北京市门头沟区2019年统一练习(二)九年级数学试卷

合集下载

2019学年北京市门头沟区中考二模数学试卷【含答案及解析】

2019学年北京市门头沟区中考二模数学试卷【含答案及解析】

2019学年北京市门头沟区中考二模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米.将2500000用科学记数法表示应为()A.25×105 B.2.5×106 C.2.5×107 D.0.25×1072. 如图是某几何体的三视图,那么这个几何体是()A.圆柱 B.正方体 C.球 D.圆锥3. 如图,如果数轴上A,B两点表示的数互为相反数,那么点B表示的数为()A.2 B.-2 C.3 D.-34. 在下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.5. 如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,如果∠ADC=26º,那么∠AOB的度数为()A.13º B.26º C.52º D.78º6. 如果一个多边形的内角和是外角和的3倍,那么这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形7. 在下列运算中,正确的是()A.a2·a3=a5 B.(a2)3=a5 C.a6÷a2=a3 D.a5+a5=2a108. 甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下图所示:设甲、乙两人射击成绩的平均数依次为、,射击成绩的方差依次为、,那么下列判断中正确的是()A.,B.,C.,D.,9. 一辆自行车在公路上行驶,中途发生了故障,停下修理一段时间后继续前进.已知行驶路程S(千米)与所用时间t(时)的函数关系的图象如图所示,那么自行车发生故障后继续前进的速度为()A.20千米/时 B.千米/时C.10千米/时 D.千米/时10. 在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒).设△OMN的面积为S,那么能反映S与t之间函数关系的大致图象是()A. B. C. D.二、填空题11. 在函数中,自变量x的取值范围是.12. 在半径为1的圆中,120°的圆心角所对的弧长是.13. 分解因式:ax2-9a= .14. 某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的顶点A的仰角为30°,然后向建筑物AB前进10m到达点D处,又测得点 A的仰角为60°,那么建筑物AB的高度是 m.15. 为了倡导绿色出行,某市为市民提供了自行车租赁服务,其收费标准如下:16. 地区类别首小时内首小时外备注A类1.5元/15分钟2.75元/15分钟不足15分钟时按15分钟收费B类1.0元/15分钟1.25元/15分钟C类免费0.75元/15分钟td17. 在平面直角坐标系xOy中,矩形OABC如图放置,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2次碰到矩形的边时,点P的坐标为;当点P第6次碰到矩形的边时,点P的坐标为;当点P第2015次碰到矩形的边时,点P的坐标为____________.三、解答题18. 已知:如图,C为BE上一点,点A、D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.四、计算题19. 计算:.五、解答题20. 已知,求的值.21. 已知关于x的方程(m≠0)(1)求证:方程总有两个不相等的实数根;(2)如果方程的两个实数根都是整数,求整数m的值.22. 如图,在平面直角坐标系xOy中,函数(x>0)的图象与一次函数y=kx-k的图象交点为A(m,2).(1)求一次函数的表达式;(2)设一次函数y=kx-k的图象与y轴交于点B,如果P是x轴上一点,且满足△PAB的面积是4,请直接写出P的坐标.23. 列方程或方程组解应用题:2014年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米.24. 如图,在△ABC中,D为AB边上一点,F为AC的中点,连接DF并延长至E,使得EF=DF,连接AE和EC.(1)求证:四边形ADCE为平行四边形;(2)如果DF=,∠FCD=30°,∠AED=45°,求DC的长.25. 以下是根据某电脑专卖店销售的相关数据绘制的统计图的一部分.请根据图1、图2解答下列问题:(1)来自该店财务部的数据报告表明,1~4月的电脑销售总额一共是290万元,请将图1中的统计图补充完整;(2)该店1月份平板电脑的销售额约为万元(结果精确到0.1);(3)小明观察图2后认为,4月份平板电脑的销售额比3月份减少了,你同意他的看法吗?请说明理由.26. 如图,⊙O为△ABC的外接圆,BC为⊙O的直径,AE为⊙O的切线,过点B作BD⊥AE于D.(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O的半径.27. 阅读下面的材料:小明遇到一个问题:如图1,在□ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.如果,求的值.他的做法是:过点E作EH∥AB交BG于点H,那么可以得到△BAF∽△HEF.请回答:(1)AB和EH之间的数量关系是,CG和EH之间的数量关系是,的值为.(2)参考小明思考问题的方法,解决问题:如图2,在四边形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F.如果,,求的值.28. 在平面直角坐标系xOy中,抛物线经过点A(4,0)和B(0,2).(1)求该抛物线的表达式;(2)在(1)的条件下,如果该抛物线的顶点为C,点B关于抛物线对称轴对称的点为D,求直线CD的表达式;(3)在(2)的条件下,记该抛物线在点A,B之间的部分(含点A,B)为图象G,如果图象G向上平移m(m>0)个单位后与直线CD只有一个公共点,请结合函数的图象,直接写出m的取值范围.29. 如图1,在△ABC中,CA=CB,∠ACB=90°,D是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案.(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由.(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP的距离.30. 我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x 2的过顶抛物线为y=ax2+bx,C(2,0),那么①a= ,b= .②如果顺次连接A、B、C、D四点,那么四边形ABCD为()A.平行四边形 B.矩形 C.菱形 D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第12题【答案】第13题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。

