七年级数学(下)期中水平测试(C) 北师版

合集下载

北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)

北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)

北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)考试范围:第一.二.三单元;   考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:−3xy(4y−2x−1)=−12xy2+6x2y+▫,▫的地方被钢笔水弄污了,你认为▫内应为( )A. 3xyB. −3xyC. −1D. 12. 下列计算中正确的是( )A. (−a n)2=a n+2B. (−a3)4=(−a4)3C. (a4)4=a4⋅a4D. (a4)4=(a2)83. 如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧4. 如图,∠1=120°,要使a//b,则∠2的大小是( )A. 60°B. 80°C. 100°D. 120°5. 如图所示,已知AB//EF,那么∠BAC+∠ACE+∠CEF=( )A. 180°B. 270°C. 360°D. 540°6. 变量x与y之间的关系是y=−1x2+1,当自变量x=2时,因变量y的值是( )2A. −2B. −1C. 1D. 27. 如图是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( )A. 这天15点时的温度最高B. 这天3点时的温度最低C. 这天最高温度与最低温度的差是13℃D. 这天21点时的温度是30℃8. 甲、乙两人在100米赛跑中,路程s(m)与时间t(s)的关系如图所示,根据图象,下列结论错误的是( )A. 甲比乙先到达终点B. 甲、乙速度相差2m/sC. 甲的速度为10m/sD. 乙跑完全程需12s9. 计算x2⋅x3结果是( )A. 2x5B. x5C. x6D. x810. 在等式x2⋅(−x)⋅=x11中,括号内的代数式为( )A. x8B. (−x)8C. −x9D. −x811. 如图,DE//BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为( )A. 20°B. 35°C. 55°D. 70°12. 下图是统计一位病人的体温变化图,则这位病人在16时的体温约是( )A. 37.8℃B. 38℃C. 38.7℃D. 39.1℃第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 一个长方体的长,宽,高分别是3x−4,2x和x,则它的表面积是.14. 已知直线m//n,将一块含30°角的直角三角板ABC,按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=18°,则∠2的度数为______15. 如图,已知直线AB与直线CD相交于点O,EO⊥CD,垂足为O.若∠AOC=35°,则∠BOE 的度数为____ ∘.16. 小颖画了一个边长为5cm的正方形,如果将正方形的边长增加x(cm),那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.三、解答题(本大题共9小题,共72.0分。

北师大版七年级下册数学期中考试卷(加答案)

北师大版七年级下册数学期中考试卷(加答案)

北师大版七年级下册数学期中考试卷(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.绝对值不大于4.5的所有整数的和为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4+x x -有意义,+1x =___________.5.若264a =,则3a =________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.解不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩并在数轴上表示出不等式组的解集.3.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.4.如图,已知∠1,∠2互为补角,且∠3=∠B ,(1)求证:∠AFE=∠ACB(2)若CE 平分∠ACB ,且∠1=80°,∠3=45°,求∠AFE 的度数.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、A4、C5、C6、C7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、03、15°4、15、±26、±3三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、-1≤x<23、(1)证明见解析;(2)75.4、(1)详略;(2)70°.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、安排25人加工甲部件,则安排60人加工乙部件,共加工200套.。

北师大版七年级下册数学《期中考试题》(带答案)

北师大版七年级下册数学《期中考试题》(带答案)

北师大版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1.计算2(2)x 的结果是( )A .22xB .24xC .4xD .2x2.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 3.下列运算不正确的是( )A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x += 4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( )A .30︒B .60︒C .45︒D .90︒5.当3x =时,函数2y x =-的值是( )A .2-B .1-C .0D .16.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( )A .0.8y x =B .30y x =C .120y x =D .150y x =7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( )A .3p q =B .30p q +=C .30q p +=D .3q p =8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .10.运用乘法公式计算2(2)a -的结果是( )A .244a a -+B .224a a -+C .24a -D .244a a --二.填空题(共7小题,满分28分,每小题4分)11.已知2m a =,5n a =,则m n a += .12.某计算程序编辑如图所示,当输入x = 时,输出的3y =.13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则3∠= ︒.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是 (填”甲”或”乙” );②甲的行驶速度是 (公里/分);③乙的行驶速度是 (公里/分).15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠= .16.若22(3)16x m x +-+是完全平方式,则m 的值等于 .17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是 .三.解答题(共3小题,满分18分,每小题6分)18.计算:(1)96()()()x y y x x y -÷-÷-;(2)62543512()8(2)()2x x x x x --+÷-.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当2a =,4b =时,求绿化的面积.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案.25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 ;(2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.计算2(2)x 的结果是( )A .22xB .24xC .4xD .2x【解析】2222(2)24x x x =⨯=.故选:B .2.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 【解析】A 、连结AB ,不是命题,符合题意;B 、对顶角相等,是命题,不符合题意; C 、相等的角是对顶角,是命题,不符合题意;D 、同角的余角相等,是命题,不符合题意; 故选:A .3.下列运算不正确的是( )A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x +=【解析】A .23235a a a a +==,故本选项不合题意;B .343412()y y y ⨯==,故本选项不合题意;C .3333(2)(2)8x x x -=-=-,故本选项不合题意;D .3332x x x +=,故本选项符合题意.故选:D . 4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( )A .30︒B .60︒C .45︒D .90︒【解析】α∠与β∠互补,180αβ∴∠+∠=︒,150α∠=︒,18030βα∴∠=︒-∠=︒,β∴∠的余角为:903060︒-︒=︒,故选:B .5.当3x =时,函数2y x =-的值是( )A .2-B .1-C .0D .1【解析】当3x =时,函数2321y x =-=-=,故选:D .6.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( )A .0.8y x =B .30y x =C .120y x =D .150y x =【解析】每件商品的实际售价为:1500.8120⨯=(元),y ∴与x 间的函数表达式为:120y x =.故选:C . 7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( )A .3p q =B .30p q +=C .30q p +=D .3q p =【解析】232232()(3)333(3)(3)3x px q x x x px px qx q x p x p q x q -+-=--++-=+--++-,结果不含x 的一次项,30q p ∴+=.故选:C .8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒ 【解析】//AB CD ,145C ∴∠=∠=︒,3∠是CDE ∆的一个外角,32453580C ∴∠=∠+∠=︒+︒=︒,故选:D .9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .【解析】由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.40.4(010)y t t ∴=-,故只有选项D 符合题意.故选:D .10.运用乘法公式计算2(2)a -的结果是( )A .244a a -+B .224a a -+C .24a -D .244a a --【解析】原式244a a =-+,故选:A .二.填空题(共7小题,满分28分,每小题4分)11.已知2m a =,5n a =,则m n a +=__________.【解析】5210m n m n a a a +==⨯=,故答案为:10.12.某计算程序编辑如图所示,当输入x =__________时,输出的3y =.【解析】当3x 时,3y =3,解得12x =;当3x <时,3y =即353x +=,解得:23x =-.故答案为:12或23-. 13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则__________︒.【解析】//a b ,41110∴∠=∠=︒,342∠=∠-∠,31104070∴∠=︒-︒=︒,故答案为:70.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是__________(填”甲”或”乙” )②甲的行驶速度是__________(公里/分)③乙的行驶速度是__________(公里/分)【解析】(1)甲先出发,10分钟后乙出发;(2)甲20分钟行驶了4公里,则甲的速度40.220==(公里/分);(3)乙10分钟行驶了4公里,则甲的速度40.410==(公里/分). 故答案为甲;0.2;0.4. 15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠=__________.【解析】设AOD a ∠=,90AOC a ∠=︒+,90BOD a ∠=︒-,所以9090180AOC BOD a a ∠+∠=︒++︒-=︒. 故答案为:180︒.16.若22(3)16x m x +-+是完全平方式,则m 的值等于__________.【解析】22(3)16x m x +-+是完全平方式,2(3)24m x x ∴-=±,解得:7m =或1-,故答案为:7或1-.17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是__________.【解析】2017a x =-,2019b x =-,2234a b +=,22(2017)(2019)34x x ∴-+-=,22(20181)(20181)34x x ∴-++--=,22(2018)2(2018)1(2018)2(2018)134x x x x ∴-+-++---+=, 22(2018)32x ∴-=,2(2018)16x ∴-=,又2018c x =-,216c ∴=.故答案为:16.三.解答题(共3小题,满分18分,每小题6分)18.计算:(1)96()()()x y y x x y -÷-÷-(2)62543512()8(2)()2x x x x x --+÷-【解析】(1)原式96222()()()()2x y x y x y x y x xy y =-÷-÷-=-=-+; (2)原式62512567767128(8)()2282104x x x x x x x x x x =--+÷-=---=--.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值.【解析】2(1)(2)x x x -+- 22212x x x x =-++-2241x x =-+,2210x x --=,221x x ∴-=,∴原式222412(2)12113x x x x =-+=-+=⨯+=.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.【解析】设这个角为x ︒,则它的余角为90x ︒-︒,补角为180x ︒-︒,根据题意,得180103(90)x x ︒-︒+︒=⨯︒-︒,解得40x =,答:这个角为40度.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.【解析】证明://AC BD ,12∴∠=∠.又A D ∠=∠,1180A E ∠+∠+∠=︒,2180D F ∠+∠+∠=︒,E F ∴∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当2a =,4b =时,求绿化的面积.【解析】(1)依题意得:2(3)(2)()a b a b a b ++-+22226322a ab ab b a ab b =+++---2(53)a ab =+平方米.答:绿化面积是2(53)a ab +平方米;(2)当2a =,4b =时,原式202444=+=(平方米).答:绿化面积是44平方米.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?【解析】如果//PQ MN ,那么AB 与CD 平行.理由如下: 如图,//PQ MN ,EAQ ACN ∴∠=∠. 又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案. 【解析】(1)填表如下:依题意得:20(240)25(40)1518(300)x x x x -+-=+- 解得:200x =两个蔬菜基地调运蔬菜的运费相等时x 的值为200.(2)w 与x 之间的函数关系为:20(240)25(40)1518(300)29200w x x x x x =-+-++-=+由题意得:240040003000x x x x -⎧⎪-⎪⎨⎪⎪-⎩,40240x ∴,在29200w x =+中,20>,w ∴随x 的增大而增大,∴当40x =时,总运费最小,此时调运方案为:(3)由题意得(2)9200wm x=-+,02m ∴<<,(2)中调运方案总费用最小; 2m =时,在40240x 的前提下调运方案的总费用不变; 215m <<时,240x =总费用最小,其调运方案如下:25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 90PFD AEM ∠+∠=︒ ; (2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.【解析】(1)作//PG AB ,如图①所示:则//PG CD ,1PFD ∴∠=∠,2AEM ∠=∠,1290P ∠+∠=∠=︒,1290PFD AEM ∴∠+∠=∠+∠=︒,故答案为:90PFD AEM ∠+∠=︒; (2)证明:如图②所示://AB CD ,180PFD BHF ∴∠+∠=︒,90P ∠=︒,290BHF ∴∠+∠=︒,2AEM ∠=∠,90BHF PHE AEM ∴∠=∠=︒-∠,90180PFD AEM ∴∠+︒-∠=︒,90PFD AEM ∴∠-∠=︒;(3)如图③所示:90P ∠=︒,90901575PHE FEB ∴∠=︒-∠=︒-︒=︒, //AB CD ,75PFC PHE ∴∠=∠=︒,PFC N DON ∠=∠+∠,753045N ∴∠=︒-︒=︒.。

北师大版七年级下学期期中考试数学试卷含答案

北师大版七年级下学期期中考试数学试卷含答案

21北师大版七年级下学期期中考试试卷数学试题考试时间:90分钟 满分:100分一、 选择题(每小题2分,共20分) 1、下列运算正确的是( )A .1055a a a =+B .2446a a a =⨯C .a a a =÷-10D .044a a a =- 2、如图,下列推理错误的是( )A .∵∠1=∠2,∴c ∥dB .∵∠3=∠4,∴c ∥dC .∵∠1=∠3,∴ a ∥bD .∵∠1=∠4,∴a ∥b3、下列关系式中,正确的是( )A . ()222b 2ab a b a +-=+ B. ()222b a b a -=-C . ()222b a b a +=+ D. ()()22b a b a b a -=-+4、下列各式中不能用平方差公式计算的是( ) A 、))((y x y x +-- B 、))((y x y x --+-C 、))((y x y x ---D 、))((y x y x +-+5、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量 Q (升)与行驶时间t (时)的关系用图象表示应为图中的是( )6、若23,24m n ==,则322m n -等于( )A 、1B 、98C 、278D 、27167、如果一个角的补角是150°,那么这个角的余角的度数是( )A 、30°B 、60°C 、90°D 、120°8、如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )cdA .30° B.25° C.20° D.15° 9、下列说法中,正确的是 ( )A.内错角相等.B.同旁内角互补.C.同角的补角相等.D.相等的角是对顶角. 10、如图,下列条件中,能判定DE ∥AC 的是 ( ) A. ∠EDC=∠EFC B. ∠AFE=∠ACD C. ∠1=∠2 D. ∠3=∠4二、填空题(每小题2分,共20分)11、用科学计数法表示0.0000907 =12、一个角的补角是它的余角的4倍,则这个角是_________度。

北师大版七年级下册数学期中试卷(含答案)

北师大版七年级下册数学期中试卷(含答案)

