:C 【解析】 【分析】,b c αβ⊥⊥,直线,b c 的方向向量,b c 分别是平面,αβ的法向量,根据二面角与法向量的关系,即可求解. 【详解】设直线,b c 的方向向量,b c ,,b c αβ⊥⊥, 所以,b c 分别是平面,αβ的法向量, 二面角l αβ--的大小为60°,,b c 的夹角为060或0120,因为异面直线所的角为锐角或直角, 所以b 与c 所成的角为060. 故选:C. 【点睛】本题考查二面角与二面角平面的法向量的关系,属于基础题.3.C解析:C 【解析】【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数. 【详解】根据二项式定理展开式通项为1C r n r rr n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭ 则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.4.D解析:D 【解析】 【详解】试题分析:()()(),34,24,32a b λλλλλ+=-+-=+--,由a b λ+与a 垂直可知()()()·0433201a b a λλλλ+=∴+---=∴=- 考点:向量垂直与坐标运算5.B解析:B 【解析】 【分析】 【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种).6.D解析:D 【解析】 【分析】由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得. 【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角, 故选:D 【点睛】本题考查了三角函数的符号法则,属于基础题.7.C解析:C 【解析】由算法流程图知s =0+12+14+16=1112.选C. 8.B解析:B 【解析】 【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足21ii z=-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.9.A解析:A 【解析】 【分析】先求并集,得到{1,2,3,4}A B ⋃=,再由补集的概念,即可求出结果. 【详解】因为{1,2,4}A =,{2,3,4}B =,所以{1,2,3,4}A B ⋃=, 又{1,2,3,4,5,6}U =,所以()C {5,6}U A B ⋃=. 故选A. 【点睛】本题主要考查集合的并集与补集的运算,熟记概念即可,属于基础题型.10.C解析:C 【解析】 【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】因为()a i i b i +=+, 即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-, 故选C. 【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.11.A解析:A 【解析】 【分析】根据空间中点、线、面位置关系,逐项判断即可. 【详解】①若m α,m n ⊥,则n 与α位置关系不确定;②若n α,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥; ③当m α⊂,m β,n β⊂,n α时,平面α,β平行; ④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题. 综上,为真命题的是②③④. 故选A 【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.12.D解析:D 【解析】 【分析】 【详解】因为()f x 为奇函数,且在[1,3]上为增函数,且有最小值0, 所以()f x 在[3,1]--上为增函数,且有最大值0,选D.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x 若x 满足|x|≤m 的概率为若m 对于3概率大于若m 小于3概率小于所以m=3故答案为3解析:3 【解析】 【分析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,若m 对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18 【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .15.【解析】【分析】由已知利用三角形面积公式可求c 进而利用余弦定理可求a 的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在 解析:2393【解析】 【分析】由已知利用三角形面积公式可求c ,进而利用余弦定理可求a 的值,根据正弦定理即可计算求解. 【详解】60A =︒,1b =31133sin 122bc A c ==⨯⨯, 解得4c =,由余弦定理可得:2212cos 116214132a b c bc A =+-=+-⨯⨯⨯=, 所以13239sin sin sin sin 332a b ca A B C A,故答案为:3【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.16.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边解析:79- 【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=),所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈.17.【解析】【分析】利用已知条件目标可转化为构造分别求最小值即可【详解】解:令在上递减在上递增所以当时有最小值:所以的最小值为故答案为【点睛】本题考查三元函数的最值问题利用条件减元构造新函数借助导数知识 解析:374【解析】 【分析】利用已知条件目标可转化为232345334x y z x x y ⎛++=-++ ⎝⎭,构造()33f x x x =-,()2454g y y ⎛=-+ ⎝⎭,分别求最小值即可. 【详解】解:323x y z ++= ()3236x y x ++-- 2345324x x y ⎛=-+-+ ⎝⎭令()33f x x x =-,()2454g y y ⎛=+ ⎝⎭, ()()()2'33311f x x x x =-=-+,0x >,()f x 在()0,1上递减,在()1,+∞上递增,所以,()()min 12f x f ==-当y =()g y 有最小值:()min 454g y = 所以,323x y z ++的最小值为4537244-+= 故答案为374【点睛】 本题考查三元函数的最值问题,利用条件减元,构造新函数,借助导数知识与二次知识处理问题.考查函数与方程思想,减元思想,属于中档题.18.【解析】【分析】由已知棱柱体积与棱锥体积可得S 到下底面距离与棱柱高的关系进一步得到S 到上底面距离与棱锥高的关系则答案可求【详解】设三棱柱的底面积为高为则再设到底面的距离为则得所以则到上底面的距离为所 解析:1【解析】【分析】由已知棱柱体积与棱锥体积可得S 到下底面距离与棱柱高的关系,进一步得到S 到上底面距离与棱锥高的关系,则答案可求.【详解】设三棱柱111ABC A B C -的底面积为'S ,高为h , 则9'9'S h S h==,, 再设S 到底面ABC 的距离为'h ,则1''23S h =,得19'23h h ⋅⋅=, 所以'23h h =, 则S 到上底面111A B C 的距离为13h ,所以三棱锥111S A B C -的体积为111'91339S h ⋅=⋅=. 故答案为1.【点睛】本题考查棱柱、棱锥体积的求法,考查空间想象能力、思维能力与计算能力,考查数形结合思想,三棱锥体积为1V 3S h =底,本题是中档题. 19.【解析】【分析】先由题意得到必过抛物线的焦点设出直线的方程联立直线与抛物线方程表示出弦长再根据两平行线间的最小距离时最短进而可得出结果【详解】由抛物线的光学性质可得:必过抛物线的焦点当直线斜率存在时 解析:24y x =【解析】【分析】先由题意得到PQ 必过抛物线的焦点,设出直线PQ 的方程,联立直线PQ 与抛物线方程,表示出弦长,再根据两平行线间的最小距离时,PQ 最短,进而可得出结果.【详解】由抛物线的光学性质可得:PQ 必过抛物线的焦点(,0)2p F , 当直线PQ 斜率存在时,设PQ 的方程为()2p y k x =-,1122(,),(,)P x y Q x y , 由2()22p y k x y px⎧=-⎪⎨⎪=⎩得:222()24p k x px px -+=,整理得2222244)0(8k x k p p x k p -++=, 所以21222k p p x x k ++=,2124p x x =, 所以2122222k PQ x x p p p k +=++=>; 当直线PQ 斜率不存在时,易得2PQ p =;综上,当直线PQ 与x 轴垂直时,弦长最短,又因为两平行光线间的最小距离为4,PQ 最小时,两平行线间的距离最小; 因此min 24PQ p ==,所求方程为24y x =.故答案为24y x =【点睛】本题主要考查直线与抛物线位置关系,通常需要联立直线与抛物线方程,结合韦达定理、弦长公式等求解,属于常考题型. 20.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n n n a a a a q --++++-==⨯=,于是当3n =或4时,12na a a 取得最大值6264=.考点:等比数列及其应用三、解答题21.(1); (2)36000;(3).【解析】【分析】本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(Ⅰ)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(Ⅱ)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(Ⅲ)问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数.【详解】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04. 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a , 解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36000.(Ⅲ)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5所以2≤x<2.5.由0.50×(x –2)=0.5–0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【考点】频率分布直方图【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n 个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础.22.(1(2)0,1.m n =⎧⎨=⎩【解析】【分析】(1)根据题意求出()()121212i z i z i +=-++=-,即可得到模长;(2)根据212z z =,化简得()2212m i n ni -=--,列方程组即可求解. 【详解】(1)当1m =,1n =-时112z i =-,21z i =+,所以()()121212i z i z i +=-++=-,所以12z z +==. (2)若212z z =,则()221m i ni -=-, 所以()2212m i n ni -=--,所以2122m n n⎧=-⎨-=-⎩解得0,1.m n =⎧⎨=⎩ 【点睛】此题考查复数模长的计算和乘法运算,根据两个复数相等,求参数的取值范围.23.(110y --=,22(1)(1)2x y -+-=;(2)1.【解析】【分析】(1)利用代入法消去参数方程中的参数可求直线l 的普通方程,极坐标方程展开后,两边同乘以ρ,利用222,cos ,sin x y x y ρρθρθ=+== ,即可得曲线C 的直角坐标方程;(2)直线l 的参数方程代入圆C 的直角坐标方程,利用韦达定理、直线参数方程的几何意义即可得结果.【详解】(1)将直线l 的参数方程消去参数t 并化简,得直线l 10y --=.将曲线C 的极坐标方程化为2sin 22ρθθ⎛⎫=+ ⎪ ⎪⎝⎭. 即22sin 2cos ρρθρθ=+.∴x 2+y 2=2y+2x.故曲线C 的直角坐标方程为()()22112x y -+-=.(2)将直线l 的参数方程代入()()22112x y -+-=中,得 2211222t ⎫⎛⎫-+-=⎪ ⎪⎪⎝⎭⎝⎭.化简,得(2130t t -++=.∵Δ>0,∴此方程的两根为直线l 与曲线C 的交点A ,B 对应的参数t 1,t 2.由根与系数的关系,得121t t +=,123t t =,即t 1,t 2同正.由直线方程参数的几何意义知,12121PA PB t t t t +=+=+=.【点睛】本题主要考查参数方程和普通方程的转化、极坐标方程和直角坐标方程的转化以及直线参数方程的应用,属于中档题. 消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法;极坐标方程化为直角坐标方程,只要将cos ρθ和sin ρθ换成x 和y 即可.24.132x x ⎧⎫-<<⎨⎬⎩⎭ 【解析】【分析】 由不等式的解集和方程的关系,可知12,2是方程520ax x +-=的两根,利用韦达定理求出a ,再代入不等式22510ax x a -+->,解一元二次不等式即可.【详解】解:由已知条件可知0a <,且方程520ax x +-=的两根为12,2; 由根与系数的关系得55221a a⎧-=⎪⎪⎨⎪-=⎪⎩解得2a =-. 所以原不等式化为2530x x +-<解得132x -<<所以不等式解集为132x x ⎧⎫-<<⎨⎬⎩⎭【点睛】本题主要考查一元二次不等式的解法,还考查一元二次不等式解集与一元二次方程的关系以及利用韦达定理求值.25.(1)见解析; (2)见解析.【解析】【分析】(1)根据DE 平行PC 即可证明(2)利用PC ,可知DE 与FG 平行且相等,即可证明.【详解】证明:(1)因为D ,E 分别为AP ,AC 的中点,所以DE∥PC.又因为DE ⊄平面BCP ,PC ⊂平面BCP ,所以DE∥平面BCP.(2)因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形.【点睛】本题主要考查了直线与平面平行的判定及中位线的性质,属于中档题.26.(1);(2);(3).【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是,根据独立重复试验次发生次的概率公式可得结果;(3)随机变量的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果.试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在的频率为:;(2)根据频率分布直方图,被调查者非常满意的频率是,用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人非常满意该项目的概率为,现从中抽取3人恰有2人非常满意该项目的概率为:;(3)∵评分低于60分的被调查者中,老年人占,又从被调查者中按年龄分层抽取9人,∴这9人中,老年人有3人,非老年人6人,随机变量的所有可能取值为0,1,2,的分布列为:012的数学期望.。
2019年数学高考一模试卷及答案
