曲线运动好题 (1)

合集下载

高考物理曲线运动题20套(带答案)及解析

高考物理曲线运动题20套(带答案)及解析

高考物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。

杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。

重力加速度g =10m /s 2,忽略一切摩擦。

求:(1)杆静止时细绳受到的拉力大小T ;(2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。

【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】(1)杆静止时环受力平衡,有2T =mg 得:T =5N(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,rcos L rθ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=(3)绳断裂后,环做平抛运动,水平方向s =vt竖直方向:212H d gt -=环做平抛的初速度:v =ωr小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。

曲线运动练习题(含答案)

曲线运动练习题(含答案)

曲线运动复习测试题1、(多选)关于曲线运动,下列说法中正确的是( )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动2、质点在三个恒力F 1、F 2、F 3的共同作用下保持平衡状态,若突然撤去F 1,而保持F 2、F 3不变,则质点( )A .一定做匀变速运动B .一定做直线运动C .一定做非匀变速运动D .一定做曲线运动 3、关于运动的合成,下列说法中正确的是( ) A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等4、如图所示,两个相对斜面的倾角分别为37°和53°,在斜面顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上。

若不计空气阻力,则A 、B 两个小球的运动时间之比为( )A.1:1B.4:3C.16:9D.9:165、如图,高h 的车厢在平直轨道上匀减速向右行驶,加速度大小为a ,车厢顶部A 点处有油滴滴下落到车厢地板上,车厢地板上的O 点位于A 点的正下方,则油滴的落地点必在O 点的 (填“左”或“右”)方,离O 点的距离为 。

6、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如图所示,求:(1)物体所受的合力。

(2)物体的初速度。

(4)判断物体运动的性质。

(5)4s末物体的速度和位移。

7、如图在倾角为θ的斜面顶端A处以速度V0水平抛出一小球,落在斜面上的某一点B处,设空气阻力不计,求(1)小球从A运动到B处所需的时间;(2)从抛出开始计时,经过多长时间小球离斜面的距离达到最大?8、飞机在2km的高空以360km/h的速度沿水平航线匀速飞行,飞机在地面上观察者的正上方空投一包裹。

(g取10m/s2,不计空气阻力)⑴试比较飞行员和地面观察者所见的包裹的运动轨迹。

高中物理曲线运动经典练习题全集(含答案)

高中物理曲线运动经典练习题全集(含答案)

《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是( AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。

变速运动可能是速度的方向不变而大小变化,则可能是直线运动。

当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。

做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。

2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点( A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。

由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。

在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。

3、关于运动的合成,下列说法中正确的是( C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。

两个匀速直线运动的合运动一定是匀速直线运动。

两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。

物理曲线运动练习题20篇及解析

物理曲线运动练习题20篇及解析

物理曲线运动练习题20篇及解析一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达A 点时动量的大小;(3)小球从C 点落至水平轨道所用的时间.【答案】(15gR (223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有0tan F mg α=① 2220()F mg F =+② 设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③ 由①②③式和题给数据得034F mg =④ 5gR v = (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有 212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得 355Rt g =点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】(1)由万有引力等于向心力可知22Mm v G m R R = 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星= 解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。

高考物理曲线运动题20套(带答案)

高考物理曲线运动题20套(带答案)

高考物理曲线运动题20 套( 带答案 )一、高中物理精讲专题测试曲线运动1.如下图,一箱子高为H.底边长为L,一小球从一壁上沿口 A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。

设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。

(1)若小球与箱壁一次碰撞后落到箱底处离 C 点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的 B 点,求初速度的可能值。

【答案】( 1)( 2)【分析】【剖析】(1)将整个过程等效为完好的平抛运动,联合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的 B 点,则水平位移应当是2L 的整数倍,经过平抛运动公式列式求解初速度可能值。