2021-2022学年七年级(下)期中数学试卷一、选择题(本大题共12小题,共36分)1.下列计算正确的是()A. 2x2⋅3x3=6x6B. 2x2+3x3=5x5C. (−2x3)2=4x6D. 6x6÷3x2=2x32.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.假设一种可入肺的颗粒物的直径约为0.0000018米(即1.8微米),用科学记数法表示该颗粒物的直径为()A. 18×10−5米B. 1.8×10−6米C. 1.8×10−5米D. 0.18×10−5米3.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A. 太阳光强弱B. 水的温度C. 所晒时间D. 热水器4.如图,能够判断DE//BC的条件是()A. ∠1=∠2B. ∠4=∠CC. ∠1+∠3=180°D. ∠3+∠C=180°5.下列各式中,不能用平方差公式计算的是()A. (−x−y)(x−y)B. (−x+y)(−x−y)C. (x+y)(−x+y)D. (x−y)(−x+y)6.已知(m+n)2=36,(m−n)2=16,求mn的值()A. 7B. 6C. 5D. 47.滕州某布店新进了一批花布,卖出的数量x(米)与售价y(元)的关系如表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…那么y与x的关系式是()A. y=8x+0.3B. y=(8+0.3)xC. y=8+0.3xD. y=8+0.3+x8.如图,直线a//b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A. 45°B. 55°C. 35°D. 65°9.如图,AB//CD,∠1=∠2,∠3=130°,则∠2等于()A. 30°B. 25°C. 35°D. 40°10.下列说法中正确的是()A. 互为补角的两个角不相等B. 两个相等的角一定是对顶角C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D. 一个锐角的补角比这个角的余角大90°11.任意给定一个非零数,按下列程序计算,最后输出的结果是()A. mB. m2C. m+1D. m−112.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()第2页,共16页A. B.C. D.二、填空题(本大题共6小题,共24分)13.已知2m=a,4n=b,m,n为正整数,则23m+4n=________.14.如图,AD//BC,∠D=100°,CA平分∠BCD,则∠DAC=______度.15.如果(x−1)(3x+m)的积中不含x的一次项,则常数m的值为______.16.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=66°,则∠AED′的度数为______.17.定义一种新运算:a※b=a(a−b),例如5※3=5×(5−3)=10.根据定义给出以下运算结果:①2x※x=2x2;②(3−5x)※(6−5x)=15x−9;③(a※b)−(b※a)=b2−a2;④若a=b,则(a※b)※b=0.其中正确的是______(填写所有正确结果的序号).18.在平面内,若两条直线的最多交点数记为a1,三条直线的最多交点数记为a2,四条直线的最多交点数记为a3,…,依此类推,则1a1+1a2+1a3+⋯+1a10=______.三、解答题(本大题共7小题,共60分)19.计算:)−2;(1)(−1)2020+(−2)3+(π−1)0+(−14(2)(x−y)(x+2y)−(−x+y)2.20.先化解再求值:(3a−b)2+(a+2−b)(a+2+b)−(a+2)2,其中a=1,b=−3.321.如图,AB//CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,∠B=62°.求∠E的度数.请你在横线上补充其推理过程或理由.解:因为AB//CD(已知)所以∠1=∠CFE(理由:______)因为AE平分∠BAD(已知)所以______=∠2(角平分线的定义)又因为______=∠E(已知)所以∠2=∠E(等量代换)所以______.(内错角相等,两直线平行)所以∠B+______=180°(理由:______)因为∠B=62°(已知)∠BAD=______.所以∠2=12所以______.22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积(结果不用化简):①方法1:______;方法2:______.②请你写出代数式:(m+n)2,(m−n)2,mn之间的等量关系;(2)根据(1)题中的等量关系,解决问题:若a−b=5,ab=−6,求(a+b)2;(3)实际上有许多代数恒等式可以用图形的面积来表示.如图③,写出它表示的代数恒等式.第4页,共16页23.已知:∠DAC+∠ACB=180°,∠1=∠2,∠3=∠4,∠ACF=24°,∠DAC=4∠5.(1)求证:CE平分BCF;(2)求∠5的大小.24.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园.如图是他们离家路程s(km)与小明离家时间t(ℎ)的关系图,请根据图回答下列问题:(1)图中自变量是______,因变量是______;(2)小明家到滨海公园的路程为______km,小明在中心书城逗留的时间为______ℎ;(3)小明出发______小时后爸爸驾车出发;(4)图中A点表示______;(5)小明从中心书城到滨海公园的平均速度为______km/ℎ,小明爸爸驾车的平均速度为______km/ℎ;(补充:爸爸驾车经过______追上小明;)(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为______.25.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系并说明理由;(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?答案和解析1.【答案】C解:A、2x2⋅3x3=6x5,故A错误,不符合题意;B、2x2与3x3不是同类项,不能合并,故B错误,不符合题意;C、(−2x3)2=4x6,故C正确,符合题意;D、6x6÷3x2=2x4,故D错误,不符合题意;故选:C.根据单项式乘除法法则,积的乘方与幂的乘方,同类项概念逐个判断.本题考查整式的运算,解题的关键是掌握整式运算的相关法则.2.【答案】B解:0.0000018米的悬浮颗粒物,用科学记数法表示该颗粒物的直径为1.8×10−6米,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:B.函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.本题主要考查常量与变量的知识,解题的关键是对函数的定义以及对自变量和因变量的认识和理解,难度不大.4.【答案】C解:A、∵∠1=∠2,∴EF//AC,故不符合题意;第6页,共16页B、∵∠4=∠C,∴EF//AC,故不符合题意;C、∵∠1+∠3=180°,∴DE//BC,故符合题意;D、∵∠3+∠C=180°,∴EF//AC,故不符合题意;故选:C.根据平行线的判定定理即可得到结论.本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.5.【答案】D解:A、含y的项符号相同,含x的项符号相反,能用平方差公式计算;B、含x的项符号相同,含y的项符号相反,能用平方差公式计算;C、含y的项符号相同,含x的项符号相反,能用平方差公式计算;D、含y的项符号相反,含x的项符号相反,不能用平方差公式计算.故选:D.根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.本题考查了平方差公式,注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有,熟记公式结构是解题的关键.6.【答案】C解:∵(m+n)2=m2+2mn+n2,(m−n)2=m2−2mn+n2,∴(m+n)2−(m−n)2=4mn,将(m+n)2=36,(m−n)2=16代入,得36−16=4mn,∴mn=5.故选:C.根据(m+n)2−(m−n)2=4mn即可求出mn的值.本题考查了完全平方公式,推导出(m+n)2−(m−n)2=4mn是解决本题的关键.7.【答案】B解:∵16+0.6=2(8+0.3);24+0.9=3(8+0.3);32+1.2=4(8+0.3),...∴y=(8+0.3)x;故选:B.根据表格可知布的数量(米)与售价(元)的关系为售价=8.3×数量.本题考查了函数关系式,正确得出数字变化规律是解题的关键.8.【答案】B解:如图,∵∠1=35°,∴∠3=180°−35°−90°=55°,∵a//b,∴∠2=∠3=55°.故选:B.根据平角的定义求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.本题考查了平行线的性质,熟记性质并准确识图是解题的关键.9.【答案】B解:∵AB//CD,∠3=130°,∴∠GAB=∠3=130°,∵∠BAE+∠GAB=180°,∴∠BAE=180°−∠GAB=180°−130°=50°,∵∠1=∠2,∴∠2=12∠BAE=12×50°=25°.故选:B.先根据平行线的性质求出∠GAB的度数,再根据邻补角的定义求出∠BAE的度数,最后根据∠1=∠2求出∠2即可.本题主要考查了平行线的性质.解题的关键是掌握平行线的性质:两直线平行,同位角相等.10.【答案】D解:A、互为补角的两个角和为180°,但两个角要么不相等,要么相等,都是90°,故本选项不正确;B、对顶角相等,但相等的角不一定是对顶角,故本选项不正确;C、点到直线的距离,是指垂线段的长度,而不是垂线段,故本选项不正确;D、设锐角为x,则余角为90°−x,补角为180°−x,所以一个锐角的补角比这个角的余角大180°−x−(90°−x)=90°,故本选项是正确的.故选:D.A、根据补角的定义来推断即可;第8页,共16页B、根据对顶角的定义来判断即可;C、根据垂线段的定义来判断即可;D、根据余角、补角的定义来判断即可.本题考查的是余角、补角、对顶角、垂线段的定义,解题的关键是熟练掌握余角、补角、对顶角、垂线段的定义.11.【答案】C解:根据题意可列出代数式:(m2−m)÷m+2=m−1+2=m+1.故选:C.根据题意可列出代数式:(m2−m)÷m+2=m−1+2=m+1.列代数式时,要注意是前面整个式子除以m,应把前面的式子看成一个整体.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.12.【答案】D【解析】【分析】本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.【解答】解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s时点P在线段BD上的最小值,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.13.【答案】a3b2【解析】【分析】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【解答】解:∵2m=a,4n=b,m,n为正整数,∴22n=b,∴23m+4n=(2m)3×(22n)2=a3b2.故答案为a3b2.14.【答案】40解:∵AD//BC,∴∠BCD=180°−∠D=80°,∠DAC=∠ACB,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.故答案为40.利用两直线平行,同旁内角互补以及角平分线的定义进行做题.本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.15.【答案】3解:∵(x−1)(3x+m)=3x2+mx−3x−m=3x2+(m−3)x−m,∴m−3=0,∴m=3,故答案为:3.利用多项式乘以多项式的法则进行计算,合并同类项后使x的一次项的系数为0,得出关于m 的方程,解方程即可得出m的值.本题考查了多项式乘多项式,掌握多项式乘多项式的法则是解决问题的关键.16.【答案】48°第10页,共16页解:∵AD//BC,∠EFB=66°,∴∠DEF=66°,又∵∠DEF=∠D′EF,∴∠D′EF=66°,∴∠AED′=180°−2×66°=48°.故答案为:48°.先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.本题考查的是平行线的性质以及折叠的性质,用到的知识点为:两直线平行,内错角相等.17.【答案】①②④解:①2x※x=2x(2x−x)=2x2,故运算结果正确;②(3−5x)※(6−5x)=(3−5x)(3−5x−6+5x)=−3(3−5x)=15x−9,故运算结果正确;③(a※b)−(b※a)=a(a−b)−b(b−a)=a2−ab−b2+ab=a2−b2,故原来的运算结果错误;④若a=b,则(a※b)※b=[a(a−b)]※b=0※b=0×(0−b)=0,故运算结果正确.故答案为:①②④.各项利用题中新定义进行计算判断即可.此题考查了有理数的混合运算,熟练掌握新定义的运算法则是解本题的关键.18.【答案】2011解:∵2条直线最多交点有1个,即3条直线最多交点有(1+2)个,第12页,共16页4条直线最多交点有(1+2+3)个,……∴n 条直线最多交点有(1+2+3+⋯…+n −1)个,即n(n−1)2个(n 为大于等于2的正整数), ∴1a 1+1a 2+1a 3+⋯+1a 10 =12×12+13×22+14×32+⋯+111×102 =22×1+23×2+24×3+⋯+211×10 =2×(1−12+12−13+13−14+⋯+110−111)=2×1011=2011,故答案为:2011.利用两条、三条、四条直线最多交点个数,推理出n 条直线最多交点个数即可.本题考查的是相交线的最多交点数,解题的关键是找到直线条数与最多交点个数的规律.19.【答案】解:(1)原式=1−8+1+16=10;(2)原式=(x 2+2xy −xy −2y 2)−(x 2−2xy +y 2)=x 2+xy −2y 2−x 2+2xy −y 2=3xy −3y 2.【解析】(1)根据有理数的乘方、零指数幂和负整数指数幂的性质计算即可;(2)根据多项式的乘法和完全平方公式分别计算,再合并即可.本题考查实数和整式的运算,熟练掌握有理数的乘方、零指数幂和负整数指数幂的性质以及完全平方公式是解题关键.20.【答案】解:原式=9a 2−6ab +b 2+(a +2)2−b 2−(a 2+4a +4)=9a 2−6ab +b 2+a 2+4a +4−b 2−a 2−4a −4=9a 2−6ab ,当a =13,b =−3时,原式=9×(13)2−6×13×(−3)=1+6=7.【解析】直接利用平方差公式以及完全平方公式化简,再合并同类项,把已知代入得出答案.此题主要考查了整式的混合运算—化简求值,正确运用乘法公式化简是解题关键.21.【答案】两直线平行,同位角相等∠1∠CFE AD//BE∠BAD两直线平行,同旁内角互补59°∠E=59°解:因为AB//CD(已知),所以∠1=∠CFE(理由:两直线平行,同位角相等),因为AE平分∠BAD(已知),所以∠1=∠2(角平分线的定义),又因为∠CFE=∠E(已知),所以∠2=∠E(等量代换),所以AD//BE(内错角相等,两直线平行),所以∠B+∠BAD=180°(理由:两直线平行,同旁内角互补),因为∠B=62°(已知),∠BAD=59°,所以∠2=12所以∠E=59°.故答案为:两直线平行,同位角相等;∠1;∠CFE;AD//BE;∠BAD;两直线平行,同旁内角互补;59°;∠E=59°.由平行线的性质可得∠1=∠CFE,再由角平分线的定义得∠1=∠2,从而有∠2=∠E,则可判定AD//BE,从而可求∠E的度数.本题主要考查平行线的判定与性质,解答的关键是结合图形分析清楚角与角之间的关系.22.【答案】(m−n)2(m+n)2−4mn解:(1)根据题意可得,①方法1:阴影部分正方形的边长为m−n,则面积为:(m−n)2,方法2:用边长为m+n的大正方形面积减去4个长为m,宽为n的小长方形面积,(m+n)2−4mn;故答案为:(m−n)2,(m+n)2−4mn;(2)(m+n)2=(m−n)2+4mn;(a+b)2=(a−b)2+4ab=52+4×(−6)=49;(3)根据题意可得;(2m+n)(m+n)=2m2+3mn+n2.(1)①方法1:阴影部分正方形的边长为m−n,根据正方形的面积计算方法进行计算即可得出答案;方法2:用边长为m+n的大正方形面积减去4个长为m,宽为n的小长方形面积,列式计算即可得出答案;(2)根据(1)中两次计算面积相等可得,(m+n)2=(m−n)2+4mn;等量代换即可得出答案;(3)根据题意大长方形的长为2m+n,宽为m+n,应用多项式乘多项式法则进行计算即可得出答案.本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式的几何背景的计算方法进行求解是解决本题关键.23.【答案】(1)证明:∵∠DAC+∠ACB=180°,∴AD//BC,∵∠1=∠2,∴AD//EC,∴EF//BC,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CE平分∠BCF;(2)解:∵∠DAC+∠ACB=180°,∠DAC=4∠5,∠4=∠5,∴4∠5+2∠5+∠ACF=180°,∵∠ACF=24°,∴∠5=26°.【解析】(1)根据平行线的判定与性质、角平分线的定义求解即可;(2)根据角的和差求解即可.此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.24.【答案】(1)t,s;(2)30,1.7;(3)2.5;(4)2.5小时后小明继续坐公交车到滨海公园;ℎ;(5)12,30,23(6)s=15t(0≤t≤0.8)第14页,共16页解:(1)由图可得,自变量是t,因变量是s,故答案为:t,s;(2)由图可得,小明家到滨海公园的路程为30km,小明在中心书城逗留的时间为2.5−0.8=1.7(ℎ);故答案为:30,1.7;(3)由图可得,小明出发2.5小时后爸爸驾车出发;故答案为:2.5;(4)由图可得,A点表示2.5小时后小明继续坐公交车到滨海公园;故答案为:2.5小时后小明继续坐公交车到滨海公园;(5)小明从中心书城到滨海公园的平均速度为30−124−2.5=12(km/ℎ),小明爸爸驾车的平均速度为303.5−2.5=30(km/ℎ);爸爸驾车经过1230−12=23ℎ追上小明;故答案为:12,30,23ℎ;(6)小明从家到中心书城时,他的速度为120.8=15(km/ℎ),∴他离家路程s与坐车时间t之间的关系式为s=15t(0≤t≤0.8),故答案为:s=15t(0≤t≤0.8).(1)根据图象进行判断,即可得出自变量与因变量;(2)根据图象中数据进行计算,即可得到路程与时间;(3)根据梯形即可得到爸爸驾车出发的时间;(4)根据点A的坐标即可得到点A的实际意义;(5)根据相应的路程除以时间,即可得出速度;(6)根据小明从家到中心书城时的速度,即可得到离家路程s与坐车时间t之间的关系式.本题主要考查了函数图象,以及行程问题的数量关系的运用,解答时理解清楚函数图象的意义是解答此题的关键.25.【答案】解:(1)AB//CD.理由如下:∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°∴AB//CD;(2)∠BAE与∠MCD存在确定的数量关系:∠BAE+12∠MCD=90°.理由如下:过E作EF//AB,∵AB//CD,∴EF//AB//CD∴∠BAE=∠AEF,∠FEC=∠DCE∵∠E=90°,∴∠BAE+∠ECD=90°∵∠MCE=∠ECD,∠MCD=90°.∴∠BAE+12【解析】(1)结论是AB//CD.利用同旁内角互补两直线平行进行证明即可;∠MCD=90°.过E作EF//AB,先利用平(2)∠BAE与∠MCD存在确定的数量关系:∠BAE+12行线的传递性得出EF//AB//CD,再利用平行线的性质及已知条件可推得答案.本题考查了平行线的判定与性质,属于基础知识与基本证明方法的考查,难度不大.第16页,共16页。

【北师大版】七年级数学下册期中考试试题卷汇总(精选、)

【北师大版】七年级数学下册期中考试试题卷汇总(精选、)

北师大版七年级第二学期数学期中试题一、慧眼识金:(每小题2分,共15小题,30分)1在代数式22221,5,,3,1,35xx x x x x +--+π中是整式的有( )个 A 、3 B 、4 C 、5 D 62、下列说法错误的是 ( )A、内错角相等,两直线平行. B、两直线平行,同旁内角互补. C、同角的补角相等. D、相等的角是对顶角.3、下列计算正确的是 ( )A 、 623a a a =⋅B 、 a a a =-23C 、 32)()(a a a -=-⋅-D 、326a a a =÷4、如图,已知:∠1=∠2,那么下列结论正确的是______A .∠C=∠DB .AD ∥BCC .AB ∥CD D .∠3=∠45、下列各题中的数据,哪个是精确值?______A .客车在公路上的速度是60km/hB .我们学校大约有1000名学生C .小明家离学校距离是3kmD .从学校到火车站共有10个红灯路口6、如图,1∠与2∠是对顶角的是 ( )A. B. C. D.7、下列各式中不能用平方差公式计算的是( )A 、))((y x y x +--B 、))((y x y x --+-C 、))((y x y x ---D 、))((y x y x +-+8、下列说法正确的是 ( )A 、相等的角是对顶角B 、两条直线相交所成的角是对顶角C 、对顶角相等D 、有公共顶点且又相等的角是对顶角9、如果一个角的补角是150°,那么这个角的余角的度数是( )A 、30°B 、60°C 、90°D 、12010、下列说法正确的是………………………………..( )A 、31012.3⨯精确到百分位。

B 、312000精确到千位。

C 、3.12万精确到百位。

D 、0.010230有四个有效数字。

11、一只口袋里共有3只红球,2只黑球,1只黄球,现在小明任意摸出一个球,则摸出一只黑球的概率是( )A 、41B 、61C 、21 D 、31 12、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 、152 13、当老师讲到“肥皂泡的厚度为0.00000007m 时,小明立刻举手说‘老师,我可以用科学记数法表示它的厚度。

2021北师大版七年级下册数学《期中考试卷》(附答案)

2021北师大版七年级下册数学《期中考试卷》(附答案)
A.60°B.120°C.30°D.150°
【答案】B
【解析】
【分析】
根据余角 定义即可求出∠B,然后根据补角的定义即可求出结论.
【详解】解:∵∠A与∠B互为余角,∠A=30°,
∴∠B=90°-∠A=60°
∴∠B的补角为180°-60°=120°
故选B.
【点睛】此题考查的是求一个角的余角和补角,掌握余角的定义和补角的定义是解决此题的关键.
考点:完全平方式.
6.若 , ,则 ()
A. B. C. D.
【答案】A
【解析】
【分析】
根据完全平方公式的变形解答即可.
【详解】∵ , ,

即4=10+2xy
xy=-3
故选:A
【点睛】本题考查的是完全平方公式,掌握完全平方公式的各种变形是关键.
7.若a=( )﹣2,b=2﹣1,c=(﹣ )0,则a、b、c的大小关系是( )
9.如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()
A.a2+2ab+b2=(a+b)2
B.a2﹣2ab+b2=(a﹣b)2
C.4ab=(a+b)2﹣(a﹣b)2
D.(a+b)(a﹣b)=a2﹣b2
【答案】C
【解析】
【分析】
根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.
14.已知:2a=3,2b=2,22a﹣3b的值为________________
【答案】
【解析】
【分析】
直接利用同底数幂的除法运算法则将原式变形得出答案.
【详解】∴22a﹣3b= .故答案为 .