2019年数学高考一模试卷及答案一、选择题1.已知回归直线方程中斜率的估计值为1.23,样本点的中心()4,5,则回归直线方程为( )A . 1.2308ˆ.0yx =+ B .0.0813ˆ.2yx =+ C . 1.234ˆyx =+ D . 1.235ˆyx =+ 2.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为( ) A .15B .20C .30D .353.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④4.已知集合1}{0|A x x -≥=,{0,1,2}B =,则AB =A .{0}B .{1}C .{1,2}D .{0,1,2}5.函数2||()x x f x e -=的图象是( )A .B .C .D .6.下列四个命题中,正确命题的个数为( ) ①如果两个平面有三个公共点,那么这两个平面重合; ②两条直线一定可以确定一个平面; ③若M α∈,M β∈,l αβ= ,则M l ∈;④空间中,相交于同一点的三直线在同一平面内. A .1B .2C .3D .47.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =c =( )A .3B .2C 2D .18.在“近似替代”中,函数()f x 在区间1[,]i i x x +上的近似值( ) A .只能是左端点的函数值()i f xB .只能是右端点的函数值1()i f x +C .可以是该区间内的任一函数值()(i i f ξξ∈1[,]i i x x +)D .以上答案均正确9.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 10.在ABC 中,若3,120AB BC C ==∠=,则AC =( ) A .1B .2C .3D .411.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( )A .1,0a b <-<B .1,0a b <->C .1,0a b >-<D .1,0a b >->12.设双曲线22221x y a b-=(0a >,0b >)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( )AB .2CD二、填空题13.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =14.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.15.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.16.函数()f x =________.17.已知复数z=1+2i (i 是虚数单位),则|z|= _________ . 18.计算:1726cos()sin 43ππ-+=_____. 19.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.20.已知双曲线1C:22221(0,0)x ya ba b-=>>的左、右焦点分别为1F、2F,第一象限内的点00(,)M x y在双曲线1C的渐近线上,且12MF MF⊥,若以2F为焦点的抛物线2C:22(0)y px p=>经过点M,则双曲线1C的离心率为_______.三、解答题21.已知a,b,c分别为ABC∆三个内角A,B,C的对边,3c asinC ccosA=-. (Ⅰ)求A;(Ⅱ)若a=2,ABC∆的面积为3,求b,c.22.如图,已知四棱锥P ABCD-的底面为等腰梯形,//AB CD,AC BD⊥,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB6=,APB ADB∠=∠=60°,求四棱锥P ABCD-的体积.23.如图:在ABC∆中,10a=,4c=,5cos C=-.(1)求角A;(2)设D为AB的中点,求中线CD的长.24.在直角坐标系xOy中,直线l1的参数方程为2+,,x ty kt=⎧⎨=⎩(t为参数),直线l2的参数方程为2,,x mmmyk=-+⎧⎪⎨=⎪⎩(为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设()3:cos sin20lρθθ+=,M为l3与C的交点,求M的极径.25.已知(3cos ,cos )a x x =,(sin ,cos )b x x =,函数()f x a b =⋅.(1)求()f x 的最小正周期及对称轴方程; (2)当(,]x ππ∈-时,求()f x 单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由题意得在线性回归方程ˆy bx a =+中 1.23b =,然后根据回归方程过样本点的中心得到a 的值,进而可得所求方程.【详解】设线性回归方程ˆy bx a =+中,由题意得 1.23b =, ∴ 1.23ˆy x a =+.又回归直线过样本点的中心()4,5, ∴5 1.234a =⨯+, ∴0.08a =,∴回归直线方程为 1.2308ˆ.0yx =+. 故选A . 【点睛】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.2.C解析:C 【解析】 【分析】利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得2x 的系数. 【详解】根据二项式定理展开式通项为1C r n r r r n T a b -+=()()()66622111111x x x x x ⎛⎫++=++⋅+ ⎪⎝⎭则()61x +展开式的通项为16r rr T C x +=则()62111x x ⎛⎫++ ⎪⎝⎭ 展开式中2x 的项为22446621C x C x x ⎛⎫+⋅ ⎪⎝⎭ 则()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为2466151530C C +=+= 故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.3.C解析:C 【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y>不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用.4.C解析:C 【解析】 【分析】由题意先解出集合A,进而得到结果. 【详解】解:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C. 【点睛】本题主要考查交集的运算,属于基础题.5.A解析:A 【解析】 【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A . 【详解】2||()x x f x e -=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B , 故选A 【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.6.A解析:A 【解析】 【分析】 【详解】试题分析:如果两个平面有三个公共点,那么这两个平面重合或者是相交,故(1)不正确;两条异面直线不能确定一个平面,故(2)不正确; 若M ∈α,M ∈β,α∩β=l ,则M ∈l ,故(3)正确;空间中,相交于同一点的三直线不一定在同一平面内(如棱锥的3条侧棱),故(4)不正确,综上所述只有一个说法是正确的, 故选A .7.B解析:B 【解析】1sin A ===cos A =,所以22212c c =+-2320,c c -+=求得1c =或 2.c若1c =,则三角形为等腰三角形,030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos 2A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.8.C解析:C 【解析】 【分析】 【详解】根据近似替代的定义,近似值可以是该区间内的任一函数值()(i i f ξξ∈ []1,i i x x +),故选C .9.B解析:B 【解析】 【分析】先求出函数y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断. 【详解】设点P(x,y)是函数()y g x =图像上的任意一点,则点Q (x ,)4y π-+在函数y=f(x)的图像上,sin[2(-x+)]sin 2()42y x g x ππ=-=-=,对于选项A,函数y=g(x)的最大值为1,但是()012g π=≠±,所以图象不关于直线2x π=对称,所以该选项是错误的;对于选项B,()()g x g x -=-,所以函数g(x)是奇函数,解222+22k x k ππππ-≤≤得+44k x k ππππ-≤≤,)k Z ∈(,所以函数在0,4π⎛⎫⎪⎝⎭上单调递减,所以该选项是正确的; 对于选项C,由前面分析得函数y=g(x)的增区间为3[+,]()44k k k Z ππππ+∈,且函数y=g(x)不是偶函数,故该选项是错误;对于选项D,函数的周期为π,解2,,2k x k x ππ=∴=所以函数图像的对称中心为,0)(k Z)2k π∈(,所以该选项是错误的. 故选:B 【点睛】本题主要三角函数的解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.11.C解析:C 【解析】 【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得. 【详解】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1b x a=-;()y f x ax b =--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x =+-',当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a >-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如图:∴01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,310(116,)b a a >>-+∴>-. 故选C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.12.D解析:D 【解析】由题意可知双曲线的渐近线一条方程为b y x a =,与抛物线方程组成方程组2,1b y xa y x ⎧=⎪⎨⎪=+⎩消y 得,2210,()40b b x x a a -+=∆=-=,即2()4b a =,所以e == D. 【点睛】双曲线22221x y a b-=(0a >,0b >)的渐近线方程为b y x a =±.直线与抛物线交点问题,直线与抛物线方程组方程组,当直线与抛物线对称轴平行时,直线与抛物线相交,只有一个交点.当直线与抛物线对称轴不平行时,当>0∆时,直线与抛物线相交,有两个交点. 当0∆=时,直线与抛物线相切,只有一个交点. 当∆<0时,直线与抛物线相离,没有交点.二、填空题13.25【解析】由可得所以解析:25 【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 14.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a ;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3.【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.15.60【解析】【分析】采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查的【详解】∵该校一年级二年级三年级四年级的本科生人数之比为4:5:5:6∴应从一年级本科生中抽取学生人 解析:60 【解析】 【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的. 【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6, ∴应从一年级本科生中抽取学生人数为:4300604556⨯=+++.故答案为60.16.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.17.【解析】【分析】【详解】复数z=1+2i (i 是虚数单位)则|z|==故答案为 解析:【解析】 【分析】 【详解】复数z=1+2i (i 是虚数单位),则|z|==.故答案为.18.【解析】【分析】利用诱导公式化简题目所给表达式根据特殊角的三角函数值求得运算的结果【详解】依题意原式【点睛】本小题主要考查利用诱导公式化简求值考查特殊角的三角函数值考查化归与转化的数学思想方法属于基 32+【解析】【分析】利用诱导公式化简题目所给表达式,根据特殊角的三角函数值求得运算的结果.【详解】 依题意,原式17π26ππ2πcossin cos 4πsin 8π4343⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭π2πcos sin 43=+=. 【点睛】 本小题主要考查利用诱导公式化简求值,考查特殊角的三角函数值,考查化归与转化的数学思想方法,属于基础题.利用诱导公式化简,首先将题目所给的角,利用诱导公式变为正角,然后转化为较小的角的形式,再利用诱导公式进行化简,化简过程中一定要注意角的三角函数值的符号.19.【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立根据分离变量的方式得到在上恒成立利用二次函数的性质求得的最大值进而得到结果【详解】函数在上单调递增在上恒成立在上恒成立令根据二次函数的 解析:18【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立,根据分离变量的方式得到22a x x ≥-在()0,∞+上恒成立,利用二次函数的性质求得22x x -的最大值,进而得到结果.【详解】函数()21ln f x x x a x =-++在()0,∞+上单调递增 ()210a f x x x '∴=-+≥在()0,∞+上恒成立 22a x x ∴≥-在()0,∞+上恒成立 令()22g x x x =-,0x > 根据二次函数的性质可知:当14x =时, ()max 18g x = 18a ∴≥,故实数a 的最小值是18本题正确结果:18 【点睛】本题考查根据函数在区间内的单调性求解参数范围的问题,关键是能将问题转化为导函数的符号的问题,通过分离变量的方式将问题转变为参数与函数最值之间的关系问题.20.【解析】【分析】由题意可得又由可得联立得又由为焦点的抛物线:经过点化简得根据离心率可得即可求解【详解】由题意双曲线的渐近线方程为焦点为可得①又可得即为②由联立①②可得由为焦点的抛物线:经过点可得且即解析:2+【解析】【分析】 由题意可得00b y x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率c e a =,可得2410e e --=,即可求解. 【详解】 由题意,双曲线的渐近线方程为b y x a =±,焦点为()1,0F c -,()2,0F c , 可得00b y x a=,① 又12MF MF ⊥,可得00001y y x c x c ⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,可得22b pa =,且2p c =,即有2224b ac c a ==-,即224ac 0c a --=由c e a=,可得2410e e --=,解得2e =+【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c 的值,代入公式c e a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).三、解答题21.(1)3A π=(2)b c ==2【解析】【分析】【详解】(Ⅰ)由sin cos c C c A =-及正弦定理得sin cos sin sin A C A C C -=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭, 又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A 故bc =4, 而2222cos a b c bc A =+-故22c b +=8,解得b c ==222.(Ⅰ)证明见解析;(Ⅱ. 【解析】【分析】【详解】试题分析:(Ⅰ)因为PH 是四棱锥P-ABCD 的高.所以AC ⊥PH,又AC ⊥BD,PH,BD 都在平面PHD 内,且PH BD=H.所以AC ⊥平面PBD.故平面PAC ⊥平面PBD.(Ⅱ)因为ABCD 为等腰梯形,AB CD,AC ⊥.所以因为∠APB=∠ADR=600所以,HD=HC=1.可得等腰梯形ABCD 的面积为S=12所以四棱锥的体积为V=13x (33+ 考点:本题主要考查立体几何中的垂直关系,体积的计算.点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算.在计算问题中,有“几何法”和“向量法”.利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程.本题(I )较为简单,(II )则体现了“一作、二证、三计算”的解题步骤.23.(1)4A π=;(2 【解析】【分析】(1)通过cos C 求出sin C 的值,利用正弦定理求出sin A 即可得角A ;(2)根据()sin sin B A C =+求出sin B 的值,由正弦定理求出边b ,最后在ACD ∆中由余弦定理即可得结果.【详解】(1)∵cos C =,∴sin C ===. 由正弦定理sin sin a c A C ==.得sin A =cos 0C =<,∴C 为钝角,A 为锐角, 故4A π=.(2)∵()B A C π=-+,∴()sin sin sin cos cos sin B A C A C A C =+=+⎛=+= ⎝⎭. 由正弦定理得sin sin b a B A ==得b = 在ACD ∆中由余弦定理得:2222cos CD AD AC AD AC A =+-⋅⋅242222=+-⨯=,∴CD =. 【点睛】 本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.24.(1)()2240x y y -=≠(2【解析】(1)消去参数t 得1l 的普通方程()1:2l y k x =-;消去参数m 得l 2的普通方程()21:2l y x k=+. 设(),P x y ,由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠. (2)C 的极坐标方程为()()222cos sin 402π,πρθθθθ-=<<≠. 联立()()222cos sin 4,cos sin 0ρθθρθθ⎧-=⎪⎨+=⎪⎩得()cos sin 2cos sin θθθθ-=+.故1tan 3θ=-, 从而2291cos ,sin 1010θθ==. 代入()222cos sin 4ρθθ-=得25ρ=,所以交点M【名师点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.25.(1) T π= ;26k x ππ=+(k Z ∈). (2) 5(,]6ππ--,[,]36ππ-和2[,]3ππ 【解析】【分析】(1)化简得()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,再求函数的周期和对称轴方程;(2)先求出函数在R 上的增区间为[,36k k ππππ-+] (k Z ∈),再给k 赋值与定义域求交集得解.【详解】解:(1)()23sin cos cos f x a b xx x =⋅=+ 111cos2sin 22262x x x π⎛⎫=++=++ ⎪⎝⎭ 所以()f x 的周期22T ππ==, 令262x k πππ+=+(k Z ∈),即26k x ππ=+(k Z ∈) 所以()f x 的对称轴方程为26k x ππ=+(k Z ∈). (2)令222262k x k πππππ-≤+≤+ (k Z ∈) 解得36k x k ππππ-≤≤+ (k Z ∈),由于(],x ππ∈- 所以当1,0k =-或1时, 得函数()f x 的单调递增区间为5,6ππ⎛⎤--⎥⎝⎦,,36ππ⎡⎤-⎢⎥⎣⎦和2,3ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查三角恒等变换,考查三角函数的周期的求法和对称轴的求法,考查三角函数的单调区间的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