【详解】(1)本题能够当作是无反弹的完好平抛运动,则水平位移为: x==v0t竖直位移为: H= gt2解得: v0=;(2)若小球正好落在箱子的 B 点,则小球的水平位移为:x′=2nL( n= 1.2.3 )同理: x′=2nL=v′H=20t,gt ′解得:( n= 1.2.3 )2.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径R=0.6m, 平台上静止搁置着两个滑块 A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药 ,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高 ,小车的上表面的右边固定一根轻弹簧 ,弹簧的自由端在Q 点,小车的上表面左端点 P 与 Q 点之间是粗拙的 ,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后,A、B 分别瞬时 A 滑块获取向左的速度v A=6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,炸药的质量忽视不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上( 2)E P0.22 J(3) 0. 675m< L<1. 35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:v2m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1NR由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离 L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到 Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m3.如下图,圆弧轨道AB 是在竖直平面内的1圆周,B点离地面的高度h=0.8m,该处切4线是水平的,一质量为m=200g 的小球(可视为质点)自 A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从 B 点水平飞出,最后落到水平川面上的D 点.已知小物块落地址 D 到 C点的距离为x=4m,重力加快度为g=10m/ s2.求:(1)圆弧轨道的半径(2)小球滑到 B 点时对轨道的压力.【答案】(1)圆弧轨道的半径是 5m.(2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下.【分析】(1)小球由 B 到 D 做平抛运动,有: h= 1gt22Bx=v t解得:v B xg104210m / s 2h0.8A 到B 过程,由动能定理得:1mgR= mv B2-02解得轨道半径R=5m2(2)在 B 点,由向心力公式得:N mg mv BR 解得: N=6N依据牛顿第三定律,小球对轨道的压力N =N=6N ,方向竖直向下点睛:解决本题的重点要剖析小球的运动过程,掌握每个过程和状态的物理规律,掌握圆周运动靠径向的协力供给向心力,运用运动的分解法进行研究平抛运动.4. 如下图,一半径r = 0.2 m 的 1/4 圆滑圆弧形槽底端 B 与水平传递带相接,传递带的运行速度为 v 0= 4 m/s ,长为 L =1.25 m ,滑块与传递带间的动摩擦因数μ= 0.2, DEF 为固定于竖直平面内的一段内壁圆滑的中空方形细管, EF 段被弯成以 O 为圆心、半径 R = 0.25 m的一小段圆弧,管的D 端弯成与水平传带 C 端光滑相接, O 点位于地面, OF 连线竖直.一质量为 M = 0.2 kg 的物块 a 从圆弧顶端 A 点无初速滑下,滑到传递带上后做匀加快运动,事后滑块被传递带送入管 DEF ,已知 a 物块可视为质点, a 横截面略小于管中空部分的横截面,重力加快度 g 取 10 m/s 2.求:(1)滑块 a 抵达底端 B 时的速度大小 v ;B(2)滑块 a 刚抵达管顶 F 点时对管壁的压力. 【答案】( 1) v B 2m / s (2) F N 1.2N【分析】试题剖析:( 1)设滑块抵达B 点的速度为 v B ,由机械能守恒定律,有 M gr1Mv B 22解得: v B =2m/s(2)滑块在传递带上做匀加快运动,遇到传递带对它的滑动摩擦力,由牛顿第二定律 μMg =Ma滑块对地位移为 L ,末速度为 v C ,设滑块在传递带上向来加快由速度位移关系式 2 22Al=v C -v B得 v C =3m/s<4m/s ,可知滑块与传递带未达共速,滑块从 C 至 F ,由机械能守恒定律,有1Mv C2MgR1Mv F 222得 v F =2m/s在 F 处由牛顿第二定律 M g F Nv F 2MR得 FN =1. 2N 由牛顿第三定律得管上壁受压力为 1. 2N, 压力方向竖直向上考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑机遇械能守恒,物块在传递带上运动时,受摩擦力作用,依据运动学公式剖析滑块经过传递带时的速度,注意物块在传递带上的速度剖析.5.如下图,ABCD是一个地面和轨道均圆滑的过山车轨道模型,现对静止在 A 处的滑块施加一个水平向右的推力F,使它从 A 点开始做匀加快直线运动,当它水光滑行 2.5 m 时抵达 B 点,此时撤去推力F、滑块滑入半径为0.5 m 且内壁圆滑的竖直固定圆轨道,并恰好经过最高点C,当滑块滑过水平BD 部分后,又滑上静止在 D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平川面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s 2,求:(1)水平推力 F 的大小;(2)滑块抵达 D 点的速度大小;(3)木板起码为多长时,滑块才能不从木板上掉下来?在该状况下,木板在水平川面上最后滑行的总位移为多少?【答案】( 1) 1N( 2)(3)t= 1 s ;【分析】【剖析】【详解】(1)因为滑块恰巧过 C 点,则有:m1g= m1从 A 到 C 由动能定理得:Fx- m1g·2R= m1 v C2- 0代入数据联立解得:F=1 N(2)从 A 到 D 由动能定理得:2Fx= m1v D代入数据解得:v D= 5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g= 3 m/s 2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2= 2 m/s2滑块恰巧不从木板上滑下,此时滑块滑到木板的右端时恰巧与木板速度同样,有:v 共= v D- a1 tv 共= a2t,代入数据解得:t= 1 s此时滑块的位移为:x1= v D t-a1t2,木板的位移为:x2= a2t2, L=x1- x2,代入数据解得:L= 2.5 mv 共= 2 m/sx2= 1 m达到共同速度后木板又滑行x′,则有:v 共2= 2μ2gx′,代入数据解得:x′= 1.5 m木板在水平川面上最后滑行的总位移为:x 木= x2+ x′=2.5 m点睛:本题考察了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的重点理清滑块和木板在整个过程中的运动规律,选择适合的规律进行求解.6.如下图,轻绳绕过定滑轮,一端连结物块A,另一端连结在滑环 C 上,物块 A 的下端用弹簧与放在地面上的物块 B 连结, A、B 两物块的质量均为m,滑环 C的质量为M,开始时绳连结滑环 C 部分处于水平,绳恰巧拉直且无弹力,滑轮到杆的距离为L,控制滑块4C,使其沿杆迟缓下滑,当 C 下滑L 时,开释滑环C,结果滑环 C 恰巧处于静止,此时B3恰巧要走开地面,不计全部摩擦,重力加快度为g.(1)求弹簧的劲度系数;(2)若由静止开释滑环C,求当物块 B 恰巧要走开地面时,滑环 C 的速度大小.3mg(2)10(2 M m) gL【答案】( 1)48m75ML【分析】【详解】(1)设开始时弹簧的压缩量为x,则 kx=mg设 B 物块恰巧要走开地面,弹簧的伸长量为x′,则 kx′=mg所以 x′= x=mgk由几何关系得 2x=L216 L2 2 L- L=93求得 x=L3得 k=3mgL(2)弹簧的劲度系数为k,开始时弹簧的压缩量为x1=当 B 恰巧要走开地面时,弹簧的伸长量mg L x2=3k所以 A 上涨的距离为h =x1+x2=2L 3C 下滑的距离H(L h)2L2=4L3依据机械能守恒1m(vH)2 1 Mv2MgH - mgh =2H 2L22(2 M m)gL求得v10mg L k37.如下图, P 为弹射器, PA、 BC为圆滑水平面分别与传递带AB 水平相连, CD为圆滑半圆轨道,其半径R=2m,传递带AB 长为 L=6m,并沿逆时针方向匀速转动.现有一质量m=1kg 的物体(可视为质点)由弹射器P 弹出后滑向传递带经BC紧贴圆弧面抵达 D 点,已知弹射器的弹性势能所有转变为物体的动能,物体与传递带的动摩擦因数为=0.2.取g=10m/s2,现要使物体恰巧能经过 D 点,求:(1)物体抵达 D 点速度大小;(2)则弹射器初始时拥有的弹性势能起码为多少.【答案】( 1) 2 5 m/s;(2)62J【分析】【剖析】【详解】(1)由题知,物体恰巧能经过 D 点,则有:mg m v D2 R解得: v D gR 2 5 m/s(2)物体从弹射到 D 点,由动能定理得:W mgL2mgR1m v D202W E p解得: E p62J8.如下图,一质量为 m=1kg 的小球从 A 点沿圆滑斜面轨道由静止滑下,不计经过 B 点时的能量损失,而后挨次滑入两个同样的圆形轨道内侧,其轨道半径 R=10cm,小球恰能通过第二个圆形轨道的最高点,小球走开圆形轨道后可持续向 E 点运动, E 点右边有一壕沟, E、F 两点的竖直高度d=0.8m,水平距离 x=1.2m,水平轨道 CD 长为 L1=1m , DE长为L2=3m.轨道除 CD 和 DE 部分粗拙外,其他均圆滑,小球与 CD 和 DE 间的动摩擦因数2(1)小球经过第二个圆形轨道的最高点时的速度;(2)小球经过第一个圆轨道最高点时对轨道的压力的大小;(3)若小球既能经过圆形轨道的最高点,又不掉进壕沟,求小球从 A 点开释时的高度的范围是多少?【答案】 (1)1m/s ( 2) 40N (3) 0.45m h0.8m 或 h 1.25m【分析】⑴小球恰能经过第二个圆形轨道最高点,有:2 mgmv 2R求得: υ2=gR =1m/s ①⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: - μmgL 1mv 2 2 12②1=- 2mv 12求得: υ22 gL 1 = 5 m/s21=2在最高点时,协力供给向心力,即F N +mg= m 1③R2求得: F N = m(1- g)= 40NR依据牛顿第三定律知,小球对轨道的压力为:F NN′ =F=40N ④⑵若小球恰巧经过第二轨道最高点,小球从斜面上开释的高度为 h1,在这一过程中应用动能定理有: mgh 111 22⑤- μ mgL - mg 2R =mv22求得: h 112=0.45m=2R+μL +2g若小球恰巧能运动到 E 点,小球从斜面上开释的高度为h 1,在这一过程中应用动能定理有: mgh - μ mg(L+L )=0- 0 ⑥21 2求得: h 21 2=μ (L+L )=0.8m使小球停在 BC 段,应有 h 12≤ h ≤h,即: 0.45m ≤ h ≤ 0.8m若小球能经过 E 点,并恰巧超出壕沟时,则有12d⑦d = gt 2→ t == 0.4s2gEtEx⑧ x=v →υ= t =3m/s设小球开释高度为h3,从开释到运动E 点过程中应用动能定理有:mgh 3 - μ mg(L 1+L 2)= 1mv E 2- 0⑨22求得: h 3 =μ1 2E=1.25m(L+L)+2g即小球要超出壕沟开释的高度应知足: h ≥1.25m综上可知,开释小球的高度应知足:0.45m ≤h ≤0.8m 或 h ≥1.25m ⑩9. 如下图,倾角 θ=30°的圆滑斜面上,一轻质弹簧一端固定在挡板上,另一端连结质量m B=0.5kg的物块B,B 经过轻质细绳越过圆滑定滑轮与质量m A=4kg的物块 A 连结,细绳平行于斜面, A 在外力作用下静止在圆心角为α=60°、半径R=lm的圆滑圆弧轨道的顶端a 处,此时绳索恰巧拉直且无张力;圆弧轨道最低端b 与粗拙水平轨道bc相切,bc与一个半径r=0.12m的圆滑圆轨道光滑连结,静止开释A,当 A 滑至b 时,弹簧的弹力与物块A 在顶端 d 处时相等,此时绳索断裂,已知bc长度为d=0.8m,求:(g取 l0m/s2)(1)轻质弹簧的劲度系数k;(2)物块 A 滑至 b 处,绳索断后瞬时,圆轨道对物块 A 的支持力大小;(3)为了让物块 A 能进入圆轨道且不脱轨,则物体与水平轨道bc间的动摩擦因数μ 应满足什么条件?【答案】(1)k5N / m()72N() 0.350.5或0.12523【分析】(1) A 位于 a 处时,绳无张力弹簧处于压缩状态,设压缩量为x对 B 由均衡条件能够获取:kx m B g sin当 A 滑至 b 时,弹簧处于拉伸状态,弹力与物块 A 在顶端 a 处时相等,则伸长量也为x,由几何关系可知:R 2x ,代入数据解得: k5N / m ;(2)物块 A 在 a 处和在 b 处时,弹簧的形变量同样,弹性势能同样由机械能守恒有:m A gR 1cos m B gR sin 1m A v A21m B v B2 22将 A 在 b 处,由速度分解关系有:v B v A sin代入数据解得:v A22m / s2在 b 处,对 A 由牛顿定律有:N b m A gm Av AR 代入数据解得支持力:N b72 N .(3)物块 A 不离开圆形轨道有两种状况:①不超出圆轨道上与圆心的等高点由动能定理,恰能进入圆轨道时需要知足:1m A gd01m A v A2 2恰能到圆心等高处时需要知足条件:m A gr2 m A gd01m A v A2 2代入数据解得:10.5,2 0.35②过圆轨道最高点,则恰巧过最高点时:v 2m A g m A r由动能定理有:2m A gr3m A gd1m A v21m A v A 222代入数据解得:3 0.125为使物块 A 能进入圆轨道且不脱轨,有:0.35 0.5 或0.125 .10. 某高中物理课程基地拟采买一种能帮助学生对电偏转和磁偏转理解的实验器械 .该器械的中心构造原理可简化为如下图 .一匀强电场方向竖直向下,以竖直线ab 、 cd 为界限,其宽度为 L ,电场强度的大小为 E3mv 02 . 在 cd 的左边有一与 cd 相切于 N 点的圆形有qL界匀强磁场,磁场的方向垂直纸面、水平向外.现有一质量为 m ,电荷量为 q 的带正电粒子自 O 点以水平初速度 v 0 正对 M 点进入该电场后,从 N 点飞离 cd 界限,再经磁场偏转后 又从 P 点垂直于 cd 界限回到电场地区,并恰能返回O 点 .粒子重力不计 .试求:1 粒子从 N 点飞离 cd 界限时的速度大小和方向;2 P 、 N 两点间的距离;3 圆形有界匀强磁场的半径以及磁感觉强度大小;4 该粒子从 O 点出发至再次回到O 点的总时间.【答案】1 2v 0 ,方向与界限 cd 成 30o角斜向下; 25 3L , ;( 3) 5L ,8 48 3mv 0 ; 4 3L 5 3 L5qL2v 0 18v 0【分析】【剖析】(1)利用运动的合成和分解,联合牛顿第二定律,联立刻可求出粒子从 N 点飞离 cd 界限时的速度大小,利用速度倾向角公式即可确立其方向;( 2)利用类平抛规律联合几何关系,即可求出P、 N 两点间的距离;(3)利用洛伦兹力供给向心力联合几何关系,联立刻可求出圆形有界匀强磁场的半径以及磁感觉强度大小;( 4)利用类平抛规律求解粒子在电场中运动的时间,利用周期公式,联合粒子在磁场中转过的圆心角求解粒子在磁场中运动的时间,联立刻可求出该粒子从O 点出发至再次回到O 点的总时间.【详解】(1)画出粒子轨迹过程图,如下图:L粒子从 O 到 N 点时间: t 1=v0粒子在电场中加快度: a= qE=3v 02 m L粒子在 N 点时竖直方向的速度:v y 10=at = 3 v粒子从 N 点飞离 cd 界限时的速度: v=2v0v y=,故=600,即速度与界限cd 成 300角斜向下.速度偏转角的正切: tanθ=3v0θL(2)粒子从 P 到 O 点时间: t2= 2v0粒子从 P 到 O 点过程的竖直方向位移:y2=1at22= 3 L28粒子从 O 到 N 点过程的竖直方向位移:y1=12=3at L 212故 P、 N 两点间的距离为: Y PN=y1+y2= 53 L8(3)设粒子做匀速圆周运动的半径为r,依据几何关系可得:r cos600 +r= 5 3L 8解得粒子做匀速圆周运动的半径:r= 53L 12依据洛伦兹力供给向心力可得:qvB=m v2 r解得圆形有界匀强磁场的磁感觉强度: B=mv8 3mv0=qr5qL依据几何关系能够确立磁场地区的半径:R=2r cos300即圆形有界匀强磁场的半径: R=5L4(4)粒子在磁场中运动的周期:2πr T=v粒子在匀强磁场中运动的时间:2 5 3πL t 3=T=318v0粒子从 O 点出发至再次回到3L 5 3πL O 点的总时间: t=t 1+t2+t 3=+2v 018v 0【点睛】本题考察带电粒子在复合场中运动,类平抛运动运用运动的合成和分解牛顿第二定律联合运动学公式求解,粒子在磁场中的运动运用洛伦兹力供给向心力联合几何关系求解,解题重点是要作出临界的轨迹图,正确运用数学几何关系,还要剖析好从电场射入磁场连接点的速度大小和方向;运用粒子在磁场中转过的圆心角,联合周期公式,求解粒子在磁场中运动的时间.。

