(新北师大版)2014-2015学年度下学期八年级数学第一章《三角形的证明》单元检测
北师大版八年级数学(下) 第一章 三角形的证明 第5节 直角三角形的性质与判定
北师大版八年级数学(下)第一章三角形的证明第5节直角三角形的性质与判定例1:在△ABC中,∠A=90°,∠B=2∠C,则∠C的度数为()A.30°B.45°C.60°D.30°或60°解:∵在△ABC中,∠A=90°,∠B=2∠C,∴2∠C+∠C=90°,∴∠C=30°,故选:A.练习:在Rt△ABC中,∠C=90°,∠A﹣∠B=50°,则∠A的度数为()A.80°B.70°C.60°D.50°解:∵∠C=90°,∴∠A+∠B=90°,∵∠A﹣∠B=50°,∴2∠A=140°,∴∠A=70°,故选:B.作业:1.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°解:设∠B=x°,则∠A=3x°,由直角三角形的性质可得∠A+∠B=90°,∴x+3x=90,解得x=22.5,∴∠B=22.5°,故选:A.例2:在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C,⑤∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有()A.2个B.3个C.4个D.5个解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC 是直角三角形;④因为∠A=∠B=∠C,所以∠A+∠B+∠C=∠C+∠C+∠C=180°,则∠C=90°,所以△ABC是直角三角形;⑤因为3∠C=2∠B=∠A,∠A+∠B+∠C=∠A+∠A+∠A=180°,∠A=,所以△ABC为钝角三角形.所以能确定△ABC是直角三角形的有①②③④共4个,故选:C.练习:在下列条件中:①∠A=∠B﹣∠C,②∠A﹣∠B=90°,③∠A=∠B=2∠C,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①由∠A+∠B+∠C=180°,∠A=∠B﹣∠C得到:2∠B=180°,则∠B=90°,则△ABC是直角三角形,故符合题意;②∠A﹣∠B=90°得到:∠A>90°,则△ABC不是直角三角形,故不符合题意;③由∠A+∠B+∠C=180°,∠A=∠B=2∠C得到:5∠C=180°,则∠C=36°,则∠A =∠B=72°<90°,则△ABC不是直角三角形,故不符合题意;④由∠A+∠B+∠C=180°,∠A=∠B=∠C得到:∠C=90°,则△ABC是直角三角形,故符合题意;综上所述,是直角三角形的是①④,共2个.故选:B.作业:2. 在下列条件中:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①∠A+∠B=∠C,是直角三角形;②∠A:∠B:∠C=1:2:3,是直角三角形;③∠A=2∠B=3∠C,则设∠A=x,∠B=,∠C=,则x++=180°,解得x=,∴∠A=,,,∴△ABC不是直角三角形;④∠A=∠B=∠C,不是直角三角形,是等边三角形,能确定△ABC是直角三角形的条件有2个,故选:B.例3:在Rt△ABC中,斜边AB=3,则AB2+BC2+CA2=.解:∵△ABC为直角三角形,AB为斜边,∴AC2+BC2=AB2,又AB=3,∴AC2+BC2=AB2=9,则AB2+BC2+CA2=AB2+(BC2+CA2)=9+9=18.故答案为:18练习:如图所示,在△ABC中,∠ABC=90°,分别以AB、BC、AC为边向外作正方形,面积分别为225、400、S,则S为()A.175B.600C.25D.625解:由勾股定理得,AB2+BC2=AC2,则S=25+400=625,故选:D.作业:3. 已知△ABC中∠C=90°,c为斜边,a、b为直角边,若a+b=17cm,c=13cm,则△ABC的面积为()A.15cm2B.30cm2C.45cm2D.60cm2解:∵a+b=17,∴(a+b)2=289,∴2ab=289﹣(a2+b2)=289﹣c2=289﹣169=120∴ab=30,故选:B.例4:如图,一块铁皮(图中阴影部分),测得AB=3,BC=4,CD=12,AD=13,∠B=90°.求阴影部分的面积.解:如图,连接AC.∵△ABC中,∠B=90°,AB=3,BC=4,∴AC==5.∵CD=12,AD=13,AC=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∴S阴影=S△ACD﹣S△ABC=×5×12﹣×3×4=30﹣6=24.练习:如图,在Rt△ABD中,∠ABD=90°,AD=10,AB=8.在其右侧的同一个平面内作△BCD,使BC=8,CD=2.求证:AB∥DC.证明:∵在Rt△ABD中,∠ABD=90°,AD=10,AB=8,∴BD===6,∵BC=8,CD=2,∴62+(2)2=82,∴△BDC是直角三角形,∴∠BDC=90°,∴∠ABD=∠BDC,∴AB∥DC.作业:4. 如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)连接BC,求BC的长;(2)判断△BCD的形状,并说明理由.解:(1)∵∠A=90°,∴BC===15;(2)△BCD是直角三角形,理由:∵BC2=152=225,BD2=82=64,CD2=172=289,∴BC2+BD2=CD2=289,∴△BCD是直角三角形.例5:如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.解:(1)△ABC为直角三角形,理由:由图可知,,BC=,AB==5,∴AC2+BC2=AB2,∴△ABC是直角三角形;(2)设AB边上的高为h,由(1)知,,BC=,AB=5,△ABC是直角三角形,∴=,即=h,解得,h=2,即AB边上的高为2.练习:如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°.(1)连接AC,求证:△ACD是直角三角形;(2)求△ACD中AD边上的高.解:(1)证明:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=25,∴AC=5,∵CD=12,AD=13,∴AC2+CD2=AD2,∴∠ACD=90°,∴△ACD是直角三角形;(2)解:过点C作CH⊥AD于点H,则S△ACD=AD×CH=AC×CD,∴×13×CH=×5×12,∴CH=.作业:5.如图,在正方形网格中,小正方形的边长为1,A,B,C为格点(1)判断△ABC的形状,并说明理由.(2)求BC边上的高.解:(1)结论:△ABC是直角三角形.理由:∵BC2=12+82=65,AC2=22+32=13,AB2=62+42=52,∴AC2+AB2=BC2,∴△ABC是直角三角形.(2)设BC边上的高为h.则有•AC•AB=•BC•h,∵AC=,AB=2,BC=,∴h=.例6:写出命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题.该逆命题是命题(填“真”或“假”).解:“如果两个三角形全等,那么这两个三角形的周长相等.”写成它的逆命题:如果两个三角形的周长相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的周长相等,那么这两个三角形全等;假练习:“两直线平行内错角相等”的逆命题是命题.(填“真”或“假”)解:∵原命题的条件为:两直线平行,结论为:内错角相等,∴其逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,是真命题;故答案为:真.作业:6.已知命题“等腰三角形两腰上的高线相等”,它的逆命题是,该逆命题是命题.(“真”、“假”).解:命题“等腰三角形两腰上的高线相等”的逆命题是“如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形”,是真命题,故答案为:如果一个三角形两条边上的高线相等,那么这个三角形是等腰三角形;真.。
新北师大版 八年级下册数学 第一章 三角形的证明 1.2.1 直角三角形
巩固练习: 说出下列命题的逆命题,并判断每对 命题的真假: (1)四边形是多边形; (2)两直线平行,同旁内角互补; (3)如果ab=0,那么a=0,b=0.
提问:一个命题是真命题,它的逆命题一 定是真命题吗?
定理与逆定理
一个命题是真命题,它逆命题却不一定是 真命题.
如果一个定理的逆命题经过证明是真命 题,那么它是一个定理,这两个定理称为互逆 定理,其中一个定理称另一个定理的逆定理. 你还能举出一些例子吗?
想一想:互逆命题与互逆定理有何关系?
互逆定理:如果一个定理的逆命题经 过证明是真命题,那么它也是个定理,这 两个定理称为互逆定理,其中一个定理称 为另一个定理的逆定理.