2019年数学高考一模试题及答案
2019年数学高考一模试题及答案一、选择题1.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .1122.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件3.2532()x x -展开式中的常数项为( ) A .80B .-80C .40D .-404.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 A .10B .11C .12D .155.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144+AB AC D .1344+AB AC 6.设向量a ,b 满足2a =,||||3b a b =+=,则2a b +=( )A .6B .C .10D .7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱 8.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i9.在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .010.若双曲线22221x y a b-=3,则其渐近线方程为( )A .y=±2xB .y=2xC .12y x =±D .22y x =±11.设0<a <1,则随机变量X 的分布列是Xa 1 P13 1313则当a 在(0,1)内增大时( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小D .()D X 先减小后增大12.已知抛物线22(0)y px p =>交双曲线22221(0,0)x y a b a b-=>>的渐近线于A ,B 两点(异于坐标原点O 5AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)B .(4,0)C .(6,0)D .(8,0)二、填空题13.若双曲线22221x y a b-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程是___________.14.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是15.在区间[1,1]-上随机取一个数x ,cos2xπ的值介于1[0,]2的概率为 .16.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.17.在平行四边形ABCD 中,3A π∠=,边AB ,AD 的长分别为2和1,若M ,N 分别是边BC ,CD 上的点,且满足CN CDBM BC=,则AM AN ⋅的取值范围是_________.18.学校里有一棵树,甲同学在A 地测得树尖D 的仰角为45︒,乙同学在B 地测得树尖D 的仰角为30,量得10AB AC m ==,树根部为C (,,A B C 在同一水平面上),则ACB =∠______________.19.设函数21()ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.20.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.三、解答题21.某公司培训员工某项技能,培训有如下两种方式: 方式一:周一到周五每天培训1小时,周日测试 方式二:周六一天培训4小时,周日测试公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:()1用方式一与方式二进行培训,分别估计员工受训的平均时间(精确到0.1),并据此判断哪种培训方式效率更高?()2在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.22.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。
2019年数学高考一模试卷(及答案)
2019年数学高考一模试卷(及答案)一、选择题1.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A.12B.13C.16D.1122.定义运算()()a a ba bb a b≤⎧⊕=⎨>⎩,则函数()12xf x=⊕的图象是().A.B.C.D.3.若3tan4α=,则2cos2sin2αα+=()A.6425B.4825C.1D.16254.已知变量x与y正相关,且由观测数据算得样本平均数3x=, 3.5y=,则由该观测的数据算得的线性回归方程可能是( )A.0.4 2.3y x=+B.2 2.4y x=-C.29.5y x=-+D.0.3 4.4y x=-+5.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 6.设ω>0,函数y=sin(ωx+3π)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .23B .43C .32D .37.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙8.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0)B .(2,0)C .(0,2)D .(0,0)9.函数2||()x x f x e -=的图象是( )A .B .C .D .10.sin 47sin17cos30cos17-A .3-B .12-C .12D .3 11.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A .14B .12C .22D .212.当1a >时, 在同一坐标系中,函数xy a -=与log a y x =-的图像是( )A .B .C .D .二、填空题13.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.14.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且22EF =,现有如下四个结论:AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.15.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.16.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.17.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.18.若45100a b ==,则122()a b+=_____________. 19.已知α,β均为锐角,4cos 5α=,1tan()3αβ-=-,则cos β=_____. 20.已知向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2 b |= ______ .三、解答题21.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=-⎩(a 参数),以直角坐标系的原点为极点,x 正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 最大距离.22.已知椭圆()2222:10x y C a b a b+=>>的一个焦点为)5,05(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.23.已知函数2()sin()sin 2f x x x x π=-.(1)求()f x 的最小正周期和最大值; (2)求()f x 在2[,]63ππ上的单调区间24.△ABC 在内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.25.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π4⎛⎫ ⎪⎝⎭,,曲线C 的方程为r ρ=(0r >). (1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.2.A解析:A 【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.3.A解析:A 【解析】试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 【考点】同角三角函数间的基本关系,倍角公式.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.4.A解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.5.A解析:A 【解析】 【分析】 【详解】由27.8 6.635K ≈>,而()26.6350.010P K ≥=,故由独立性检验的意义可知选A6.C解析:C 【解析】函数sin 23y x πω⎛⎫=++ ⎪⎝⎭的图象向右平移43π个单位后44sin 2sin 23333w y w x wx ππππ⎡⎤⎛⎫⎛⎫=-++=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦所以有43332013222w kk k w w k w ππ=∴=>∴≥∴=≥ 故选C7.A解析:A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.8.B解析:B 【解析】 【分析】设圆和x 轴相交于M 点,根据圆的定义得到CA =CM =R ,因为x=-2,是抛物线的准线,结合抛物线的定义得到M 点为焦点. 【详解】圆心C 在抛物线上,设与直线20x +=相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线20x +=为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点()2,0.故选B 【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.9.A解析:A 【解析】 【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A . 【详解】2||()x x f x e -=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B , 故选A 【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.10.C解析:C 【解析】 【分析】由()sin 473017sin θ=+,利用两角和的正弦公式以及特殊角的三角函数,化简即可. 【详解】0000sin 47sin17cos30cos17-sin()sin cos cos 1730173017︒+︒-︒︒=︒ sin17cos30cos17sin 30sin17cos30cos17︒︒+︒︒-︒︒=︒1302sin =︒=.故选C .【点睛】三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式; (3)三看“结构特征”,分析结构特征,找到变形的方向.11.C解析:C 【解析】由题得(1)111122222i i i i z i z i -+====+∴==+. 故选C. 12.D解析:D 【解析】 【分析】根据指数型函数和对数型函数单调性,判断出正确选项. 【详解】由于1a >,所以1xxa y a-=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合. 故选:D. 【点睛】本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.二、填空题13.1和3【解析】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加解析:1和3. 【解析】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3; 所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3; 又加说:“我与乙的卡片上相同的数字不是2”; 所以甲的卡片上写的数字不是1和2,这与已知矛盾; 所以甲的卡片上的数字是1和3.14.【解析】【分析】对于①可由线面垂直证两线垂直;对于②可由线面平行的定义证明线面平行;对于③可证明棱锥的高与底面积都是定值得出体积为定值;对于④可由两个特殊位置说明两异面直线所成的角不是定值【详解】对 解析:①②③【解析】 【分析】对于①,可由线面垂直证两线垂直;对于②,可由线面平行的定义证明线面平行;对于③,可证明棱锥的高与底面积都是定值得出体积为定值;对于④,可由两个特殊位置说明两异面直线所成的角不是定值. 【详解】对于①,由1,AC BD AC BB ⊥⊥,可得AC ⊥面11DD BB ,故可得出AC BE ⊥,此命题正确;对于②,由正方体1111ABCD A B C D -的两个底面平行,EF 在平面1111D C B A 内,故EF 与平面ABCD 无公共点,故有//EF 平面ABCD ,此命题正确;对于③,EF 为定值,B 到EF 距离为定值,所以三角形BEF 的面积是定值,又因为A 点到面11DD BB 距离是定值,故可得三棱锥A BEF -的体积为定值,此命题正确; 对于④,由图知,当F 与1B 重合时,此时E 与上底面中心为O 重合,则两异面直线所成的角是1A AO ∠,当E 与1D 重合时,此时点F 与O 重合,则两异面直线所成的角是1OBC ∠,此二角不相等,故异面直线,AE BF 所成的角不为定值,此命题错误.综上知①②③正确,故答案为①②③ 【点睛】本题通过对多个命题真假的判断,综合考查线面平行的判断、线面垂直的判断与性质、棱锥的体积公式以及异面直线所成的角,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.15.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A 时直线解析:6 【解析】 【分析】画出不等式组表示的可行域,由32z x y =-可得322z y x =-,平移直线322zy x =-,结合图形可得最优解,于是可得所求最小值. 【详解】画出不等式组表示的可行域,如图中阴影部分所示.由32z x y =-可得322z y x =-. 平移直线322z y x =-,结合图形可得,当直线322zy x =-经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最小值. 由题意得A 点坐标为(2,0),∴min 326z =⨯=,即32z x y =-的最小值是6. 故答案为6. 【点睛】求目标函数(0)z ax by ab =+≠的最值时,可将函数z ax by =+转化为直线的斜截式:a zy x b b =-+,通过求直线的纵截距z b 的最值间接求出z 的最值.解题时要注意:①当0b >时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;②当0b <时,截距z b 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.16.【解析】【详解】因为所以①因为所以②①②得即解得故本题正确答案为解析:12-【解析】 【详解】 因为,所以,①因为,所以,②①②得,即, 解得,故本题正确答案为17.【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积【详解】因为长方体的体积为120所以因为为的中点所以由长方体的性质知底面所以是三棱锥的底面上的高所以三棱锥的体积【点睛】本题蕴解析:【解析】 【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.18.【解析】【分析】根据所给的指数式化为对数式根据对数的换地公式写出倒数的值再根据对数式的性质得到结果【详解】则故答案为【点睛】本题是一道有关代数式求值的问题解答本题的关键是熟练应用对数的运算性质属于基 解析:2【解析】 【分析】根据所给的指数式,化为对数式,根据对数的换地公式写出倒数的值,再根据对数式的性质,得到结果. 【详解】45100a b ==,4log 100a ∴=,5log 100b =,10010010012log 42log 5log 1001a b∴+=+==, 则1222a b ⎛⎫+=⎪⎝⎭ 故答案为2【点睛】本题是一道有关代数式求值的问题,解答本题的关键是熟练应用对数的运算性质,属于基础题.19.