高中物理曲线运动典型题及答案

高中物理曲线运动典型题及答案

高中物理曲线运动典题及答案一、单选题(本大题共14小题,共56.0分)1.某一滑雪运动员从滑道滑出并在空中翻转时经多次曝光得到的照片如图所示,每次曝光的时间间隔相等。

若运动员的重心轨迹与同速度不计阻力的斜抛小球轨迹重合,A,B,C和D表示重心位置,且A和D处于同一水平高度。

下列说法正确的是A. 相邻位置运动员重心的速度变化相同B. 运动员在A、D位置时重心的速度相同C. 运动员从A到B和从C到D的时间相同D. 运动员重心位置的最高点位于B和C中间2.在光滑的水平面上,质量m=1kg的物块在的水平恒力F作用下运动,如图所示为物块的一段轨迹。

已知物块经过P、Q两点时的速率均为v= 4m/s,用时为2s,且物块在P点的速度方向与PQ连线的夹角α=30°.关于物块的运动,下列说法正确的是( )A. 水平恒力F=4NB. 水平恒力F的方向与PQ连线成90°夹角C. 物块从P点运动到Q点的过程中最小速率为2m/sD. P、Q两点的距离为8m3.如图所示,从匀速运动的水平传送带边缘,垂直弹入一底面涂有墨汁的棋子,棋子在传送带表面滑行一段时间后随传送带一起运动.以传送带的运动方向为x轴,棋子初速度方向为y轴,以出发点为坐标原点,棋子在传送带上留下的墨迹为( )A. B. C. D.4.如图所示,水平桌面上有一涂有黑色墨水的小球,给小球一个初速度使小球向右做匀速直线运动,它经过靠近桌边的竖直木板ad边前方时,木板开始做自由落体运动。

若木板开始运动时,cd边与桌面相齐平,则小球在木板上留下的墨水轨迹是( )A. B.C. D.5.如图所示,长度为l的轻杆上端连着一质量为m的小球A(可视为质点),杆的下端用铰链固接于水平地面上的O点.置于同一水平面上的立方体B恰与A接触,立方体B的质量为M.今有微小扰动,使杆向右倾倒,各处摩擦均不计,而A与B刚脱离接触的瞬间,杆与地面夹角恰为37°(sin37°=0.6,cos37°=0.8),重力加速度为g,则下列说法正确的是( )A. A、B质量之比为27∶25B. A落地时速率为√2glC. A与B刚脱离接触的瞬间,A、B速率之比为3∶5D. A与B刚脱离接触的瞬间,B的速率为√3gl56.一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L1和L2,中间球网高度为ℎ.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3ℎ.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是( )A. L12√g6ℎ<v<L1√g6ℎB. L14√gℎ<v<√(4L12+L22)g6ℎC. L12√g6ℎ<v<12√(4L12+L22)g6ℎD. L14√gℎ<v<12√(4L12+L22)g6ℎ7.在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪。

高一物理曲线运动练习测试题(含参考答案)

高一物理曲线运动练习测试题(含参考答案)
B.一个匀减速运动。可以分解为方向相反的匀速运动和初速度为零的匀加速直线运动
C.一个在三维空间中运动的物体,它的运动可以分解为在一个平面内的运动和在某一方向上的直线运动
D.一个静止的物体,它的运动可以分解为两个方向相反的匀速直线运动
二填空题
23.如图所示,人在河岸上用轻绳拉船,若人以速度v匀速行进,则船将做,在图示时船的速度为
C.如果合力方向跟速度方向成钝角,则物体速度将减小,方向也发生改变
D.如果合力方向与速度方向在同一直线上,则物体的速度方向不改变,只是速率发生变化
9关于曲线运动,下面说法正确的是()
A.物体运动状态改变着,它一定做曲线运动
B.物体做曲线运动,它的运动状态一定在改变
C.物体做曲线运动时,它的加速度的方向始终和速度的方向一致
A.仍然沿着汽车行驶的弯道运动
B.沿着与弯道垂直的方向飞出
C.沿着脱离时,轮子前进的方向做直线运动,离开弯道
D.上述情况都有可能
5.一个质点在恒力F作用下,在xOy平面内从O点运动到A点的轨迹如图所示,且在A点的速度方向与x轴平行,则恒力F的方向不可能( )
A.沿x轴正方向B.沿x轴负方向
C.沿y轴正方向D.沿y轴负方向
B.合运动的时间等于分运动的时间之和
C.合运动的速度一定大于其中一个分运动的速度
D.合运动的速度方向与合运动的位移方向相同
2.物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是( )
A.静止B.匀加速直线运动C.匀速直线运动D.匀速圆周运动
C.做曲线运动的物体,速度方向一定时刻改变
D.做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上