判断正误: (1)互逆命题一定是互逆定理; (2)互逆定理一定是互逆命题. 我们已经学习了一些互逆定理,如勾 股定理及其逆定理、“两直线平行,内错 角相等与“内错角相等,两直线平行”等 . 请你再举出一些互逆定理的例子.
2 、 在 △ ABC 中 , 已 知 AB=13cm,BC=10cm,BC 边上的中线 AD=12cm.求证:AB=AC.
知识拓展
已知:△ABC中,∠ C=600,AB=14,AC=10, AD是BC边上的高,求BC的长 A 解后反思: 在直角三角形中,利用勾股定理 计算线段的长,是勾股定理的一 C 个重要应用,在有直角三角形时, 可直接应用,在没有直角三角形 时,常作垂线构造直角三角形, 为能应用勾股定理创造条件。
D
B
独立作业
3
3.如图,正四棱柱的底面边长为 5cm,侧棱长为8cm,一只蚂蚁欲从正 四棱柱的底面上的点A沿棱柱侧面 到点C1处吃食物,那么它需要爬行的 D C 最短路径是多少? C
1 1
习题1.4
八年级数学下册 第一章《三角形的证明》1.1《等腰三角形》课件4 (新版)北师大版.pptx
求证:∠A=∠C.
证明:连接BD,
开拓思维
在△BAD和△DCB中,
∵ AB=CD(
)
AD=CB(
)
A
BD=DB(
)
∴ △BAD≌ △DCB( ) B
∴ :∠A=∠C (
)
D C
15
2.已知:如图,点B,E,C,F在同一条直线
上,AB=DE,AC=DF,BE=CFA.
D
求证:∠A=∠D
B E
C
F
16
A′ ●
● ● C′
AB=A′B′(已知),
∠B=∠B′ (已证),
驶向胜利 的彼岸
∴ △ABC≌△A′B′C′(ASA).
4
几何的三种语言
w推论: w两角及其一角的对边对应 相等的两个三角形全等
(AAS). 在△ABC与△A′B′C′中
●
A
′ ∵∠A=∠A′ ∠C=∠C′
AB=A′B′
A′ ●
∴△ABC≌△A′B′C′(AAS).
13
1.在△ABC中,AB=AC.
(1)若∠A=40°,则∠C等于多少度?
(2)若∠B=72°,则∠A等于多少度?
2. 如图,在△ABD中,C是BD上的一点,且AC⊥BD, AC=BC=CD,
(1)求证: △ABD是等腰三角形;
(2)求∠BAD的度数.
A
B
C
D
14
1.将下面证明中每一步的理由写在括号内: 已知:如图,AB=CD,AD=CB.
∴∠1=∠2,AD⊥BC(等腰三角形三线合一)
∵AB=AC, AD⊥BC(已知). ∴BD=CD, ∠1=∠2(等腰三角形三线合一)
w轮换条件∠1=∠2, AD⊥BC,BD=CD,可得三线合一的 三种不同形式的运用.
北师大版数学八年级下册:第一章《三角形的证明》含详细答案
北师大版八年级下册数学第一章三角形的证明一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.52.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到A.1B.2C.D.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=_________.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.北师大版八年级下册数学第一章三角形的证明参考答案与试题解析一.选择题(共12小题)1.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.(2014•台湾)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.(2014•甘井子区一模)如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.(2013•西宁)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.(2013•滨城区二模)如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.(2013•澄江县一模)若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.(2012•泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.(2011•成华区二模)如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.(2006•威海)如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.(2013•泰安)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(2012•通辽)如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.(2012•广东模拟)在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.(2014•翔安区质检)如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.(2014•长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.(2014•顺义区一模)如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.(2012•重庆模拟)如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.(2010•攀枝花)如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD 于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.(2009•大连二模)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.(2007•宜宾)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.(2006•韶关)如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC 分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。
北师大版八年级下册 第一章 三角形的证明含答案
第一章 三角形的证明1 等腰三角形专题1 等腰三角形和等边三角形1. A 已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使CE =CD .求证:BD =DE .2. B 如图,等边三角形ABC 内有一点P ,PE ⊥AB ,PF ⊥AC ,PD ⊥BC ,垂足分别为E ,F ,D ,且AH ⊥BC 于H ,试用三角形面积公式证明:PE +PF +PD =AH .3. B 如图所示,在等边△ABC 中,点D 、E 分别在边BC 、AB 上,且BD =AE ,AD 与CE 交于点F ,求证:△ABD ≌△CAEBB4. A △ABC 中,∠B =∠C ,求证:AB =AC5. B 如图,AD 和BC 交于点O ,AB ∥DC ,OA =OB ,试说明△OCD 是等腰三角形.B6. B 如图,已知OC 平分∠AOB ,CD ∥OB ,若OD =3cm ,则CD 等于( )A .3cmB .4cmC .1.5cmD .2cm7. B 如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,下述结论错误的是( )A .BD 平分∠ABCB .△BCD 的周长等于AB +BCC .AD =BD =BCD .点D 是线段AC 的中点8. A 下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③D .①②③④9. B 如图,等边△ABC 中,D 、E 分别为AB 、AC 上两点,下列结论:①若AD =AE ,则△ADE 是等边三角形;②若DE ∥BC ,则△ADE 是等边三角形,其中正确的有( )A .①B .②C .①②D .都不对OBB10. B 如图,D ,E ,F 分别是等边△ABC 各边上的点,且AD =BE =CF ,求证:△DEF 是等边三角形.11. B 如图,D 为等边三角形ABC 内一点,将△BDC 绕着点C 旋转成△AEC ,则△CDE 是怎样的三角形?请说明理由.B1. A 如图,已知BD=CE,AD=AE,求证:∠B=∠C.2. A 已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长BC至点E,使CE=CD.求证:DB=DE.3. B 如图所示,△ABC是等腰直角三角板,过A点作AE⊥EF,过B点作BF⊥EF.请证明:∠EAC=∠BCF,EF=AE+BF.4. A 如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE为等边三角形.1. B 两个全等的含30°,60°角的三角板ADE和三角板ABC,如图所示放置,E、A、C三点在一条直线上,连接BD,取BD的中点M,连接ME、MC,试判断△EMC的形状,并说明理由.2. C 如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC为等腰三角形,则符合条件的点C有()个.A. 3B. 5C. 8D. 103. B 如图,过边长为3的等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当PA=CQ时,连接PQ交AC边于点D,则DE的长为.4. C 如图,△ABC中,∠ABC=46º,D是BC边上一点,DC=AB,∠DAB=21º,试确定∠CAD的度数.5. C 一个三角形可被剖分成两个等腰三角形,原三角形的一个内角为36º,求原三角形最大内角的所有可能值.