【解析】【分析】先求得的值然后求得的值进而求得的值【详解】由于为锐角且故由解得由于为锐角故【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正切公式属于中档题【解析】 【分析】先求得tan α的值,然后求得tan β的值,进而求得cos β的值. 【详解】由于α为锐角,且4cos 5α=,故3sin 5α==,sin 3tan cos 4ααα==.由()tan tan 1tan 1tan tan 3αβαβαβ--==-+⋅,解得13tan 9β=,由于β为锐角,故cos β====. 【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正切公式,属于中档题.20.【解析】【分析】【详解】∵平面向量与的夹角为∴∴故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式(2)常用来求向量的模解析:【解析】 【分析】 【详解】∵平面向量a 与b 的夹角为060,21a b ==,∴021cos601a b ⋅=⨯⨯=.∴2222(2)4(2)444a b a b a a b b +=+=+⋅+=++=故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式. (2) a a a =⋅ 常用来求向量的模.三、解答题21.(1)26cos 2sin 60ρρθρθ--+=(22 【解析】 【分析】(1)利用平方和为1消去参数α得到曲线C 的直角坐标方程,再利用y sin x cos ρθρθ=⎧⎨=⎩,整理即可得到答案;(2)将直线的极坐标方程化为直角坐标方程,求出圆心到直线的距离,加上半径即可得到最大距离. 【详解】(1)由3212x cos y sin αα=+⎧⎨=-⎩,得3212x cos y sin αα-=⎧⎨-=-⎩,两式两边平方并相加,得()()22314x y -+-=, 所以曲线C 表示以()3,1为圆心,2为半径的圆.将y sin x cos ρθρθ=⎧⎨=⎩代入得()()22cos 3sin 14ρθρθ-+-=,化简得26cos 2sin 60ρρθρθ--+=所以曲线C 的极坐标方程为26cos 2sin 60ρρθρθ--+= (2)由1sin 2cos θθρ-=,得sin 2cos 1ρθρθ-=,即21y x -=,得210x y -+=所以直线l 的直角坐标方程为210x y -+=因为圆心()3,1C 到直线:l 210x y -+=的距离5d ==,所以曲线C 上的点到直线l 的最大距离为2d r +=+. 【点睛】本题考查直角坐标方程,参数方程及极坐标方程之间的互化,考查直线与圆的位置关系的应用,属于基础题.22.(1)22194x y +=;(2)22013x y +=. 【解析】 【分析】 【详解】试题分析:(1)利用题中条件求出c 的值,然后根据离心率求出a 的值,最后根据a 、b 、c 三者的关系求出b 的值,从而确定椭圆C 的标准方程;(2)分两种情况进行计算:第一种是在从点P 所引的两条切线的斜率都存在的前提下,设两条切线的斜率分别为1k 、2k ,并由两条切线的垂直关系得到121k k =-,并设从点()00,P x y 所引的直线方程为()00y k x x y =-+,将此直线的方程与椭圆的方程联立得到关于x 的一元二次方程,利用0∆=得到有关k 的一元二次方程,最后利用121k k =-以及韦达定理得到点P 的轨迹方程;第二种情况是两条切线与坐标轴垂直的情况下求出点P 的坐标,并验证点P 是否在第一种情况下所得到的轨迹上,从而得到点P 的轨迹方程. (1)由题意知553a =⇒=,且有2235b -=2b =,因此椭圆C 的标准方程为22194x y +=;(2)①设从点P 所引的直线的方程为()00y y k x x -=-,即()00y kx y kx =+-, 当从点P 所引的椭圆C 的两条切线的斜率都存在时,分别设为1k 、2k ,则121k k =-, 将直线()00y kx y kx =+-的方程代入椭圆C 的方程并化简得()()()222000094189360kx k y kx x y kx ++-+--=,()()()2220000184949360k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦, 化简得()2200940y kx k ---=,即()()2220009240x k kx y y --+-=,则1k 、2k 是关于k 的一元二次方程()()2220009240x k kx y y --+-=的两根,则201220419y k k x -==--,化简得220013x y +=;②当从点P 所引的两条切线均与坐标轴垂直,则P 的坐标为()3,2±±,此时点P 也在圆2213x y +=上.综上所述,点P 的轨迹方程为2213x y +=.考点:本题以椭圆为载体,考查直线与圆锥曲线的位置关系以及动点的轨迹方程,将直线与二次曲线的公共点的个数利用∆的符号来进行转化,计算量较大,从中也涉及了方程思想的灵活应用.23.(1)f (x )的最小正周期为π23- (2)f (x )在5[,]612ππ上单调递增;在52[,]123ππ上单调递减. 【解析】 【分析】(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值.(2)根据[]20,3x ππ-∈,利用正弦函数的单调性,即可求得()f x 在2[,]63ππ上的单调区间. 【详解】解:(1)函数23()sin()sin 3cos cos sin (1cos2)2f x x x x x x x π=--=-+1333sin 2cos 2sin(2)23x x x π=--=--, 即()3sin(2)3f x x π=--故函数的周期为22T ππ==,最大值为312-. (2)当2[,]63x ππ∈ 时,[]20,3x ππ-∈,故当0232x ππ-时,即5[,]612x ππ∈时,()f x 为增函数; 当223x πππ-时,即52[,]123x ππ∈时,()f x 为减函数; 即函数()f x 在5[,]612ππ上单调递增;在52[,]123ππ上单调递减. 【点睛】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题. 24.(Ⅰ)B=4π(Ⅱ)21+ 【解析】 【分析】 【详解】 (1)∵a=bcosC+csinB∴由正弦定理知sinA=sinBcosC+sinCsinB ① 在三角形ABC 中,A=-(B+C)∴sinA=sin(B+C)=sinBcosC+cosBsinC ② 由①和②得sinBsinC=cosBsinC 而C ∈(0,),∴sinC≠0,∴sinB=cosB 又B(0,),∴B=(2) S △ABC 12=ac sin B 24=ac , 由已知及余弦定理得:4=a 2+c 2﹣2ac cos4π≥2ac ﹣2ac 22⨯,整理得:ac≤,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为11222⨯=(2=1.25.(1)340x y -+=;(2 【解析】 【分析】(1)求得()04A ,,()22B --,,问题得解. (2)利用直线AB 和曲线C 相切的关系可得:圆心到直线A B 的距离等于圆的半径r ,列方程即可得解. 【详解】(1)分别将()π42A ,,()5π4B ,转化为直角坐标为()04A ,,()22B --,, 所以直线AB 的直角坐标方程为340x y -+=. (2)曲线C 的方程为r ρ=(0r >),其直角坐标方程为222x y r +=.又直线A B 和曲线C 有且只有一个公共点,即直线与圆相切, 所以圆心到直线A B 的距离等于圆的半径r .又圆心到直线A B=r .【点睛】本题主要考查了极坐标与直角坐标互化,还考查了直线与圆相切的几何关系,考查计算能力及点到直线距离公式,属于中档题.。
2019年高考数学模拟试题含答案
---- 专业文档 - 可编辑 --2019 年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回。
一.选择题:本大题共12 个小题,每小题 5 分,共60 分。
在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合 A { x x 2 2x 3 0} , B { 2,3,4} ,则 (C R A) B = A. { 2,3} B. { 2,3,4} C. { 2} D.2.已知 i 是虚数单位,z 1 ,则 z z =3 i1 1A. 5 B. 10 C.D.10 5 3.执行如图所示的程序框图,若输入的点为P(1,1) ,则输出的n 值为A. 3 B.4 C. 5 D. 6ED C--FA B(第 3 题)(第 4 题)4.如图,ABCD 是边长为8 的正方形,若DE 1 EC ,且 F 为 BC 的中点,则 EA EF3高三数学(理)科试题(第 1 页共 6 页)------ 专业文档 - 可编辑 --A. 10 B.12 C.16 D. 20x y 25.若实数 x, y 满足 y x 1 ,则 z 2 x 8 y的最大值是y 0A. 4 B.8 C.16 D. 326.一个棱锥的三视图如右图,则该棱锥的表面积为A. 16 5 8 2 32B. 32 5 32C. 16 2 32D. 16 5 16 2 327. 5 张卡片上分别写有0, 1, 2, 3 , 4,若从这 5 张卡片中随机取出 2 张,则取出的 2 张卡片上的数字之和大于 5 的概率是1 1 3 4A.B. C . D .10 5 10 58.设 Sn 是数列 { an } 的前 n 项和,且 a1 1, an 1 S n Sn 1 ,则 a5 =A.9.函数1 1B.1 C . D .1 30 30 20 201 xf x ln 的大致图像为1 x--10. 底面为矩形的四棱锥P ABCD 的体积为8,若 PA 平面 ABCD , 且 PA 3 ,则四棱锥P ABCD 的外接球体积最小值是高三数学(理)科试题(第 2 页共 6 页)------ 专业文档 - 可编辑 --25A. B . 125 C . 125 D . 256 611. 已知抛物线 y2 2 px p 0 , 过焦点且倾斜角为30 °的直线交抛物线于A,B 两点,以 AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为3 3A. x 1 B . x C. x D . x 32 312. 已知函数 f ( x) x2ln x ( x 2 ),函数g( x) x 1 ,直线y t 分别与两函数交于2 2A, B 两点,则AB 的最小值为1 3A.B. 1 C .D. 22 2二.填空题:本大题共 4 小题,每小题 5 分,共20 分.13. 设样本数据 x1,x2,... ,x2018的方差是 5,若 y i3x i1( i 1,2,...,2018 ),则 y1,y2, ... ,y2018的方差是 ________14.已知函数 f ( x) sin x3 cos x (0 ),若 3 ,则方程 f (x)1 在 (0, ) 的实数根个数是 _____15.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,... , 9 填入 3 3 的方格内,使三行、三列、两对角线的三个数之和都等于15 ( 如图) . 一般地,将连续的正整数1, 2,3,?,n2填入 n n 的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方 . 记 n 阶幻方的一条对角线上数的和为N n ( 如:在 3 阶幻方中,N315 ) ,则 N5 =_______--ABC 中,内角A, B, C 所对的边分别π16. 已知为 a , b , c,且 c 1 , C .3高三数学(理)科试题(第 3 页共 6 页)------ 专业文档 - 可编辑 --若 sin C sin( A B ) sin 2B ,则ABC 的面积为三、解答题:本大题共 6 小题,其中17-21 小题为必考题,每小题12 分,第 22 — 23 题为选考题,考生根据要求做答,每题10 分.17.( 本小题满分12 分)设数列 { a n } 是公差为 d 的等差数列.( Ⅰ ) 推导数列{ a n } 的通项公式;( Ⅱ ) 设 d 0 ,证明数列{ a n1} 不是等比数列.18. ( 本小题满分12 分)某中学为了解全校学生的上网情况,在全校随机抽取了40 名学生 ( 其中男、女生各占一半) 进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为 5 组: [0 ,5), [5 , 10) , [10 , 15) , [15 ,20) , [20 , 25] ,得到如图所示的频率分布直方图.--( Ⅰ ) 写出女生组频率分布直方图中 a 的值;( Ⅱ ) 在抽取的40 名学生中从月上网次数不少于20 的学生中随机抽取 2 人,并用X 表示随机抽取的 2 人中男生的人数,求X 的分布列和数学期望.19.( 本小题满分12 分)在直三棱柱ABC A1B1C1中, AB AC AA1 2 , BA CA 。
四川省凉山市甘洛中学校高一数学文联考试题含解析
四川省凉山市甘洛中学校高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,则①∩B = A,②∪B = B,③∩B =(2,3)∪(7,10)以上结论正确的有()A.0个 B.1个 C.2个 D.3个参考答案:D2. 向量,,若的夹角为300,则的最大值为()A. 2B. 2C.4 D.参考答案:C3. 如图,设A,B两点在河的两岸,一测量者在A的同侧河选定一点C,测出AC的距离为50米,,,则A,B两点的距离为()A.米B.50米 C.25米D.米参考答案:A在△ABC中,∵∠ACB=45°,∠CAB=105°∴∠B=30°由正弦定理可得:,故答案为:A.4. 若0<a<1,且函数f(x)=|log a x|,则下列各式中成立的是()A.f(2)>f()>f()B.f()>f(2)>f()C.f()>f(2)>f()D.f()>f()>f(2)参考答案:D【考点】4O:对数函数的单调性与特殊点.【分析】由0<a<1,将f(2)转化为log a,将f()转化为log a,将f()转化为log a,再利用对数函数f(x)=log a x在(0,+∞)上是减函数得到结论.【解答】解:∵0<a<1∴f(2)=|log a2|=|﹣log a||=log af()=|log a|=log af()=|log a|=log a,∵0<a<1,函数f(x)=log a x,在(0,+∞)上是减函数,∴f()>f()>f(2)故选D5. 设在约束条件下,目标函数的最大值大于2,则的取值范围为()A. B. C. D. 参考答案:B略6. 有下列函数:①y=x2﹣3|x|+2;②y=x2,x∈(﹣2,2];③y=x3;④y=x﹣1,其中是偶函数的有- --------------- ()A、①B、①③C、①② D、②④参考答案:A略7. 设,其中,若在区间上为增函数,则的最大值为()A.B.C.D.参考答案:C由题意,因为在上为增函数,其中,则,且,解得,即的的最大值为,故选C.8. 若则实数的取值范围是()A.;B. ;C. ;D.参考答案:B9. 已知圆O的方程为,向量,点是圆O上任意一点,那么的取值范围是( )A.B.C.D.参考答案:D略10. 下列命题中正确的是()A.有两个面平行,其余各面都是平行四边形的几何体叫棱柱B.有一个面是多边形,其余各面都是三角形的几何体叫棱锥C.由五个面围成的多面体一定是四棱锥D.棱台各侧棱的延长线交于一点参考答案:D【考点】命题的真假判断与应用.【专题】综合题;转化思想;综合法;简易逻辑.【分析】根据棱柱、棱锥、棱台的几何特征,即可得出结论.【解答】解:有两个面平行,其余各面是相邻的公共边都相互平行的平行四边形的几何体叫棱柱,故A错误;有一个面是多边形,其余各面都是有公共顶点三角形的几何体叫棱锥,故B错误;由5个面成的多面体可能是四棱锥或三棱柱,故C不正确;拿一个平行于底面的平面截棱锥,底面与截面之间的部分叫棱台,故棱台各侧棱的延长线交于一点,即D正确.【点评】本题考查的知识点是棱柱的几何特征,棱锥的几何特征,棱台的几何特征,熟练掌握相关定义是解答的关键.二、填空题:本大题共7小题,每小题4分,共28分11. 下图中的三个正方形块中,着色的正方形的个数依次构成一个数列的前3项,根据着色的规律,这个数列的通项__________.参考答案:略12. 袋里装有5个球,每个球都记有1~5中的一个号码,设号码为x的球质量为(x2-5x+30)克,这些球以同等的机会(不受质量的影响)从袋里取出.若同时从袋内任意取出两球,则它们质量相等的概率是___ .参考答案:1/5略13. 在明朝程大位《算术统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说“宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?”根据上述条件,从上往下数第二层有___________盏灯.参考答案:6.【分析】根据题意可将问题转化为等比数列中,已知和,求解的问题;利用等比数列前项和公式可求得,利用求得结果.【详解】由题意可知,每层悬挂的红灯数成等比数列,设为设第7层悬挂红灯数为,向下依次为且即从上往下数第二层有6盏灯本题正确结果:6【点睛】本题考查利用等比数列前项和求解基本量的问题,属于基础题.14. 函数(且)的图象恒过定点P,则点P坐标为▲;若点P 在幂函数g (x )的图象上,则g (x )=▲.参考答案:(4,2);15. 函数y=a x-1+2(a>0,a≠1)一定经过的定点是()A. (0,1)B. (1,1) C).(1,2) D. (1,3)参考答案:D略16. 已知数列{a n}为正项的递增等比数列,,,记数列的前n项和为T n,则使不等式成立的最大正整数n的值是_______.参考答案:6【分析】设等比数列{a n}的公比q,由于是正项的递增等比数列,可得q>1.由a1+a5=82,a2?a4=81=a1a5,∴a1,a5,是一元二次方程x2﹣82x+81=0的两个实数根,解得a1,a5,利用通项公式可得q,a n.利用等比数列的求和公式可得数列{}的前n项和为T n.代入不等式2019|T n﹣1|>1,化简即可得出.【详解】数列为正项的递增等比数列,,a2?a4=81=a1a5,即解得,则公比,∴,则,∴,即,得,此时正整数的最大值为6.故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.17. 比较大小:参考答案:>略三、解答题:本大题共5小题,共72分。