高中物理曲线运动21个典型题

高中物理曲线运动21个典型题

高中物理曲线运动21个典型题典型例题1——关于飞机轰炸飞机在离地面720m的高度,以70的速度水平飞行,为了使飞机上投下的炸弹落在指定的轰炸目标上,应该在离轰炸目标的水平距离多远的地方投弹?(不计空气阻力取)可以参考媒体展示飞机轰炸目标的整个过程以及分析,帮助理解.解:设水平距离为子弹飞行的时间:水平距离典型例题2——关于变速运动火车上的平抛运动在平直轨道上以的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m.间隔时间为1s.两物体落地点的间隔是2.6m,则当第一个物体下落时火车的速度是多大?(取)分析:如图所示、第一个物体下落以的速度作平抛运动,水平位移,火车加速到下落第二个物体时,已行驶距离.第二个物体以的速度作平抛运动水平位移.两物体落地点的间隔是2.6m.解:由位置关系得:物体平抛运动的时间:由以上三式可得点评:解本题时,作出各物体运动情况的草图对帮助分析题意十分重要.先后作平抛运动的物体因下落高度相同,所以运动的时间相同,但下落的时间不同于火车加速度运动的时间,不要混淆.典型例题3——关于三维空间上的平抛运动分析光滑斜面倾角为,长为,上端一小球沿斜面水平方向以速度抛出(如图所示),小球滑到底端时,水平方向位移多大?解:小球运动是合运动,小球在水平方向作匀速直线运动,有①沿斜面向下是做初速度为零的匀加速直线运动,有②根据牛顿第二定律列方程③由①,②,③式解得说明:中学阶段研究的曲线运动一定是两维空间(即平面上的)情况,因此,该题首先分析在斜面上的分运动情况.研究曲线运动必须首先确定分运动,然后根据“途径”处理.典型例题4——关于小船过河的一系列问题一艘小船在200m宽的河中横渡到对岸,已知水流速度是2m/s,小船在静水中的速度是4m/s,求:①当船头始终正对着对岸时,小船多长时间到达对岸,小船实际运行了多远?②如果小船的路径要与河岸垂直,应如何行驶?消耗的时间是多少?③如果小船要用最短时间过河,应如何?船行最短时间为多少?【分析与解答】①在解答本题的时候可由此提问:船头始终正对河岸代表什么含义.(①题的答案:50秒,下游100米)②路径与河岸垂直——船的实际运动——船的合运动(在两个分运动的中间,并与河岸垂直)(②题的答案:与上游河岸成60°,57.7s)③分析本题,可以得到求t最小的方法:1、河宽一定,要想使时间最少应使垂直河岸方向的分速度最大,即正对河岸航行,则.2、或者由三个式子一一分析.一定,又有最小值,即河宽,便可以求出渡河最短时间.(③题的答案:50s)典型例题5——关于拉船分运动的分解判断在高处拉低处小船时,通常在河岸上通过滑轮用钢绳拴船,若拉绳的速度为4m/s,当拴船的绳与水平方向成60°时,船的速度是多少?(8m/s)【分析与解答】:在分析船的运动时,我们发现船的运动产生了两个运动效果:绳子在不断缩短;而且绳子与河岸的夹角不断减小,所以我们可以将船的运动——实际运动——合运动分解成沿绳子方向的运动和垂直绳子方向所做的圆周运动,因此可以将船的运动分为:1、船沿水平方向前进——此方向为合运动,求合速度v.2、小船的运动可以看成为沿绳子缩短方向的运动和垂直绳子方向做圆周运动的合运动.所以根据题意,船的速度大小与绳子的运行速度之间的关系是:典型例题6——关于汽车通过不同曲面的问题分析一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:(重力加速度)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有:,解得桥面的支持力大小为根据牛顿第三定律,汽车对桥面最低点的压力大小是N.(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有,解得桥面的支持力大小为根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N.(3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有,解得:汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力.典型例题7——细绳牵引物体做圆周运动的系列问题一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.【分析与解答】(1)小球通过圆周最高点时,受到的重力必须全部作为向心力,否则重力G 中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运。

曲线运动测试题及答案

曲线运动测试题及答案

曲线运动测试卷一、选择题1.关于物体做曲线运动,下列说法中,正确的是( )A .物体做曲线运动时所受的合外力一定不为零B .物体所受的合外力不为零时一定做曲线运动C .物体有可能在恒力的作用下做曲线运动,如推出手的铅球D .物体只可能在变力的作用下做曲线运动2.匀速直线运动的火车上有一个苹果自由落下,关于苹果的运动下列说法正确的是 ( )A .在火车上看苹果做自由落体运动B .在火车上看苹果在下落的同时向车后运动C .在地面上看苹果做自由落体运动D .在地面上看苹果做平抛运动3.关于做曲线运动物体的速度和加速度,下列说法中正确的是 ( )A. 速度、加速度都一定随时在改变B. 速度、加速度的方向都一定随时在改变C. 速度、加速度的大小都一定随时在改变D. 速度、加速度的大小可能都保持不变4.铁路在弯道处的内外轨道高度是不同的,已知内外轨道平面与水平面的倾角为θ,如图所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度小于θtan gR ,则( )A .内轨对内侧车轮轮缘有挤压B .外轨对外侧车轮轮缘有挤压C .这时铁轨对火车的支持力等于θcos mg D .这时铁轨对火车的支持力大于θcos mg 5.如图所示,轻绳的上端系于天花板上的O 点,下端系有一只小球。

将小球拉离平衡位置一个角度后无初速释放。

当绳摆到竖直位置时,与钉在O 点正下方P 点的钉子相碰。

在绳与钉子相碰瞬间前后,以下物理量的大小没有发生变化的是( )A .小球的线速度大小B .小球的角速度大小C .小球的向心加速度大小D .小球所受拉力的大小6.如图所示,细杆的一端与一小球相连,可绕过O 点的水平轴自由转动,现给小球一初速度,使其做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是( )A .a 处为拉力,b 处为拉力B .a 处为拉力,b 处为推力C .a 处为推力,b 处为拉力D .a 处为推力,b 处为推力7.将甲物体从高h处以速度v水平抛出,同时将乙物体从同一高度释放,使其自由下落,不计空气阻力,在它们落地之前,关于它们的运动的说法正确的是()A.两物体在下落过程中,始终保持在同一水平面上B.甲物体先于乙物体落地C.两物体的落地速度大小相等,方向不同D.两物体的落地速度大小不相等,方向也不相同8.汽车在水平地面上转弯,地面对车的摩擦力已达到最大值。

(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题( 有答案和解析 )一、高中物理精讲专题测试曲线运动1.以下列图,在风洞实验室中,从 A 点以水平速度 v0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F,经过一段时间小球运动到 A 点正下方的 B 点处,重力加速度为 g,在此过程中求(1)小球离线的最远距离;(2) A、 B 两点间的距离;(3)小球的最大速率 v max.【答案】(1)mv22m2 gv2( 3)v0F24m2g2 0(2)0F2F F 2【解析】【解析】(1)依照水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)依照水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A、 B 两点间的距离;(3)小球到达 B 点时水平方向的速度最大,竖直方向的速度最大,则 B 点的速度最大,依照运动学公式结合平行四边形定则求出最大速度的大小;【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解水平方向: F=ma x2v0= 2a x x m解得:x m=mv2 2F(2)水平方向速度减小为零所需时间t1=v 0a x总时间 t= 2t1竖直方向上:y= 1 gt2= 2m2 gv022 F 2(3)小球运动到 B 点速度最大v x=v0V y=gtv max= v x2v y2=vF 24m2g 2 F【点睛】解决此题的要点将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.以下列图,在竖直平面内有一倾角θ=37°的传达带BC.已知传达带沿顺时针方向运行的速度 v=4 m/s , B、 C两点的距离 L=6 m。

一质量 m=0.2kg 的滑块(可视为质点)从传达带上端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC方向滑人传达带,滑块与传达带间的动摩擦因数μ,取重力加速度g=10m/s 2, sin37 = °,cos37°。

高中物理曲线运动试题(有答案和解析)及解析

高中物理曲线运动试题(有答案和解析)及解析

高中物理曲线运动试题(有答案和解析)及解析一、高中物理精讲专题测试曲线运动1.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

某弹珠游戏可简化成如图所示的竖直平面内OABCD 透明玻璃管道,管道的半径较小。

为研究方便建立平面直角坐标系,O 点为抛物口,下方接一满足方程y 59=x 2的光滑抛物线形状管道OA ;AB 、BC 是半径相同的光滑圆弧管道,CD 是动摩擦因数μ=0.8的粗糙直管道;各部分管道在连接处均相切。

A 、B 、C 、D 的横坐标分别为x A =1.20m 、x B =2.00m 、x C =2.65m 、x D =3.40m 。

已知,弹珠质量m =100g ,直径略小于管道内径。

E 为BC 管道的最高点,在D 处有一反弹膜能无能量损失的反弹弹珠,sin37°=0.6,sin53°=0.8,g =10m/s 2,求:(1)若要使弹珠不与管道OA 触碰,在O 点抛射速度ν0应该多大;(2)若要使弹珠第一次到达E 点时对轨道压力等于弹珠重力的3倍,在O 点抛射速度v 0应该多大;(3)游戏设置3次通过E 点获得最高分,若要获得最高分在O 点抛射速度ν0的范围。