北师大版数学七年级下册第二学期期中 达标测试卷(含答案)

北师大版数学七年级下册第二学期期中 达标测试卷(含答案)

第二学期期中达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列图形中,∠1与∠2是同旁内角的是()2.下列计算正确的是()A.(a3)4=a12B.a3·a5=a15C.(x2y)3=x6y D.a6÷a3=a23.如图,直线a,b相交于点O,如果∠1+∠2=100°,那么∠2是() A.50°B.100°C.130°D.150°(第3题) (第4题)(第5题)(第7题)4.如图,下列条件能判定a∥b的是()A.∠2+∠3=180°B.∠1+∠2=180°C.∠1=∠2 D.∠3=∠45.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒6.已知(a+b)2=40,(a-b)2=60,则a2+b2的值为()A.40 B.50 C.60 D.1007.甲骑自行车从A地到B地,乙骑电动车从B地到A地,两人同时出发,匀速行驶,各自到达终点后停止运动.设甲、乙两人间的距离为s(单位:m),甲行驶的时间为t(单位:min),s与t之间的关系如图所示,则下列结论中不正确的是()A.出发30 min时,甲、乙同时到达终点B.出发15 min时,乙比甲多行驶了3 000 mC.出发10 min时,甲、乙在途中相遇D.乙的速度是甲的速度的两倍8.如图,有两个正方形A,B.现将B放在A的内部得图①,将A,B并列放置后,构造新的正方形得图②.图①和图②中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B如图③摆放,则图③中阴影部分的面积为()(第8题)A.28 B.29 C.30 D.31二、填空题(共5小题,每小题3分,计15分)9.近来,中国芯片技术获得重大突破,7 nm芯片已经量产,已知7 nm=0.000 000 7cm,则0.000 000 7用科学记数法表示为____________.10.已知某地的地面气温是20 ℃,如果每升高1 000 m气温下降6 ℃,则气温t(℃)与高度h(m)的函数关系式为________________.11.已知2x+y-4=0,则4x·2y的值是__________.12.如图,一块含有30°角的直角三角板,两个顶点分别在直尺的一对平行边上,∠α=110°,则∠β=________°.(第12题)(第13题)13.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设两正3 方形的面积分别为S 1,S 2.若AB =9,两正方形的面积和为51,则图中阴影部分的面积为__________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)化简:(1)(-x 2)3÷(-2x 3)·x 3; (2)(-2a 2)(4ab -ab 2+1).15.(5分)计算: (1)-12 024+2 0242-2 025×2 023;(2)(2 023-π)0-|-4|+⎝ ⎛⎭⎪⎫-12-3.16.(5分)先化简,再求值:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x ,其中x =1,y =-2.17.(5分)已知x+y=6,xy=4,求下列各式的值:(1)(x-3)(y-3);(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3).18.(5分)如图,已知∠α.请你用直尺和圆规画一个∠BAC,使得∠BAC=∠α.(要求:保留作图痕迹,不写作法)(第18题)19.(5分)一种大豆的总售价y(元)与所售质量x(千克)之间的关系如下表所示:所售质量x(千克)00.51 1.5总售价y(元)012 3(1)按表中给出的信息,写出y与x的关系式;(2)当售出大豆的质量为20千克时,总售价是多少?20.(5分)如图,已知直线EF⊥MN,垂足为F,且∠1=138°,若AB∥CD,求∠2的度数.(第20题)21.(6分)如图,已知AD是∠BAC的平分线,点E在BC上,点F在CA的延长线上,EF∥DA,且EF交AB于点G.试说明∠AGF=∠F.5(第21题)22.(7分)如图,直线MN分别与直线AC,DG交于点B,F,且∠1=∠2.∠ABF 的平分线BE交直线DG于点E,∠BFG的平分线FC交直线AC于点C.(第22题)(1)试说明BE∥CF;(2)若∠C=35°,求∠BED的度数.23.(7分)如图,直线AB,CD相交于点O,OM⊥AB.(第23题)(1)若∠1=30°,求∠BOD的度数;(2)如果∠1=∠2,那么ON与CD互相垂直吗?请说明理由.24.(8分)如图表示的是李军从家到超市的时间与他离家的距离之间的关系.观察图象并回答下列问题:(1)图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)李军到达超市用了多少时间?(3)李军出发的第20 min到第30 min内可能在做什么?(4)李军从家到超市的平均速度是多少?返回时的平均速度是什么?(第24题)725.(8分)已知动点P从点A出发沿图①的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的三角形AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图②,若AH=2 cm,根据图象信息回答下列问题:(第25题)(1)图①中AB=________cm;(2)图②中n=________;(3)求三角形AHP面积的最大值.26.(10分)如图①,已知直线CD∥EF,点A,B分别在直线CD,直线EF上,P 为两平行线间的一点.(第26题)(1)猜想∠DAP,∠FBP,∠APB之间有什么数量关系?并说明理由;(2)利用(1)的结论解答:①如图②,AP1,BP1分别平分∠DAP,∠FBP,请你直接写出∠P与∠P1的数量关系,不需要说明理由;②如图③,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=α,求∠AP2B的大小(用含α的代数式表示).9答案一、1.B 2.A 3.A 4.A 5.D 6.B 7.A8.B 点拨:设正方形A ,B 的边长各为a ,b (a >b ),得图①中阴影部分的面积为(a -b )2=a 2-2ab +b 2=1,解得a -b =1或a -b =-1(舍去),图②中阴影部分的面积为(a +b )2-(a 2+b 2)=2ab =12.所以(a +b )2=a 2+2ab +b 2=a 2-2ab +b 2+4ab =(a -b )2+4ab =1+2×12=25,解得a +b =5或a +b =-5(舍去),所以图③中阴影部分的面积为(2a +b )2-(3a 2+2b 2)=a 2+4ab -b 2=(a +b )·(a -b )+2×2ab =5×1+2×12=5+24=29,故选B. 二、9.7×10-7 10.t =-0.006h +20 11.16 12.5013.152 点拨:设AC =m ,CF =n ,因为AB =9,所以m +n =9,又因为S 1+S 2=51,所以m 2+n 2=51,由完全平方公式可得,(m +n )2=m 2+2mn +n 2,所以92=51+2mn ,所以mn =15,所以S 阴影部分=12mn =152,即阴影部分的面积为152. 三、14.解:(1)原式=-x 6÷(-2x 3)·x 3=12x 6-3+3 =12x 6.(2)原式=-2a 2·4ab +2a 2·ab 2-2a 2·1 =-8a 3b +2a 3b 2-2a 2.15.解:(1)原式=-1+2 0242-(2 024+1)(2 024-1)=-1+2 0242-(2 0242-1) =-1+2 0242-2 0242+1 =0.(2)原式=1-4-8 =-11.16.解:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x=(3x 2+3xy -xy -y 2-x 2-4xy -4y 2+5y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x=1,y=-2时,原式=1-(-2)=3.17.解:(1)(x-3)(y-3)=xy-3x-3y+9=xy-3(x+y)+9=4-3×6+9=-5.(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3)=(2x-y)[(2x-y)-(2x+y)]÷(-2y)-xy+3y=(2x-y)(-2y)÷(-2y)-xy+3y=2x-y-xy+3y=2(x+y)-xy=2×6-4=8.18.解:如图所示,∠BAC即为所求.(第18题)19.解:(1)表格中反映的是大豆所售质量x(千克)与总售价y(元)之间的关系,大豆所售质量x(千克)是自变量,总售价y(元)是因变量,y与x之间的关系式为y=2x.(2)由关系式可知,当售出大豆的质量为20千克时,y=2×20=40,所以当售出大豆的质量为20千克时,总售价是40元.20.解:若AB∥CD,则∠BFG=∠DGN,由题知∠1=138°,∠1+∠DGN=180°,所以∠DGN=42°.所以∠BFG=∠DGN=42°.因为EF⊥MN,所以∠2+∠BFG=90°,11所以∠2=90°-∠BFG=90°-42°=48°. 21.解:因为AD是∠BAC的平分线,所以∠BAD=∠CAD,因为EF∥DA,所以∠AGF=∠BAD,∠F=∠CAD,所以∠AGF=∠F.22.解:(1)因为∠1=∠2,∠2=∠BFG,所以∠1=∠BFG,所以AC∥DG,所以∠ABF=∠BFG.因为BE,FC分别为∠ABF,∠BFG的平分线,所以∠EBF=12∠ABF,∠CFB=12∠BFG,所以∠EBF=∠CFB,所以BE∥CF.(2)由题意知,AC∥DG,∠C=35°,所以∠C=∠CFG=35°,又因为BE∥CF,所以∠BEG=∠CFG=35°,故∠BED=180°-∠BEG=145°.23.解:(1)因为OM⊥AB,所以∠AOM=90°,又因为∠1=30°,所以∠AOC=∠AOM-∠1=90°-30°=60°,因为∠BOD=∠AOC,所以∠BOD=60°.(2)ON⊥CD.理由:因为∠1+∠AOC=90°,∠1=∠2,所以∠2+∠AOC=90°,即∠CON=90°,所以ON⊥CD.24.解:(1)图象表示的是李军从家到超市的时间与他离家的距离两个变量之间的关系,时间为自变量,离家的距离为因变量.(2)由图象可知,李军到达超市用了20 min.(3)可能在超市选购商品.(答案不唯一).(4)李军从家到超市的平均速度是90020=45(m/min),返回时的平均速度是90045-30=60(m/min).25.解:(1)3(2)26(3)由图象可得,当0<x≤3时,点P在AB上运动;当3<x≤5时,点P在BC上运动;当5<x≤11时,点P在CD上运动;当11<x≤17时,点P在DE上运动;当17<x≤30时,点P在EF上运动.所以点P在DE上运动时,三角形AHP的面积最大,即12×2×(11-2)=9(cm2).所以△AHP面积的最大值为9 cm2.26.解:(1)∠APB=∠DAP+∠FBP,理由如下:过点P作MP∥CD,如图,(第26题) 所以∠APM=∠DAP,因为CD∥EF,所以MP∥EF,所以∠MPB=∠FBP,所以∠APM+∠MPB=∠DAP+∠FBP.即∠APB=∠DAP+∠FBP.(2)①∠P=2∠P1.②由(1)得∠APB=∠DAP+∠FBP,13同理可得∠AP 2B =∠CAP 2+∠EBP 2, 因为AP 2,BP 2分别平分∠CAP ,∠EBP ,所以∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP , 所以∠AP 2B =12∠CAP +12∠EBP=12(180°-∠DAP )+12(180°-∠FBP )=180°-12(∠DAP +∠FBP ) =180°-12∠APB =180°-12α.。

北师大版初中数学七年级下册期中测试卷(标准难度)(含答案解析)

北师大版初中数学七年级下册期中测试卷(标准难度)(含答案解析)

北师大版初中数学七年级下册期中测试卷(标准难度)(含答案解析)考试范围:第一.二.三单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设a=355,b=444,c=533,则a、b、c的大小关系是( )A. c<a<bB. a<b<cC. b<c<aD. c<b<a2. 如图,长方形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68cm2,那么长方形ABCD的面积是( )A. 21cm2B. 16cm2C. 24cm2D. 9cm23. 计算(23)2013×1.52012×(−1)2014的结果是( )A. 23B. 32C. −23D. −324. ∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2的度数是( )A. 50°B. 130°C. 50°或130°D. 不能确定5. 下列说法中,正确的是( )A. 一个锐角的补角大于这个角的余角B. 一对互补的角中,一定有一个角是锐角C. 锐角的余角一定是钝角D. 锐角的补角一定是锐角6. 如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF,则∠GEB的度数为( )A. 10°B. 20°C. 30°D. 40°7. 火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米,其中正确结论的个数有( )A. 1个B. 2个C. 3个D. 4个8. 如图是一组有规律的图案,第 ①个图案由4个基础图形组成,第 ②个图案由7个基础图形组成,⋯,设第ⓝ(n是正整数)个图案是由y个基础图形组成的,则y与n之间的关系式是( )A. y=4nB. y=3nC. y=6nD. y=3n+19. 将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的图象大致为图中的( )A. B.C. D.10. 若M=a2−a,N=a−1,则M、N的大小关系是( )A. M>NB. M<NC. M≥ND. M≤N11. 如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为( )A. 40°B. 50°C. 60°D. 140°12. 在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(ℎ)后,与乙港的距离为y(km),y与x的关系如图所示,则下列说法正确的是( )A. 甲港与丙港的距离是90kmB. 船在中途休息了0.5ℎC. 船的行驶速度是45km/ℎD. 从乙港到达丙港共花了1.5ℎ第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 在计算(x+y)(x−3y)−my(nx−y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明把y的值看错了,其结果等于9,细心的小红把正确的x、y的值代入计算,结果恰好也是9,为了探个究竟,小红又把y的值随机地换成了2018,结果竟然还是9,根据以上情况,探究其中的奥妙,计算mn=______.14. 如图,直线l1//l2,∠α=∠β,∠1=40∘,则∠2=.15. 一棵树高ℎ(m)与生长时间n(年)之间满足一定的关系,请你根据下表中的数写出ℎ(m)与n(年)之间的关系式:ℎ=.n/年246810⋯ℎ/m 2.6 3.2 3.8 4.4 5.0⋯16. 如图,一轮船从离A港10千米的P地出发向B港匀速行驶,30分钟后离A港26千米(未到达B港).设x小时后,轮船离A港y千米(未到达B港),则y与x之间的关系式为________.三、解答题(本大题共9小题,共72.0分。

北师大版数学七年级下册《期中测试卷》及答案

北师大版数学七年级下册《期中测试卷》及答案
[详解]解:A.若 ,则 ,故此选项错误;
B.若 ,则 ,故此选项正确;
C.若 ,则 ,故此选项错误;
D.若 ,则 ,故此选项错误.
故选:B.
[点睛]本题考查平行线的判定与性质.解题时注意内错角与同旁内角的确定,关键是找到哪两条直线被第三条直线所截构造的内错角与同旁内角即可.
6. 弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:
A. B.
C. D.
[答案]D
[解析]
[分析]
由题意根据开车从学校出发行驶一段时间后,途中耽搁后进而加速前行最后匀速开车回到学校,进行分析即可得出答案.
[详解]解:A、出发行驶一段时间后距离学校更近,故不符合条件,排除;
B、最后距离学校没有越来越近,即并没有匀速开车回到学校,故不符合条件,排除;
C、途中耽搁后进而减速前行最后匀速开车回到学校,故不符合条件,排除;
[详解](1)∵AB∥CD,
∴∠1+∠2=180°(两直线平行,同旁内角互补);
(2)过点E作一条直线EF平行于AB,
故选:B.
[点睛]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5.如图,下列判断中正确的是()
A. 若 ,则 B. 若 ,则
C. 若 ,则 D. 若 ,则
[答案]B
[解析]
[分析]
由题意直接根据平行线的性质与判定,对各选项进行逐一判定即可.
[详解]解:A. ,故此选项错误;
B. ,故此选项错误;
C. ,故此选项正确;
D. ,故此选项错误.
故选:C.