甘洛县一中2018-2019学年上学期高三数学10月月考试题
甘洛县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在等差数列{}n a 中,已知4816a a +=,则210a a +=( )A .12B .16C .20D .242. ()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a >B .0a <<C .02a <<D .以上都不对3. 下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台 4. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>05. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )A .x=πB .C .D .6. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限7. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一8. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A .B .C .D . 9. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形10.二项式(1)(N )n x n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力. 11.设数列{a n }的前n 项和为Sn ,若S n =n2+2n (n ∈N *),则++…+=( )A .B .C .D .12.若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =()A . 1±B . 4±C .D .2±二、填空题13.函数()x f x xe =在点()()1,1f 处的切线的斜率是 . 14.在△ABC 中,a=1,B=45°,S △ABC =2,则b= .15.设,y x 满足约束条件2110y xx y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.16.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .三、解答题17.(本题10分)解关于的不等式2(1)10ax a x -++>.18.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,asinAsinB+bcos 2A=a .(Ⅰ)求;(Ⅱ)若c 2=b 2+a 2,求B .19.已知函数322()1f x x ax a x =+--,0a >. (1)当2a =时,求函数()f x 的单调区间;(2)若关于的不等式()0f x ≤在[1,)+∞上有解,求实数的取值范围.20.已知向量=(,1),=(cos ,),记f (x )=.(1)求函数f (x )的最小正周期和单调递增区间;(2)将函数y=f (x )的图象向右平移个单位得到y=g (x )的图象,讨论函数y=g (x )﹣k 在的零点个数.21.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.22.(本小题满分12分)已知函数()23cos cos 2f x x x x =++. (1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.23.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.甘洛县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B 【解析】试题分析:由等差数列的性质可知,16a 84102=+=+a a a . 考点:等差数列的性质. 2. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数()()22f x a x a =-+在区间[]0,1上恒正,则(0)0(1)0f f >⎧⎨>⎩,即2020a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 3. 【答案】C【解析】解:①是底面为梯形的棱柱; ②的两个底面不平行,不是圆台; ③是四棱锥; ④不是由棱锥截来的, 故选:C .4. 【答案】A【解析】解:∵不等式ax 2+bx+c <0(a ≠0)的解集为R ,∴a <0,且△=b 2﹣4ac <0,综上,不等式ax 2+bx+c <0(a ≠0)的解集为的条件是:a <0且△<0.故选A .5. 【答案】B【解析】解:将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cos x ,再向右平移个单位得到y=cos[(x )],由(x )=k π,得x =2k π,即+2k π,k ∈Z ,当k=0时,,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.6.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.【点评】本题考查了象限角的三角函数符号,属于基础题.7.【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C.【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.8.【答案】C【解析】考点:三视图.9.【答案】B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r 时截面面积最大,即轴截面面积最大,故A 正确.对于B ,设圆锥SO 的底面半径为r ,高为h ,过圆锥定点的截面在底面的边长为AB=a ,则O 到AB 的距离为,∴截面三角形SAB 的高为,∴截面面积S==≤=.故截面的最大面积为.故B 错误.对于C ,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C 正确.对于D ,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D 正确.故选:B .【点评】本题考查了旋转体的结构特征,属于中档题.10.【答案】B【解析】因为(1)(N )nx n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 11.【答案】D【解析】解:∵S n =n 2+2n (n ∈N *),∴当n=1时,a 1=S 1=3;当n ≥2时,a n =S n ﹣S n ﹣1=(n 2+2n )﹣[(n ﹣1)2+2(n ﹣1)]=2n+1.∴==,∴++…+=++…+==﹣. 故选:D .【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.12.【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r,即1=,解得4a =±,故选B. 1 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.二、填空题13.【答案】2e 【解析】 试题分析:()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .考点:利用导数求曲线上某点切线斜率. 14.【答案】 5 .【解析】解:∵在△ABC 中,a=1,B=45°,S △ABC=2=acsinB=,可得:ac=4,∴c=4,∴b===5.故答案为:5.15.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划.16.【答案】.【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.三、解答题17.【答案】当1a >时,),1()1,(+∞-∞∈ ax ,当1a =时,),1()1,(+∞-∞∈ x ,当1a 0<<时,),1()1,(+∞-∞∈a x ,当0a =时,)1,(-∞∈x ,当0a <时,)1,1(ax ∈.考点:二次不等式的解法,分类讨论思想. 18.【答案】【解析】解:(Ⅰ)由正弦定理得,sin 2AsinB+sinBcos 2A=sinA ,即sinB (sin 2A+cos 2A )=sinA∴sinB=sinA , =(Ⅱ)由余弦定理和C 2=b 2+a 2,得cosB=由(Ⅰ)知b 2=2a 2,故c 2=(2+)a 2,可得cos 2B=,又cosB >0,故cosB=所以B=45° 【点评】本题主要考查了正弦定理和余弦定理的应用.解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化.19.【答案】(1)()f x 的单调递增区间是(),2-∞-和2,3⎛⎫+∞ ⎪⎝⎭,单调递减区间为2(2,)3-;(2)[1,)+∞.【解析】试题分析:(1) 2a =时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;(2) 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围.试题解析:(1)当2a =时,32()241f x x x x =+--,所以2'()344(32)(2)f x x x x x =+-=-+, 由'()0f x >,得23x >或2x <-, 所以函数()f x 的单调递减区间为2(2,)3-.(2)要使()0f x ≤在[1,)+∞上有解,只要()f x 在区间[1,)+∞上的最小值小于等于0. 因为22'()32(3)()f x x ax a x a x a =+-=-+, 令'()0f x =,得103ax =>,20x a =-<.1考点:导数与函数的单调性;分类讨论思想. 20.【答案】【解析】解:(1)∵向量=(,1),=(cos ,),记f (x )=.∴f (x )=cos +=sin +cos +=sin (+)+,∴最小正周期T==4π,2k π﹣≤+≤2k π+,则4k π﹣≤x ≤4k π+,k ∈Z .故函数f (x )的单调递增区间是[4k π﹣,4k π+],k ∈Z ;(2))∵将函数y=f (x )=sin (+)+的图象向右平移个单位得到函数解析式为:y=g (x )=sin[(x ﹣+)]+ =sin (﹣)+,∴则y=g (x )﹣k=sin (x ﹣)+﹣k ,∵x ∈[0,],可得:﹣≤x ﹣≤π,∴﹣≤sin (x ﹣)≤1,∴0≤sin (x ﹣)+≤,∴若函数y=g (x )﹣k 在[0,]上有零点,则函数y=g (x )的图象与直线y=k 在[0,]上有交点,∴实数k 的取值范围是[0,].∴当k <0或k >时,函数y=g (x )﹣k 在的零点个数是0;当0≤k <1时,函数y=g (x )﹣k 在的零点个数是2;当k=0或k=时,函数y=g (x )﹣k 在的零点个数是1.【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.21.【答案】(1)3B π=;(2)[1,2).【解析】22.【答案】(1)332⎡⎤⎢⎥⎣⎦,;(2).【解析】试题分析:(1)化简()sin 226f x x π⎛⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦,;(2)易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在236ππ⎡⎤-⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤-++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,⇒ 223322632k k ωππππωππππ⎧-+≥-+⎪⎪⎨⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为.考点:三角函数的图象与性质.23.【答案】(1)320x y ++=;(2)()2228x y -+=.【解析】试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形ABCD 外接圆的方程.(2)由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,因为矩形ABCD 两条对角线的交点为()2,0M ,所以M 为距形ABCD 外接圆的圆心, 又AM ==从而距形ABCD 外接圆的方程为()2228x y -+=.1考点:直线的点斜式方程;圆的方程的求解.【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.。
甘洛县第一中学2018-2019学年上学期高三数学10月月考试题
甘洛县第一中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( )A .2B .3C .4D .52. 已知一三棱锥的三视图如图所示,那么它的体积为( )A .B .C .D .1323123. cos80cos130sin100sin130︒︒-︒︒等于( )A B .12 C .12-D .4. 若等边三角形的边长为2,为的中点,且上一点满足,ABC N AB AB M CM xCA yCB =+则当取最小值时,( )14x y+CM CN ⋅= A .6 B .5 C .4D .35. 函数的定义域是()A .(﹣∞,2)B .[2,+∞)C .(﹣∞,2]D .(2,+∞)6. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是()A .a=3B .a=﹣3C .a=±3D .a=5或a=±37. 已知命题1:0,2p x x x∀>+≥,则p ⌝为( )A .10,2x x x ∀>+< B .10,2x x x ∀≤+<C .10,2x x x ∃≤+<D .10,2x x x∃>+<8. 执行如图所示的程序框图,若输入的x 的值为2,则输出的x 的值为()A .3B .126C .127D .1289. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A .B .C .D .10.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④11.定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或212.棱台的两底面面积为、,中截面(过各棱中点的面积)面积为,那么( )1S 2S 0SA .B .C .D .=0S =0122S S S =+20122S S S =二、填空题13.在中,有等式:①;②;③;④ABC ∆sin sin a A b B =sin sin a B b A =cos cos a B b A =.其中恒成立的等式序号为_________.sin sin sin a b cA B C+=+14.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.()3f x x x =-+15.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >的标准差是,则.a =16.函数()满足且在上的导数满足,则不等式)(x f R x ∈2)1(=f )(x f R )('x f 03)('>-x f 的解集为.1log 3)(log 33-<x x f 【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.三、解答题17.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:大学甲乙丙丁人数812812从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.18.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据:赞同反对合计男50 150200女30170200合计80320 400(Ⅰ)能否有能否有的把握认为对这一问题的看法与性别有关?97.5%(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为,求的分布列和期望.X X 参考公式:,22()K ()()()()n ad bc a b c d a c b d -=++++()n a b c d =+++19.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5的学生颁发荣誉证书,现从A 和B 两班中各随机抽5名学生进行抽查,其成绩记录如下:A 777.599.5B 6x 8.58.5y由于表格被污损,数据x ,y 看不清,统计人员只记得x <y ,且A 和B 两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B 班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X 表示抽取的学生中获得荣誉证书的人数,求X 的期望. 20.