专题2 重要的30°1. A 已知:如图,在Rt △ABC 中,∠C =90°,∠BAD =12∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =12DB .2. B 如图,在一场足球比赛中,球员A 欲传球给同伴B ,对方球员C 意图抢断传球,已知球速为16m/s ,球员速度为8m/s.当球由A 传出的同时,球员C 选择与AC 垂直的方向出击,恰好在点D 处将球成功抢断,则角α=.(球员反应速度、天气等其他因素均不予考虑)1. A 如图,△ABC 中,∠C =90°,∠B =30°,AD 平分∠BAC 交BC 于D . 求证:BD =2CD .CB2. A 如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°,AC=2,求AB的长.1. B 如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为,ME的长为.专题3 反证法1. A 求证:一个三角形中至多有一个钝角.2. B 用反证法证明:若a ,b 是正整数,ab 能被3整除,那么a ,b 中至少有一个能被3整除.1. C 已知:在同一平面内,直线m ⊥l ,直线n 与l 相交但不垂直,求证:直线m 、n 相交.1. C 设x ,y等腰三角形习题课1. B 已知如图,四边形ABCD 中,AB =BC ,∠A =∠C ,求证:AD =CD .C B2. C 如图,在△ABC 中,∠B =90°,M 是AC 上任意一点(M 与A 不重合)MD ⊥BC ,交∠BAC 的平分线于点D ,求证:MD =MA .3. C 如图,∠AOB 是一钢架,且∠AOB =15°,为了使钢架更加坚固,需要其内部添加一些钢管EF 、FG 、GH ,···,添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.4. B 如图,△ABC 为等边三角形,∠BAD = ∠CBE =∠ACF .(1)求∠EDF 的度数;(2)求证:△DEF 为等边三角形.BOB5. B 已知,△ABC 中,∠C =90°,∠A =30°,请证明:AB =2BC .6. B 已知△ABC 是等边三角形,D 、E 、F 分别是各边上的一点.(1)若AD =BE =CF .试证明△DEF 是等边三角形.(2)若△DEF 是等边三角形,那么AD =BE =CF 成立吗?若成立,请证明;若不成立,请说明原因.7. B 如图,等边△ABC 与等边△DEC 共顶点于C 点.求证:AE =BD .BB8. C 如图,△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线与BC 交于点D ,交AB 于E ,DB =8,求AC 的长.9. C 如图,点O 是等边△ABC 内一点,∠AOB =105°,∠BOC =α.以OC 为边作等边△OCD ,连接AD .(1)请证明:OB =AD .(2)△AOD 能否成为等边三角形?如能,请求出α的值;如不能,请说明理由.DBB10. C 等腰三角形的底角为15°,腰长为2,则该等腰三角形的面积是.2 直角三角形专题1 直角三角形1. A 如图,∠C=∠D=90°,AD,BC相交于点E,∠CAE与∠DBE有什么关系?为什么?2. B 如图,∠ACB =90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?变式1:若∠ACD=∠B,∠ACB=90°,则CD是△ACB的高吗?为什么?变式2:若∠ACD=∠B,CD⊥AB,则△ACB为________三角形.变式3:如图,若∠C=90°,∠AED=∠B,则△ADE是___________三角形.3. A 判断正误:这样描述勾股定理的逆定理正确吗?如果一个三角形斜边的平方等于直角边的平方和,那么这个三角形为直角三角形.4. A 分别以下列四组数为一个三角形的边长(1)1,2,3;(2)3,4,5;(3)5,12,13;(4)6,8,10.其中能组成直角三角形的有()A.4组B.3组C.2组D.1组5. B 如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GHC.AB、CF、EF D.GH、AB、CD6. A 在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,则下列说法中错误的是( ).A .如果∠C -∠B =∠A ,那么△ABC 是直角三角形,∠C =90°B .如果a :b :c =3:4:5,则∠B =60°,∠A =30°C .如果∠A :∠B :∠C =5:2:3,那么△ABC 是直角三角形D .如果c 2-a 2=b 2,那么△ABC 是直角三角形7. B 如图所示,四边形ABCD 中,AB =3cm ,AD =4cm ,BC =13cm ,CD =12cm ,∠A =90°,求四边形ABCD 的面积.1. B 若两个三角形的两边和其中一边上的高对应相等,则这两个三角形第三边所对的角的关系是_______.2. C 【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.【深入探究】(1)第一种情况:当∠B 是直角时,△ABC ≌△DEF .如图1,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据__________,可以知道Rt △ABC ≌Rt △DEF .B(2)第二种情况:当∠B是钝角时,△ABC≌△DEF.如图2,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.(3)第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.①在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图3中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)②∠B还要满足什么条件,就可以使△ABC ≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若_________,则△ABC≌△DEF.3. C 下列4个判断是否正确?若正确,说明理由;若不正确,请举出反例.(1)有两边及其中一边上的高对应相等的两个三角形全等;(2)有两边及第三边上的高对应相等的两个三角形全等;(3)三角形6个边、角元素中,有5个元素分别相等的两个三角形全等;(4)有一边及其他两边上的高对应相等的两个三角形全等.专题2 逆命题和逆定理1. A 指出下列命题的题设和结论,并说出它的逆命题. 等边三角形的每个角都等于60°.2. A 指出下列命题的题设和结论,并说出它的逆命题.如果一个三角形是直角三角形,那么它的两个锐角互余.3. A 在你学过的定理中,有哪些定理有逆定理?试举出几个例子说明.线段垂直平分线上的点到这条线段的两个端点的距离相等.4. A 在你学过的定理中,有哪些定理有逆定理?试举出几个例子说明. 1.同旁内角互补,两直线平行;2.有两个角相等的三角形是等腰三角形;3.到一个角的两边距离相等的点,在这个角的角平分线上.专题3 斜边、直角边判定定理1. A 已知:如图,△ABC 中,AB =AC ,过点A 作BC 边上的高AD ,求证:△ABD ≌△ACD .2. A 已知:如图,点E 、F 在线段BD 上,AF ⊥BD ,CE ⊥BD ,AD =CB ,DE =BF ,求证:AF =CE .3. A 已知:如图,AB ⊥BD ,AC ⊥CD ,要使△ABD ≌△ACD ,若根据“HL”判定,还需要加条件___________________,若加条件∠BAD =∠CAD ,则可用________________判定.CA4. A 如图,△ABC 中,AD 为BC 边上的中线,由点D 分别向AB 、AC 两边引垂线,并与AB 、AC 交于E 、F 两点,且BE =CF ,请判断AD 是否为∠BAC 的角平分线,并证明.3 线段的垂直平分线1. A 如图,点D 是△ABC 内一点,且AB =AC ,DB =CD ,求证:线段AD 在线段BC 的垂直平分线上.B2. B 求证:三角形的三条垂直平分线交于一点.3. A 如图,已知线段AB ,分别以点A 、点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P 、M ,连接P A 、PB 、MA 、MB ,则下列结论一定正确的是( )A. P A =MAB. MA=PEC. PE =BED. P A =PB4. A 如图所示,A 、B 为2个村庄,现在政府想在河道l 上建一个供水站点C ,请你设计一个方案,使供水站到两村庄的距离相等,不写画法,但要保留作图痕迹 .B1. A 如图,AC=AD,BC=BD,则有()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB2. A 如图,AB=AC,AC的垂直平分线MN交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.3. C 小傲做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)小德同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意小德的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.4. B △ABC 中,边AB 、AC 的垂直平分线交于点P ,求证:点P 也在BC 的垂直平分线上.5. C △ABC 中,D 为BC 中点,DE ⊥BC 交∠BAC 的平分线于点E ,EF ⊥AB 于F ,EG ⊥AC 于G .