北师大版数学七年级下学期期中测试卷三(含答案及解析)

北师大版数学七年级下学期期中测试卷三(含答案及解析)

9 8 0 0 北师大版数学七年级下学期期中测试卷三一.选择题1. 一本笔记本 3 元,买 x 本需要 y 元,在这一问题中,自变量是() A .笔记本B .3C .xD .y2. 如图,下列结论正确的是()A .∠5 与∠2 是对顶角B .∠1 与∠3 是同位角C .∠2 与∠3 是同旁内角D .∠1 与∠2 是同旁内角3. 生物学家发现了一种病毒,其长度约为 0.0000000052mm ,数据 0.0000000052 用科学记数法表示正确的是( )A .5.2×108B .5.2×109C .5.2×1﹣ D .5.2×1 ﹣4. 如图,O A ⊥A B 于点 A ,点 O 到直线 A B 的距离是()A .线段 O AB .线段 O A 的长度C .线段 O B 的长度D .线段 A B 的长度5. 弹簧挂上物体后会伸长,测得一弹簧的长度 y (cm)与所挂的物体的质量 x (kg)间有如下关系:x 0 1 2 3 4 5 y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体质量为 4 kg 时,弹簧长度为 12 cmC.弹簧不挂重物时的长度为 0 cmD.物体质量x每增加 1 kg,弹簧长度y增加 0.5 cm6.若x+m 与x+2 的乘积化简后的结果中不含x 的一次项,则m 的值为()A.2 B.﹣2 C.4 D.﹣47.如图,直线l 分别与直线A B、C D相交于点E、F,E G平分∠B E F交直线C D于点G,若∠1=∠BEF=68°,则∠E G F的度数为()A.34°B.36°C.38°D.68°8.小刘上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小刘离家的距离y(米)和所经过的时间x(分)之间的函数图象如图所示,则下列说法不正确的是( )A.小刘家与超市相距 3000 米B.小刘去超市途中的速度是 300 米/分C.小刘在超市逗留了 30 分D.小刘从超市返回家比从家里去超市的速度快二、填空.9.若a+3b﹣3=0,则3a•27b=.10.(a﹣2018)2+(2020﹣a)2=20,则a﹣2019=.11.已知a,b,c 是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=.12.已知BD、CE 是△ABC 的高,BD、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC=.13.若(4x﹣2m)(x+3)的乘积中不含x 的一次项,则常数m=.14.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y 与x 之间的关系可表示为.三.简答题15.如图,有一块边长为(3a+2)米的正方形铁片,王师傅要制作一个工件,欲在正方形铁片中央剪去一个小正方形铁片,按照图纸要求剪去小正方形后工件的宽度为 2b米.剪去小正方形后工件的面积是多少?16.计算(1)(﹣a)3•a2+(﹣2a4)2÷a3(2).17.如图,若∠1=∠3,∠2=60°,则∠4 的大小为多少度?四.解答题18.如图,在四边形ABCD 中,AB∥CD,E 为BC 延长线上一点,AE 交CD 于点F,∠1=∠2,∠3=∠4,试说明AD∥BE.证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD在△ABC 中,∠1+∠B+∠3=180°在△ADF 中,∠2+∠D+∠AFD =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D(等式的性质)∵AB∥CD∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE (等量代换)∴AD∥BE(内错角相等,两直线平行)19.如图,有一池塘,要测池塘两端A,B 两点的距离,可先在平地上取一个可以直接到达A,B 两点的C,连接AC 并延长AC 到点D,使CD=CA,连接BC 并延长BC 到点E,使CE=CB,连接DE,那么量出的长就等于AB 的长.这是因为可根据方法判定△ABC≌△DEC.20.计算题:(1)(﹣)﹣1﹣(﹣3)2+(π﹣2)0;(2)(2ab)m•(﹣3b2)÷(ab2)2;(3)(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y);(4)2022﹣203×201(简便运算).21.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回,16min 时到家,假设小东始终以100m/min 的速度步行,两人离家的距离y(单位:m)与小东打完电话后的步行时间t(单位;min)之间的函数关系如图所示:(1)小东打电话时,他离家m;(2)填上图中空格相应的数据,,;(3)小东和妈妈相遇后,妈妈回家的速度为m/min;(4)min 时,两人相距m.9 8 0 0 北师大版数学七年级下学期期中测试卷三一.选择题参考答案与试题解析1. 一本笔记本 3 元,买 x 本需要 y 元,在这一问题中,自变量是( ) A .笔记本 B .3 C .xD .y【解答】:C2. 如图,下列结论正确的是()A .∠5 与∠2 是对顶角B .∠1 与∠3 是同位角C .∠2 与∠3 是同旁内角D .∠1 与∠2 是同旁内角【解答】: D3. 生物学家发现了一种病毒,其长度约为 0.0000000052mm ,数据 0.0000000052 用科学记数法表示正确的是( )A .5.2×108B .5.2×109C .5.2×1﹣ D .5.2×1 ﹣【解答】: C4. 如图,O A ⊥A B 于点 A ,点 O 到直线 A B 的距离是()A .线段 O AB .线段 O A 的长度C .线段 O B 的长度D .线段 A B 的长度【解答】:B5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有如下关系:x012345y10 10.5 11 11.5 12 12.5下列说法不正确的是( )A.x与y都是变量,x是自变量,y是因变量B.所挂物体质量为 4 kg 时,弹簧长度为 12 cmC.弹簧不挂重物时的长度为 0 cmD.物体质量x每增加 1 kg,弹簧长度y增加 0.5 cm【解答】:C6.若x+m 与x+2 的乘积化简后的结果中不含x 的一次项,则m 的值为()A.2 B.﹣2 C.4 D.﹣4【解答】: B7.如图,直线l 分别与直线A B、C D相交于点E、F,E G平分∠B E F交直线C D于点G,若∠1=∠BEF=68°,则∠E G F的度数为()A.34°B.36°C.38°D.68°【解答】:A8.小刘上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小刘离家的距离y(米)和所经过的时间x(分)之间的函数图象如图所示,则下列说法不正确的是( )A.小刘家与超市相距 3000 米B.小刘去超市途中的速度是 300 米/分C.小刘在超市逗留了 30 分D.小刘从超市返回家比从家里去超市的速度快【解答】:D三、填空.9.若a+3b﹣3=0,则3a•27b=27 .【分析】先将原式化为同底,然后利用条件即可求出答案.【解答】解:原式=3a•(33)b=3a+3b,∵a+3b=3,∴原式=33=27,故答案为:2710.(a﹣2018)2+(2020﹣a)2=20,则a﹣2019=±3 .【分析】将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.【解答】解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.11.已知a,b,c 是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a﹣3b+c .【分析】根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.【解答】解:∵a,b,c 是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.12.已知BD、CE 是△ABC 的高,BD、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC=60°或120°.【分析】分两种情况:(1)当∠A 为锐角时,如图1;(2)当∠A 为钝角时,如图2;根据四边形的内角和为360°以及三角形内角和为180°,即可得出结果.【解答】解:分两种情况:(1)当∠A 为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE 是△ABC 的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A 为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC 的度数为60°或120°,故答案为:60°或120°.13.若(4x﹣2m)(x+3)的乘积中不含x 的一次项,则常数m= 6 .【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出12﹣2m=0,求出方程的解即可.【解答】解:(4x﹣2m)(x+3)=4x2+12x﹣2mx﹣6m=4x2+(12﹣2m)x﹣6m,∵(4x﹣2m)(x+3)的乘积中不含x 的一次项,∴12﹣2m=0,解得:m=6,故答案为:6.14.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y 与x 之间的关系可表示为y=﹣x2+8x .【分析】用含有x 的代数式表示出矩形的长,进而表示出面积y 即可.【解答】解:由矩形的面积的计算方法得:y=x×=﹣x2+8x,故答案为:y=﹣x2+8x.三.简答题15.如图,有一块边长为(3a+2)米的正方形铁片,王师傅要制作一个工件,欲在正方形铁片中央剪去一个小正方形铁片,按照图纸要求剪去小正方形后工件的宽度为 2b米.剪去小正方形后工件的面积是多少?【解答】:由题意,减去的小正方形的边长为 3a+2-4b,所以剪去小正方形后工件的面积为(3a+2)2-(3a+2-4b)2=24ab+16b-16b2(平方米).16.计算(1)(﹣a)3•a2+(﹣2a4)2÷a3(2).【分析】(1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.【解答】解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.17.如图,若∠1=∠3,∠2=60°,则∠4 的大小为多少度?【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠2=∠5,再求出∠4 即可.【解答】解:∵∠1=∠3,∴AB∥CD,∴∠2=∠5,∵∠2=60°,∴∠5=60°,∴∠4=180°﹣∠5=120°,故答案为:120.四.解答题18.如图,在四边形ABCD 中,AB∥CD,E 为BC 延长线上一点,AE 交CD 于点F,∠1=∠2,∠3=∠4,试说明AD∥BE.证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD在△ABC 中,∠1+∠B+∠3=180°在△ADF 中,∠2+∠D+∠AFD =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D(等式的性质)∵AB∥CD∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE (等量代换)∴AD∥BE(内错角相等,两直线平行)【分析】利用平行线的性质定理和判定定理进行解答即可.【解答】证明:∵∠3=∠4(已知)∴且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC 中,∠1+∠B+∠3=180°,在△ADF 中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB∥CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD∥BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.19.如图,有一池塘,要测池塘两端A,B 两点的距离,可先在平地上取一个可以直接到达A,B 两点的C,连接AC 并延长AC 到点D,使CD=CA,连接BC 并延长BC 到点E,使CE=CB,连接DE,那么量出DE 的长就等于AB 的长.这是因为可根据SAS 方法判定△ABC≌△DEC.【分析】利用“边角边”证明△ABC 和△DEC 全等,再根据全等三角形对应边相等解答.【解答】解:量出DE 的长就等于AB 的长.这是因为可根据SAS 方法判定△ABC≌△DEC.故答案为:DE,SAS.20.计算题:(1)(﹣)﹣1﹣(﹣3)2+(π﹣2)0;(2)(2ab)m•(﹣3b2)÷(ab2)2;(3)(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y);(4)2022﹣203×201(简便运算).【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可求出值;(3)原式利用完全平方公式,以及平方差公式计算即可求出值;(4)原式变形后,利用平方差公式计算即可求出值.【解答】解:(1)原式=﹣3﹣9+1=﹣12+1=﹣11;(2)原式=(2m a m b m)•(﹣3b2)÷(a2b4)=﹣12×2m a m﹣2b m﹣2;(3)原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy;(4)原式=2022﹣(202+1)×(202﹣1)=2022﹣(2022﹣1)=2022﹣2022+1=1.21.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回,16min 时到家,假设小东始终以100m/min 的速度步行,两人离家的距离y(单位:m)与小东打完电话后的步行时间t(单位;min)之间的函数关系如图所示:(1)小东打电话时,他离家1400 m;(2)填上图中空格相应的数据800 ,2400 ,2900 ;(3)小东和妈妈相遇后,妈妈回家的速度为50 m/min;(4) 3 或.min 时,两人相距700m.【分析】(1)根据函数图象可以直接得到小东打电话时,他离家的距离;(2)根据函数图象中的数据,可以算出图中空格中应填入的数据;(3)根据函数图象中的数据可以计算出小东和妈妈相遇后,妈妈回家的速度;(4)根据题意和图象中的数据,可以计算出两人相距700m 对应的时间【解答】解:(1)由图象可得,小东打电话时,他离家1400m,故答案为:1400;(2)由图可得,小东行驶6min 对应的y 的值为:1400﹣6×100=800,小东行驶到22min 时对应的y 值为:(1400﹣6×100)+(22﹣6)×100=2400,小东行驶到27min 时对应的y 值为:(1400﹣6×100)+(27﹣6)×100=2900,故答案为:800,2400,2900;(3)小东和妈妈相遇后,妈妈回家的速度为:=50(m/min),故答案为:50;(4)设在tmin 时,两人相距700m,相遇前相距700m,t==3,相遇后相距700m,t=6+=,故答案为:3 或.。

北师大版七年级下册数学《期中检测试卷》及答案

北师大版七年级下册数学《期中检测试卷》及答案
[详解]A.∵∠B=∠5,∴AB∥CD,故本选项不符合题意;
B.∵ ,∴AB∥CD,故本选项不符合题意;
C.∵ ,∴AB∥CD,故本选项不符合题意;
D.∵ ∴AD∥BC,故本选项符合题意.
故选D.
[点睛]此题考查平行线的判定,解题关键在于掌握判定定理.
5.点A(3,4)和点B(3,-5),则A、B相距()
A. 1个单位长度B. 6个]C
[解析]
[分析]
根据点A、B的坐标特征即可求出线段AB的长.
[详解]解:∵点A(3,4)和点B(3,-5)的横坐标相同
∴A、B相距4-(-5)=9个单位长度
故选C.
[点睛]此题考查的是求平面直角坐标系中两点之间的距离,掌握横坐标相同的两点之间的距离求法是解决此题的关键.
12.用吸管吸易拉罐内的饮料时,如图,∠1=100°,则2=_____(易拉罐的上下底面互相平行)
13. 的绝对值是_______.
14. 的相反数是______.
15.如图,各个小正方形格子的边长均为1,图中A,B两点的坐标分别为(-3,5),(3,5),则点C在同一坐标系下的坐标为_______.
三、解答题(一)(每题6分,共18分)
18.计算:
[答案]
[解析]
[分析]
根据合并同类二次根式法则计算即可.
[详解]解:
=
=
[点睛]此题考查的是二次根式的加减运算,掌握合并同类二次根式法则是解决此题的关键.
19.计算:
[答案]1
[解析]
分析]
根据绝对值的性质和合并同类二次根式法则计算即可.
[详解]解:
[详解]解:(1)∵数m的两个不等的平方根为a+3和2a-15

北师大版七年级数学下册期中学情评估附答案 (2)

北师大版七年级数学下册期中学情评估附答案 (2)