(本小题满分10分)选修4-5:不等式选讲已知函数.()()f x x a a R =-∈(1)当时,解不等式;1a =()211f x x <--(2)当时,,求的取值范围.(2,1)x ∈-121()x x a f x ->---21.(本题满分15分)设点是椭圆上任意一点,过点作椭圆的切线,与椭圆交于,P 14:221=+y x C P )1(14:22222>=+t ty t x C A 两点.B(1)求证:;PB PA =(2)的面积是否为定值?若是,求出这个定值;若不是,请说明理由.OAB ∆【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.22.(本小题满分12分)已知向量,,(cos sin ,sin )m x m x x w w w =-a (cos sin ,2cos )x x n x w w w =--b 设函数的图象关于点对称,且.()()2n f x x R =×+Îa b (,1)12p(1,2)w Î(I )若,求函数的最小值;1m =)(x f (II )若对一切实数恒成立,求的单调递增区间.()(4f x f p£)(x f y 【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.甘洛县第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C【解析】解:函数f (x )=+6x ﹣1,可得f ′(x )=x 2﹣8x+6,∵a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,∴a 2014,a 2016是方程x 2﹣8x+6=0的两实数根,则a 2014+a 2016=8.数列{a n }中,满足a n+2=2a n+1﹣a n ,可知{a n }为等差数列,∴a 2014+a 2016=a 2000+a 2030,即a 2000+a 2012+a 2018+a 2030=16,从而log 2(a 2000+a 2012+a 2018+a 2030)=log 216=4.故选:C .【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键. 2. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为的正方体21111ABCD A B C D -中的一个四面体,其中,∴该三棱锥的体积为,选B .1ACED 11ED =112(12)2323⨯⨯⨯⨯=3. 【答案】D 【解析】试题分析:原式()()cos80cos130sin80sin130cos 80130cos 210cos 30180cos30=︒︒-︒︒=︒+︒=︒=︒+︒=-︒=.考点:余弦的两角和公式.4. 【答案】D 【解析】试题分析:由题知,;设,则(1)CB BM CM CB xCA y =-=+- BA CA CB =-BM k BA = ,可得,当取最小值时,,最小值在,1x k y k =-=-1x y +=14x y +()141445x yx y x y x y y x ⎛⎫+=++=++ ⎪⎝⎭时取到,此时,将代入,则4y x x y =21,33y x ==()1,CN 2CM xCA yCB CA CB =+=+ .故本题答案选D.()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫⋅=++⋅=+=+= ⎪⎝⎭考点:1.向量的线性运算;2.基本不等式.5.【答案】D【解析】解:根据函数有意义的条件可知∴x>2故选:D6.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.7.【答案】D【解析】考点:全称命题的否定.8.【答案】C【解析】解:当输出的x=2时,执行循环体后,x=3,不满足退出循环的条件,当x=3时,执行循环体后,x=7,不满足退出循环的条件,当x=7时,执行循环体后,x=127,满足退出循环的条件,故输出的x值为127故选:C【点评】本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法.9.【答案】C【解析】考点:三视图.10.【答案】A【解析】考点:斜二测画法.11.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D.【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f (x )的解析式,进而求出三个函数的极值点坐标,是解答本题的关键. 12.【答案】A 【解析】试题分析:不妨设棱台为三棱台,设棱台的高为上部三棱锥的高为,根据相似比的性质可得:2h ,解得A .220(2(a S a hS a S a hS '⎧=⎪+⎪⎨'⎪=+⎪⎩=考点:棱台的结构特征.二、填空题13.【答案】②④【解析】试题分析:对于①中,由正弦定理可知,推出或,所以三角形为等腰三角sin sin a A b B =A B =2A B π+=形或直角三角形,所以不正确;对于②中,,即恒成立,所以是正sin sin a B b A=sin sin sin sin AB B A =确的;对于③中,,可得,不满足一般三角形,所以不正确;对于④中,由cos cos a B b A =sin()0B A -=正弦定理以及合分比定理可知是正确,故选选②④.1sin sin sin a b cA B C+=+考点:正弦定理;三角恒等变换.14.【答案】(【解析】 ,所以增区间是()2310f x x x ⎛=-+>⇒∈ ⎝'⎛ ⎝15.【答案】2【解析】试题分析:第一组数据平均数为,2)((()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x .22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=考点:方差;标准差.16.【答案】)3,0(【解析】构造函数,则,说明在上是增函数,且x x f x F 3)()(-=03)(')('>-=x f x F )(x F R .又不等式可化为,即,13)1()1(-=-=f F 1log 3)(log 33-<x x f 1log 3)(log 33-<-x x f )1()(log 3F x F <∴,解得.∴不等式的解集为.1log 3<x 30<<x 1log 3)(log 33-<x x f )3,0(三、解答题17.【答案】(1)甲,乙,丙,丁;(2).25P =【解析】试题分析:(1)从这名学生中按照分层抽样的方式抽取名学生,则各大学人数分别为甲,乙,丙,丁;4010(2)利用列举出从参加问卷调查的名学生中随机抽取两名学生的方法共有种,这来自同一所大学的取4015法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3.(2)设乙中3人为,丁中3人为,从这6名学生中随机选出2名学生发言的结果为123,,a a a 123,,b b b ,,,,,,,,,,12{,}a a 13{,}a a 11{,}a b 12{,}a b 13{,}a b 32{,}a a 12{,}b a 22{,}b a 32{,}b a 31{,}a b ,,,,,共15种,32{,}a b 33{,}a b 12{,}b b 13{,}b b 23{,}b b 这2名同学来自同一所大学的结果共6种,所以所求概率为.62155P ==考点:1、分层抽样方法的应用;2、古典概型概率公式.18.【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.的分布列为:X 的数学期望为X ………………12分()51515190123282856568E X =⨯+⨯+⨯+⨯=19.【答案】【解析】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,X0123P 52815281556156=(6+x+8.5+8.5+y ),∵,∴x+y=17,①∵,=,∵,得(x ﹣8)2+(y ﹣8)2=1,②由①②解得或,∵x <y ,∴x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C ,则事件C 包含个基本事件,共有个基本事件,∴P (C )=,即2名学生颁发了荣誉证书的概率为.(Ⅱ)由题意知X 所有可能的取值为0,1,2,3,P (X=0)==,P (X=1)==,P (X=2)==,P (X=3)==,EX==.【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.20.【答案】(1);(2).{}11x x x ><-或(,2]-∞-【解析】试题解析:(1)因为,所以,()211f x x <--1211x x -<--即,1211x x ---<-当时,,∴,∴,从而;1x >1211x x --+<-1x -<-1x >1x >当时,,∴,∴,从而不等式无解;112x ≤≤1211x x --+<-33x -<-1x >当时,,∴,从而;12x <1211x x -+-<-1x <-1x <-综上,不等式的解集为.{}11x x x ><-或(2)由,得,121()x x a f x ->---121x x a x a -+->--因为,1121x x a x a x x a -+-≥-+-=--所以当时,;(1)()0x x a --≥121x x a x a -+-=--当时,(1)()0x x a --<121x x a x a -+->--记不等式的解集为,则,故,(1)()0x x a --<A (2,1)A -⊆2a ≤-所以的取值范围是.(,2]-∞-考点:1.含绝对值的不等式;2.分类讨论.21.【答案】(1)详见解析;(2)详见解析.∴点为线段中点,;…………7分P AB PB PA =(2)若直线斜率不存在,则,与椭圆方程联立可得,,AB 2:±=x AB 2C )1,2(2--±t A ,故,…………9分)1,2(2-±t B 122-=∆t S OAB 若直线斜率存在,由(1)可得AB ,,,…………11分148221+-=+k km x x 144422221+-=k t m x x 141141222212+-+=-+=k t k x x k AB 点到直线的距离,…………13分O AB 2221141kk k m d ++=+=∴,综上,的面积为定值.…………15分12212-=⋅=∆t d AB S OAB OAB ∆122-t 22.【答案】。
2019年甘肃省高考数学一诊试卷(理科)-含答案解析
高考数学一诊试卷(理科)一、选择题(每小题5分)1.已知集合A={1,2,3},B={x∈Z|(x+2)(x﹣3)<0},则A∪B()A.{1} B.{﹣1,0,1,2,3} C.{1,2} D.{0,1,2,3}2.已知z是复数,且=1+i,则z在复平面内对应的点的坐标为()A.(﹣3,1)B.(﹣3,﹣1)C.(1,﹣3)D.(﹣1,﹣3)3.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1536石,验得米内夹谷,抽样取米一把,数得224粒内夹谷28粒,则这批米内夹谷约为()A.169石B.192石C.1367石 D.1164石4.已知直线l与平面α相交但不垂直,m为空间内一条直线,则下列结论一定不成立的是()A.m⊥l,m⊂αB.m⊥l,m∥αC.m∥l,m∩α≠∅D.m⊥l,m⊥α5.在等差数列{an }中,a1+a2=1,a2016+a2017=3,Sn是数列{an}的前n项和,则S2017=()A.6051 B.4034 C.2017 D.10096.某几何体的三视图如图所示,则该几何体的体积为()A.4+2πB.8+2πC.4+πD.8+π7.若圆x2+y2+4x﹣2y﹣a2=0截直线x+y+5=0所得弦的长度为2,则实数a=()A.±2 B.﹣2 C.±4 D.48.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.99.已知实数x,y满足且ax﹣y+1﹣a=0,则实数a的取值范围是()A.[﹣,1)B.[﹣1,] C.(﹣1,] D.[﹣,]10.已知函数f(x)=cos(2x﹣)+2cos2x,将函数y=f(x)的图象向右平移个单位,得到函数y=g(x)的图象,则函数y=g(x)图象的一个对称中心是()A.(﹣,1)B.(﹣,1)C.(,1)D.(,0)11.设抛物线K:x2=2py(p>0),焦点为F,P是K上一点,K在点P处的切线为l,d为F到l的距离,则()A. =p B. =p C. =2p D. =12.已知定义在(0,+∞)上的函数f(x)满足f(xy)+﹣f(x)﹣f(y)=0,若一族平行线x=xi (i=1,2,…,n)分别与y=f(x)图象的交点为(x1,y 1),(x2,y2),…,(xn,yn),且xi,2f(1),xn﹣i+1成等比数列,其中i=1,2,…,n,则=()A.2n B.1 C.D.二、填空题(每小题5分)13.已知向量=(1,﹣1),•=0,|﹣|=2,则||= .14.已知(a+)6(a>0)展开式中的常数项是5,则a= .15.已知函数f(x)=若方程f(x)﹣a=0有唯一解,则实数a 的取值范围是.16.设数列{an }满足:a1=1,an=e2an+1(n∈N*),﹣=n,其中符号Π表示连乘,如i=1×2×3×4×5,则f(n)的最小值为.三、解答题17.在△ABC中,a,b,c分别是角A,B,C的对边,且b,c是关于x的一元二次方程x2+mx﹣a2+b2+c2=0的两根.(1)求角A的大小;(2)已知a=,设B=θ,△ABC的面积为y,求y=f(θ)的最大值.18.持续性的雾霾天气严重威胁着人们的身体健康,汽车排放的尾气是造成雾霾天气的重要因素之一.为了贯彻落实国务院关于培育战略性新兴产业和加强节能减排工作的部署和要求,中央财政安排专项资金支持开展私人购买新能源汽车补贴试点.2017年国家又出台了调整新能源汽车推广应用财政补贴的新政策,其中新能源乘用车推广应用补贴标准如表:某课题组从汽车市场上随机选取了20辆纯电动乘用车,根据其续驶里程R(单词充电后能行驶的最大里程,R∈[100,300])进行如下分组:第1组[100,150),第2组[150,200),第3组[200,250),第4组[250,300],制成如图所示的频率分布直方图.已知第1组与第3组的频率之比为1:4,第2组的频数为7.纯电动续驶里程R(公里)100≤R<150 150≤R<250R>250补贴标准(万元/辆)2 3.6 44(1)请根据频率分布直方图统计这20辆纯电动乘用车的平均续驶里程;(2)若以频率作为概率,设ξ为购买一辆纯电动乘用车获得的补贴,求ξ的分布列和数学期望E(ξ).19.如图,四边形PDCE为矩形,四边形ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1.(1)若M为PA中点,求证:AC∥平面MDE;(2)若平面PAD与PBC所成的锐二面角的大小为,求线段PD的长度.20.已知椭圆E:x2+3y2=m2(m>0)的左顶点是A,左焦点为F,上顶点为B.(1)当△AFB的面积为时,求m的值;(2)若直线l交椭圆E于M,N两点(不同于A),以线段MN为直径的圆过A点,试探究直线l是否过定点,若存在定点,求出这个定点的坐标,若不存在定点,请说明理由.21.已知函数f(x)=(x2﹣x﹣1)e x.(1)求函数f(x)的单调区间.(2)若方程a(+1)+ex=e x在(0,1)内有解,求实数a的取值范围.选修4-4:坐标系与参数方程22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数,﹣π<α<0),曲线C2的参数方程为(t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线C1的极坐标方程和曲线C2的普通方程;(2)射线θ=﹣与曲线C1的交点为P,与曲线C2的交点为Q,求线段PQ的长.选修4-5:不等式选讲23.设函数f(x)=|x+2|+|x﹣1|.(1)求f(x)的最小值及取得最小值时x的取值范围;(2)若集合{x|f(x)+ax﹣1>0}=R,求实数a的取值范围.参考答案与试题解析一、选择题(每小题5分)1.已知集合A={1,2,3},B={x∈Z|(x+2)(x﹣3)<0},则A∪B()A.{1} B.{﹣1,0,1,2,3} C.{1,2} D.{0,1,2,3}【考点】并集及其运算.【分析】先分别求出集合A,B,由此利用并集定义能求出A∪B.【解答】解:∵集合A={1,2,3},B={x∈Z|(x+2)(x﹣3)<0}={﹣1,0,1,2,},∴A∪B={﹣1,01,1,2,3}.故选:B.2.已知z是复数,且=1+i,则z在复平面内对应的点的坐标为()A.(﹣3,1)B.(﹣3,﹣1)C.(1,﹣3)D.(﹣1,﹣3)【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解: =1+i,∴z+2=i﹣1,化为:z=﹣3+i,则z在复平面内对应的点的坐标为(﹣3,1).故选:A.3.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1536石,验得米内夹谷,抽样取米一把,数得224粒内夹谷28粒,则这批米内夹谷约为()A.169石B.192石C.1367石 D.1164石【考点】简单随机抽样.【分析】根据224粒内夹谷28粒,可得比例,即可得出结论.【解答】解:由题意,这批米内夹谷约为1536×=192石,故选:B.4.已知直线l与平面α相交但不垂直,m为空间内一条直线,则下列结论一定不成立的是()A.m⊥l,m⊂αB.m⊥l,m∥αC.m∥l,m∩α≠∅D.m⊥l,m⊥α【考点】空间中直线与平面之间的位置关系.【分析】对4个选项分别进行判断,即可得出结论.