【答案】(1)3m/s (2)2m/s (3)3m/s <ν0<6m/s 【解析】 【详解】 (1)由y 59=x 2得:A 点坐标(1.20m ,0.80m ) 由平抛运动规律得:x A =v 0t ,y A 212gt =代入数据,求得 t =0.4s ,v 0=3m/s ; (2)由速度关系,可得 θ=53° 求得AB 、BC 圆弧的半径 R =0.5m OE 过程由动能定理得: mgy A ﹣mgR (1﹣cos53°)2201122E mv mv =- 解得 v 0=2m/s ;(3)sinα 2.65 2.000.400.5--==0.5,α=30°CD 与水平面的夹角也为α=30°设3次通过E 点的速度最小值为v 1.由动能定理得mgy A ﹣mgR (1﹣cos53°)﹣2μmgx CD cos30°=02112mv - 解得 v 1=23m/s设3次通过E 点的速度最大值为v 2.由动能定理得 mgy A ﹣mgR (1﹣cos53°)﹣4μmgx CD cos30°=02212mv - 解得 v 2=6m/s考虑2次经过E 点后不从O 点离开,有﹣2μmgx CD cos30°=02312mv -解得 v 3=26m/s 故 23m/s <ν0<26m/s2.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g== B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.3.如图所示,物体A 置于静止在光滑水平面上的平板小车B 的左端,物体在A 的上方O 点用细线悬挂一小球C(可视为质点),线长L =0.8m .现将小球C 拉至水平无初速度释放,并在最低点与物体A 发生水平正碰,碰撞后小球C 反弹的速度为2m/s .已知A 、B 、C 的质量分别为m A =4kg 、m B =8kg 和m C =1kg ,A 、B 间的动摩擦因数μ=0.2,A 、C 碰撞时间极短,且只碰一次,取重力加速度g =10m/s 2.(1)求小球C 与物体A 碰撞前瞬间受到细线的拉力大小; (2)求A 、C 碰撞后瞬间A 的速度大小;(3)若物体A 未从小车B 上掉落,小车B 的最小长度为多少? 【答案】(1)30 N (2)1.5 m/s (3)0.375 m 【解析】 【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m 0gl 12=m 0v 02 代入数据解得:v 0=4m/s ,对小球,由牛顿第二定律得:F ﹣m 0g =m 020v l代入数据解得:F =30N(2)小球C 与A 碰撞后向左摆动的过程中机械能守恒,得:212C mv mgh = 所以:22100.22C v gh ==⨯⨯=m/s小球与A 碰撞过程系统动量守恒,以小球的初速度方向为正方向, 由动量守恒定律得:m 0v 0=﹣m 0v c +mv A 代入数据解得:v A =1.5m/s(3)物块A 与木板B 相互作用过程,系统动量守恒,以A 的速度方向为正方向, 由动量守恒定律得:mv A =(m+M )v 代入数据解得:v =0.5m/s由能量守恒定律得:μmgx 12=mv A 212-(m+M )v 2 代入数据解得:x =0.375m ;4.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零; (3)转台从静止开始加速到角速度3gLω=的过程中,转台对物块做的功.【答案】(1)1g Lμω=(2)233g Lω=(3)132mgL⎛ ⎝ 【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1g Lμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =+【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.5.如图甲所示,粗糙水平面与竖直的光滑半圆环在N 点相切,M 为圈环的最高点,圆环半径为R =0.1m ,现有一质量m =1kg 的物体以v 0=4m/s 的初速度从水平面的某点向右运动并冲上竖直光滑半圆环,取g =10m/s 2,求:(1)物体能从M 点飞出,落到水平面时落点到N 点的距离的最小值X m(2)设出发点到N 点的距离为S ,物体从M 点飞出后,落到水平面时落点到N 点的距离为X ,作出X 2随S 变化的关系如图乙所示,求物体与水平面间的动摩擦因数μ(3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半固轨道,求出发点到N 点的距离S 应满足的条件【答案】(1)0.2m ;(2)0.2;(3)0≤x ≤2.75m 或3.5m ≤x <4m . 【解析】 【分析】(1)由牛顿第二定律求得在M 点的速度范围,然后由平抛运动规律求得水平位移,即可得到最小值;(2)根据动能定理得到M 点速度和x 的关系,然后由平抛运动规律得到y 和M 点速度的关系,即可得到y 和x 的关系,结合图象求解;(3)根据物体不脱离轨道得到运动过程,然后由动能定理求解. 【详解】(1)物体能从M 点飞出,那么对物体在M 点应用牛顿第二定律可得:mg ≤2M mv R,所以,v M1m /s ;物体能从M 点飞出做平抛运动,故有:2R =12gt 2,落到水平面时落点到N 点的距离x =v M t2R =0.2m ; 故落到水平面时落点到N 点的距离的最小值为0.2m ;(2)物体从出发点到M 的运动过程作用摩擦力、重力做功,故由动能定理可得:−μmgx −2mgR =12mv M 2−12mv 02; 物体从M 点落回水平面做平抛运动,故有:2R =12gt 2,M y v t === 由图可得:y 2=0.48-0.16x ,所以,μ=0.160.8=0.2; (3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半圆轨道,那么物体能到达的最大高度0<h≤R 或物体能通过M 点;物体能到达的最大高度0<h≤R 时,由动能定理可得:−μmgx −mgh =0−12mv 02, 所以,2200122mv mghv h x mg g μμμ--==,所以,3.5m≤x <4m ;物体能通过M 点时,由(1)可知v M1m /s ,由动能定理可得:−μmgx−2mgR=12mv M2−12mv02;所以22221124222MMmv mv mgR v v gRxmg gμμ----==,所以,0≤x≤2.75m;【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.6.如图所示,半径为R的四分之三光滑圆轨道竖直放置,CB是竖直直径,A点与圆心等高,有小球b静止在轨道底部,小球a自轨道上方某一高度处由静止释放自A点与轨道相切进入竖直圆轨道,a、b小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b经过C点水平抛出落在离C点水平距离为22R的地面上,重力加速度为g,小球均可视为质点。

曲线运动练习题

曲线运动练习题

曲线运动练习题曲线运动练习题曲线运动是物理学中一个重要的概念,它涉及到物体在空间中运动的轨迹和速度的变化。

通过解决一些曲线运动练习题,我们可以更好地理解和应用这个概念。

本文将给出一些曲线运动练习题,并逐步解答,帮助读者加深对曲线运动的理解。

题目一:小球的自由落体一个小球从高处自由落下,下落的过程中受到重力的作用。

已知小球下落的时间为2秒,求小球下落的距离。

解答一:根据物体自由落体的运动规律,下落的距离可以用公式 s = 1/2 * g * t^2 来计算,其中 s 为下落的距离,g 为重力加速度,t 为时间。

已知 t = 2 秒,g 取9.8 m/s^2,代入公式计算得到 s = 1/2 * 9.8 * 2^2 = 19.6 米。

所以小球下落的距离为19.6米。

题目二:车辆的匀速直线运动一辆汽车以每小时60公里的速度匀速行驶,求汽车在5小时内行驶的距离。

解答二:匀速直线运动的速度可以用公式 v = s / t 来计算,其中 v 为速度,s 为距离,t为时间。

已知 v = 60 公里/小时,t = 5 小时,代入公式计算得到 s = v * t = 60 * 5 = 300 公里。

所以汽车在5小时内行驶的距离为300公里。

题目三:物体的抛体运动一个物体以速度20 m/s的初速度被抛出,抛出角度为45度,求物体的最大高度和飞行的时间。

解答三:抛体运动可以分解为水平方向和垂直方向的运动。

首先,我们求物体的最大高度。

物体的垂直方向运动可以用公式h = (v^2 * sin^2θ) / (2g) 来计算,其中 h 为最大高度,v 为初速度,θ 为抛出角度,g 为重力加速度。

已知 v = 20 m/s,θ = 45度,g 取9.8 m/s^2,代入公式计算得到 h = (20^2 * sin^2(45)) / (2 * 9.8) ≈ 10.10 米。

所以物体的最大高度约为10.10米。

接下来,我们求物体的飞行时间。

曲线运动经典练习题

曲线运动经典练习题

曲线运动经典练习题【例题1】为了清理堵塞河道的冰凌,空军实施投弹爆破。

飞机在河道上空高H 处以速度v0水平匀速飞行,投掷炸弹并击中目标。

求炸弹刚脱离飞机到击中目标所飞行的水平距离及击中目标时的速度大小(不计空气阻力)。

【变式练习1】用闪光照相方法研究平抛运动规律时,由于某种原因,只拍到了部分方格背景及小球的三个瞬时位置(见图)。

若已知闪光时间间隔为t=0.1s,则小球运动中初速度大小为多少?小球经B点时的竖直分速度大小多大?(g取10m/s2,每小格边长均为L=5cm)。

【例题2】如图所示,墙壁上落有两只飞镖,它们是从同一位置水平射出的,飞镖A与竖直墙壁成530角,飞镖B与竖直墙壁成370角,两者相距为d,假设飞镖的运动是平抛运动,求射出点离墙壁的水平距离?(sin370=0.6,cos370=0.8)【例题3】如图所示,在倾角θ=37°的斜面底端的正上方H处,平抛一个物体,该物体落到斜面上的速度方向正好与斜面垂直,求物体抛出时的初速度。