北师大版七年级数学下册期中学情评估一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个是符合要求的) 1.计算⎝ ⎛⎭⎪⎫13-2的结果是( )A .-9B .9C.19D .-192.下图中,∠1与∠2互为余角的是( )3.下列计算正确的是( )A .a 2·a 3=a 6B .a 5÷a 5=aC .(3b )3=27b 3D .2(a +1)=2a +14.计算(-4xy 2+3x 2y )(4xy 2+3x 2y )的最佳方法是( )A .运用多项式乘多项式法则B .运用平方差公式C .运用单项式乘多项式法则D .运用完全平方公式5.小明一家自驾到离家500 km 的某景点旅游,出发前将油箱加满油.下表记录了行驶路程x (km)与油箱余油量y (L)之间的部分数据:行驶路程/km 0 50 100 150 200 … 油箱余油量y /L4541373329…下列说法不正确的是( ) A .该车的油箱容量为45 LB.该车每行驶100 km耗油8 LC.油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45-8xD.当小明一家到达景点时,油箱中剩余5 L油6.如图,直线AB,CD相交于点O,∠AOC=70°,OE把∠BOD分成两部分,且∠BOE∠EOD=23,则∠AOE等于( )A.162°B.152°C.142°D.132°(第6题) (第7题)7.如图,点D,E,F分别在三角形ABC的边CA,AB,BC上,连接DE,EF,若∠1=∠B,∠2=75°,则∠3的度数为( )A.105°B.95°C.85°D.75°8.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有( ) A.5个B.4个C.3个D.2个(第8题) (第9题)9.在课外实验活动中,一名同学以固定的速度向某一容器中注水,若水深h(cm)与时间t(s)之间的关系的图象大致如图所示,则这个容器是( )10.如图,两个正方形的边长分别为a,b,如果a+b=5,ab=6,则阴影部分的面积为( )A .2.5B .2C .3.5D .1二、填空题(本题共6小题,每小题4分,共24分)11.如图,已知DE ∥BC ,∠ABC =40°,则∠ADE =________.(第11题) (第13题)12.某种蚕丝的半径为0.000 016 8 m ,将数据0.000 016 8用科学记数法表示为______________.13.如图,某小区A 的自来水供水路线为AB ,现进行改造,沿路线AO 铺设管道,并与主管道BO 连接(AO ⊥BO ),这样路线AO 最短,工程造价最低,依据是____________________________________.14.洲际弹道导弹的速度会随着时间的变化而变化,某种型号的洲际弹道导弹的速度v (km/h)与时间t (h)的关系是v =1 000+50t .若导弹发射后0.5 h 即将击中目标,则此时该导弹的速度应为________km/h. 15.已知a +b =3,ab =1,则a 2-ab +b 2=______________.16.如图,已知A 1B ∥A n C ,则∠A 1+∠A 2+…+∠A n 等于______________(用含n的式子表示).三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)(2ax )2·⎝ ⎛⎭⎪⎫-25a 4x 3y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2;(2)704×696;(3)(x -3)(2x +1)-3(2x -1)2;(4)(-3)2+(π-3)0-|-5|+(1-2)2 023.18.(8分)某电影院的座位按下列方式设置:(1)在上述变化过程中,自变量和因变量分别是什么? (2)第n 排有多少个座位?(3)若某排有124个座位,则该排的排数是多少?19.(8分)先化简,再求值:[(a -b )2+(2a +b )·(1-b )-b ]÷⎝ ⎛⎭⎪⎫-12a ,其中a ,b满足|a+1|+(2b-1)2=0.20.(8分)如图,点P是∠BAC的边AB上一点.(1)在AB的左侧作∠APD=∠BAC;(在原图上作图,不写作法,保留作图痕迹)(2)根据上面所作的图形,你认为PD和AC一定平行吗?请说明理由.21.(8分)完成下列填空:如图,已知AD⊥BC,EF⊥BC,∠1=∠2.试说明:DG∥BA.解:因为AD⊥BC,EF⊥BC(已知),所以∠EFB=∠ADB=90°(______________).所以________∥________(__________________________________).所以∠1=∠BAD(______________________________).又因为∠1=∠2(已知),所以____________(等量代换).所以DG∥BA(________________________________).22.(10分)如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=3∠3,∠CBD=80°.(1)试说明:AB∥CD;(2)求∠3的度数.23.(10分)甲、乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,匀速(甲车的速度大于乙车的速度)前往B地和A地,在途中的服务区两车相遇,休整了2 h后,又各自以原速度继续前往目的地,两车之间的距离s(km)和所用时间t(h)之间的关系图象如图所示,请根据图中提供的信息回答下列问题:(1)图中的自变量是______________,因变量是______________;(2)A,B两地相距________km;(3)求图中x的值以及甲车的速度.24.(12分)通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.(1)请利用图①所得的恒等式解决如下问题:若(a+b)2=5,a-b=1,求ab的值.(2)正方形ABCD、正方形AEFG如图②摆放,边长分别为x,y.若x2+y2=34,BE=2,请直接写出图中阴影部分的面积.(3)类似地,用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式.图③是由2个正方体和6个长方体拼成的一个大正方体,请写出一个恒等式.(4)已知a+b=3,ab=1,利用(3)中的恒等式求a3+b32的值.25.(14分)已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)如图,当点F在线段AD上时,写出图中可以表示出的与∠D相等的角;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.答案一、1.B 2.C 3.C 4.B 5.C 6.B 7.A 8.B 9.D 10.C二、11.40° 12.1.68×10-513.直线外一点与直线上各点连接的所有线段中,垂线段最短 14.1 025 15.616.(n -1)·180° 提示:如图,过点A 2作A 2D ∥A 1B ,过点A 3作A 3E ∥A 1B ,….因为A 1B ∥A n C ,所以A 3E ∥A 2D ∥…∥A 1B ∥A n C . 所以∠A 1+∠A 1A 2D =180°, ∠DA 2A 3+∠A 2A 3E =180°,….所以∠A 1+∠A 1A 2A 3+…+∠A n -1A n C =(n -1)·180°. 三、17.解:(1)原式=-85a 6x 5y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2=165ax 4y .(2)原式=(700+4)×(700-4)=7002-42=489 984.(3)原式=2x 2-5x -3-3(4x 2-4x +1)=2x 2-5x -3-12x 2+12x -3=-10x 2+7x -6.(4)原式=9+1-5+(-1)=4.18.解:(1)自变量是排数,因变量是座位数.(2)由表格可知,第1排的座位数为60,往后每一排的座位数比前一排增加4,则第n 排有60+4(n -1)=4n +56(个)座位. (3)令4n +56=124,解得n =17. 答:该排的排数是17.19.解:原式=(a 2-2ab +b 2+2a -2ab +b -b 2-b )÷⎝ ⎛⎭⎪⎫-12a =(a 2-4ab +2a )÷⎝ ⎛⎭⎪⎫-12a =-2a +8b -4.由|a+1|+(2b-1)2=0,得a=-1,b=1 2 .代入上式,得原式=-2×(-1)+8×12-4=2.20.解:(1)如图所示,∠APD为所求作的角.(2)一定平行.理由:内错角相等,两直线平行.21.垂直的定义;EF;AD;同位角相等,两直线平行;两直线平行,同位角相等;∠2=∠BAD;内错角相等,两直线平行22.解:(1)因为AE⊥BC,FG⊥BC,因为AE∥GF,所以∠2=∠A.因为∠1=∠2,所以∠1=∠A,所以AB∥CD.(2)因为AB∥CD,所以∠D+∠CBD+∠3=180°.因为∠D=3∠3,∠CBD=80°,所以3∠3+80°+∠3=180°,所以∠3=25°.23.解:(1)时间t;距离s(2)900(3)甲、乙两车的速度和为900÷6=150(km/h),所以150(x-8)=600,解得x=12,所以甲车的速度为900÷(12-2)=90(km/h).24.解:(1)由题图①可得4ab=(a+b)2-(a-b)2,所以ab=(a+b)2-(a-b)24=5-14=1.(2)S阴影=8.(3)(a+b)3=a3+b3+3a2b+3ab2.(4)因为a+b=3,ab=1,所以ab(a+b)=a2b+ab2=3.由(3)得a3+b3=(a+b)3-3a2b-3ab2=(a+b)3-3(a2b+ab2)=33-3×3=18,所以a3+b32=9.25.解:(1)∠DCG,∠ECF,∠B.(2)因为∠ECF=25°,∠DCE=90°,所以∠FCD=65°.易得∠BCF=90°,所以∠BCD=65°+90°=155°.(3)如图①,当点C在线段BH上时,点F在DA的延长线上,因为∠ECF=∠B=25°,AD∥BC,所以∠BAF=∠B=25°.如图②,当点C在BH的延长线上时,点F在线段AD上,因为∠B=∠ECF=25°,AD∥BC,所以∠BAF=180°-25°=155°.综上所述,∠BAF的度数为25°或155°.北师大版七年级数学下册期中学情评估一、选择题(每题3分,共30分)1.计算:(-3)-1=( )A.-3 B.3 C.13D.-132.下列各图中,∠1与∠2是对顶角的是( )3.某颗粒物的直径约为0.000 001 8米,用科学记数法表示该颗粒物的直径为( )A.0.18×10-5米B.1.8×10-5米C.1.8×10-6米D.18×10-5米4.下列运算正确的是( )A.(a2)3=a6B.a3·a4=a12C.a8÷a4=a2D.(-3a2)2=6a45.如图,点E在BC的延长线上,下列条件不能判断AB∥CD的是( )A.∠BAC=∠ACDB.∠DCE=∠BC.∠B+∠BCD=180°D.∠B+∠BAD=180°6.下列算式不能运用平方差公式计算的是( )A.(x+a)(x-a)B.(x+2a)(-2a+x)C.(a+b)(-a-b)D.(-x-b)(x-b)7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间关系的图象大致为( )8.已知在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下表的关系,下列说法不正确的是( )x/kg0123 4y/cm2022242628A.x与y都是变量,且x是自变量,y是因变量B.所挂物体的质量为2 kg时,弹簧的长度为24 cmC.弹簧不挂物体时的长度为0 cmD.在弹性限度内,所挂物体的质量每增加1 kg,弹簧的长度增加2 cm 9.观察如图所示的图形,下列说法正确的个数是( )①过点A有且只有一条直线与直线BD平行;②平面内,过点A有且只有一条直线AC垂直于直线BD;③线段AC的长是点A到直线BD的距离;④线段AB、AC、AD中,线段AC最短,根据是两点之间,线段最短.A.1个B.2个C.3个D.4个(第9题) (第10题)10.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=n°,则下列结论:①∠COE=90°-12n°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的有( )A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共15分)11.小明家离学校3千米,上学时小明骑自行车以10千米/时的速度骑了x小时,这时离学校还有y千米.写出y与x之间的关系式:__________________.12.一个角的补角与这个角的余角的差是 ______ °.13.已知2x=6,4y=7,那么2x+2y的值是______.14.若代数式x2-6x+k是完全平方式,则k=______.15.如图①,在某个底面积为20 cm2的盛水容器内,有一个实心圆柱体铁块,现在匀速持续地向容器内注水,容器内水的高度y(cm)和注水时间x(s)之间的关系满足如图中的图象,则水流速度是______cm3/s.三、解答题(一)(每题8分,共24分)16.先化简,再求值:[(ab+2)(ab-2)-2a2b2+4]÷2ab,其中a=1,b=-2.17.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C =∠D.(1)BD和CE平行吗?请说明理由;(2)∠A和∠F相等吗?请说明理由.18.作图题(保留作图痕迹,不写作图过程):(1)在如图所示的方格纸中不用量角器与三角尺,仅用直尺.①经过点P,画直线PQ平行于AB所在直线.②过点C,画直线CN垂直于CB所在直线.(2)尺规作图:已知∠ACB,求作:∠A′C′B′,使∠A′C′B′=∠ACB.四、解答题(二)(每题9分,共27分)19.亮亮计算一道整式乘法的题(3x-m)·(2x-5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“-”写成了“+”,得到的结果为6x2-5x-25.(1)求m的值;(2)计算这道整式乘法的正确结果.20.为了解某种品牌汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0123…油箱剩余油量Q(L)100948882…(1)根据上表的数据,请你写出Q与t的关系式;(2)该品牌汽车的油箱有50L油,若以100km/h的速度匀速行驶,该车最多能行驶多远?21.小明骑单车上学,当他骑了一段路后,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次上学所用的时间与离家距离的关系示意图.根据图中的信息回答下列问题:(1)小明家到学校的距离是______米;(2)小明在书店停留了______分钟;(3)本次上学途中,小明一共行驶了____米,一共用了______分钟;(4)若骑单车的速度超过300米/分就超过了安全限度.在整个上学途中小明的最快车速是多少米/分?速度是否在安全限度内?五、解答题(三)(每题12分,共24分)22.如图①的两个长方形可以按不同的形式拼成图②和图③两个图形.(1)在图②中的阴影部分的面积S1可表示为____________;(写成多项式乘法的形式);在图③中的阴影部分的面积S2可表示为______;(写成两数平方差的形式)(2)比较图②与图③的阴影部分面积,可以得到的等式是______;A.(a+b)2=a2+2ab+b2B.(a+b)(a-b)=a2-b2C.(a-b)2=a2-2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2-n2=12,2m+n=4,则2m-n=______;②计算(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1的值,并写出该值的个位数字是多少.23.【阅读理解】两条平行线间的拐点问题经常可以通过作一条直线的平行线进行转化.例如:如图①,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.试说明:∠CAB=∠MCA+∠PBA.解:如图①,过点A作AD∥MN,因为MN∥PQ,AD∥MN,所以AD∥MN∥PQ,所以∠MCA=∠DAC,∠PBA=∠DAB,所以∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即∠CAB=∠MCA+∠PBA.【类比应用】若直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图②,若∠A=50°,∠D=150°,求∠APD的度数;(2)如图③,设∠PAB=∠α、∠CDP=∠β,则∠α、∠β、∠P之间的数量关系为__________________;【联系拓展】如图④,直线AB∥CD,P为平面内一点,连接PA、PD.AP⊥PD,DN平分∠PDC,若∠PAN+12∠PAB=∠P,运用(2)中的结论,直接写出∠N的度数.答案一、1.D 2.B 3.C 4.A 5.D 6.C 7.D 8.C 9.C 10.A二、11.y =3-10x 12.90 13.42 14. 915.403提示:由题图可知,5s 时,水面刚好到达实心圆柱体铁块顶端,5s 后水面高度不受实心圆柱体铁块影响, 则水流速度为(15-11)×2011-5=403(cm 3/s).故答案为403. 三、16.解:原式=(a 2b 2-4-2a 2b 2+4)÷2ab=(-a 2b 2)÷2ab =-12ab .当a =1,b =-2时,原式=-12×1×(-2)=1.17.解:(1)平行.理由:因为∠1=∠2,∠2=∠3,所以∠1=∠3,所以BD ∥CE .(2)相等.理由:因为BD ∥CE ,所以∠C =∠DBA , 又因为∠C =∠D ,所以∠DBA =∠D , 所以DF ∥AC ,所以∠A =∠F . 18.解:(1)如图.(2)如图.四、19.解:(1)根据题意可得,(3x+m)(2x-5)=6x2-15x+2mx-5m=6x2-(15-2m)x-5m,所以-5m=-25,解得m=5.(2)(3x-5)(2x-5)=6x2-15x-10x+25=6x2-25x+25. 20.解:(1)由题意得汽车每行驶1h,油量减少6L,则剩余油量为Q=100-6t.(2)50÷6×100=2 5003(km),答:该车最多能行驶2 5003km.21.解:(1)1 500 (2)4 (3)2 700;14(4)当时间在0~6分钟内时,速度为1 200÷6=200(米/分),当时间在6~8分钟内时,速度为(1 200-600)÷(8-6)=300(米/分),当时间在12~14分钟内时,速度为(1 500-600)÷(14-12)=450(米/分),因为450>300>200,所以在整个上学途中小明的最快车速为450米/分,速度不在安全限度内.五、22.解:(1)(a+b)(a-b);a2-b2(2)B(3)①3②原式=(2-1)(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1=(22-1)(22+1)(24+1)(28+1)+…+(232+1)+1=(24-1)(24+1)(28+1)+…+(232+1)+1=…=264-1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,其个位数字2,4,8,6重复出现,而64÷4=16,于是“2,4,8,6”经过16次循环,因此264的个位数字为6.23.解:(1)如图①,过点P作PE∥AB,因为AB∥CD, PE∥AB,所以AB∥PE∥CD,所以∠APE=∠A=50°,∠DPE+∠D=180°,所以∠DPE= 180°-150°=30°.所以∠APD=∠APE+∠DPE= 50°+30°=80°.(2)∠α+∠β-∠P=180°【联系拓展】∠N的度数为45°. 提示:如图②,设PD交AN于点O,因为AP⊥PD,所以∠APO=90°,所以∠POA+∠PAN= 90°,因为∠PAN+12∠PAB=∠APD,所以∠PAN+12∠PAB= 90°,所以∠POA=12∠PAB,因为∠POA=∠NOD,所以∠NOD=12∠PAB,因为DN平分∠PDC,所以∠ODN=12∠PDC,所以∠AND= 180°-∠NOD-∠ODN= 180°-12(∠PAB+∠PDC),由(2)得∠CDP+∠PAB-∠APD= 180°,所以∠CDP+∠PAB= 180°+∠APD,所以∠AND= 180°-12(∠PAB+∠PDC)= 180°-12(180°+∠APD)= 180°-12(180°+90°)= 45°.。

新北师大版七年级数学下册期中阶段检测试题卷含答案解析(49)

新北师大版七年级数学下册期中阶段检测试题卷含答案解析(49)