求证:BF =CG .6. C 如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .在AC ,BC 两边高线的交点处B .在AC ,BC 两边中线的交点处C .在AC ,BC 两边垂直平分线的交点处D .在∠A ,∠B 两内角平分线的交点处BB1. C 在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图1;(2)若∠PAB=30°,求∠ACE的度数;(3)如图2,若60°<∠PAB<120°,判断由线段AB、CE、ED可以构成一个含有多少度角的三角形,并证明.2. B 如图,在Rt△ABC中,∠ACB=45°,∠BAC =90°,点D是AB的中点,AF⊥CD于H交BC于F,BE//AC交AF的延长线于E.求证:BC垂直且平分DE.3. B 已知,如图△ABD和△CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD于点G.求证:∠EAF=∠ABD.4. C 已知△ABC内一点M满足∠BMC=100︒,线段BM的中垂线交边AB于点P,线段CM的中垂线交边AC于点Q,∠A=20︒,求证:P、M、Q三点共线.4 角平分线专题1 角平分线的性质和判定1. A 如图,在△ABC 中,D 为△ABC 边BC 上一点,DE ⊥AB 于E ,DF ⊥AC 于F ,且DE =DF ,M 为AD 上任意一点,则下列结论错误的是( )A .AD 平分∠BACB .ME =MFC .AE =AFD .BD =DC2. A 如图,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,且BD =CD .求证:AD 平分∠BAC .3. A 如图,AD ⊥DC ,BC ⊥DC ,E 是DC 中点,且AE 平分∠DAB .求证:BE 平分∠ABC .BA4. A 已知:△ABC 中,PB 、PC 分别平分∠ABC 和∠ACB .求证:AP 平分∠BAC .5. A 如图所示,BD 平分∠ABC ,AB =BC ,点P 在BD 上,PM ⊥AD ,PN ⊥CD ,M 、N 为垂足.求证:PM =PN .6. A 已知,在四边形ABCD 中对角线AC 平分∠DAB ,且∠DAB =120°,∠B 和∠D 互补.求证:AB +AD =AC .B1. B (1)如图,△ABC 中,PB 、PC 分别平分∠ABC 、∠ACB ,求证:点P 在∠A 的角平分线上.(2)求证:三角形两外角平分线所在直线的交点,在第三个角内角平分线所在直线上.2. B 如图,已知△ABC 的周长是21,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是多少?BB3. A 如图,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.P A=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP4. A 在Rt△ABC中,∠A=90°,AB=3,AC=4,∠ABC,∠ACB的平分线交于P点,PE⊥BC于E点,求PE的长.5. A 如图,AD为△ABC的角平分线,AD的中垂线交AB于点E、交BC的延长线于点F,AC于EF交于点O.(1)求证:∠3=∠B;(2)连接OD,求证:∠B+∠ODB=180°.6. B 如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证:AC+CD=AB.1. C 在△ABC中,如图,分别以△ABC的边AB、AC为边向外作等腰三角形ABD和ACE,AB=AD,AE=AC,∠DAB=∠CAE,CD与BE相交于点O.(1)求证:BE=CD;(2)若设∠BAD=α,∠AOE=β,则用α表示β为,并证明你的结论.专题2 角平分线的模型1. A 如图,在△ABC中,(1)PB、PC分别是△ABC的外角的平分线,求证:∠1=∠2;(2)PB、P A为平分线,证明PC也是平分线;(3)PC、P A为平分线,证明PB也是平分线.2. B △ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,连接AP、CP,若∠BPC=40°,求∠CAP的度数.3. B 如图,△ABC中,∠ABC、∠EAC的角平分线PB、P A交于点P,下列结论:①PC平分∠ACF;②∠ABC+∠APC=180°;③若PM⊥BE,PN⊥BC,则AM+CN=AC;④∠BAC=2∠BPC .其中正确的是( )A.只有①②③B.只有①③④C.只有②③④D.只有①③4. B 已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC. 求证:BC=AB+CD.5. B 已知:如图,四边形ABCD中,∠B+ ∠D =180°,AC平分∠BAD.求证:BC=CD.6. B 在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于E ,求证:BE =1()2AC AB .7. B 已知,如图1,△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线相交于点O ,过O 点作EF ∥BC 交AB 、AC 于点E 、F .①图中有几个等腰三角形,请说明EF 与BE 、CF 间有怎样的关系?②若AB ≠AC ,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们,另第①问中EF 与BE 、CF 的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F,如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?8. B 如图,正方形ABCD中,F为BC的中点,E为AB上的一点,且DF平分∠CDE,求证:DE=BC+EB .1. B 如图,在Rt△ABC中,∠ACB=90°,∠CAB =60°,∠ACB的平分线与∠ABC的外角平分线交于点E,则∠AEB=_______.2. C 如图,△ABC中,AB=AC,∠A=20°,BD平分∠ABC,求证:BD+BC=AD.3. C 如图,在△ABC中,AC=BC,∠ACB=90°,点D是AC上一点,且AE垂直BD的延长线于点E,AE=12BD,求证:BD是∠ABC的平分线.三角形综合习题课1. A 如图,在下列条件中,不能直接证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC2. A 如图,已知点A 、D 、C 、F 在同一条直线上,AB =DE ,BC =EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA =∠FB .∠B =∠EC .BC ∥EFD .∠A =∠EDF3. A 如图,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,且AD 平分∠BAC ,则下列结论中不正确的是( )A .△ADF ≌△ADEB .△BDF ≌△CDEC .△ABD ≌△ACDD .BD =AD4. A 如图,在△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于点E .AD ⊥CE 于点D .求证:△BEC ≌△CDA .AA1. B 如图,在四边形ABCD 中,点E 是BC 的中点,点F 是CD 的中点,且AE ⊥BC ,AF ⊥CD .(1)求证:AB =AD ;(2)请你探究∠EAF ,∠BAE ,∠DAF 之间有什么数量关系?并证明你的结论.2. B 两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题,试验与论证:设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),3θ、4θ、5θ、6θ所表示的角如图所示.(1)用含α的式子表示角的度数:3θ= ,4θ= ,5θ= ,6θ= ;(2)连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图证明;若不存在,请说明理由;归纳与猜想:设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合(其中A 1与B 1重合),现将正多边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转α(0°<α<180n︒); (3)设n θ与上述“3θ、4θ… ”的意义一样,请直接写出n θ的度数; (4)试猜想在正n 边形的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.3. B 如图△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=a,AC=b,求AE,BE的长.4. B C是线段AB的中点,在CE上取两点D、E.(1)若AD = BE,求证:∠ADC=∠E;(2)若∠ADC=∠E,求证:AD = BE.A已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC 于F,求证:AF=EF.已知:如图,在△ABC中,AC≠AB,D、E在BC上,且DE=EC,过D作DF//BA交AE 于点F,DF=AC.求证:AE平分∠BAC.5. B 在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF、CF之间的数量关系,并证明你的结论.1. C 如图,在等腰△ABC 中,AB =AC ,点D 为AB 左侧的一个动点,点E 在BD 的延长线上,CD 交AB 于F ,且∠BDC =∠BAC .