【例题4】如图所示,在倾角为θ的斜面上A点以水平速度v0抛出一个小球,不计空气阻力,它落到斜面上B点所用的时间为()【拓展2】一固定的斜面倾角为θ,一物体从斜面上的A点平抛并落到斜面上的B点,试证明物体落在B点的速度与斜面的夹角为定值.【例3】如图所示,有一倾角为30°的光滑斜面,斜面长L为10m,一小球从斜面顶端以10m/s的速度沿水平方向抛出,求:(1)小球沿斜面滑到底端时的水平位移x;(2)小球到达斜面底端时的速度大小(g取10m/s2).【同步作业】1.如图,斜面上有a、b、c、d四个点,ab =bc =cd。

从a点正上方的O点以速度v0水平抛出一个小球,它落在斜面上b点。

若小球从O点以速度2v0水平抛出,不计空气阻力,则它落在斜面上的()A.b与c之间某一点B.c点C.c与d之间某一点D.d点2.在斜面上O点先后以υ0和2υ0的速度水平抛出A、B两小球,则从抛出至第一次着地,两小球的水平位移大小之比可能为()A.1∶2 B.1∶3C.1∶4 D.1∶53.如图所示,质量相同的A、B两质点以相同的水平速度v抛出,A在竖直平面内运动,落地点在P1;B在光滑的斜面上运动,落地点在P2,不计空气阻力,则下列说法中正确的是()A.A、B的运动时间相同B.A、B沿x轴方向的位移相同C.A、B落地时的速度相同D.A、B落地时的动能相同4.一位同学将一足球从楼梯顶部以v0=2m/s的速度踢出(忽略空气阻力),若所有台阶都是高0.2m,宽0.25m,问足球从楼梯顶部踢出后首先撞到哪一级台阶上?【例1】如图所示,两绳系一质量为m=0.1kg的小球,两绳的另一端分别固定于轴的A、B两处,上面绳长l=2m,两绳拉直时与轴的夹角分别为30°和45°,问球的角速度在什么范围内两绳始终有张力(取g=10m/s2)?【变式练习1】如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线的夹角θ=30°,一条长为l的绳,一端固定在圆锥体的顶点O,另一端系一个质量为m的小球(可视为质点),小球以速率v绕圆锥体的轴线在水平面内做匀速圆周运动.试分析讨论v从零开始逐渐增大的过程中,球受圆锥面的支持力及摆角的变化情况.【例2】如图所示,水平转盘的中心有个竖直小圆筒,质量为m的物体A放在转盘上,A到竖直筒中心的距离为r.物体A通过轻绳、无摩擦的滑轮与物体B相连,B与A质量相同.物体A与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A才能随盘转动.【例3】如图所示,在电机距轴O为r处固定一质量为m的铁块.电机启动后,铁块以角速度ω绕轴O匀速转动.求电机对地面的最大压力和最小压力之差.【拓展】⑴若m在最高点时突然与电机脱离,它将如何运动?⑵当角速度ω为何值时,铁块在最高点与电机恰无做用力?⑶本题也可认为是一电动打夯机的原理示意图.若电机的质量为M,则ω多大时,电机可以“跳”起来?此情况下,对地面的最大压力是多少?【变式练习2】如图所示,用一连接体一端与一小球相连,绕过O点的水平轴在竖直平面内做圆周运动,设轨道半径为r,图中P、Q两点分别表示小球轨道的最高点和最低点,则以下说法正确的是( )A.若连接体是轻质细绳时,小球到达P点的速度可以为零B.若连接体是轻质细杆时,小球到达P点的速度可以为零C.若连接体是轻质细绳时,小球在P点受到细绳的拉力可能为零D.若连接体是轻质细杆时,小球在P点受到细杆的作用力为拉力,在Q 点受到细杆的作用力为推力【例4】过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0 m、R2=1.4 m.一个质量为m=1.0 kg的小球(可视为质点),从轨道的左侧A点以v0=12.0 m/s的初速度沿轨道向右运动,A、B间距L1=6.0 m.小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度取g =10 m/s2,计算结果保留小数点后一位数字.试求:(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二个圆形轨道,B、C间距L应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A 的距离.【变式练习3】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点) .A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0.设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,试写出m1、m2、R与v0应满足的关系式.【同步作业】2.如图所示,放置在水平地面上的支架质量为M,支架顶端用细线拴着的摆球质量为m,现将摆球拉至水平位置,而后释放,摆球运动过程中,支架始终不动,以下说法正确的是()A.在释放前的瞬间,支架对地面的压力为(m+M)gB.在释放前的瞬间,支架对地面的压力为MgC.摆球到达最低点时,支架对地面的压力为(m+M)gD.摆球到达最低点时,支架对地面的压力为(3m+M)g3.用一根细线一端系一小球(可视为质点),另一端固定在一光滑圆锥顶上,如图所示.设小球在水平面内做匀速圆周运动的角速度为ω,线的张力为F T,则F T随ω2变化的图象是图中的()4.质量为60 kg的体操运动员做“单臂大回环”,用一只手抓住单杠,伸展身体,以单杠为轴做圆周运动.如图所示,此过程中,运动员到达最低点时手臂受的拉力至少约为(忽略空气阻力,g=10m/s2) ()A.600 N B.2400 NC.3000 N D.3600 N6.用一根细绳,一端系住一个质量为m的小球,另一端悬在光滑水平桌面上方h处,绳长l大于h,使小球在桌面上做如图所示的匀速圆周运动.若使小球不离开桌面,其转速最大值是()10.如图所示,一可视为质点的物体质量为m=1 kg,在左侧平台上水平抛出,恰能无碰撞地沿圆弧切线从A点进入光滑竖直圆弧轨道,并沿轨道下滑,A、B 为圆弧两端点,其连线水平,O为轨道的最低点.已知圆弧半径为R=1.0 m,对应圆心角为θ=106°,平台与AB连线的高度差为h=0.8 m.(重力加速度g=10 m/s2,sin53°=0.8,cos53°=0.6)求:(1)物体平抛的初速度;(2)物体运动到圆弧轨道最低点O时对轨道的压力.。