一、选择题(共10题)1.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足( )A.a=32b B.a=2b C.a=52b D.a=3b2.首条贯通丝绸之路经济带的高铁线进入全线拉通试验阶段,试运行期间,一列动车匀速从西安开往西宁,一列普通列车匀速从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,下列说法:①西宁到西安两地相距1000千米,两车出发后3小时相遇;②普通列车到达终点共需12小时;③普通列车的速度是2503千米/小时;④动车的速度是250千米/小时,其中正确的有( )个.A.2B.3C.4D.03.如图,一只蚂蚁以均匀的速度沿台阶A1→A2→A3→A4→A5爬行,那么蚂蚁爬行的高度ℎ随时间t变化的图象大致是( )A.B.C.D.4.下列运算正确的是( )A.a−2÷a−1=a2B.a−1×a2=a−2 C.(a−2)−1=a2D.a−2+a−1=a−35.下列运算正确是( )A.ab÷(a+b)=b+a B.1a +1b=2a+bC.a5÷a2=a3D.(ab2)3=a3b56.一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶,下面哪一幅图可以近似刻画出该汽车这段时间内的速度变化情况( )A.B.C.D.7.如图,在长方形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N.欧几里得在《几何原本》中利用该图解释了(a+b)(a−b)=a2−b2,连接AC,记△ABC的面积为S1,图中阴影部分的面积为S2,若a=3b,则S1S2的值为( )A.32B.718C.34D.548.如图,直线y=−2x+8交x轴、y轴于A,B两点,点P为线段AB上的点,过点P作PE⊥x轴于点E,作PF⊥y轴于点F,PF=2,将线段AB沿y轴负方向向下移动a个单位,线段AB扫过矩形PEOF的面积为Z,则下图描述Z与a的函数图象可能是( )A.B.C.D.9.如图,下列条件:① ∠1=∠3;② ∠2+∠4=180∘;③ ∠4=∠5;④ ∠2=∠3;⑤ ∠6=∠2+∠3,其中能判定直线l1∥l2的有( )A.5个B.4个C.3个D.2个10.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→ B→ C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )A.B.C.D.二、填空题(共7题)11.若0.0000003=3×10x,则x=.12.如图,已知AB∥CD,∠A=140∘,∠C=120∘,那么∠APC的度数为.13.已知平面上有三条不重合的直线,这三条直线最多将平面分成a个部分,最少分成b个部分,则a−b=;已知平面上有n条不重合的直线,这n条直线最多将平面分成a个部分,最少分成b个部分,则a−b=.14.本学期我们学习了“有理数的乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:“a m”与“a n”(a≠0,m,n都是正整数)叫做同底数幂,同底数幂除法记作a m÷a n.其中“同底数幂除法”运算法则中规定当m=n时,a m÷a n=a m−n=a0=1,根据“同底数幂除法”法则中的规定和你已经学过的知识,如果等式x2x+4÷x x+7=1成立,则请写出满足等式成立的所有的x的值.15.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,三角形与正方形重叠部分的面积为y,在下面的平面直角坐标系中,线段AB表示的是三角形在正方形内部移动的面积图象,C点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是.16.“龟、蟹赛跑趣事”:某天,乌龟和螃蟹在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑500米.当螃蟹领先乌龟300米时,螃蟹停下来休息并睡着了,当乌龟追上螃蟹的瞬间,螃蟹惊醒了(惊醒时间忽略不计)并立即以原来的速度继续跑向终点,并赢得了比赛.在比赛的整个过程中,乌龟和螃蟹的距离y(米)与乌龟出发的时间x(分钟)之间的关系如图所示,则螃蟹到达终点时,乌龟距终点的距离是米.17.计算:(−a)3⋅(a2b3)2=.三、解答题(共8题)18.如图,将含30∘的直角三角尺的边AB紧靠在直线l上,∠ABC=60∘,D为直线l上一定点,射线DF与CB所在直线垂直.(1) 画出射线 DF .(2) 若射线 DF 保持不动,将 △ABC 绕点 B 以每秒 a ∘ 的速度顺时针旋转,同时射线 DP 从射线 DF 开始,绕点 D 以每秒 b ∘ 的速度逆时针旋转,且 a ,b 满足 √b −3a+∣a +b −4∣=0.当射线 DP 旋转一周后,与 △ABC 同时停止转动.设旋转时间为 t 秒. ① 求 a ,b 的值;② 是否存在某时刻 t ,使得 DP ∥BC ,若存在,请求出 t 的值,若不存在,请说明理由.19. 求方程 x 2+y 2−8x +10y +16=0 的整数解.20. 计算:∣∣−√8∣∣−(π−3)0+2cos45∘+(13)−1.21. 如图,C 为线段 AB 上一点,以 AC ,BC 为一边,在 AB 同侧作长方形 ACDE 和长方形CBFG ,且满足 AC =2AE ,CB =2BF ,记 AC =2a ,BC =2b (a >b ).(1) 记长方形 ACDE 的面积为 S 1,长方形 CBFG 的面积为 S 2,若 AB =6,a =2b ,求 S 1−S 2.(2) 如图 2,点 P 是线段 CA 上的动点.①当点 P 从点 C 向左移a−b 3个单位后,求 △EAP 与 △FBP 的面积之差.②当点 P 从点 C 向左移动a−b n(n >1) 个单位后,求 △EAP 与 △FBP 的面积之差为m 1.当点 P 从点 C 向左移动 (a −b ) 个单位后,求 △EAP 与 △FBP 的面积之差为 m 2,求m 1m 2的值(结果用含 n 的代数式表示).22. 有一张边长为 a 厘米的正方形桌面,因为实际需要,需将正方形边长增加 b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab +b 2=(a +b )2,对于方案一,小明是这样验证的:a 2+ab +ab +b 2=a 2+2ab +b 2=(a +b )2. 请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:23.已知3m=6,9n=2,求32m−4n+1的值.24.如图,已知AB∥EF,GC⊥CF,∠ABC=65∘,∠EFC=40∘,求∠BCG的度数.25.解方程:2x(x−1)−(x−4)(x+4)=x(x+2).答案一、选择题(共10题)1. 【答案】B【解析】由图形可知,S2=(a−b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2−S2=2ab−b2,∵S2=2S1,∴a2+2b2=2(2ab−b2),∴a2−4ab+4b2=0,即(a−2b)2=0,∴a=2b.【知识点】完全平方公式2. 【答案】C【解析】①由x=0时,y=1000知,西宁到西安两地相距1000千米,由x=3时,y=0知,两车出发后3小时相遇,正确;②由图象知x=t时,动车到达西宁,∴x=12时,普通列车到达西安,即普通列车到达终点共需12小时,正确;③普通列车的速度是100012=2503千米/小时,正确;④设动车的速度为x千米/小时,根据题意,得:3x+3×2503=1000,解得:x=250,动车的速度为250千米/小时,正确.【知识点】用函数图象表示实际问题中的函数关系3. 【答案】B【解析】因为蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,从A1⇒A2的过程中,高度随时间匀速上升,从A2⇒A3的过程,高度不变,从A3⇒A4的过程,高度随时间匀速上升,从A4⇒A5的过程中,高度不变,所以蚂蚁爬行的高度ℎ随时间t变化的图象是B,故B正确.【知识点】图像法4. 【答案】C【解析】A.a−2÷a−1=a−1=1a,故此选项不符合题意;B.a−1×a2=a,故此选项不符合题意;C.(a−2)−1=a2,正确;D.a−2+a−1=1a2+1a=1+aa2,故此选项不符合题意.【知识点】负指数幂运算5. 【答案】C【解析】A选项:ab÷(a+b)=aba+b,故A错误;B选项:1a +1b=bab+aab=a+bab,故B错误;C选项:a5÷a2=a5−2=a3,故C正确;D选项:(ab2)3=a3b6,故D错误.【知识点】同底数幂的除法6. 【答案】B【解析】公共汽车经历:加速—匀速—减速到站—加速—匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象是否符合题干要求,只有B选项符合.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】C【知识点】平方差公式8. 【答案】C【解析】由题意可知PF=2,PE=4,线段AB向下移动a个单位,当0<a≤4时,得AG=PN=a,FG=4−a,MF=12(4−a),所以MP=2−12(4−a)=12a,所以线段AB扫过矩形PEOF的面积Z=12×PM×PN=14a2,当4<a≤8时,如图,得AG=a,OG=8−a,OH=12(8−a),所以线段AB扫过矩形PEOF的面积Z=8−12×OG×OH=−14a2+4a−8,所以画成函数图象为:【知识点】用函数图象表示实际问题中的函数关系9. 【答案】B【解析】① ∵∠1=∠3,∴l1∥l2;② ∵∠2+∠4=180∘,∴l1∥l2;③ ∵∠4=∠5,∴l1∥l2;④由∠2=∠3不能判定l1∥l2;⑤ ∵∠6=∠2+∠3,∴l1∥l2.故选B.【知识点】同旁内角10. 【答案】B【知识点】图像法二、填空题(共7题)11. 【答案】−7【知识点】负指数科学记数法12. 【答案】100°【解析】如图:过P作PE∥AB,则AB∥PE∥CD,因为∠A=140∘,所以∠APE=180∘−140∘=40∘,因为∠C=120∘,所以∠CPE=180∘−120∘=60∘,所以∠APC=60∘+40∘=100∘.【知识点】平行公理的推论、同旁内角互补13. 【答案】3;n2−n2【知识点】相交线、用代数式表示规律14. 【答案】3或1【解析】有两种情况:①当x=1时,x2x+4÷x x+7=16÷18=1,② (2x+4)−(x+7)=0,解得:x=3,所以x=3或1.【知识点】同底数幂的除法、零指数幂运算15. 【答案】乙【解析】设三角形的底为a,高为ℎ与正方形重叠部分的高为ℎ1,速度为v,正方形边长为b,由图②可知,当三角形进入正方形时,易知ℎ1ℎ=vxa,则有ℎ1=vxℎa,∴S重叠=12vx⋅vxℎa=v2ℎ2ax2(v2ℎ2a为常数),且v2ℎ2a>0,故阴影部分面积S和时间x是一个开口向上的二次函数,当三角形开始离开正方形时,vx−ba =ℎ1ℎ,故ℎ1=ℎvx−ℎba,S重叠=12aℎ−12(vx−b)⋅ℎ=−ℎv22ax2+ℎvbax+aℎ2−ℎb22a,∵ℎ,a,v,b都为常数,∴阴影部分面积S和时间x是一个开口向下的二次函数.综上所述正确的答案为乙.【知识点】图像法16. 【答案】75【解析】由图形可知:乌龟125分钟到达终点,∴乌龟的速度为:500÷125=4(米/秒),设螃蟹的速度为v米/秒,25v−25×4=300,v=16,故螃蟹的速度为16米/秒,300÷4=75(分),75+25=100,∴点P(100,0),螃蟹惊醒后到达终点的时间为:(500−25×16)÷16=6.25 分钟,则螃蟹到达终点时,乌龟距终点的距离为:4×(125−100−6.25)=75(米). 故答案为:75.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】 −a 7b 6【知识点】积的乘方三、解答题(共8题) 18. 【答案】(1) 如图:射线 DF 的位置有两种情况. (2) ①∵√b −3a+∣a +b −4∣=0, ∴{b −3a =0,a +b −4=0,∴{a =1,b =3.② 以射线 DF 在直线 l 下方为例计算:Ⅰ.当 DP 和 BC 在直线 l 的两侧时,∠CBD =∠BDP 时,如图: 依题意得:180−60−t =30+3t ,解得:t =22.5.Ⅰ.当射线 DP 和线段 BC 在直线 l 的两侧时,当如图所示时: 180−60−t =30−(360−3t ),解得:t =112.5. Ⅰ.当射线 DP 和线段 BC 在直线 l 的同侧时,如图: ∠CBD +∠BDP =180∘,依题意得:180−60−t +(360−30−3t )=180,解得:t =67.5.∴ 当 t =22.5秒或67.5秒或112.5秒 时,DP ∥BC .【知识点】直线、射线、线段的画法、内错角、同旁内角、几何问题、二次根式有意义的条件、垂线19. 【答案】 x 2−8x +16+y 2+10y +25=25(添项),(x −4)2+(y +5)2=25(配方).∵25 拆成两个整数的平方和,只能是 0 和 25,9 和 16, ∴{(x −4)2=0,(y +5)2=25,或 {(x −4)2=25,(y +5)2=0,或 {(x −4)2=9,(y +5)2=16,或 {(x −4)2=16,(y +5)2=9.∴ 共有 12 个整数解:{x 1=4,y 1=0, {x =4,y =−10,{x =9,y =−5, {x =−1,y =−5, {x =7,y =−1, {x =1,y =−1, {x =1,y =−9, {x =7,y =−9, {x =8,y =−2, {x =8,y =−8, {x =0,y =−2, {x =0,y =−8.【知识点】消元法解二元二次方程组、完全平方公式20. 【答案】∣∣−√8∣∣−(π−3)0+2cos45∘+(13)−1=2√2−1+2×√22+3=3√2+2.【知识点】负指数幂运算、特殊角的余弦值、实数的简单运算21. 【答案】(1) ∵AC =2a ,BC =2b ,a =2b , ∴AC =2BC ,∴AB =6,AC +BC =6, ∴AC =4,BC =2, ∴a =2,b =1, ∴S 1=2,S 2=12, ∴S 1−S 2=32.(2) ①如图 1 中, 由题意:PA =2a −a−b 3=5a+b 3,PB =a−b 3+2b =a+5b 3,∴S △PAE −S △PBF =12⋅5a+b 3⋅a −12⋅b ⋅a+5b 3=56(a 2−b 2).②当点 P 从点 C 向左移动 a−b n(n >1) 个单位后,由题意 PA =2a −a−b n,PB =2b +a−b n,∴m 1=S △EPA −S △PBF =12⋅a ⋅(2a −a−b n)−12⋅b ⋅(2b +a−b n)=12(2−1n )⋅(a 2−b 2),当点 P 从点 C 向左移动 (a −b ) 个单位后,PA =2a −(a −b )=a +b ,PB =2b +(a −b )=a+b,m2=S△EPA−S△PBF=12⋅a⋅(a+b)−12⋅b⋅(a+b)=12(a2−b2),∴m1m2=2−1n(n>1).【知识点】矩形的面积、单项式乘多项式、整式加减的应用22. 【答案】方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2.方案三:a2+[a+(a+b)]b2+[a+(a+b)]b2=a2+ab+12b2+ab+12b2=a2+2ab+b2=(a+b)2.【知识点】完全平方公式23. 【答案】27【知识点】同底数幂的除法24. 【答案】∠BCG=15∘.【知识点】内错角相等、平行公理的推论25. 【答案】去括号,得2x2−2x−x2+16=x2+2x,移项,得2x2−2x−x2−x2−2x=−16,合并同类项,得−4x=−16,两边同除以−4,得x=4.【知识点】平方差公式、去分母去括号。

北师大版七年级(下)期中数学试卷(含解析)

北师大版七年级(下)期中数学试卷(含解析)

北师大版七年级数学(下)期中试卷一.选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如果一个角是50°,那么它的余角的度数是()A.40°B.50°C.100°D.130°2.(3分)甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣8米C.8×10﹣9米D.8×10﹣7米3.(3分)下列长度的3条线段,能首尾依次相接组成三角形的是()A.1,3,5B.3,4,6C.5,6,11D.8,5,24.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.a3﹣a2=a C.(2a+1)(2a﹣1)=4a﹣1 D.(﹣2a3)2=4a65.(3分)下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(x+a)(﹣a+x)C.(﹣x﹣b)(x﹣b)D.(a+b)(﹣a﹣b)6.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短7.(3分)请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS8.(3分)某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.9.(3分)下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个10.(3分)如图,△ABC中,∠A=α°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD 的平分线相交于点A2,依此类推,∠A n﹣1BC与∠A n﹣1CD的平分线相交于点A n,则∠A n的度数为()A.B.C.D.二.填空题(本大题共4个小题,每小题4分,共16分)11.(4分)三角形的三个内角的比为1:3:5,那么这个三角形的最大内角的度数为.12.(4分)若a+b=2,a2﹣b2=6,则a﹣b=.13.(4分)将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=.14.(4分)如果4x2+mx+9是一个完全平方式,则m的值为.三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.(10分)计算:①;②(﹣ab2)3•(﹣9a3b)÷(﹣3a3b5).16.(8分)先化简,在求值:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x),其中x=2,y=﹣1.17.(6分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()18.(8分)如图,在Rt△ABE中,∠AEB=90°,C为AE延长线上的一点,D为AB边上的一点,DC交BE于F,若∠ADC=80°,∠B=30°,求∠C的度数.19.(10分)如图所示,小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况.(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)10时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?20.(12分)以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.一.填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知a﹣b=4,则a2﹣b2﹣8b的值为.22.(4分)如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠CFC′=150°,则∠AED′=.23.(4分)已知代数式x2+2x+5可以利用完全平方公式变形为(x+1)2+4,进而可知x2+2x+5的最小值是4.依此方法,代数式y2﹣y+5的最小值是.24.(4分)在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45°;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则△FDC周长等于AB的长.正确结论的序号是.25.(4分)有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你的观察,归纳发现规律,写出9×10×11×12+1的结果是;(2)式子(n﹣1)n(n+1)(n+2)+1=.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.(8分)已知x2+y2+4x﹣6y+13=0,求代数式[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)的值,要求先化简后求值.27.(10分)(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA =∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.28.(12分)如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图②,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角尺OMN绕点O按每秒15°的速度沿逆时针方向旋转一周,在旋转的过程中,在第秒时,边MN恰好与边CD平行;在第秒时,直线MN恰好与直线CD垂直.(直接写出结果)试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.2.解:0.00 000 008=8×10﹣8,故选:B.3.解:A、3+1<5,不能构成三角形;B、3+4=7>6,能构成三角形;C、5+6=11,不能构成三角形;D、5+2=7<8,不能构成三角形.故选:B.4.解:A、根据完全平方公式,得(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、两项不是同类项,不能合并,故本选项错误;C、根据平方差公式,得(2a+1)(2a﹣1)=4a2﹣1,故本选项错误;D、(﹣2a3)2=4a6,故本选项正确.故选:D.5.解:A答案(x+a)(x﹣a)=x2﹣a2,能用平方差公式;B答案(x+a)(﹣a+x)=(x+a)(x﹣a)=x2﹣a2,能用平方差公式;C答案(﹣x﹣b)(x﹣b)=﹣(x+b)(x﹣b)=﹣(x2﹣b2)=b2﹣x2,能用平方差公式;D答案(a+b)(﹣a﹣b)=﹣(a+b)2,不能用平方差公式.故选:D.6.解:常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:A.7.解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,在△ODC和△O′D′C′中,∵,∴△COD≌△C'O'D'(SSS),∴∠D′O′C′=∠DOC.故选:D.8.解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.9.解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”股本选项错误;(5)这是平行公理,故本选项正确;故选:A.10.解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1=α,∴∠A1=α°,同理可得∠A1=2∠A2,即∠A=22∠A2=α°,∴∠A2=α°,∴∠A=2n∠A n,∴∠A n=α°•()n=()°.故选:C.二.填空题(本大题共4个小题,每小题4分,共16分)11.解:设三角形三个角的度数分别为x,3x,5x,所以x+3x+5x=180°,解得x=20°,所以5x=100°.故答案为100°.12.解:∵(a+b)(a﹣b)=a2﹣b2,∴2×(a﹣b)=6,∴a﹣b=3.故答案为:3.13.证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.故答案为:90°.14.解:如果4x2+mx+9是一个完全平方式,则m的值为±12,故答案为:±12三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.解:①原式=1﹣1+9=9;②原式=(﹣a3b6)•(﹣9a3b)÷(﹣3a3b5)=9a6b7÷(﹣3a3b5)=﹣3a3b2.16.解:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x)=[4x2+4xy+y2﹣y2﹣4xy﹣8xy]÷(2x)=(4x2﹣8xy)÷(2x)=2x﹣4y,当x=2,y=﹣1时,原式=2×2﹣4×(﹣1)=4+4=8.17.证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.18.解:∵在Rt△ABE中,∠AEB=90°,∠B=30°∴∠A=90°﹣∠B=60°,∵在△ADC中,∠A=60°,∠ADC=80°∴∠C=180°﹣60°﹣80°=40°,答:∠C的度数为40°.19.解:(1)图象表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;(2)根据图象可知,他到达离家最远的地方是在12时,离家30千米;(3)根据图象可知,30﹣15=15(千米).故:10时到12时他行驶了15千米;(4)根据图象可知,他可能在12时到13时间内休息,并吃午餐;(5)根据图象可知,30÷(15﹣13)=15(千米/时).故:他由离家最远的地方返回时的平均速度是15千米/时.20.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.一.填空题(本大题共5个小题,每小题4分,共20分)21.解:∵a﹣b=4,∴a=b+4,∴a2=(b+4)2=b2+8b+16,∴a2﹣b2﹣8b=b2+8b+16﹣b2﹣8b=16.故答案为16.22.解:∵∠CFC′=150°,∴∠EFC′==105°.∵ED′∥FC′,∴∠D′EF=180°﹣105°=75°,∴∠AED′=180°﹣2×75°=180°﹣150°=30°.故答案为:30°.23.解:y2﹣y+5=y2﹣y++=(y﹣)2+≥,则代数式y2﹣y+5的最小值是.故答案为:.24.解:∵△ABC中,AD,BE分别为BC、AC边上的高,∴AD⊥BC,而△ABF和△ACF有一条公共边,∴S△ABF:S△AFC=BD:CD,∴③正确;∵∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC,∴FD=CD,∴∠FCD=∠CFD=45°,∴①正确;若AE=EC,BE⊥AC,可得AB=BC,无法证得AB=BC,故②错误.若BF=2EC,根据①得BF=AC,∴AC=2EC,即E为AC的中点,∴BE为线段AC的垂直平分线,∴AF=CF,BA=BC,∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,即△FDC周长等于AB的长,∴④正确.故答案为①③④.25.解:(1)通过观察分析可得,每列的连续四个做积的自然数中第一个数乘以第四个自然数的积再加上1得到的和,就等于每列中间做平方的底数,所以9×10×11×12+1=(9×12+1)2=(109)2,每列中的最后一组式子括号里的数为四个做乘积的自然中的第一个自然数的平方然后加上3乘以这个自然数再加上1得到和,所以9×10×11×12+1=(109)2=(92+3×9+1)2.(2)根据(1)分析的规律可得,(n﹣1)n(n+1)(n+2)+1=[(n﹣1)(n+2)+1]2=(n2+n﹣1)2.故答案为:(1)9×10×11×12+1=(109)2=(92+3×9+1)2,(2)(n2+n﹣1)2.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)=(x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2)÷(2x)=(﹣2x2+2xy)÷(2x)=﹣x+y,∵x2+y2+4x﹣6y+13=0,∴(x2+4x+4)+(y2﹣6y+9)=0,∴(x+2)2+(y﹣3)2=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,当x=﹣2,y=3时,原式=﹣(﹣2)+3=2+3=5.27.(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC=BC•h=12,S△ACF=CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.28.解:(1)∵∠BON=∠N=30°,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(2)如图,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷15°=5秒,或t=255°÷15°=17秒;MN⊥CD时,旋转角为90°+(180°﹣60°﹣45°)=165°,或360°﹣(60°﹣45°)=345°,所以,t=165°÷15°=11秒,或t=345°÷15°=23秒.故答案为:5或17;11或23.。