【解答】解:设过l和l在平面α内的射影的平面为β,则当m⊥β时,有m⊥l,m∥α或m⊂α,故A,B正确.若m∥l,则m与平面α所成的夹角与l与平面α所成的夹角相等,即m与平面α斜交,故C正确.若m⊥α,设l与m所成的角为θ,则0<θ<.即m与l不可能垂直,故D 错误.故选:D.5.在等差数列{an }中,a1+a2=1,a2016+a2017=3,Sn是数列{an}的前n项和,则S2017=()A.6051 B.4034 C.2017 D.1009【考点】等差数列的前n项和.【分析】根据题意和等差数列的性质求出a1+a2017的值,由等差数列的前n项和公式求出S2017的值.【解答】解:在等差数列{an}中,因为a1+a2=1,a2016+a2017=3,所以a1+a2017=a2+a2016=2,所以S2017==2017,故选C.6.某几何体的三视图如图所示,则该几何体的体积为()A.4+2πB.8+2πC.4+πD.8+π【考点】由三视图求面积、体积.【分析】该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体.【解答】解:该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体.∴该几何体的体积V==8+.故选:D.7.若圆x2+y2+4x﹣2y﹣a2=0截直线x+y+5=0所得弦的长度为2,则实数a=()A.±2 B.﹣2 C.±4 D.4【考点】直线与圆的位置关系.【分析】求出圆心和半径,根据弦长公式进行求解即可.【解答】解:圆的标准方程为(x+2)2+(y﹣1)2=5+a2,r2=5+a2,则圆心(﹣2,1)到直线x+y+5=0的距离为=2,由12+(2)2=5+a2,得a=±2,故选:A.8.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.9【考点】程序框图.【分析】模拟执行程序,可得此程序框图的功能是计算并输出S=+的值,结合选项,只有当S的值为0.7时,n不是正整数,由此得解.【解答】解:模拟执行程序,可得此程序框图执行的是输入一个正整数n,求+的值S,并输出S,由于S=+=1+…+﹣=1﹣=,令S=0.7,解得n=,不是正整数,而n分别输入2,3,8时,可分别输出0.75,0.8,0.9.故选:A.9.已知实数x,y满足且ax﹣y+1﹣a=0,则实数a的取值范围是()A.[﹣,1)B.[﹣1,] C.(﹣1,] D.[﹣,]【考点】简单线性规划.【分析】画出约束条件的可行域,化简目标函数,推出a的表达式,利用不等式的几何意义,求解范围即可.【解答】解:实数x,y满足的可行域如图:可知x≤﹣1,由ax﹣y+1﹣a=0,可得:a=,它的几何意义是可行域内的点与D(1,1)连==.最小值大于与直线线的斜率,由图形可知连线的斜率的最大值为KBDx+y=0平行时的斜率.可得a∈(﹣1,].故选:C.10.已知函数f(x)=cos(2x﹣)+2cos2x,将函数y=f(x)的图象向右平移个单位,得到函数y=g(x)的图象,则函数y=g(x)图象的一个对称中心是()A.(﹣,1)B.(﹣,1)C.(,1)D.(,0)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件利用三角函数恒等变换的应用,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得所得函数图象的一个对称中心.【解答】解:∵f (x )=cos (2x ﹣)+2cos 2x=cos2x+sin2x+1=sin (2x+)+1,∴将函数y=f (x )的图象向右平移个单位,得到函数y=g (x )的图象,可得:g (x )=sin[2(x ﹣)+]+1=sin2x+1,∴令2x=k π,k ∈z ,可得x=,k ∈z ,∴当k=﹣1时,可得函数的图象的对称中心为(﹣,1),故选:A .11.设抛物线K :x 2=2py (p >0),焦点为F ,P 是K 上一点,K 在点P 处的切线为l ,d 为F 到l 的距离,则( ) A .=pB .=p C .=2p D .=【考点】抛物线的简单性质.【分析】设P (x 0,y 0),则K 在点P 处的切线方程为l :y ﹣y 0=(x ﹣x 0),再根据点到直线的距离公式,化简计算即可得到.【解答】解:设P (x 0,y 0),则K 在点P 处的切线方程为l :y ﹣y 0=(x ﹣x 0),则x 02=2py 0,得l :x 0x ﹣py ﹣py 0=0, 又F (0,),所以d====•⇒=,故选:D12.已知定义在(0,+∞)上的函数f (x )满足f (xy )+﹣f (x )﹣f (y )=0,若一族平行线x=x i (i=1,2,…,n )分别与y=f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),且x i ,2f (1),x n ﹣i+1成等比数列,其中i=1,2,…,n,则=()A.2n B.1 C.D.【考点】抽象函数及其应用.【分析】利用xi ,2f(1),xn﹣i+1成等比数列,得xixn﹣i+1=1,f(xi)+f(xn﹣i+1)=f(xi xn﹣i+1)+=1,求出2=1+1+…+1=n,即可得出结论.【解答】解:由题意,f(1)=,∵xi ,2f(1),xn﹣i+1成等比数列,∴xi xn﹣i+1=1,∴f(xi )+f(xn﹣i+1)=f(xixn﹣i+1)+=1,∴2=1+1+…+1=n,∴=故选:C.二、填空题(每小题5分)13.已知向量=(1,﹣1),•=0,|﹣|=2,则||= .【考点】平面向量数量积的运算.【分析】根据向量的数量积公式计算即可.【解答】解:∵向量=(1,﹣1)=,•=0,∴|﹣|2=||2﹣2+||2=4,∴||2=2,∴||=,故答案为:14.已知(a+)6(a>0)展开式中的常数项是5,则a= .【考点】二项式系数的性质.【分析】利用二项式展开式的通项公式求出展开式的常数项的表达式,列方程求出a的值.【解答】解:(a+)6(a>0)展开式中,通项公式为:T=••=a6﹣r•••,r+1令3﹣=0,解得r=2;∴展开式的常数项是a4••=5,解得a=±;又a>0,∴a=.故答案为:.15.已知函数f(x)=若方程f(x)﹣a=0有唯一解,则实数a 的取值范围是(1,+∞).【考点】根的存在性及根的个数判断.【分析】由题知f(x)为分段函数,当x大于0时,由f(x)=f(x﹣1)可知当x大于1时,f(x)=0,小于1大于0时函数为减函数;当x小于等于0时函数为减函数,在同一坐标系中画出函数f(x)的图象与函数y=a的图象,利用数形结合,易求出满足条件实数a的取值范围.【解答】解:函数f(x)=的图象如图所示,当a>1时,函数y=f(x)的图象与函数y=a的图象有唯一个交点,即方程f(x)﹣a=0有唯一解,.故答案为(1,+∞).16.设数列{an }满足:a1=1,an=e2an+1(n∈N*),﹣=n,其中符号Π表示连乘,如i=1×2×3×4×5,则f(n)的最小值为﹣.【考点】数列递推式.【分析】a1=1,an=e2an+1(n∈N*),可得an=e﹣2(n﹣1).﹣=n,化为:f(n)==.考查函数f(x)=的单调性,利用导数研究其单调性即可得出.【解答】解:∵a1=1,an=e2an+1(n∈N*),∴an=e﹣2(n﹣1).﹣=n,化为:f(n)==.考查函数f(x)=,f′(x)=(4x2﹣12x+3)•,令f′(x)=0,解得x1=,x2=,∴0<x1<1,2<x1<3.当x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x>x2时,f′(x)>0.即f(x)在(﹣∞,x1),(x2,+∞)单调递增,在(x1,x2)上单调递减,∴h(x)min =h(x2),即f(n)min=min{f(2),f(3)},f(2)=>f(3)=﹣.∴f(n)=f(3)=﹣.min故答案为:﹣.三、解答题17.在△ABC中,a,b,c分别是角A,B,C的对边,且b,c是关于x的一元二次方程x2+mx﹣a2+b2+c2=0的两根.(1)求角A的大小;(2)已知a=,设B=θ,△ABC的面积为y,求y=f(θ)的最大值.【考点】余弦定理;正弦定理.【分析】(1)由已知化简可得:b2+c2=a2+bc,利用余弦定理可求cosA=,结合范围A∈(0,π),可求A的值.(2)由已知及正弦定理可得b=2sinθ,c=2sin(﹣θ),利用,三角形面积公式,三角函数恒等变换的应用化简可求y=sin(2θ﹣)+,由0<θ<,可得范围﹣<2θ﹣<,利用正弦函数的图象可求最大值.【解答】(本题满分为12分)解:(1)在△ABC中,由题意可得:bc=﹣a2+b2+c2,可得:b2+c2=a2+bc,∴cosA==,又∵A∈(0,π),∴A=.…6分(2)由a=,A=及正弦定理可得:,∴b=2sinB=2sinθ,c=2sinC=2sin(﹣B)=2sin(﹣θ),∴y=bcsinA=sinθsin(﹣θ)=sinθ(cosθ+sinθ)=sin2θ﹣cos2θ+=sin(2θ﹣)+,由于0<θ<,可得:﹣<2θ﹣<,∴当2θ﹣=,即θ=时,ymax=.…12分18.持续性的雾霾天气严重威胁着人们的身体健康,汽车排放的尾气是造成雾霾天气的重要因素之一.为了贯彻落实国务院关于培育战略性新兴产业和加强节能减排工作的部署和要求,中央财政安排专项资金支持开展私人购买新能源汽车补贴试点.2017年国家又出台了调整新能源汽车推广应用财政补贴的新政策,其中新能源乘用车推广应用补贴标准如表:某课题组从汽车市场上随机选取了20辆纯电动乘用车,根据其续驶里程R(单词充电后能行驶的最大里程,R∈[100,300])进行如下分组:第1组[100,150),第2组[150,200),第3组[200,250),第4组[250,300],制成如图所示的频率分布直方图.已知第1组与第3组的频率之比为1:4,第2组的频数为7.纯电动续驶里程R(公里)100≤R<150 150≤R<250R>250补贴标准(万元/辆)2 3.644(1)请根据频率分布直方图统计这20辆纯电动乘用车的平均续驶里程;(2)若以频率作为概率,设ξ为购买一辆纯电动乘用车获得的补贴,求ξ的分布列和数学期望E(ξ).【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)由表格分别求出第一组、第二组、第三组、第四组的频率,由此利用频率分布直方图能估计这20辆纯电动乘用车的平均续驶里程.(2)由题意知ξ的可能取值为2,3.6,4.4,分别求出相应的概率,由此能求出ξ的分布列和数学期望.【解答】解:(1)由表格知第一组的频率为0.1,第二组的频率为,第三组的频率为0.4,第四组的频率为0.15,∴频率分布直方图估计这20辆纯电动乘用车的平均续驶里程为:125×0.1+175×0.35+225×0.4+275×0.15=205(公里).(2)由题意知ξ的可能取值为2,3.6,4.4,P(ξ=2)=0.1,P(ξ=3.6)=0.75,P(ξ=4.4)=0.15,∴ξ的分布列为:ξ 2 3.6 4.4P 0.1 0.75 0.15Eξ=2×0.1+3.6×0.75+4.4×0.15=3.56.19.如图,四边形PDCE为矩形,四边形ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1.(1)若M为PA中点,求证:AC∥平面MDE;(2)若平面PAD与PBC所成的锐二面角的大小为,求线段PD的长度.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)设PC交DE于点N,连结MN,MN∥AC,由此能证明AC∥平面MDE.(2)设PD=a,(a>0),推导出PD⊥平面ABCD,以D为原点,DA,DC,DP所在直线分为x,y,z轴,建立空间直角坐标系,利用向量法能求出线段PD的长度.【解答】证明:(1)设PC交DE于点N,连结MN,在△PAC中,∵M,N分别是PA,PC的中点,∴MN∥AC,又AC⊄平面MDE,MN⊂平面MDE,∴AC∥平面MDE.解:(2)设PD=a,(a>0),∵四边形PDCE是矩形,四边形ABCD是梯形,平面PDCE⊥平面ABCD,∴PD⊥平面ABCD,又∵∠BAD=∠ADC=90°,以D为原点,DA,DC,DP所在直线分为x,y,z轴,建立空间直角坐标系,则P(0,0,a),B(1,1,0),C(0,2,0),,平面PAD的法向量=(0,1,0),设平面PBC的法向量=(x,y,z),则,取x=a,得=(a,a,2),∵平面PAD与PBC所成的锐二面角的大小为,∴cos===,解得a=.∴线段PD的长度为.20.已知椭圆E:x2+3y2=m2(m>0)的左顶点是A,左焦点为F,上顶点为B.(1)当△AFB的面积为时,求m的值;(2)若直线l交椭圆E于M,N两点(不同于A),以线段MN为直径的圆过A点,试探究直线l是否过定点,若存在定点,求出这个定点的坐标,若不存在定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)将椭圆方程转化成标准方程,则三角形AFB的面积S=b×(b﹣c),代入即可求得m的值;(2)设直线AM的方程,代入椭圆方程,利用韦达定理求得M和N的方程,当l 的斜率不存在时,显然可得k=1,求得圆心为P(﹣,0),当l的斜率存在时,由利用两点的斜率公式求得kPM =kPN,直线l是否过定点.【解答】解:(1)由椭圆方程:,则a=m,b=,c=,由三角形AFB的面积S,S=b×(b﹣c)=,则(m﹣)﹣,解得:m=,∴m的值为;(2)由线段MN过直径的圆过A点,则MA⊥NA,设直线AM的斜率为k(k>0),则直线AN的斜率为﹣,AM为y=k(x+m),设A(x1,y1),B(x2,y2),则,整理得:(3k2+1)x2+6k2mx+(3k2﹣1)m2=0,则x1(﹣m)=,则x1=,故y1=k(x1+m)=,则M(,),直线AN的方程为y=﹣(x+m),同理可得:N(,﹣),当l的斜率不存在时,显然可得k=1,此时M(﹣,),N(﹣,﹣),则圆心为P(﹣,0),由直线l总穿过x轴,证明当l的斜率存在时,也过点P(﹣,0),当l的斜率存在时,kPM ===kPN(k>0,k≠1),综上可知:l过定点(﹣,0).21.已知函数f(x)=(x2﹣x﹣1)e x.(1)求函数f(x)的单调区间.(2)若方程a(+1)+ex=e x在(0,1)内有解,求实数a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)问题可化为e x﹣ax2+(a﹣e)x=0,令g(x)=e x﹣ax2+(a﹣e)x,则g(x)在(0,1)内有零点,通过讨论a的范围,求出函数的单调区间,从而确定a 的范围即可.【解答】解:(1)f′(x)=(x2+x﹣2)e x=(x﹣1)(x+2)e x,令f′(x)>0,解得:x>1或x<﹣2,令f′(x)<0,解得:﹣2<x<1,故f(x)在(﹣∞,﹣2)递增,在(﹣2,1)递减,在(1,+∞)递增;(2)方程a(+1)+ex=e x可化为e x﹣ax2+(a﹣e)x=0,令g(x)=e x﹣ax2+(a﹣e)x,则g(x)在(0,1)内有零点,易知g(0)=1,g(1)=0,g′(x)=e x﹣2ax+a﹣e,设g′(x)=h(x),则h′(x)=e x﹣2a,①a<0时,h′(x)>0,即h(x)在区间(0,1)递增,h(0)=1+a﹣e<0,h(1)=﹣a>0,即h(x)在区间(0,1)只有1个零点x1,故g(x)在(0,x1)递减,在(x1,1)递增,而g(0)=1>0,g(1)=0,得g(x1)<g(1)=0,故g(x)在(0,x1)内存在唯一零点;②当0≤a≤时,h′(x)>0,即h(x)在区间(0,1)递增,h(x)<h(1)=﹣a≤0,得g(x)在(0,1)递减,得g(x)在(0,1)无零点;③当<a<时,令h′(x)=0,得x=ln(2a)∈(0,1),∴h(x)在区间(0,ln(2a))上递减,在(ln(2a),1)递增,h(x)在区间(0,1)上存在最小值h(ln(2a)),故h(ln(2a))<h(1)=﹣a<0,h(0)=1+a﹣e<a﹣<0,故<a<时,∀x∈(0,1),都有g′(x)<0,g(x)在(0,1)递减,又g(0)=1,g(1)=0,故g(x)在(0,1)内无零点;④a≥时,h′(x)<0,h(x)在区间(0,1)递减,h(1)=﹣a<0,h(0)=1+a﹣e,若h(0)=1+a﹣e>0,得a>e﹣1>,则h(x)在区间(0,1)只有1个零点x2,故g(x)在(0,x2)递增,在(x2,1)递减,而g(0)=1,g(1)=0,得g(x)在(0,1)无零点,若<a时,则h(0)=1+a﹣e<0,得g(x)在(0,1)递减,得g(x)在(0,1)内无零点,综上,a<0时,方程a(+1)+ex=e x在(0,1)内有解.选修4-4:坐标系与参数方程22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数,﹣π<α<0),曲线C2的参数方程为(t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线C1的极坐标方程和曲线C2的普通方程;(2)射线θ=﹣与曲线C1的交点为P,与曲线C2的交点为Q,求线段PQ的长.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)利用三种方程的转化方法,求曲线C1的极坐标方程和曲线C2的普通方程;(2)通过方程组求出P、Q坐标,然后利用两点间距离公式求解即可.【解答】解:(1)曲线C1的参数方程为(α为参数,﹣π<α<0),普通方程为(x﹣1)2+y2=1,(y<0),极坐标方程为ρ=2cosθ,θ∈(﹣,0),曲线C2的参数方程为(t 为参数),普通方程2x+y﹣6=0;(2)θ=﹣,,即P(,﹣);θ=﹣代入曲线C2的极坐标方程,可得ρ′=6,即Q(6,﹣),∴|PQ|=6﹣=5.选修4-5:不等式选讲23.设函数f(x)=|x+2|+|x﹣1|.(1)求f(x)的最小值及取得最小值时x的取值范围;(2)若集合{x|f(x)+ax﹣1>0}=R,求实数a的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用绝对值三角不等式,求得f(x)的最小值及取得最小值时x 的取值范围.(2)当集合{x|f(x)+ax﹣1>0}=R,函数f(x)>﹣ax+1恒成立,即f(x)的图象恒位于直线y=﹣ax+1的上方,数形结合求得a的范围.【解答】解:(1)∵函数f(x)=|x+2|+|x﹣1|≥|x+2﹣(x﹣1)|=3,故函数f (x)=|x+2|+|x﹣1|的最小值为3,此时,﹣2≤x≤1.(2)函数f(x)=|x+2|+|x﹣1|=,而函数y=﹣ax+1表示过点(0,1),斜率为﹣a的一条直线,如图所示:当直线y=﹣ax+1过点A(1,3)时,3=﹣a+1,∴a=﹣2,当直线y=﹣ax+1过点B(﹣2,3)时,3=2a+1,∴a=1,故当集合{x|f(x)+ax﹣1>0}=R,函数f(x)>﹣ax+1恒成立,即f(x)的图象恒位于直线y=﹣ax+1的上方,数形结合可得要求的a的范围为(﹣2,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年四川省甘洛中学校高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:宁夏银川市勤行2016_2017学年高一数学下学期第一次(3月)月考试题试卷及答案如图所示,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为( )A. B. C. D.【答案】:B第 2 题:来源:湖南省醴陵二中、醴陵四中2018_2019学年高二数学下学期期中联考试题理已知函数(1)讨论的单调性; (2)若有两个零点,求a的取值范围。