物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

曲线运动典型例题

曲线运动典型例题

αxyvo例1.一个物体在光滑水平面上以初速度V0做曲线运动,一个恒力的作用,运动轨迹如图所示,则由M到N的过程中,速度大小的变化为( D )A.逐渐增大B.逐渐减小C.先增大后减小D.先减小后增大(关于力F的方向范围,V的大小变化及V极值问题)例2.河宽d=100m,水流速度V1=3m/s,船在静水中的速度是V2=4m/s,求:1)欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船经过的位移多大?2)欲使船航行距离最短,船应怎样渡河?渡河时间多长?3)若船速与水速大小互换,过河时间最短是多少?例3.如图人用绳子通过定滑轮拉物体A,当人以速度V0匀速前进且物体与水平方向夹角为θ时,求物体A的速度?例4.如图所示,水平面上有一物体,人通过定滑轮用绳子拉它,在图示位置时,若人的速度为5m/s,则物体的瞬时速度为___________ m/s例 5.如图所示,在不计滑轮摩擦和绳子质量的条件下,( )A.绳的拉力大于A的重力B. 绳的拉力等于A的重力C.绳的拉力小于A的重力D. 绳的拉力先大于重力,后变为小于重力(绳自身的拉力如何变化? )例6.A,B两个小球由轻软的细线相连,线长L=6m,将A,B球先后以相同的初速度V0=4.5m/s,从同一点水平抛出,A先B后,相隔时间t=0.8S.1)A球抛出后经多少时间,细线刚好被拉直? 2)细线刚被拉直时,A,B球的水平位移各多大?例7.平抛物体,在落到地前的最后1S内,其速度方向由跟竖直方向成600变为跟竖直方向成450,求物体抛出时的速度和下落的高度.例8.如图所示,两斜面的倾角分别为370和530,初速度分别向左向右水平抛出,小球都落在斜面上,若不计空气阻力,则两个小球运动时间之比_________例9.如图所示物体从O点水平抛出,已知落地时其运动的方向与水平面夹角为θ,水平位移为X,求O点高度H等于多少?例10.一固定斜面ABC,倾角为θ,高AC=h,如图所示,在顶点A以某一初速度水平抛出一小球,恰好落在B点,空气阻力不计,试求1)自抛出经多长时间小球离斜面最远? 2)最远的距离为多少?例11.如图所示,有一倾角为300光滑斜面,斜面长L=10m,10m/s的速度在斜面上沿水平方向抛出.求:1)位移?2)小球到达斜面底端时的速度大小?例12.光滑水平面上,一个质量为2Kg的物体从静止开始运动,在前5S沿正东方向大小为4N的水平恒力的作用,从第5S末开始改为正北方向大小为2N的水平恒力作用了10S,求物体在15S内的位移和15S末的速度及方向?例13.如图所示,一块橡皮用细线悬挂于O点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度( )A.大小和方向均不变B.大小不变,方向改变C.大小改变,方向不变D.大小和方向均改变例14.光滑水平面上一运动质点以速度V通过原点O,V与X轴正方向成α角,与此同时对质点加上没X轴正方向的恒力F X和沿y轴正方向的恒力F y,则( )A.因为有F X,质点一定做曲线运动.B.如果F y>F X,质点向y轴一侧做曲线运动C.质点不可能做直线运动.D.如果F X>F y cotα,质点向X轴一侧做曲线运动例15.如图所示,有一个物体以一定的初速度V1水平向右抛出,因,同时受到风的作用,假设风以不变的水平速度V2向左吹向物体,迹可能是其中哪些情况( )例16.如图所示,直径为d匀速运动.从枪口发射的子弹沿直径穿过圆筒.个弹孔.已知aO与bO夹角为θ,求子弹的速度?17.如图所示,在水平面上有一个半径为R的圆,其圆心与,若某时刻有两个物体同时从O点,A沿直线由静止开始做匀加速直线运动,B以角速度ω.经过一段时间发现,A,B的速度刚好相等,求此时A 前进的距离与所用的时间是多少?例18.如图所示,定滑轮的半径r=2cm,释放,测得重物以加速度a=2m/s 2做匀加速直线运动.间,滑轮边缘上的点的角速度ω=_____________rad/s,例19.如图所示,A,B,C 三个小物体放在水平转台上,m A 离转轴距离分别为2R A =2R B =R C ,当转台转动时,( )A.如果它们都不滑动,则C 的向心加速度最大B.如果它们都不滑动,则B 所受的静摩擦力最小C.当转台转速增大时,B 比A 先滑动D.当转台转速增大时,B 比C 先滑动 例20.在光滑水平面中,有一转轴垂直于此平面,交点O 在上方h 处固定一细绳的一端,绳的另一端固定一质量为m 的小球B,绳长AB=L>h,小球可随转轴转动并在光滑水平面上做匀速圆周运动,如图所示,要使球不离开水平面,转轴的转速最大值是多少?例21.如图所示,半径为R 的半球形碗内, 有个具有一定质量的物体A,A 与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO /匀速转动时,物体A 刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度是多少?例22.如图所示,直杆以O 为转轴在光滑水平面内做圆周运动,在杆上固定有A,B 两个小球,其质量分别为m A ,m B ,它们到O 点的距离分别为L1,L2,当杆以角速度ω转动时,求OA 杆与AB 杆对小球的作用力分别为多少?,在电机距O 为r 处固定一质量为m 的铁块,电机启动后,铁块以角速度匀速转动,则电机对地面的最大压力和最小压力各是多少?(用三种方法做:隔离.利用超失重做)例24.如图所示,细绳一端系着质量为M=0.6kg 的物体,静止在水平面上,另一端通过光滑小孔吊着质量m=0.3kg 的物体,M 的中点与圆孔距离为0.2m,并知M 和水平面的最大静摩擦力为2N,现使此平面绕中心轴转动.问角速度ω在什么范围内M 处于相对静止状态?(g 取10m/s 2)若水平面光滑,则ω的情况如何?例25两绳系一个质量为m=0.1kg 的小球,上面绳长L=2m,两绳都拉直时与轴夹角分别 为300与450,问小球的角速度在什么范围内,两绳始终拉紧?当角速度为3rad/s 时,上 ,下两绳拉力分别多大?例26.如图,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=300.一条长为L 的绳(质量不计),一端固定在圆锥体的顶点O 处,另一端拴着一个质量为m 的小物体(可看作质点,) 物体以速率V 绕圆锥体的轴线做水平面内的匀速圆周运动. 1)当V=,求绳对物体的拉力?2)当V= 时,求绳对物体的拉力?例27.有一水平放置的圆盘,上面放一劲度系数为k 的弹簧,如图,弹簧的一端固定于轴O 上,另一端挂一质量为m 的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为R,求:1)盘的转速n 0多大时,物体A 开始滑动? 2)当转速达到2n 0时,弹簧的伸长量是多少?例28.光滑的水平面上钉有两格铁钉A 和B,相距0.1m,长1m 的柔软细绳拴在A 上,另一端系一质量为0.5kg 的小球,小球的初始位置在AB 连线上A 的一侧,把细线拉紧,给小球以2m/s 的垂直细线方向的水平速度使它做圆周运动.由于钉子B 的存在,使线慢慢地缠在A,B 上,1)如果细线不会断裂,从小球开始运动到细线完全缠在A,B 上需要多长时间?2)如果细线的抗断力为7N,从开始运动到细线断裂需要经历多长的时间?例29.一人骑自行车向东行驶,当车速为4m/s 时,他感到风从正南方向吹来,当车速增加到7m/s 时,他感到风从东南方向吹来,问风对地的速度大小为多少?例30.如图,有一槽形物体M 放在水平面上,其两侧摩擦不计,但底部的摩擦因数为μ,在槽内放一物体m,当槽以速度V 1=3m/s 水平向右运动时,同时对物体m 施加一个沿V 2方向的力使m 沿V 2方向匀速运动,问所施加的力F 等于多少?。

曲线运动典型例题(全章)

曲线运动典型例题(全章)

曲线运动[例1]飞机在2 km 的高空以100 m/s 的速度水平匀速飞行,相隔1 s ,先后从飞机上掉下A 、B 两物体,不计空气阻力,求两物体在空中的最大距离是多少?(g =10 m/s 2)【解析】 由于飞机水平匀速飞行,所以A 、B 两物体先后离开飞机后均做平抛运动,且水平速度都和飞机的水平速度相同,因此两物体在落地前始终在飞机的正下方, 它们的距离等于竖直位移之差.对A 物体有:y A =21gt 2 对B 物体有:y B =21g (t -1)2 所以s A B =y A -y B =21gt 2-21g (t -1)2=21g (2t -1) 随t 的增大两物体距离增大,而物体A 在空中飞行的最长时间为:t m =1020002/2⨯=g h s =20 s 所以s AB 大=21×10×(2×20-1) m =195 m 【答案】 195 m【说明】 此题也可以B 为参照物,A 在竖直方向相对B 做匀速向下的运动,从而列方程求解.[例2]如图5—9—1所示,A 、B 两球之间用长6 m 的柔软细线相连,将两球相隔0.8 s 先后从同一高度从同一点均以4.5 m/s 的初速水平抛出,求:(1)A 球抛出后多长时间,A 、B 两球间的连线可拉直;(2)这段时间内A 球离抛出点的水平位移多大?(g 取10 m/s 2)图5—9—1【解析】 (1)由于A 、B 两球相隔Δt =0.8 s ,先后从同一点以相同初速度v 0水平抛出,则A 、B 两球在运动过程中水平位移之差始终为Δx =v 0Δt =4.5×0.8 m =3.6 m ①设A 抛出t 时间后两球间连线拉直,此时两球间竖直位移之差为Δy =21gt 2-21g (t -Δt )2=gt Δt -21g Δt 2 ②由图5—9—2可知图5—9—2Δy =22226.36-=∆-x L m =4.8 m③ 将Δy =0.8 m 代入②中求得t =1 s(2)这段时间内A 球的水平位移为x A =v 0t =4.5×1 m =4.5 m【答案】 (1)1 s (2)4.5 m【说明】 研究平抛运动的方法是将其分解为水平分运动和竖直分运动.所以,解决平抛运动问题时,要分别研究它的两个分运动的情况.特别要注意抓住竖直分运动这一解决问题的关键.解决平抛运动问题通常是根据竖直分运动的速度v y =gt 或位移y =21gt 或Δy =gT 2等规律求时间,再求其他量.[例3]如图5—9—3,在质量为M 的电动机上,装有质量为m 的偏心轮,飞轮转动的角速度为ω,当飞轮重心在转轴正上方时,电动机对地面的压力刚好为零.则飞轮重心离转轴的距离多大?在转动过程中,电动机对地面的最大压力多大?图5—9—3【解析】 设偏心轮的重心距转轴r ,偏心轮等效为用一长为r 的细杆固定质量为m (轮的质量)的质点,绕转轴转动(如图5—9—3).轮的重心在正上方时,电动机对地面的压力刚好为零,则此时偏心轮对电动机向上的作用力大小等于电动机的重力.即F=Mg①根据牛顿第三定律,此时轴对偏心轮的作用力向下,大小为F=Mg,其向心力为F+mg=mω2r②由①②得偏心轮重心到转轴的距离为:r=(M+m)g/(mω2)③当偏心轮的重心转到最低点时,电动机对地面的压力最大.对偏心轮有F′-mg=mω2r④对电动机,设它所受支持力为F NF N=F′+Mg⑤由③、④、⑤解得F N=2(M+m)g由牛顿第三定律得,电动机对地面的最大压力为2(M+m)g.【答案】(M+m)g/(mω2);2(M+m)g【说明】本题的简单解法是取电动机和偏心轮组成的系统为研究对象,当偏心轮在轴正上方时,电动机对地面刚好无压力,系统受到的合外力为(M+m)g,其中一部分物体是m具有竖直向下的加速度(即向心加速度),则(M+m)g=mω2r①得r=(M+m)g/(mω2)当偏心轮的重心转至轴的正下方时,电动机对地面压力最大,此时系统受到的合力为F N-(M+m)g,其中一部分物体m具有竖直向上的加速度(即向心加速度),则F N-(M+m)g=mω2r②由①②解得F N=2(M+m)g.由牛顿第三定律知电动机对地面的最大压力为2(M+m)g.[例4]有一小船正在渡河,如图5—9—4所示,在离对岸30 m时,其下游40 m处有一危险水域.假若水流速度为5 m/s,为了使小船在危险水域之前到达对岸,那么小船从现在起相对于静水的最小速度应是多大?图5—9—4【解析】设小船到达危险水域前,恰好到达对岸,则其合位移方向如图5—9—5所示,设合位移方向与河岸的夹角为α,则图5—9—5ta n α=434030 即α=37°小船的合速度方向与合位移方向相同,根据平行四边形定则知,当船相对于静水的速度v 1垂直于合速度时,v 1最小.由图5—9—5可知,v 1的最小值为v 1min =v 2sin α=5×53m/s =3 m/s 这时v 1的方向与河岸的夹角β=90°-α=53°.即从现在开始,船头指向与上游成53°角,以相对于静水的速度3 m/s 航行,在到达危险水域前恰好到达对岸.【答案】 见解析【说明】 解答物理极值问题,关键是通过分析找出极值条件.如本题中船相对于静水速度最小的条件有两个:一是船在到达危险水域前恰好到达对岸,由此可确定船的合位移的方向及合速度的方向;二是船相对于静水的速度v 1方向应垂直于合速度的方向,由此可确定最小速度v 1的方向,进一步就可根据平行四边形定则求出最小速度.。