河北省唐山市乐亭县七年级数学下学期期中试题(含解析) 北师大版-北师大版初中七年级全册数学试题

河北省唐山市乐亭县七年级数学下学期期中试题(含解析) 北师大版-北师大版初中七年级全册数学试题

某某省某某市乐亭县2015-2016学年七年级数学下学期期中试题一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.地球上的陆地面积约为149000000km2.将149000000用科学记数法表示为()A.1.49×106B.1.49×107C.1.49×108D.1.49×1092.下列各组图形可以通过平移互相得到的是()A.B.C.D.3.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=2a104.下列各组数是二元一次方程组的解的是()A.B.C.D.5.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65°B.50°C.45°D.40°6.下列命题是假命题的是()A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线7.如图,四边形ABCD中,AD∥BC,AC与BD相交于点O,若S△ABD=10cm2,S△ACD为()A.10B.9C.8D.78.若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为()A.5B.4C.3D.29.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.410.已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.211.若(x﹣4)(x+8)=x2+mx+n,则m、n的值分别为()A.4,32B.4,﹣32C.﹣4,32D.﹣4,﹣3212.已知(a+b)2=7,(a﹣b)2=4,则a2+b2的值为()A.11B.3C.D.13.如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°14.对于任意的整数n,能整除(n+3)(n﹣3)﹣(n+2)(n﹣2)的整数是()A.4B.3C.﹣5D.215.若3×9m×27m=311,则m的值为()A.5B.4C.3D.216.若5x=2,5y=,则x,y之间的关系为()A.x,y互为相反数B.x,y互为倒数C.x=yD.无法判断二、填空题(本大题共4个小题,每小题3分,共12分,答案写在题中的横线上)17.如图,如果∠=∠,可得AD∥BC.18.若实数m,n满足条件m+n=3,且m﹣n=1,则m=,n=.19.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.20.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.三、解答题(本题包括两个小题,每小题14分,共14分)21.(1)解方程组:.(2)已知2x=3,2y=5,则2x+y=;23x=;22x+y﹣1=.22.先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣2.23.如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明HN∥GM;(3)∠HNG=°.24.观察下列式子:2×4+1=32;4×6+1=52;6×8+1=72;….(1)请你以上规律写出第4个等式:;(2)根据你发现的规律,请写出第n个等式;(3)你认为(2)中所写的等式一定成立吗?并说明理由.25.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?26.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①,求证:OB∥AC.(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC 的度数等于;(在横线上填上答案即可).(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于.(在横线上填上答案即可).2015-2016学年某某省某某市乐亭县七年级(下)期中数学试卷参考答案与试题解析一、用心选一选(每小题3分,共48分,每个小题给出的四个选项中,只有一个选项符合题意)1.地球上的陆地面积约为149000000km2.将149000000用科学记数法表示为()A.1.49×106B.1.49×107C.1.49×108D.1.49×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:149 000 000=1.49×108,故选:C.2.下列各组图形可以通过平移互相得到的是()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C.【解答】解:观察图形可知图案C通过平移后可以得到.故选:C.3.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=2a10【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据合并同类项,可判断D.【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、合并同类项系数相加字母部分不变,故D错误;故选:A.4.下列各组数是二元一次方程组的解的是()A.B.C.D.【考点】二元一次方程组的解.【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择.【解答】解:∵y﹣x=1,∴y=1+x.代入方程x+3y=7,得x+3(1+x)=7,即4x=4,∴x=1.∴y=1+x=1+1=2.解为x=1,y=2.故选A.5.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65°B.50°C.45°D.40°【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.故选B.6.下列命题是假命题的是()A.等角的补角相等B.内错角相等C.两点之间,线段最短D.两点确定一条直线【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、正确,根据平角的定义可以证明;B、错误,两直线平行,内错角相等;C、正确,是两点间距离的定义;D、正确,符合确定直线的条件.故选B.7.如图,四边形ABCD中,AD∥BC,AC与BD相交于点O,若S△ABD=10cm2,S△ACD为()A.10B.9C.8D.7【考点】平行线之间的距离.【分析】根据题意可知△ABD和△ACD如果都以AD做底边时,此时底边上的高相等,从而可以得到S△ACD的值.【解答】解∵四边形ABCD中,AD∥BC,AC与BD相交于点O,S△ABD=10cm2,∴△ABD和△ACD如果都以AD做底边时,此时底边上的高相等,∴S△ACD=10cm2,故选A.8.若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为()A.5B.4C.3D.2【考点】完全平方公式.【分析】两个代数式相等,即对应项的系数相同,把右边的式子化简,得到的常数项就是a 的值.【解答】解:∵(x+2)2﹣1=x2+4x+4﹣1=x2+4x+3,∴a的值为3.故选C.9.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.4【考点】平行线的判定.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.10.已知a,b满足方程组,则a+b的值为()A.﹣4B.4C.﹣2D.2【考点】解二元一次方程组.【分析】求出方程组的解得到a与b的值,即可确定出a+b的值.【解答】解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则a+b=4,故选B.11.若(x﹣4)(x+8)=x2+mx+n,则m、n的值分别为()A.4,32B.4,﹣32C.﹣4,32D.﹣4,﹣32【考点】多项式乘多项式.【分析】把式子展开,根据对应项系数相等,列式求解即可得到m、n的值.【解答】解:∵(x﹣4)(x+8)=x2+mx+n,∴x2+4x﹣32=x2+mx+n,∴m=4,n=﹣32,故选B.12.已知(a+b)2=7,(a﹣b)2=4,则a2+b2的值为()A.11B.3C.D.【考点】完全平方公式.【分析】直接利用完全平方公式化简求出答案.【解答】解:∵(a+b)2=7,(a﹣b)2=4,∴a2+2ab+b2=7,a2﹣2ab+b2=4,∴2(a2+b2)=11,∴a2+b2=.故选:D.13.如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°【考点】平行线的性质.【分析】延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,延长∠1的边与直线b相交,∵a∥b,∴∠4=180°﹣∠1=180°﹣130°=50°,由三角形的外角性质,∠3=∠2+∠4=90°+50°=140°.故选:C.14.对于任意的整数n,能整除(n+3)(n﹣3)﹣(n+2)(n﹣2)的整数是()A.4B.3C.﹣5D.2【考点】平方差公式.【分析】直接利用平方差公式计算,然后再合并同类项即可.【解答】解:(n+3)(n﹣3)﹣(n+2)(n﹣2),=(n2﹣9)﹣(n2﹣4),=n2﹣9﹣n2+4,=﹣5,故选C.15.若3×9m×27m=311,则m的值为()A.5B.4C.3D.2【考点】同底数幂的乘法.【分析】首先根据3×9m×27m=311,可得3×32m×33m=311;然后根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出m的值是多少即可.【解答】解:∵3×9m×27m=311,∴3×32m×33m=311,∴31+2m+3m=311,∴1+2m+3m=11,解得m=2.故选:D.16.若5x=2,5y=,则x,y之间的关系为()A.x,y互为相反数B.x,y互为倒数C.x=yD.无法判断【考点】同底数幂的乘法.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:由负整数指数幂与正整数指数幂互为倒数,得x,y互为相反数,故选:A.二、填空题(本大题共4个小题,每小题3分,共12分,答案写在题中的横线上)17.如图,如果∠ 1 =∠ 3 ,可得AD∥BC.【考点】平行线的判定.【分析】直接利用平行线的判定方法得出答案.【解答】解:如果∠1=∠3(答案不唯一),可得AD∥BC.故答案为:1,3.18.若实数m,n满足条件m+n=3,且m﹣n=1,则m= 2 ,n= 1 .【考点】解二元一次方程组.【分析】由题目可知m和n同时满足两个等式,即可列方程组进行求解.【解答】解:由题意列出方程组得:,解出.19.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 2 种购买方案.【考点】二元一次方程的应用.【分析】设甲种运动服买了x套,乙种买了y套,根据准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.【解答】解:设甲种运动服买了x套,乙种买了y套,20x+35y=365,得x=,∵x,y必须为正整数,∴>0,即0<y<,∴当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为:2.20.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是xy=z .【考点】规律型:数字的变化类.【分析】首项判断出这列数中,2的指数各项依次为 1,2,3,5,8,13,…,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数,满足xy=z,据此解答即可.【解答】解:∵21×22=23,22×23=25,23×25=28,25×28=213,…,∴x、y、z满足的关系式是:xy=z.故答案为:xy=z.三、解答题(本题包括两个小题,每小题14分,共14分)21.(1)解方程组:.(2)已知2x=3,2y=5,则2x+y= 15 ;23x= 27 ;22x+y﹣1=.【考点】解二元一次方程组;同底数幂的乘法;幂的乘方与积的乘方.【分析】(1)利用加减法解方程组;(2)利用同底数乘法和幂的乘方的逆运算进行变形,再整体代入计算.【解答】解:(1),①×2得;2x﹣2y=4③,②﹣③得:x=1,把x=1代入①中:y=﹣1,∴;(2)2x+y=2x•2y=3×5=15,23x=(2x)3=33=27,22x+y﹣1=22x•2y•2﹣1=32×5×=,故答案为:15,25,.22.先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣2.【考点】整式的混合运算—化简求值.【分析】首先利用完全平方公式和平方差公式计算,然后去括号、合并同类项即可化简,然后把x的值代入即可求解.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣2时,原式=4﹣5=﹣1.23.如图,AB∥CD,直线EF分别与AB、CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.(1)求∠2的度数;(2)试说明HN∥GM;(3)∠HNG=40 °.【考点】平行线的判定与性质.【分析】(1)根据平行线的性由AB∥CD得到∠EHD=∠1=50°,再根据对顶角相等可得到∠2的度数;(2)根据垂直的定义得到∠MGH=90°,∠NHF=90°,然后根据平行线的判定有HN∥GM;(3)先由HN⊥EF得到∠NHG=90°,再根据对顶角相等得∠NGH=∠1=50°,然后根据互余可计算出∠HNG=40°.【解答】解:(1)∵AB∥CD,∴∠EHD=∠1=50°,∴∠2=∠EHD=50°;(2)∵GM⊥EF,HN⊥EF,∴∠MGH=90°,∠NHF=90°,∴∠MGH=∠NHF,∴HN∥GM;(3)∵HN⊥EF,∴∠NHG=90°∵∠NGH=∠1=50°,∴∠HNG=90°﹣50°=40°.故答案为40.24.观察下列式子:2×4+1=32;4×6+1=52;6×8+1=72;….(1)请你以上规律写出第4个等式:8×10+1=9 2;(2)根据你发现的规律,请写出第n个等式2n(2n+2)+1=(2n+1) 2;(3)你认为(2)中所写的等式一定成立吗?并说明理由.【考点】规律型:数字的变化类.【分析】(1)根据2×4+1=32;4×6+1=52;6×8+1=72;…得出规律,第4个等式是8×10+1即可得出答案;(2)根据(1)中规律得出第n个等式是连续偶数相乘,进而得出一般规律;(3)利用一般规律利用多项式的乘法得出即可.【解答】解;(1)∵2×4+1=32;4×6+1=52;6×8+1=72;….∴8×10+1=9 2;(2)2n(2n+2)+1=(2n+1) 2;(3)一定成立,理由:2n(2n+2)+1=4n 2+4n+1,=(2n+1) 2.故答案为:8×10+1=9 2;2n(2n+2)+1=(2n+1) 2.25.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 2 cm,放入一个大球水面升高 3 cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【考点】二元一次方程组的应用;一元一次方程的应用.【分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【解答】解:(1)设一个小球使水面升高x厘米,由图意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由图意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.26.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图①,求证:OB∥AC.(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC 的度数等于40°;(在横线上填上答案即可).(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于60°.(在横线上填上答案即可).【考点】平行线的判定与性质.【分析】(1)由BC∥OA得∠B+∠O=180°,所以∠O=180°﹣∠B=80°,则∠A+∠O=180°,根据平行线的判定即可得到OB∥AC;(2)由OE平分∠BOF得到∠BOE=∠FOE,加上∠FOC=∠AOC,所以∠EOF+∠COF=∠AOB=40°;(3)由BC∥OA得到OCB=∠AOC,∠OFB=∠AOF,加上∠FOC=∠AOC,则∠AOF=2∠AOC,所以∠OFB=2∠OCB,(4)设∠AOC的度数为x,则∠OFB=2x,根据平行线的性质得∠OEB=∠AOE,则∠OEB=∠EOC+∠AOC=40°+x,再根据三角形内角和定理得∠OCA=180°﹣∠AOC﹣∠A=80°﹣x,利用∠OEB=∠OCA得到40°+x=80°﹣x,解得x=20°,所以∠OCA=80°﹣x=60°.【解答】(1)证明:∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=80°,而∠A=100°,∴∠A+∠O=180°,∴OB∥AC;(2)解:∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×80°=40°;(3)解:不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)解:设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=40°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣100°=80°﹣x,∵∠OEB=∠OCA,∴40°+x=80°﹣x,解得x=20°,∴∠OCA=80°﹣x=80°﹣20°=60°.故答案为40°,60°.word 21 / 21。