市门头沟区初三二模数学试题及答案

市门头沟区初三二模数学试题及答案

市门头沟区初三二模数学试题及答案Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT2011年门头沟区初三年级第二次统一练习数 学 试 卷考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡的密封线内准确填写学校、班级和姓名。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2的倒数是 A .12B .2C .12-D .2- 2.一种细胞的直径约为0.00000156米.将用科学记数法表示应为 A .61.5610⨯ B .61.5610-⨯ C .51.5610-⨯ D .415.610-⨯ 3.两圆的半径分别为5cm 和2cm ,圆心距为7cm ,则这两圆的位置关系是 A .内切 B .外切 C .外离 D .内含4.右图所示的是一个几何体的三视图,则这个几何体是 A .长方体 B .正方体 C .圆柱体 D .三棱柱 5.已知一组数据1,4,5,2,3,则这组数据的极差和方差分别是A .4,2B .4,3C .2,3D .1,56.若圆锥侧面展开图的扇形面积为65πcm 2,扇形的弧长为10πcm ,则圆锥的母线长是A .5cmB .10cmC .12cmD .13cm7.桌面上有三张背面相同的卡片,正面分别写有数字1、2、3.先将卡片背面朝上洗匀, 然后从中同时抽取两张,则抽到的两张卡片上的数字之积为奇数的概率是 A .16B .23C . 13D . 128.如图,正方形ABCD 的边长为2,动点P 从点C 出发, 在正方形的边上沿着C B A →→的方向运动(点P 与A 不重合). 设点P 的运动路程为x , 则下列图象中,表BA CP 主视图左视图俯视图示△ADP 的面积y 与x 的函数关系的是二、填空题(本题共16分,每小题4分)9.在函数2y x =-中,自变量x 的取值范围是 .10.如图,在△ABC 中,DE ∥BC ,AD =3,BD =6,AE =4,则EC 的长是 . 11.已知一个多边形的内角和是外角和的2倍,则这个多边形的边数是 . 12.如图,在矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 的内部, 延长BG 交DC 于点F .若DC =2DF ,则AD AB= ;若DC=nDF ,则AD AB= (用含n 的式子表示).三、解答题(本题共30分,每小题5分)131184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭.14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 并求它的正整数解.4 3 2 1 0 1 2 3 x yC 43 2 1 0 12 3 x yB43 2 1 0 12 3 x y A4 3 2 1 0 1 2 3 xyDED CBAGEDCBAF15.已知:如图,DB ∥AC ,且12DB AC =,E 是AC 的中点.求证:BC=DE .16.已知20y x -=,求y x y y x y x y xy x x-++-⋅+-2222222的值.17.列方程或方程组解应用题:AECB D为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品18.已知二次函数m x x y ++=22的图象与x 轴有且只有一个公共点. (1)求m 的值;(2)若此二次函数图象的顶点为A ,与y 轴的交点为B ,求A 、B 两点的坐标;(3)若1(,)P n y 、2(2,)Q y 是二次函数图象上的两点,且12y y >,请你直接写出n 的取值范围.图1A B C D四、解答题(本题共20分,每小题5分)19.如图,在梯形ABCD 中,AD 343O ⊙BC BD =O ⊙CD BF ∥O ⊙3cos 4BCD ∠= 小明把本年级学生400人的捐款情况进行了统计,并绘制成了如下不完整的频数分布表和频数分布直方图.请你根据以上图表提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图; (2)捐款金额的中位数落在哪个组内(3)若该校共有学生1600人,请你估计该校学生捐款金额不低于40元的有多少人22.如图1,有一张菱形纸片ABCD ,AC =8,BD =6.(1)若沿着AC 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图2中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的面积;(2)若沿着BD 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图3中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的周长;(3)沿着一条直线剪开,把它分成两部分,把剪开的两部分拼成与上述两种都不全等的平行四边形,请在图4中用实线画出你所拼成的平行四边形. (注:上述所画的平行四边形都不能与原菱形全等)五、解答题(本题共22分,第23、24题各7分,第25题8分)23.已知抛物线y =ax 2+bx -4a 经过A (-1,0)、C (0,4)两点,与x 轴交于另一点B .