人教版《曲线运动》全章练习题-高一物理必修2

人教版《曲线运动》全章练习题-高一物理必修2

《曲线运动》练习一1.做曲线运动的物体,在运动过程中,一定变化的物理量是()A.速率B.速度C.加速度D.合力2.质点做曲线运动时()A.速度的大小一定在时刻变化B.速度的方向一定在时刻变化C.可能速度大小和方向都在变化D.它可能是速率不变的运动3.关于运动的性质,以下说法中正确的是()A.曲线运动一定是变速运动B.变速运动一定是曲线运动C.曲线运动一定是变加速运动D.曲线运动可以是匀变速运动4.关于力和运动,下列说法中正确的是()A.物体在恒力作用下可能做曲线运动B.物体在变力作用下不可能做直线运动C.物体在恒力作用下不可能做曲线运动D.物体在变力作用下可能做直线运动5.关于曲线运动,下列说法正确的是()A.任何曲线运动都是变速运动B.曲线运动在某一点处的速度方向在该点的切线方向上C.匀速圆周运动是匀速运动D.曲线运动在某点处的加速度方向在该点的切线方向上6.关于曲线运动,下列说法正确的是()A.做曲线运动的物体所受合力一定不为零B.做曲线运动的物理所受合外力一定在曲线的内侧C.做曲线运动的物体一定有加速度D.做曲线运动的物理所受加速度一定在曲线的内侧7.关于曲线运动的下列说法正确是:()A.物体在不垂直与速度方向的合力作用下,速度大小一定变化B.物体做曲线运动时,某点的加速度方向就是通过这一点曲线的切线方向C.做曲线运动的物体,一定受到与速度不在同一直线上的外力作用D.作曲线运动的物体,物体所受的合外力方向与速度的方向不在同一直线上,必有加速度8.关于曲线运动的说法正确是()A.物体运动的初速度不为零且物体所受的合外力为变力B.物体所受的合外力方向与加速度的方向不在同一直线上C.物体不受力或受到的合外力为零时,可能作曲线运动D.作曲线运动的物体不可能处于平衡状态9.下列关于运动状态与受力关系的说法中,正确的是()A.物体运动状态发生变化,物体受力情况一定发生变化B.物体在恒力作用下的运动,一定是匀变速直线运动C.物体运动状态保持不变,说明物体受到的合力为零D.物体在做曲线运动的过程中,受到的合力不可能是恒力10.下列说法正确的是()A.做曲线运动的物体的加速度一定是变化的B.做曲线运动的物体受到的合力一定不为零C.物体在变力作用下,可能做直线运动也可能做曲线运动D.运动物体的加速度大小、速度大小都不变的运动一定是直线运动11.关于曲线运动,下列说法中正确的是()A.初速度为零的物体在恒力作用下,不可能做曲线运动B.做曲线运动的物体加速度一定不为零C.初速度为零的物体在变力作用下,有可能做曲线运动D.做曲线运动的物体加速度可能为零12.下列关于曲线运动的描述中正确的是()A.曲线运动可以是匀速率运动B.曲线运动一定是变速运动C.曲线运动可以是匀变速运动D.曲线运动的加速度可能为零13.关于互成角度的两个恒力作用于同一物体上,物体由静止开始运动,经过一段时间后,若撤去一个力,那么物体做()A.匀加速直线运动B.变速直线运动C.匀减速直线运动D.以上都不正确14.如图所示,一质点做曲线运动,从M点到N点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.(2017·湖南高三联考)汽车试车场中有一个检测汽车在极限状态下的车速的试车道,试车道呈锥面(漏斗状),侧面图如图所示。

测试的汽车质量m =1 t ,车道转弯半径r =150 m ,路面倾斜角θ=45°,路面与车胎的动摩擦因数μ为0.25,设路面与车胎的最大静摩擦力等于滑动摩擦力,(g 取10 m/s 2)求
(1)若汽车恰好不受路面摩擦力,则其速度应为多大?
(2)汽车在该车道上所能允许的最小车速和最大车速?
6.(多选)(2017·开封质检)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细
线相连的质量相等的两个物体A 和B ,它们分居圆心两侧,与圆
心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,最
大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未
发生滑动时,下列说法正确的是( )
A .此时绳子张力为T =3μmg
B .此时圆盘的角速度为ω= 2μg r
C .此时A 所受摩擦力方向沿半径指向圆外
D .此时烧断绳子,A 仍相对盘静止,B 将做离心运动
8.(2017·淄博实验中学月考)在斜面顶端的A 点以速度v 平抛一小球,经t 1时间落到斜
面上B 点处,若在A 点将此小球以速度0.5v 水平抛出,经t 2时间落到
斜面上的C 点处,以下判断正确的是( )
A .A
B ∶A
C =2∶1
B.AB ∶AC =4∶1 C .t 1∶t 2=4∶1 D .t 1∶t 2=2∶1
3.一位网球运动员以拍击球,使网球沿水平方向飞出。

第一只球飞出时的初速度为v 1,落在自己一方场地上后,弹
跳起来,刚好擦网而过,落在对方场地的A 点处。

如图所示,
第二只球飞出时的初速度为v 2,直接擦网而过,也落在A 点
处。

设球与地面碰撞时没有能量损失,且不计空气阻力,求:
(1)网球两次飞出时的初速度之比v 1∶v 2;
(2)运动员击球点的高度H 与网高h 之比H ∶h 。

1.(2014·安徽高考)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速
度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止。

物体与盘面间的动摩擦因数为32
(设最大静摩擦力等于滑动摩擦
力),盘面与水平面的夹角为30°,g取10 m/s2。

则ω的最大值是()
A. 5 rad/s
B. 3 rad/s
C.1.0 rad/s D.5 rad/s
(二)轻杆控制下的圆周运动
2.如图所示,在倾角为α=30°的光滑斜面上,有一根长为L=
0.8 m 的轻杆,一端固定在O点,另一端系一质量为m=0.2 kg的小
球,沿斜面做圆周运动,取g=10 m/s2,若要小球能通过最高点A,则小球在最低点B的最小速度是()
A.4 m/s B.210 m/s
C.2 5 m/s D.2 2 m/s
(三)轻绳控制下的圆周运动
3.(2017·开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴
MN调节其与水平面所成的倾角。

板上一根长为l=0.60 m
的轻绳,它的一端系住一质量为m的小球P,另一端固定
在板上的O点。

当平板的倾角固定为α时,先将轻绳平行
于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s。

若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2)。

相关文档
最新文档