(1)求证:∠ABD =∠ACD ;(2)求证:AD 平分∠CDE ;(3)若在D 点运动的过程中,始终有DC =DA +DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数?2. C 如图,已知AB =CD =AE =BC +DE =2,∠ABC =∠AED =90°,求五边形ABCDE 的面积.3. B 如图,在ABC ∆和A B C '''∆中,AD 、A D ''分别是BC 、B C ''上的中线,且AB A B ''=,AC A C ''=,AD A D ''=,求证ABC A B C '''∆∆≌.4. C 已知AM 为ABC ∆的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F . 求证:BE CF EF +>.5. C 如图,90BAC DAE ∠=∠=︒,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.6. B 如图,ABC ∆中,2C B ∠=∠,AD BC ⊥.求证AC BD DC =-.7. C 如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,则AB 的长为( )A .aB .kC .2k h D .h8. C 如图,已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM . 求证:AE =BC +CE .9. C 如图,求出图中∠DCA 的角度.期中期末串讲—三角形的证明1. B 如图,△ABC中,AB=AC,∠BAC=108°,若AD,AE三等分∠BAC,则图中等腰三角形有( )A.3个B.4个C.5个D.6个2. A 下列条件中,不能得到等边三角形的是( )A.有两个内角是60°的三角形B.有两边相等且是轴对称图形的三角形C.三边都相等的三角形D.有一个角是60°且是轴对称图形的三角形3. B 如图,在纸片△ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,求折痕DE的长.4. B 已知:△ABC的∠B的外角平分线BD与∠C的外角平分线CE相交于点P.求证:点P也落在∠A的平分线上.5. A 平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B2C3.(3)写出点A1,B2,C3的坐标.6. B 已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等.如果存在,请作出定点B;若不存在,请说明理由.7. A 根据下列已知条件, 不能唯一确定△ABC的大小和形状的是( )A.AB=3,BC= 4,AC=5B.AB= 4,BC=3,∠A=30ºC.∠A=60º,∠B= 45º,AB= 4D.∠C=90º,AB=6,AC=58. A 如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC.参考答案第一章三角形的证明1 等腰三角形专题1 等腰三角形和等边三角形1.证明:∵D是等边三角形ABC的AC边上的中点,∴BD平分∠ABC(等腰三角形三线合一),∴∠CBD=12∠ABC=30°,又∵CE=CD,∴∠CDE=∠E,又∵∠BCD=∠CDE+∠E=2∠E,∴∠E=30°=∠CBD,∴BD=DE(等角对等边).2.证明:如图,连接P A,PB,PC,则S△ABC= S△P AB+S△PBC+S△P AC,∴S△ABC=S△P AB+S△PBC+S△P AC=12PE×AB+12PD×BC+12PF×AC,又∵AB=BC=AC,∴S△ABC=12(PE+PF+PD)×BC,又∵S△ABC=12AH×BC,∴PE+PF+PD=AH.3.证明:在△ABD和△CAE中,∵,,,DBA EA BD AEBA ACC ⎧⎪==∠=⎨∠⎪⎩∴△ABD ≌△CAE (SAS).4.证明:方法一:如图,作△ABC 中BC 边上的高线,垂足为D , 在Rt △ADB 和Rt △ADC 中,∵,,,B C ADB AD AD AD C =⎧⎪⎨⎪=∠∠∠=⎩∠∴Rt △ADB ≌Rt △ADC (AAS)∴AB =AC .方法二:如图,作△ABC 中∠BAC 的角平分线AD ,在△ADB 和△ADC 中,∵,,,AD A BAD CAD B D C ∠∠∠=∠=⎧⎪⎨⎪=⎩∴△ADB ≌△ADC (AAS),∴AB =AC .方法三:将△ABC 视为△ABC 和△ACB 两个三角形,在△ABC 和△ACB 中,∵,,,BC B C C B CB ∠∠∠=⎧∠==⎪⎨⎪⎩∴△ABC ≌△ACB (ASA),∴AB =AC .5.证明:∵OA =OB ,∴∠A =∠B ,又∵AB ∥DC ,∴∠C =∠B ,∠D =∠A ,∴∠C =∠D ,∴OC =OD ,∴△OCD 是等腰三角形.6. A .7. D .8. D .9. C .10.证明:∵△ABC 是等边三角形,且AD =BE =CF ,∴AF =BD =CE ,在△ADF 、△BED 和△CFE 中,∵,,AD BE CF C AF BD B E A C ==∠∠∠=⎧==⎪=⎪⎨⎩,∴△ADF ≌△BED ≌△CFE (SAS),∴DF =ED =FE ,∴△DEF 是等边三角形.11.△CDE 是等边三角形证明:∵△AEC 由△BDC 绕着点C 旋转而成, ∴△AEC ≌△BDC ,∴CD =CE ,∴△CDE 是等腰三角形,又∵∠BCD =∠ACE ,∴∠BCD +∠ACD =∠ACE +∠ACD ,即∠ACB =∠ECD ,∴∠ECD =60°,∴△CDE 是等边三角形.1.证明:∵AD =AE∴∠ADE =∠AED∴∠ADB =∠AEC∴△ABD 和△ACE 中,BD =CE ,∠ADB =∠AEC ,AD =AE∴△ABD ≌△ACE (SAS )∴∠B =∠C2.证明:∵AB=AC, ∠A=60°,∵△ABC为等边三角形,∵BD是中线,∵∵CBD=∵ABD=30°,∵CE=CD,∵∵E=∵CDE=12∵BCD,∵∵BCD=60°,∵∵E=30°,∵∵E=∵CBD,∵DB=DE.3.证明:∵∵EAC+∵ECA=90°,∵BCF+∵ECA=90°,∵∵ECA=∵BCF,∵△AEC和△CFB中,∵EAC=∵FCB,∵AEC=∵CFB=90°,AC=CB,∵△AEC∵△CFB(AAS),∵AE=CF,∵BF=CE,∵EF=AE+BF.4.证明:∵∵ABC为等边三角形,∵∵BAC=∵BCA =∵B =60°,AB=AC,∵CE平分∠ACD,∵∵ACE=∵ECD =60°,∵∵ABD和∵ACE中,AB=AC,∵B =∵ACE =60°,BD=CE,∵∵ABD∵∵ACE(SAS),∵AD=AE,∵BAD=∵CAE,∵∵BAC=∵DAE=60°,∵∵ADE为等边三角形.1.等腰直角三角形.证明:连接MA,∵∠EAD=30°,∠BAC=60°,∴∠DAB=90°∵△EDA≌△CAB,∴DA=AB,ED=CA.∴△DAB是等腰直角三角形,∴∠MDA=∠MBA=45°又∵M为BD的中点,∴∠DAM=∠MAB=45°,AM⊥BD.∴△DAM与△MAB是等腰直角三角形.∴AM=MD=MB=12 BD.∴∠MDE=∠MAC=105°.∵DE=AC,∠MDE=∠MAC,MD=AM,∴△MDE≌△MAC.∴∠DME=∠AMC,ME=MC,又∵∠DMA=90°,∴∠EMC=∠EMA+∠AMC=∠EMA+∠DME=∠DMA=90°.∴△EMC是等腰直角三角形.2. C.3.1.5.4.67°.5.原三角形最大内角可能是72°,90°,108°,126°,132°.专题2 重要的30°1.证明:∵∠BAD=12∠BAC,DE⊥AB,DC⊥AC,∴DC=DE(垂直平分线上的点到角两边的距离相等),∴在△ADE和△BDE中,。
北师大版八年级数学下册单元测试《第1章 三角形的证明》(解析版)
《第1章三角形的证明》一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=24.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.456.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.97.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.《第1章三角形的证明》参考答案与试题解析一、选择题1.如果三角形的三个内角度数比为1:1:2,则这个三角形为()A.锐角三角形B.钝角三角形C.非等腰直角三角形D.等腰直角三角形【考点】三角形内角和定理.【分析】由三角形的三个内角度数比为1:1:2,可设三角形的三个内角分别为:x,x,2x,然后由三角形的内角和等于180°,即可得方程:x+x+2x=180°,解此方程即可求得答案.【解答】解:∵三角形的三个内角度数比为1:1:2,∴设三角形的三个内角分别为:x,x,2x,∴x+x+2x=180°,解得:x=45°,∴三角形的三个内角度数分别为:45°,45°,90°.∴这个三角形为等腰直角三角形.故选:D.【点评】此题考查了三角形的内角和定理.此题比较简单,解题的关键是根据三角形的三个内角度数比为1:1:2,设三角形的三个内角分别为:x,x,2x,利用方程思想求解.2.下面命题不正确的是()A.两个内角分别是50°和65°的三角形是等腰三角形B.两个外角相等的三角形是等腰三角形C.一个外角的平分线平行于一边的三角形是等腰三角形D.两个内角不相等的三角形不是等腰三角形【考点】等腰三角形的判定.【分析】认真阅读各选项,结合各选项提供的已知条件及等腰三角形的定义可得.【解答】解:A、第三个角180°﹣50°﹣65°=65°,有两等角的三角形是等腰三角形,正确;B、外角相等,则对应的内角也相等,有两等角的三角形是等腰三角形,正确;C、利用两直线平行,内错角相等,同位相等,可知,另外的两内角也相等,有两等角的三角形是等腰三角形,正确;D、两个内角不相等的三角形可能是等腰三角形,错误.