北师大版2018-2019学年七年级数学下册期中测试题及答案答案

北师大版2018-2019学年七年级数学下册期中测试题及答案答案

2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个4.二元一次方程组的是()A.B.C.D.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣118.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.10.方程组的解是,则方程组的解为()A.B.C.D.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第象限.12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=,b=.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为.14.已知+|3x+2y﹣15|=0,则的算术平方根为.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=;(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=,b=.三、解答题(共66分19.解二元一次方程组:.20.21.25(x﹣1)2﹣9=0.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)26.(8分)河大附中初一年级有350名同学去春游,已知2辆A 型车和1辆B 型车可以载学生100人;1辆A 型车和2辆B 型车可以载学生110人. (1)A 、B 型车每辆可分别载学生多少人?(2)若租一辆A 需要100元,一辆B 需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m ≤100100<m ≤200m >200 收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD . (1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∠1=50°,∠2=65°,∴∠4=∠1=50°,∴∠2+∠4=65°+50°=115°,∴∠3=∠2+∠4=115°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)【分析】根据x轴上点的纵坐标为0列方程求出a,再求解即可.【解答】解:∵P点坐标为(2﹣a,3a+6),且点P在x轴上,∴3a+6=0,解得a=﹣2,2﹣a=2﹣(﹣2)=4,故点P的坐标为(4,0).故选:D.【点评】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有π,﹣,0.1010010001…,共3个,故选:B.【点评】本题考查了算术平方根、立方根、无理数等知识点,能熟记无理数的定义是解此题的关键.4.二元一次方程组的是()A.B.C.D.【分析】二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.依此即可求解.【解答】解:A、有3个未知数,不是二元一次方程组,故选项错误;B、是二次方程组,故选项错误;C、是二次方程组,故选项错误;D、是二元一次方程组,故选项正确.故选:D.【点评】考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.【点评】本题考查了点的位置判断方法及点的坐标几何意义.6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x【分析】直接利用x的取值范围,进而比较各数大小.【解答】解:∵﹣1<x<0,∴>﹣x2>x>2x,∴在x、2x、、﹣x2中最小的数是:2x.故选:B.【点评】此题主要考查了实数比较大小,正确掌握实数的比较大小的方法是解题关键.7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣11【分析】由x与y互为相反数,得到y=﹣x,代入方程组计算即可求出m的值.【解答】解:由题意得:y=﹣x,代入方程组得:,消去x得:=,即3m+9=4m﹣2,解得:m=11,故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个【分析】根据非负整数的定义分别代入求出答案.【解答】解:当x=0时,y=10;当x=1时,y=8.5(不合题意);当x=2时,y=7;当x=3时,y=5.5(不合题意);当x=4时,y=4;当x=5时,y=2.5(不合题意);当x=6时,y=1;当x=7时,y=﹣0.5(不合题意);故方程3x+2y=20的非负整数解的个数为4个.故选:D.【点评】此题主要考查了二元一次方程的解,正确把握非负整数的定义是解题关键.9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.【分析】根据题意和表格可以列出相应的方程组,从而可以的打哪个选项是正确的.【解答】解:由题意可得,,化简,得,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.10.方程组的解是,则方程组的解为()A.B.C.D.【分析】将方程组变形为,根据已知方程组的解得出,解之可得.【解答】解:由方程组,得:,由题意可得,解得:,故选:D.【点评】本题主要考察二元一次方程组的解,解题的关键是掌握整体思想的运用.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第二、四象限.【分析】根据有理数的乘法,可得横坐标与纵坐标异号,根据点的坐标特征,可得答案.【解答】解:由题意,得横坐标与纵坐标异号,点N在第二、四象限,故答案为:二、四.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=3,b=4.【分析】根据一元二次方程的定义,令未知数的次数为1,即可列方程解答.【解答】解:∵2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,∴,解得,,故答案为3,4.【点评】本题考查了二元一次方程的定义,根据题意列出方程是解题的关键.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为(4,2)或(﹣2,2).【分析】AB∥x轴,说明A,B的纵坐标相等为2,再根据两点之间的距离公式求解即可.【解答】解:∵AB∥x轴,点A坐标为(1,2),∴A,B的纵坐标相等为2,设点B的横坐标为x,则有AB=|x﹣1|=3,解得:x=4或﹣2,∴点B的坐标为(4,2)或(﹣2,2).故本题答案为:(4,2)或(﹣2,2).【点评】本题主要考查了平行于x轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.14.已知+|3x+2y﹣15|=0,则的算术平方根为.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【解答】解:由题意得,x+3=0,3x+2y﹣15=0,解得x=﹣3,y=12,所以,==3,所以,的算术平方根为.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是2﹣.【分析】设A点表示x,再根据数轴上两点间距离的定义即可得出结论.【解答】解:设A点表示x,∵B点表示的数是1,C点表示的数是,且AB=BC,∴1﹣x=﹣1.解得:x=2﹣故答案为:2﹣.【点评】本题考查的是数轴,熟知数轴上两点间距离公式是解答此题的关键.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为15°或115°.【分析】如果两个角的两边互相平行,那么这两个角相等或互补,由∠A比∠B的3倍小20°和∠A与∠B相等或互补,可列方程组求解.【解答】解:根据题意,得或解方程组得∠A=∠B=15°或∠A=115°,∠B=65°.故答案为:15°或115°.【点评】本题主要考查了平行线的性质,此类问题结合方程的思想解决更简单.注意结论:如果两个角的两边互相平行,那么这两个角相等或互补.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=(﹣1,2);(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=2,b=﹣2.【分析】(1)根据新定义运算法则解得;(2)根据新定义运算法则得到关于a、b的方程,通过解方程求得它们的值即可.【解答】解:(1)依题意得:f(﹣2,4)=(×(﹣2)+0,×4﹣0)=(﹣1,2).故答案是:(﹣1,2);(2)依题意得:f(4,﹣4)=(×4+a,×(﹣4)+b)=(4,﹣4).所以×4+a=4,×(﹣4)﹣b=﹣4所以a=2,b=2.故答案是:2;2.【点评】考查了坐标与图形性质.关键是掌握对有序数对(m,n)定义“f运算”法则.三、解答题(共66分19.解二元一次方程组:.【分析】直接利用加减消元法解方程得出答案.【解答】解:由①×6得:3x﹣2y=8,③由②+③得:x=3,将x=3代入到②得:y=,故原方程组的解为:.【点评】此题主要考查了二元一次方程组的解法,正确掌握解方程的是解题关键.20.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:原方程组化为∴3x+4y=4x+3y即x=y∴3x+4y=3x+4x=7x=84解得:x=12∴y=12∴方程组的解为【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.21.25(x﹣1)2﹣9=0.【分析】25(x﹣1)2﹣9=0中每个数同时除以25,得到(x﹣1)2﹣=0,利用平方差公式求出x的值.【解答】解:∵25(x﹣1)2﹣9=0∴(x﹣1)2﹣=0(x﹣1﹣)(x﹣1+)=0解得x1=x2=【点评】本题主要考查了利用平方差公式解一元二次方程,熟练掌握平方差公式是解题的关键.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.【分析】(1)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(2)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等)又∵∠A=∠C∴∠A=∠CBE∴AD∥BC(同位角相等,两直线平行)(2)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB∵AE∥CF,AD∥BC∴∠FDA=∠A=∠CBE,∠ADB=∠CBD∴∠EBC=∠CBD.∴BC平分∠DBE.【点评】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.【分析】(1)先根据点的坐标求出AB长和点C到AB的距离,根据三角形的面积公式求出即可;(2)设P点到直线AB的距离为h,根据三角形的面积公式求出h,即可得出P点的坐标.【解答】解:(1)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3),∴AB∥x轴,AB=4﹣(﹣2)=6,C到AB的距离是3﹣(﹣3)=6,∴△ABC的面积为:=18;(2)设P点到直线AB的距离为h,∵△ABP的面积为6,AB=6,∴=6,解得:h=2,∵3+2=5,3﹣2=1,∴P点的坐标为(0,5)或(0,﹣1).【点评】本题考查了三角形的面积、坐标与图形性质等知识点,能求出AB的长和分别求出点C、P到直线AB的距离是解此题的关键.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.【分析】首先估算出的范围,然后可求得m、n的值,最后即可求得(m+n)2018的值.【解答】解:∵1<3<4,∴1<<2.∴m=2+﹣3=﹣1,n=2﹣﹣0=2﹣,∴(m+n)2018=12018=1.【点评】本题主要考查的是估算无理数的大小、求得m、n的值是解题的关键.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)【分析】设小长方形的长为x厘米,宽为y厘米,根据题意和图示,列出关于x和y的二元一次方程组,解出x和y的值,即可求出矩形的AD的长度,从而求出矩形ABCD的面积,根据阴影部分的面积=矩形ABCD的面积﹣六个小长方形的面积,即可求得答案.【解答】解:设小长方形的长为x厘米,宽为y厘米,根据题意得:,解得:,即小长方形的长为8厘米,宽为2厘米,矩形ABCD的宽AD=6+2×2=10(厘米),矩形ABCD的面积为:14×10=140(平方厘米),阴影部分的面积为:140﹣6×8×2=44(平方厘米),答:图中阴影部分的总面积为44平方厘米.【点评】本题考查二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.26.(8分)河大附中初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.【分析】(1)根据载客量,可得方程组,根据解方程组,可得答案;(2)根据题意列出方程,可得答案.【解答】解:(1)设A、B型车每辆可分别载学生x,y人,可得:,解得:,答:A、B型车每辆可分别载学生30人,40人;(2)设租用A型a辆,B型b辆,可得:30a+40b=350,因为a,b为正整数,所以方程的解为:,方案一:A型1辆,B型8辆,费用:100×1+120×8=1060元;方案二:A型5辆,B型5辆,费用:100×5+120×5=1100元;方案三:A型9辆,B型2辆,费用:100×9+120×2=1140元;所以租用1辆A型8辆B型车花费最少为1060元.【点评】本题考查了二元一次方程组的应用,解(1)的关键是解方程组;解(2)的关键是解方程.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?【分析】(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案.【解答】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得解得(6分)②当x >200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.【点评】此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD .(1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.【分析】(1)根据非负数的性质求出a 、b 的值得出点A 、B 的坐标,再由平移可得点C 、D 的坐标,即可知答案;(2)分点M 在x 轴和y 轴上两种情况,设出坐标,根据S △ACM =S 四边形ABDC 列出方程求解可得;(3)作PE ∥AB ,则PE ∥CD ,可得∠DCP =∠CPE 、∠BOP =∠OPE ,继而知∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,即可得答案.【解答】解:(1)由a =.得:a =﹣1,b =3.所以A (﹣1,0),B (3,0),C (0,2),D (4,2),∵AB =4,CO =2,∴S=AB•CO=4×2=8;四边形ABDC(2)①M在y轴上,设M坐标为(0,m),∴,∴CM=16,∴m=2+16=18或m=2﹣16=﹣14,∴M点的坐标为(0,18)或(0,﹣14);②M在x轴上,设点m的坐标为(m,0),∴,∴AM=8,∴m=﹣1+8=7或m=﹣1﹣8=﹣9,所以点M的坐标为(7,0)或(﹣9,0).综上所述M点的坐标为(0,18)或(0,﹣14)或(7,0)或(﹣9,0);(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO;当点P在线段BD的延长线上时,如图2,∠BOP﹣∠DCP=∠CPO,同理可得当点P在线段DB的延长线上时,如图3:∠DCP﹣∠BOP=∠CPO,【点评】本题主要考查非负数的性质、平行四边形的性质及平行线的判定与性质,根据非负数性质求得四点的坐标是解题的根本,熟练掌握平行线的判定与性质是解题的关键.。

北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)

北师大版七年级数学下册全册试卷及答案(含单元期中期末全套)

七年级数学下册——第一章整式的乘除(复习)单项式整式多项式同底数幂的乘法幂的乘方积的乘方同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式第1章整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1.下列运算正确的是()A. 954aaa=+ B. 33333aaaa=⋅⋅C. 954632aaa=⨯ D. ()743aa=-=⎪⎭⎫⎝⎛-⨯⎪⎭⎫⎝⎛-20122012532135.2()A. 1- B. 1 C. 0 D. 19973.设()()Ababa+-=+223535,则A=()A. 30abB. 60abC. 15abD. 12ab4.已知,3,5=-=+xyyx则=+22yx()A. 25. B 25- C 19 D、19-5.已知,5,3==ba xx则=-bax23()A、2527B、109C、53D、526. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11.设12142++mx x 是一个完全平方式,则m =_______。

北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)

北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)

北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(下)期中水平测试(C)
一、精心选一选:(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1. 某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:
(2a 2+3ab-b 2)-(-3a 2+ab+5b 2)= 5a 2 - 6b 2,空格的地方被墨水弄脏了,请问空格中的一项是 ( )
(A )+2ab (B )+3ab (C )+4ab (D )-ab 2. 如图,已知:∠1=∠2,那么下列结论正确的是(
)
(A )∠C=∠D (B )AD ∥BC (C )AB ∥CD (D )∠3=∠4 3. 如图OC ⊥AB 于O 点,∠1=∠2,则图中互余的角共有( )
2
1E
D
C
B
A
O
(A )2对 (B )3对 (C )4对 (D )5对 4. 小华利用计算器计算0.0000001295×0.0000001295时,发现计算器的显示屏上显 示如下图的结果,对这个结果表示正确的解释应该是( ). (A )1.677025×10—14 (B )1.677025×1014
(C )(1.677025×10)—14
(D )1.677025×10×(—14)
5. 长方形面积是a ab a 6332
+-,一边长为3a ,则它周长是(

(A )2a-b+2 (B )8a-2b (C )8a-2b+4 (D )4a-b+2 6. 下列说法错误的是 ( )
(A )近似数0.2300有四个有效数字 (B )近似数1.6与1.60的意义不同 (C )近似数1.2万精确到十分位 (D )近似数6950精确到千位是7×103 7. 如图,∠1=∠2,若∠3=30º,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时必须保证∠1为( )
(A )30º (B )45º (C ) 60º (D ) 75º
8. 你到过天安门吗?天安门广场雄伟壮观的!它的面积有44万平方米.你能算它的百万分之一的大小接近于( )
(A )篮球场地的面积 (B )教室的面积;
(C )一张报纸的面积 (D )一本教科书的面积 9. 下列算式能用平方差公式计算的是( )
(A )(2a +b )(2b -a ) (B ))12
1
)(121
(--
+x x (C )(3x -y )(-3x +y ) (D )(-m + n )(- m - n)
10. 小华和小晶用扑克牌做游戏,小华手中有一张是王,小晶从小华手中抽得王的概率为 0.5,则小华手中有牌的张数是( )
(A ) 10 (B )5 (C )6 (D )以上都不对 二、细心填一填:(本大题共有10小题,每题3分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)
11. 计算()-=2324xy z ;0
22199936⨯⨯-= .
12. 已知1∠与2∠互补,且1∠比2∠的余角的2倍还多︒30,则2∠的度数为 . 13. 吸管吸易拉罐内的饮料时,如图,∠1=110°,则∠2= ° (易拉罐的上下底面互相平行)
1
2
14. 在生物课上,老师告诉同学们:“微生物很小,枝原体直径只有0.1微米”,这相当于________________米(用科学记数法表示).
15. 要使()()2
2
321ax x
x
x ---的展开式中不含3x 项,则a = .
16. 如下图所示,要使 AB//CD 必须具备的条件是 (只要求写 出一个条件即可)
17. 单项选择题是数学试题的重要组成部分,当你遇到不懂做的情况时,如果你随便选一个答案(假设每个题目有4个备选答案),那么你答对的可能性为 .
A B
C
D
3 1
2
18. 若05422
2=++-+b a b a ,则b a +的值为_____________________. 19. 22231,
37A x x B x =-+=-+,则2A B -=

20. 小强将10盒蔬菜的标签全部撕掉了.现在每个盒子看上去都一样.但是她知道有三盒玉米,两盒菠菜,四盒豆角,一盒土豆.她随机地拿出一盒并打开它.盒子里面是玉米的概率是 ;盒子里面不是豆角的概率是 .
三、认真答一答:(本大题共5小题,每小题8分,共40分. 只要你认真思考, 仔细运算, 一定会解答正确的!)
21. 先化简,再求值:2(2)(21)(4)a a a -+-+,其中2a =-.
22. 在下列图形中,补充作图:
(1)在AD 的右侧作∠DCP =∠DAB (尺规作图,不写作法,保留作图痕迹);
(2)CP 与AB 会平行吗?为什么?
(3)在射线CP 上取一点E ,使CE =AB ,连接BE ,以点A 、B 、C 、E 为顶点的图形是一个怎样的图形?
23. 已知2,7==+xy y x ,求下列各式的值: (1)2
2
22y x +的值;(2)()2
y x -的值.
24. 甲、乙两人打赌,甲说,往图中的区域掷石子,它一定会落在阴影部分上,乙说决不会落在阴影部分上,你认为谁获胜的概率较大?通过计算说明.
25.
根据这个资料绘一个该校配戴眼镜的学生人数的象形统计图.
四、动脑想一想:(本大题共有2小题,每小题10分,共20分. 只要你认真探索,仔细思考,你一定会获得成功的!)
26. 下面是2001年6月13日全国部分城市空气质量预报:
(1)象些吗?
(2)如果要利用面积分别表示这六个城市的空气质量情况,六个城市所占的面积之比大约是多少?(利用计算器计算)
(3)根据你所知道的知识,你发现这六个城市的空气质量情况与它们的地理位置有联系吗?
27. 如图,已知直线l 1∥l 2,且l 3和l 1、l 2分别交于A 、B 两点,点P 在AB 上. (1)试找出∠1、∠2、∠3、之间的关系并说出理由; (2)如果点P 在A 、B 两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化? (3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3之间关系(点P 和A 、B 不重合)
参考答案: 1.A ; 2.C ; 3.C ; 4.A ; 5.C ; 6.C ; 7.C ; 8.C ; 9.D ; 10.D ;
11. 8
12416z y x ,4; 12. ︒30; 13.70; 14. 7
110-⨯ ; 15. 2
3-
; 16.略; 17.
14
; 18.
1-;
19. 2
8313x x --; 20.
103,5
3. 21. 原式a a a a a a 3347244222+=-+++-=
当2-=a 时,原式6612)2(3)2(32=-=-⨯+-⨯=; 22. (1)尺规作图,不写作法,保留作图痕迹 (2)会平行.用同位角相等,两直线平行;
(3)是一个平行四边形.(只要求判断,不要求说出理由)
23. 解:(1)2,7==+xy y x (
)()2
22
222x y
x y xy ⎡⎤∴+=+-⎣⎦
(
)
22722
⨯-⨯=
90= (2) ()()xy y x y x 42
2
-+=-
2472
⨯-=
41= 24.甲获胜的概率为
38,乙获胜的概率为5
8
,乙大. 25.略;
26. (1)略.(4分)(2) 4.9:5.5:9.9:8.1:1:8.6:3.1或(5:6:10:8:1:9:3)
(3)有.(主要是沿海和内陆,工业和旅游城市的区别). 27. (1) ∠1+∠2=∠3.
(2)不变. (3)∠1+∠3=∠2或∠2+∠3=∠1.。

相关文档
最新文档