【答案】解:(1)f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).①设a≥0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.③设a<0,由f′(x)=0得x=1或x=ln(-2a).若a=-,则f′(x)=(x-1)(ex-e),所以f(x)在(-∞,+∞)上单调递增.若a>-,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时,f′(x)>0;当x∈(ln(-2a),1)时,f′(x)<0.所以f(x)在(-∞,ln(-2a)),(1,+∞)上单调递增,在(ln(-2a),1)上单调递减.若a<-,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时,f′(x)>0;当x∈(1,ln(-2a))时,f′(x)<0.所以f(x)在(-∞,1),(ln(-2a),+∞)上单调递增,在(1,ln(-2a))上单调递减.(2)①设a>0,则由(1)知,f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln ,则f(b)>(b-2)+a(b-1)2=a>0,所以f(x)有两个零点.②设a=0,则f(x)=(x-2)ex,所以f(x)只有一个零点.③设a<0,若a≥-,则由(1)知,f(x)在(1,+∞)上单调递增.又当x≤1时,f(x)<0,故f(x)不存在两个零点;若a<-,则由(1)知,f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.又当x≤1时,f(x)<0,故f(x)不存在两个零点.…综上,a的取值范围为(0,+∞).…第 3 题:来源: 2016_2017学年河南省南阳市高二数学下学期第一次月考(3月)试题理设函数,则()A.2 B.-2 C.5 D.【答案】D第 4 题:来源:宁夏银川一中2019届高三数学第一次模拟考试试题理已知函数,,要得到函数的图象,只需将函数的图象上的所有点A.横坐标缩短为原来的,再向右平移个单位得到B.横坐标缩短为原来的,再向右平移个单位得到C.横坐标伸长为原来的倍,再向右平移个单位得到D.横坐标伸长为原来的倍,再向右平移个单位得到【答案】D第 5 题:来源:广东省天河区普通高中2017_2018学年高一数学10月月考试题试卷及答案05点关于点的对称点是()A.B.C.D.【答案】 C第 6 题:来源:河南省郑州市2016_2017学年高一数学下学期期末试卷及答案下列函数中,周期为π,且在(,)上单调递减的是()A.y=sinxcosx B.y=sinx+cosx C.y=tan(x+) D.y=2cos22x﹣1【答案】A.第 7 题:来源:山东省泰安第四中学2018_2019学年高一数学下学期2月月考试题已知圆的半径是6 cm,则15°的圆心角与圆弧围成的扇形的面积是( )(A) cm2 (B) cm2 (C)π cm2 (D)3π cm2【答案】B解析:15°化为弧度为,设扇形的弧长为l, 则l=6×=,其面积S=lR=××6=π, 故选B.第 8 题:来源:山西省长治二中2018_2019学年高一数学上学期第二次月考试题已知函数,则A. B. C.D.【答案】 A第 9 题:来源:安徽省六安市舒城县2017_2018学年高二数学上学期第一次统考试卷理要得到函数的图象,可以将函数的图象()A.向右平移 B.向右平移 C.向左平移 D.向左平移【答案】B第 10 题:来源:四川省雅安市2016_2017学年高二数学3月月考试题试卷及答案理下列命题正确的是()A. “”是“”的必要不充分条件B. 对于命题p:,使得,则:均有C. 若为假命题,则均为假命题D. 命题“若,则”的否命题为“若则【答案】D【解析】试题分析:A中不等式的解集为,故”是“”的充分不必要条件:B命题“若,则”的否命题为“若则. C若为假命题,则为假命题;D正确;考点:充要条件,否命题,四种命题之间的关系第 11 题:来源: 2017年内蒙古赤峰市宁城县高考数学一模试卷(理科)含答案解析已知z1与z2是共轭虚数,有4个命题①z12<|z2|2;②z1z2=|z1z2|;③z1+z2∈R;④∈R,一定正确的是()A.①② B.②③ C.③④ D.①②③【答案】B【考点】复数代数形式的乘除运算.【分析】z1与z2是共轭虚数,设z1=a+bi(a,b∈R),z2=a﹣bi.利用复数的运算性质及其有关概念即可得出.【解答】解:z1与z2是共轭虚数,设z1=a+bi,z2=a﹣bi(a,b∈R).命题①z12<|z2|2;=a2﹣b2+2abi,复数不能比较大小,因此不正确;②z1z2=|z1z2|=a2+b2,正确;③z1+z2=2a∈R,正确;④===+i不一定是实数,因此不一定正确.故选:B.第 12 题:来源:江西省赣州市2016_2017学年高二数学下学期期末试卷文试卷及答案若函数f(x)=|x+1|+|x+a|的最小值为3,则实数a的值为()A.A、 B.2 C.2或﹣4 D.4或﹣2【答案】D【考点】R4:绝对值三角不等式.【分析】利用绝对值三角不等式求得f(x)的最小值,再根据它的最小值为3,求得实数a的值.【解答】解:∵函数f(x)=|x+1|+|x+a|≥|(x+1)﹣(x+a)|=|a﹣1|的最小值为3,∴|a﹣1|=3,解得a=4,或a=﹣2,故选:D.第 13 题:来源:辽宁省辽河油田第二高级中学2018_2019学年高一数学上学期期中试题已知函数有两个不同的零点,则实数a的取值范围是()A. B. C. D.【答案】C第 14 题:来源:安徽省太和县2016_2017学年高二数学下学期期中试题试卷及答案文将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为()A. 731B. 809C. 852D. 891【答案】B则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405−1=809.故选:B第 15 题:来源:河北省大名县2017_2018学年高一数学上学期第一次月考试题 (1)设全集,集合,,则()A. B. C. D.【答案】B第 16 题:来源:广东省中山市第一中学2017_2018学年高一数学上学期第一次段考试题(含解析)已知,则三者的大小关系是A. B. C. D.【答案】A【解析】由函数的图象与性质可知:;由函数的图象与性质可知:;∴故选:A第 17 题:来源:甘肃省会宁县第一中学2019届高三数学上学期第三次月考试题理已知函数,若方程f(x)﹣mx+1=0恰有四个不同的实数根,则实数m的取值范围是()A.B.C.D.【答案】B第 18 题:来源:湖南省双峰县2017_2018学年高二数学上学期第一次月考试题扇形中,,其中是的中点,是弧上的动点(含端点),若实数满足,则的取值范围是()A. B. C. D.【答案】D第 19 题:来源: 2019年普通高等学校招生全国统一考试数学(浙江卷)(含答案).设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<α D.α<β,γ<β【答案】B第 20 题:来源:黑龙江省齐齐哈尔市2018届高三数学8月月考试题试卷及答案文复数(是虚数单位),则复数的虚部为()A. B. C.1 D. -1【答案】C第 21 题:来源:福建省霞浦县2018届高三数学上学期第二次月考试题理已知点在角的终边上,且(为坐标原点),则点的坐标为A. B. C. D.【答案】A第 22 题:来源:贵州省铜仁市第一中学2019届高三数学上学期第二次月考试题理.已知函数与轴交点为,则()A. B. C.D.【答案】D第 23 题:来源:江西省赣州市2016_2017学年高二数学下学期第二次(5月)月考试题理已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)=()A.﹣ e B.﹣ 1 C. 1 D. e【答案】B第 24 题:来源:湖南省衡阳市2018届高三数学上学期第二次月考试题(实验班)理已知0<a<1,x=loga+loga,y=loga5,z=loga﹣loga,则()A.x>y>z B.z>y>x C.y>x>z D.z>x>y【答案】C第 25 题:来源:安徽省淮北市2016届高三第二次模拟考试理科数学试卷含答案阅读如图所示的程序框图,若输入m=2016,则输出S等于()A.10072B.10082C.10092D.20102【答案】 C. 本题主要考查了程序框图与算法的循环结构,由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解答】解:第一次执行循环体,S=1,不满足退出循环的条件,i=3;第二次执行循环体,S=4,不满足退出循环的条件,i=5;第三次执行循环体,S=9,不满足退出循环的条件,i=7;…第n次执行循环体,S=n2,不满足退出循环的条件,i=2n+1;…第1008次执行循环体,S=10082,不满足退出循环的条件,i=2017;第1009次执行循环体,S=10092,满足退出循环的条件,故输出的S值为:10092 故选第 26 题:来源: 2019高考数学一轮复习第10章概率统计和统计案例第2讲几何概型分层演练文2018091013设a∈[0,10],则函数g(x)=在区间(0,+∞)内为增函数的概率为( )A. B.C. D.【答案】B.因为函数g(x)=在区间(0,+∞)内为增函数,所以a-2<0,解得a<2,所以函数g(x)=在区间(0,+∞)内为增函数的概率为=.第 27 题:来源:广东省阳江市阳东区2017_2018学年高二数学上学期第一次月考试题理试卷及答案已知等差数列,,,则此数列前10项之和为()A.210 B.140 C.70D.280【答案】C第 28 题:来源:山东省淄博市2018届高三数学上学期第一次月考试题理试卷及答案.函数f(x)=+的定义域是()A.{x|x>6} B.{x|﹣3≤x<6} C.{x|x>﹣3} D.{x|﹣3≤x<6且x≠5}【答案】B第 29 题:来源:福建省莆田市第二十四中学2016-2017学年高二数学上学期期末考试试题试卷及答案理过点,且与椭圆有相同的焦点的椭圆方程是()A. B. C. D.【答案】A第 30 题:来源: 2019年普通高等学校招全国生统一考试文科数学(全国卷Ⅰ)(含答案)双曲线C:的一条渐近线的倾斜角为130°,则C的离心率为A.2sin40° B.2cos40° C. D.【答案】D第 31 题:来源:江西省抚州市乐安县2016-2017学年高二数学12月月考试题试卷及答案理设圆C与圆外切,与直线相切,则圆C的圆心轨迹为()A.圆 B.椭圆 C.双曲线 D.抛物线【答案】D第 32 题:来源:广东省第二师范学院番禺附属中学2018_2019学年高二数学下学期期中试题理函数在单调递减,且为偶函数.若,则满足的的取值范围是A. B. C. D.【答案】A第 33 题:来源:河南省三门峡市陕州区2017_2018学年高一数学10月月考试题试卷及答案函数的单调递减区间为 ( )A. B.C.D.【答案】B第 34 题:来源:甘肃省天水市2017_2018学年高二数学上学期开学考试试题函数的部分图象如图所示,如果,且,则()A. B.1 C. D.【答案】B第 35 题:来源:贵州省遵义市五校2018_2019学年高二数学下学期期中联考试题理椭圆的焦点在轴上,一个顶点是抛物线的焦点,过焦点且垂直于长轴的弦长为2,则椭圆的离心率为()A. B. C.D.【答案】D第 36 题:来源:安徽省宿州市2018届高三数学上学期期中试题试卷及答案已知函数y=f(x+1)定义域是[﹣2,3],则y=f(2x﹣1)的定义域()A. [﹣3,7] B. [﹣1,4] C. [﹣5,5] D.【答案】D第 37 题:来源:全国普通高等学校2017届高考数学二模试卷(理科)(衡水金卷)含答案解析多项式(x2﹣x﹣y)5的展开式中,x7y项的系数为()A.20 B.40 C.﹣15 D.160【答案】A【考点】DB:二项式系数的性质.【分析】由题意知,当其中一个因式取﹣y,一个因式取﹣x,其余的3个因式都取x2 时,可得含x7y的项,由此求得结果.【解答】解:多项式(x2﹣x﹣y)5表示5个因式(x2﹣x﹣y)的乘积,当只有一个因式取﹣y,一个因式取﹣x,其余的3个因式都取x2时,才可得到含x7y的项;所以x7y的系数为••=20.故选:A.【点评】本题考查了排列组合、二项式定理和乘方的应用问题,是基础题.第 38 题:来源:重庆市铜梁县2018届高三数学11月月考试题理试卷及答案下列说法中,正确的是( )A.命题“若,则”的否命题为“若,则”B.命题“存在,使得”的否定是:“任意,都有”C.若命题“非”与命题“或”都是真命题,那么命题一定是真命题D.""是""的充分不必要条件【答案】C第 39 题:来源:江西省新余市2016_2017学年高一数学下学期期末试卷文(含解析).等于()A.1 B.﹣1 C. D.【答案】C【考点】GO:运用诱导公式化简求值.【分析】由题意利用诱导公式,求得要求式子的值.【解答】解:sin =sin=sin =,故选:C .第 40 题: 来源: 湖南省邵东县第四中学2018_2019学年高一数学下学期期中试题.已知a ·b =12,|a|=4,a 与b 的夹角为45°,则|b|为( )A .12 A .3C .6D .9【答案】C第 41 题: 来源: 2019_2020学年高中数学第二章等式与不等式2.2.2不等式的解集课后篇巩固提升(含解析)新人教B 版必修1数轴上的三点M,N,P 的坐标分别为3,-1,-5,则MP-PN 等于( )A.-4B.4C.12D.-12【答案】D第 42 题: 来源: 贵州省遵义市2018_2019学年高一数学下学期期中试题已知两个等差数列{an}和{bn}的前n 项和分别为和Bn,且,则A 、B 、C 、D 、15【答案】B第 43 题: 来源: 宁夏青铜峡市高级中学2018_2019学年高一数学下学期开学考试试题 点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD =AD ,则PA 与BD 所成角的度数为( )A .30°B .45°C .60°D .90°【答案】C第 44 题: 来源: 西藏日喀则市2017_2018学年高一数学期末考试试题试卷及答案某几何体的三视图如下所示,则该几何体的体积是A. B.B.C. D.【答案】B第 45 题:来源:甘肃省民勤县第一中学2017_2018学年高二数学上学期期末考试试题理设抛物线与双曲线的焦点重合,且双曲线的渐近线为,则双曲线的实轴长为()A. B. C. D.【答案】B第 46 题:来源:四川省绵阳市2019届高三数学第二次(1月)诊断性考试试题文(含解析)执行如图的程序框图,其中输入的,,则输出a的值为()A. 1B. -1C.D. -【答案】A【解析】【分析】由条件结构的特点,先判断,再执行,计算出a,即可得到结论.【详解】由a=,b=,a>b,则a变为﹣=1,则输出的a=1.第 47 题:来源: 2019高中数学第二章平面向量单元质量评估(含解析)新人教A版必修4已知向量a=(1,x2),b=(x,8),若a∥b,则实数x的值为 ( )A.2B.-2C.±2D.0【答案】A第 48 题:来源:湖北省钢城四中2018_2019学年高一数学上学期期中试题已知,下列不等式①②③④⑤中恒成立的是( )A.1个B.2个C.3个D. 4个【答案】C第 49 题:来源:甘肃省会宁县第一中学2019届高三数学上学期第三次月考试题理下列说法正确的是()A.若向量,则存在唯一的实数λ,使得.B.命题“若x2=1,则x=1”的否命题是“若x2=1,则x≠1”.C.命题“∃x0∈R,使得”的否定是“∀x∈R,均有x2+x+1≥0”.D.a=5且b=﹣5是a+b=0的充要条件.【答案】C第 50 题:来源:安徽省合肥一六八中学2018_2019学年高二数学下学期期中试题理(含解析)三角形的面积为,(为三角形的边长,为三角形的内切圆的半径)利用类比推理,可以得出四面体的体积为 ( )A. (为底面边长)B. (分别为四面体四个面的面积,为四面体内切球的半径)C. (为底面面积,为四面体的高)D. (为底面边长,为四面体的高)【答案】B【解析】【分析】根据类比规则求解.【详解】平面类比到空间时,边长类比为面积,内切圆类比为内切球,调节系数也相应变化,因此四面体的体积为(分别为四面体四个面的面积,为四面体内切球的半径),选B.【点睛】本题考查类比推理,考查基本分析推理能力,属基本题.。