故选D.【点评】本题考查了等腰三角形的判定;找出各选项的正误是正确解答本题的关键.3.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=2【考点】反证法.【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.【点评】此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60° B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°【考点】反证法.【专题】证明题.【分析】此题要运用反证法,由题意先假设三角形的三个角都小于60°成立.然后推出不成立.得出选项.【解答】解:设三角形的三个角分别为:a,b,c.假设,a<60°,b<60°,c<60°,则a+b+c<60°+60°+60°,即,a+b+c<180°与三角形内角和定理a+b+c=180°矛盾.所以假设不成立,即三角形中至少有一个角不小于60°.故选B.【点评】此题考查的知识点是反证法,解答此题的关键是由已知三角形中至少有一个角不小于60°假设都小于60°进行论证.5.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC于点D,连接ED并延长到点F,使DF=DE,连接FC,若∠B=70°,则∠F 的度数是()A.40 B.70 C.50 D.45【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题意可得EB=ED,根据等边对等角的性质,易得∠B=∠EDB=∠ACB,即可得EF∥AC,又由AE=BE,根据平行线等分线段成比例定理,可得BD=CD,然后利用SAS即可证得△EBD≌△CFD,即可得∠F=∠BED.【解答】解:∵以点E为圆心,EB为半径画弧,交BC于点D,∴EB=ED,∴∠EDB=∠B=70°,∴∠BED=180°﹣∠B=∠BDE=40°,∵AB=AC,∴∠ACB=∠B,∴∠EDB=∠ACB,∴EF∥AC,∵E是AB的中点,即BE=AE,∴BD=CD,在△EBD和△FCD中,,∴△EBD≌△FCD(SAS),∴∠F=∠BED=40°.故选A.【点评】此题考查了全等三角形的判定与性质、等腰三角形的性质以及平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用,注意理解题意.6.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.7.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里【考点】等腰三角形的判定与性质;方向角;平行线的性质.【专题】应用题.【分析】根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.【解答】解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选:D.【点评】本题考查了方向角的定义,以及三角形内角和定理,等腰三角形的判定定理,理解方向角的定义是关键.二、填空题8.如图所示,在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形的个数是6.【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,点D、E在BC边上,∠ABD=∠DAE=∠EAC=36°,根据等腰三角形的性质与三角形内角和定理,易求得各角的度数,继而求得答案.【解答】解:∵在△ABC中,AB=AC,∠ABD=36°,即△ABC是等腰三角形,∴∠C=∠B=36°,∴∠BAC=108°,∵∠DAE=∠EAC=36°,∴∠BAD=36°,∴∠BAD=∠B=36°,∠EAC=∠C=36°,∴△ABD,△ACE是等腰三角形,∴∠ADE=∠AED=∠DAC=∠BAE=72°,∴△ADE,△ABE,△ACD是等腰三角形.故答案为:6.【点评】此题考查了等腰三角形的性质与判定.此题难度不大,注意掌握数形结合思想的应用.9.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9.【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.10.如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【考点】等腰三角形的判定与性质.【专题】压轴题.【分析】可根据等腰三角形三线合一的性质来判断①②是否正确;③④要通过作等腰三角形来判断其结论是否成立.【解答】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.【点评】此题主要考查的是等腰三角形的判定和性质;本题的难点是结论③的证明,能够正确的构建出等腰三角形是解答③题的关键.三、解答题11.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.【考点】反证法.【专题】证明题.【分析】运用反证法进行求解:(1)假设结论PB≠PC不成立,PB=PC成立.(2)从假设出发推出与已知相矛盾.(3)得到假设不成立,则结论成立.【解答】证明:假设PB≠PC不成立,则PB=PC;∵在△ABP和△ACP中,,∴△ABP≌△ACP,∴∠APB=∠APC;与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC.【点评】解此题关键要懂得反证法的意义及步骤.12.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【考点】等腰三角形的判定与性质;作图—基本作图.【专题】作图题.【分析】(1)以D为圆心,以任意长为半径画弧,交AD于G,交DC于H,分别以G、H为圆心,以大于GH为半径画弧,两弧交于N,作射线DN,交AM 于F.(2)求出∠BAD=∠CAD,求出∠FAD=×180°=90°,求出∠CDF=∠AFD=∠ADF,推出AD=AF,即可得出答案.【解答】解:(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.【点评】本题考查了作图﹣基本作图,等腰三角形的性质和判定的应用,主要培养学生的动手操作能力和推理能力,题目比较典型,难度也适中.13.已知∠AOB及其内部一点P,试讨论以下问题的解答:(1)如图①,若点P在∠AOB的平分线上,我们可以过P点作直线垂直于角平分线,分别交OA、OB于点C、D,则可以得到△OCD是以CD为底边的等腰三角形;若点P不在∠AOB的平分线上(如图②),你能过P点作直线,分别交OA、OB于点C、D,得到△OCD是等腰三角形,且CD是底边吗?请你在图②中画出图形,并简要说明画法.(2)若点P不在∠AOB的平分线上(如图③),我们可以过P点作PQ∥OA,并作∠QPR=∠AOB,直线PR分别交OA、OB于点C、D,则可以得到△OCD是以OC为底的等腰三角形.请你说明这样作的理由.(3)若点P不在∠AOB的平分线上,请你利用在(2)中学到的方法,在图④中过P点作直线分别交OA、OB于点C、D,使得△OCD是等腰三角形,且OD是底边.保留画图的痕迹,不用写出画法.【考点】作图—应用与设计作图;角平分线的性质;等腰三角形的判定.【分析】(1)作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB于点C、D,则△OCD是以CD为底边的等腰三角形;(2)根据PQ∥OA,得出∠QPR=∠OCD,进而得出OD=CD,即可得出答案;(3)作QP∥DO,再作∠ODR=∠O,即可得出答案.【解答】解:(1)能.画法:作∠AOB的平分线,过P点作角平分线的垂线,分别交角的两边OA、OB 于点C、D,则△OCD是以CD为底边的等腰三角形,如图①.(2)∵PQ∥OA,∴∠QPR=∠OCD,又∵∠QPR=∠AOB,∴∠OCD=∠AOB.∴OD=CD.即△OCD是以OC为底的等腰三角形.(3)如图②.【点评】此题主要考查了基本作图角平分线的性质等知识;作角平分线是正确解答本题的关键.。
八年级数学下册 第一章《三角形的证明》1.1《等腰三角形》课件2 (新版)北师大版.pptx
命题的证明
定理:有一个角是600的等腰三角形是等边三角形.
已知:如图,在△ABC中,AB=AC,∠B=600.
求证:△ABC是等边三角形.
A
证明:∵AB=AC, ∠B=600(已知),
∴∠C=∠B=600.(等边对等角).
600
∴∠A=600(三角形内角和定理).
B
C
∴∠A=∠B(等式性质).
∴ AC=CB(等角对等边).
驶向胜利 的彼岸
6
我能行 3
命题的猜想
1 操作:用两个含有30°角的三角尺,你能拼成一 个怎样的三角形?
300 300
30°
300
300
30°
能拼出一个等边三角形吗?说说你的理由.
由此你想到,在直角三角形中, 30°角所对的 直角边与斜边有怎样的大小关系?
结论:在直角三角形中, 30°角所 对的直角边等于斜边的一半.
∴BC=BD/2=AB/2(等式性质).
8
回顾反思 3
几何的三种语言
定理:在直角三角形中, 如果有一个锐角等于 300,那么它所对的直角边等于斜边的一半.
在△ABC中, ∵∠ACB=900,∠A=300. ∴BC=AB/2.(在直角三角形中, 300
角所对的直角边等于斜边的一半).
B
A 300
C
这又是一个判定两条线段成倍 分关系的根据之一.
A
B
PHQ C
胜利属于敢想敢干的人! 你能与同学们交流探索证题的全过程吗?
驶向胜利 的彼岸
12
心动 不如行动 逆向思维
命题:在直角三角形中, 如果一条直角边等于斜边 的一半,那么它所对的锐角等于300.是真命题吗?
如果是,请你证明它.
新北师大版八年级下册《三角形的证明》 (1)
三角形的证明【知识点一:全等三角形的判定与性质】 1.判定和性质2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 【典型例题】1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( )A .SSSB .ASAC .AASD .角平分线上的点到角两边距离相等2.下列说法中,正确的是( )A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°, 则∠EAC 的度数为( )A .40°B .35°C .30°D .25°4.已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .5.用三角板可按下面方法画角平分线:在已知∠AOB 的两边上,分别取OM =ON (如图5-7),再分别过点M 、N 作OA 、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7【巩固练习】1.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-95.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F 为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11【知识点二:等腰三角形的判定与性质】等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角对等边)等腰三角形的性质:①等腰三角形的两底角相等(等边对等角);②等腰三角形“三线合一”的性质:顶角平分线、底边上的中线、底边上的高互相重合;③等腰三角形两底角的平分线相等,两腰上的高、中线也相等.【典型例题】1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.182.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°3.已知△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>64.如图,∠MON=43°,点A在射线OM上,动点P在射线ON上滑动,要使△AOP为等腰三角形,那么满足条件的点P共有()A.1个B.2个C.3个D.4个5.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,DE过O且平行于BC,已知△ADE的周长为10cm,BC的长为5cm,求△ABC的周长.6、如下图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.【巩固练习】1.如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A.30°B.40°C.50°D.70°2.下列说法错误的是()A.顶角和腰对应相等的两个等腰三角形全等B.顶角和底边对应相等的两个等腰三角形全等C.斜边对应相等的两个等腰直角三角形全等D.两个等边三角形全等3.如图,是一个5×5的正方形网格,网格中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.点C也在小正方形的顶点上.若△ABC为等腰三角形,满足条件的C点的个数为()A.6 B.7 C.8 D.94.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.95.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC 交BC于G.求证:(1)△GDF≌△CEF;(2)△ABC是等腰三角形.【知识点三:等边三角形的判定与性质】判定:有一个角等于60°的等腰三角形是等边三角形;三条边都相等的三角形是等边三角形;三个角都是60°的三角形是等边三角形;有两个叫是60°的三角形是等边三角形.性质:等边三角形的三边相等,三个角都是60°.【典型例题】1.下列说法中不正确的是()A.有一腰长相等的两个等腰三角形全等B.有一边对应相等的两个等边三角形全等C.斜边相等、一条直角边也相等的两个直角三角形全等D.斜边相等的两个等腰直角三角形全等2.如图,在等边△ABC中,∠BAD=20°,AE=AD,则∠CDE的度数是()A.10°B.°C.15°D.20°3、如右图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.【变式练习】1.下列命题:①两个全等三角形拼在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线所在直线;③等边三角形一边上的高所在直线就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.其中错误的有()A.1个B.2个C.3个D.4个2.如图,AC=CD=DA=BC=DE.则∠BAE是∠BAC的()A.4倍B.3倍C.2倍D.1倍3.如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延4.如图,等边△ABC中,点D、E分别为BC、CA上的两点,且BD=CE,连接AD、BE交于F点,则∠FAE+∠AEF的度数是()A.60°B.110°C.120°D.135°5.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.646.如图①,M、N点分别在等边三角形的BC、CA边上,且BM=CN,AM、BN交于点Q.(1)求证:∠BQM=60°;(2)如图②,如果点M、N分别移动到BC、CA的延长线上,其它条件不变,(1)中的结论是否仍然成立? 若成立,给予证明;若不成立,说明理由.7.如图,C为线段BD上一点(不与点B,D重合),在BD同侧分别作正三角形ABC和正三角形CDE,AD与BE交于一点F,AD与CE交于点H,BE与AC交于点G.(1)求证:BE=AD;(2)求∠AFG的度数;(3)求证:CG=CH.【知识点四:反证法】反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.【基础练习】1、否定“自然数a、b、c中恰有一个偶数”时的正确反正假设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数2、用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反证假设正确的是()A.假设三内角都不大于60° B.假设三内角都大于60°C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60°3、证明:在一个三角形中至少有两个角是锐角.【知识点五:直角三角形】1、直角三角形的有关知识.勾股定理:直角三角形两条直角边的平方和等于斜边的平方;勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.2、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.【典型例题】1、说出下列命题的逆命题,并判断每对命题的真假:(1)四边形是多边形;(2)两直线平行,同旁内角互补;(3)如果ab=0,那么a=0,b=0;(4)在一个三角形中有两个角相等,那么这两个角所对的边相等2.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等3.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B.6 C.5 D.44.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.43C.32D.25.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,若CD=2,那么BD等于()A.6 B.4 C.3 D.26.如图,在4×4正方形网格中,以格点为顶点的△ABC的面积等于3,则点A到边BC的距离为()A.B.C.4 D.37.如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE 交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗? 请证明你的结论.8.如图,在每个小正方形的边长均为1个单位长度的方格纸中有一个△ABC,△ABC的三个顶点均与小正方形的顶点重合.(1)在图中画△BCD ,使△BCD 的面积=△ABC 的面积(点D 在小正方形的顶点上). (2)请直接写出以A 、B 、C 、D 为顶点的四边形的周长.9.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B ′处,点A 落在点A ′处; (1)求证:B ′E =BF ;(2)设AE =a ,AB =b ,BF =c ,试猜想a ,b ,c 之间的一种关系,并给予证明.【变式练习】1.利用基本尺规作图,下列条件中,不能作出唯一直角三角形的是( )A .已知斜边和一锐角B .已知一直角边和一锐角C .已知斜边和一直角边D .已知两个锐角2.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( )A .365 B .1225C .94D .43.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方A .30°B .45°C .60°D .不能确定5.已知:如图,在△ABC 中,∠A =30°,∠ACB =90°,M 、D 分别为AB 、MB 的中点.求证:CD ⊥AB .6.如图,在5×5的方格纸中,每一个小正方形的边长都为1,∠BCD 是不是直角? 请说明理由.7.正方形网格中的每个小正方形边长都是1.每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(2)在图2中,画△DEF,使△DEF为钝角三角形且面积为2.【提高练习】1.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.62.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.6 C.16 D.553.张老师在一次“探究性学习”课中,设计了如下数表:Array(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n1)的代数式表示:>(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.4.如图,AC=BC=10cm,∠B=15°,AD⊥BC于点D,则AD的长为()A.3cm B.4cmC.5cm D.6cm56.图1、图2分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形分别满足以下要求:(1)在图1中画一个△ABC ,使△ABC 为面积为5的直角三角形; (2)在图2中画一个△ABC ,使△ABC 为钝角等腰三角形.7.已知,如图,△ABC 为等边三角形,AE =CD ,AD 、BE 相交于点P . (1)求证:△AEB ≌△CDA ; (2)求∠BPQ 的度数;(3)若BQ ⊥AD 于Q ,PQ =6,PE =2,求BE 的长.【知识点六:线段的垂直平分线】线段垂直平分线上的点到这一条线段两个端点距离相等。
北师大版八年级数学下册 第一章 三角形的证明 课件
2.(1)等腰三角形一个底角为75°,它的另外两个角为 __7_5_°__, _3_0_°__; (2)等腰三角形一个角为36°,它的另外两个角为 __7_2_°__,_7_2_°__或__3_6°___,1_0_8_°; (3)等腰三角形一个角为120°,它的另外两个角为 _3_0_°__,3_0_°___.
n
由此你能得到一个什么结论B?D=CE吗? BD=CE
过底边的端点且与底边夹角相等的两线段相等.
2.已知:如图,在△ABC中,AB=AC.
(1)如果AD=
1 为什么? BD=CE
(2)如果AD=
1 4
AC,AE=
1 4
AB,
那么BD=CE吗? 为什么? BD=CE
NM
求证: BM=CN.
证明:∵AB=AC(已知),∴∠ABC=∠ACB. B
C
又∵CM=
1 AC 2
,BN=
1 AB, 2
∴CM=BN.
在△BMC与△CNB中, ∵ BC=CB,∠MCB=∠NBC, CM=BN,
∴△BMC≌△CNB(SAS).
∴BM=CN.
例3 证明: 等腰三角形两腰上的高相等.
方法二:作顶角的平分线
已知: 如图,在△ABC中,AB=AC.
A
求证: ∠B= ∠C.
证明:作顶角的平分线AD, 则∠BAD=∠CAD.
在△BAD和△CAD中 AB=AC ( 已知 ),
B DC
∠BAD=∠CAD ( 已作 ),
AD=AD (公共边),
∴ △BAD ≌ △CAD (SAS).
∴ ∠B= ∠C (全等三角形的对应角相等).
议一议:
A
1.已知:如图,在△ABC中,AB=AC. (1)如果∠ABD= 1∠ABC , ∠ACE= 1∠ACB, 3 那么BD=3CE吗? 为什么? BD=CE
(完整word版)新北师大版八年级下册《三角形的证明》
三角形的证明【知识点一:全等三角形的判定与性质】 1.判定和性质一般三角形直角三角形判定边角边(SAS )、角边角(ASA )角角边(AAS )、边边边(SSS ) 具备一般三角形的判定方法 斜边和一条直角边对应相等(HL )性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 【典型例题】1.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是( )A .SSSB .ASAC .AASD .角平分线上的点到角两边距离相等2.下列说法中,正确的是( )A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°4.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM。
5.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图5-7),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7【巩固练习】1.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.如图4-9,已知ΔABC≌ΔA'B’C',AD、A’D’分别是ΔABC和ΔA’B’C'的角平分线.(1)请证明AD=A'D’;(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-95.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11【知识点二:等腰三角形的判定与性质】等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角对等边)等腰三角形的性质:①等腰三角形的两底角相等(等边对等角);②等腰三角形“三线合一”的性质:顶角平分线、底边上的中线、底边上的高互相重合;③等腰三角形两底角的平分线相等,两腰上的高、中线也相等.【典型例题】1.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A.12 B.15 C.12或15 D.182.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°3.已知△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A.0<x<3 B.x>3 C.3<x<6 D.x>64.如图,∠MON=43°,点A在射线OM上,动点P在射线ON上滑动,要使△AOP为等腰三角形,那么满足条件的点P共有()A.1个B.2个C.3个D.4个5.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,DE过O且平行于BC,已知△ADE的周长为10cm,BC的长为5cm,求△ABC的周长.6、如下图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC的平分线于点D,求证:MD=MA.【巩固练习】1.如图,已知直线AB∥CD,∠DCF=110°且AE=AF,则∠A等于()A.30°B.40°C.50°D.70°2.下列说法错误的是()A.顶角和腰对应相等的两个等腰三角形全等B.顶角和底边对应相等的两个等腰三角形全等C.斜边对应相等的两个等腰直角三角形全等D.两个等边三角形全等3.如图,是一个5×5的正方形网格,网格中的每个小正方形的边长均为1.点A 和点B在小正方形的顶点上.点C也在小正方形的顶点上.若△ABC为等腰三角形,满足条件的C点的个数为( )A.6 B.7 C.8 D.94.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.95.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE,过D作DG∥AC交BC于G.求证:(1)△GDF≌△CEF;(2)△ABC是等腰三角形.【知识点三:等边三角形的判定与性质】判定:有一个角等于60°的等腰三角形是等边三角形;三条边都相等的三角形是等边三角形;三个角都是60°的三角形是等边三角形;有两个叫是60°的三角形是等边三角形.性质:等边三角形的三边相等,三个角都是60°.【典型例题】1.下列说法中不正确的是()A.有一腰长相等的两个等腰三角形全等B.有一边对应相等的两个等边三角形全等C.斜边相等、一条直角边也相等的两个直角三角形全等D.斜边相等的两个等腰直角三角形全等2.如图,在等边△ABC中,∠BAD=20°,AE=AD,则∠CDE的度数是()A.10°B.12。
北师大版八年级数学下册第一章《三角形的证明》优课件
(1)证明:AD平分∠BAC
(2)求:DE的长。
E
F
B
D
C
课堂小结:
通过本节课的学习,你有什么收获?
1、角平分线性质定理: 角平分线上的点到这个角的两边的距离相等。
2、角平分线判定定理: 在一个角的内部,且到角的两边距离相等的 点,在这个角的平分线上。
独立
作业
知识的升华
(必做题) 1. 随堂练习1 2.习题1.9 1,2
∵ PDOAPEOB
DA
PD= PE
\OP 是AOB的平分线 O
PC
(到一个角的两边的距离相等的点, E B
在这个角的平分线上)
知识应用: 用途:判定一条射线是角平分线
1、如图,在△ABC中,∠BAC=60°,点D在BC上,
AD=10,DE⊥AB, DF⊥AC, 垂足分别是E, F,
且DE=DF
A
求证:点P在∠AOB的平分线上。 证明:∵ PD⊥OA, PE⊥OB
∴ ∠PDO=∠PEO=90° ∵ PD=PE, PO=PO
O
PC
E B
∴∠POD=∠POE
∴ Rt △PDO≌ Rt△PEO
即点P在∠AOB的平分线上
角平分线逆定理 :
在一个角的内部,到角的两边距离
相等的点,在这个角的平分线上。
(选做题)3.联系拓广3
巩固练习
2、已知:如图,在△ABC中,AD是它的角平分 线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别 为E、F。求证:EB=FC。
巩固练习
2、如图,一目标在A区,到公路、铁路距离相 等,离公路与铁路交叉处500m,在图上标出它 的位置(比例尺1︰20000)。
公路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B C (新北师大版)2014-2015学年度下学期八年级数学
第一章《三角形的证明》单元检测
一、选择题
1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是( )
A .7㎝
B .9㎝
C .12㎝或者9㎝
D .12㎝
2.一个等腰三角形的顶角是40°,则它的底角是( )
A .40°
B .50°
C .60°
D .70°
3.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则△ABC 的面积 是( )
A.24cm 2
B.30cm 2
C.40cm 2
D.48cm 2
4. 如图,在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )
A.∠A=∠D
B.∠ACB=∠F
C.∠B=∠DEF
D.∠ACB=∠D
5.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , 则∠A 的度数为( )
A.30°
B.36°
C.45°
D.70°
6.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;
②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
(4题图) (5题图) (6题图) (第10题图)
7. 到三角形三个顶点的距离相等的点是三角形( )的交点.
A. 三个内角平分线
B. 三边垂直平分线
C. 三条中线
D. 三条高
8. 面积相等的两个三角形( )
A.必定全等
B.必定不全等
C.不一定全等
D.以上答案都不对
二、填空题
09.如果等腰三角形的有一个角是80°,那么顶角是 度.
10.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =
2cm ,则AC= .
11.“等边对等角”的逆命题是______________________________.
12.在△ABC 中,边AB 、BC 、AC 的垂直平分线相交于P ,则PA 、PB 、PC 的大小
关系是 .
13.已知⊿ABC 中,∠A = 090,角平分线BE 、CF 交于点O ,则∠BOC = .
14.在△ABC 中,∠A=40°,AB=AC ,AB 的垂直平分线交AC 与D ,则∠DBC 的度
数为 .
15.Rt ⊿ABC 中,∠C=90º,∠B=30º,则AC 与AB 两边的关系是 ,
16.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6
,则其底边上的高
是 。
三.解答题
17.如图,DC ⊥CA ,EA ⊥CA , CD=AB ,CB=AE .求证:△BCD ≌△EAB .
18.如图,△ABC 中,∠B=90°,AB=BC ,AD 是△ABC 的角平分线,若BD=1, 求DC.
19.如图,∠A=∠D=90°,AC=BD.求证:OB=OC ;
D
E
C B A 16题图 D
A C
20.如图,在△ABD 和△ACE 中,有下列四个等式:
①AB=AC ②AD=AE ③∠1=∠2 ④BD=CE .以其中..
三个条件为已知,填入已知栏中,一个为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程。
已知: .
求证: .
证明:
21.如图,ABC ∆中,DE A AC AB ,, 40=∠=是腰AB 的垂直平分线,求DBC ∠的度数。
22.如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD. 求证:D 在∠BAC 的平分线上.
23.如图,在△ABD 和△ACD 中,已知AB =AC ,∠B =∠C ,求证:AD 是∠BAC 的平分线.
24.如图,在△AFD 和△BEC 中,点A 、E 、F 、C 在同一直线上,有下面四个条件:
(1)AD=CB ;(2)AE=CF ;(3)∠B=∠D ;(4)AD ∥BC 。
请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程.
25.如图,已知: D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE.
证明:在△AEB 和△AEC 中,
⎪⎩
⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB
∴△AEB ≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程;。