分组/元频数 频率 10≤x <20 40 20≤x <30 80 30≤x <40 40≤x <50 100 50≤x <60 20 合 计400A D FBCO EA B CD周长为DCBA图3D CBA图4图2AB CD 面积为102030405060频数(1)求抛物线的解析式;(2)若点D (m ,m +1)在第一象限的抛物线上, 求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连结BD ,若点P 为抛物线上一点,且∠DBP =45°,求点P 的坐标.24.已知在△ABC 和△DBE 中,AB =AC ,DB =DE ,且∠BAC =∠BDE .(1)如图1,若∠BAC =∠BDE =60°,则线段CE 与AD 之间的数量关系是 ;(2)如图2,若∠BAC =∠BDE =120°,且点D 在线段AB 上,则线段CE 与AD 之 间的数量关系是__________________;(3)如图3,若∠BAC =∠BDE =α,请你探究线段CE 与AD 之间的数量关系(用含α的式子表示),并证明你的结论.A C DB图1BACDE图3E BAC D图211yxO25.如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA = 3,AB = 5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A 后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(2)在点P从O向A运动的过程中,求△积S与t之间的函数关系式(不必写出t范围);(3)在点E从B向O运动的过程中,四边形能否成为直角梯形若能,请求出t能,请说明理由;(4)当DE经过点O时,请你直接写出t2011年门头沟区初三年级第二次统一练习数学试卷评分参考一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)C题号 9 10 11 12答案x ≥28六22n n三、解答题(本题共30分,每小题5分)13.计算: 10184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭.解:1184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭2224142=-⨯++ 4分 5=. 5分14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 并求它的正整数解. 解: 245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩由①,得x ≥-2. 1分 由②,得x <3.2分不等式组的解集在数轴上表示如下:3分 所以原不等式组的解集为-2≤x <3. 4分 所以原不等式组的正整数解为1,2. 5分15. 证明:∵E 是AC 的中点, ∴EC=21AC .…………………………………………………………………… 1分 ∵12DB AC =,∴DB = EC . ……………………………………2分 ∵DB ∥AC ,①②·AECBD∴DB ∥EC .……………………………………… 3分 ∴四边形DBCE 是平行四边形. ……………… 4分 ∴BC=DE . ……………………………………… 5分16.解:y x y y x y x yxy x x-++-⋅+-2222222 =yx y y x y x y x y x x -+++-⋅-2))(()(222分= 22x yx y x y +-- =22x yx y+-. 3分 当20y x -=时,x y 2=. 4分原式=242x xx x+-=-6. 5分17.解:设甲工厂每天加工x 件新产品,则乙工厂每天加工件新产品. ………………1分 依题意,得1200120010.1.5x x-=…………………………………………………………3分 解得x=40. …………………………………………………………………………4分经检验,40x =是所列方程的解,且符合实际问题的意义. 当x=40时,=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件. ………………………………5分 18. 解:(1)根据题意,得△=2240m -=.解得1m =. ……………………………………………………………………1分 (2)当1m =时,221y x x =++.二次函数图象的顶点A 的坐标为(-1,0), ………………………………2分 与y 轴的交点B 的坐标为(0,1). …………………………………………3分 (3)n 的取值范围是2n >或4n <-. ………………………………………………5分 四、解答题(本题共20分,每小题5分)19. 解:如图,分别过点A 、D 作AE ⊥BC 于点E ,DF ⊥BC 于点F . ……………………1分∴AE12=12=3=BE BC EF =-AB CDAB CD⊥BF O ⊙AB O ⊙AB BF ∴⊥CD BF ∴∥BD 90ADB ∴∠=°.在Rt ADB △中,3cos cos 4A C ==,428AB =⨯=, 3cos 864AD AB A ∴=⋅=⨯=.4分在Rt AED △中,39cos 642AE AD A =⋅=⨯=, ∴=.由直径AB 平分CD , 可求2CD DE == 5分21.解:(1)补全频数分布表和频数分布直方图. …………………………3分 (每个1分) (2)捐款金额的中位数落在30≤x <40这个组内. ………………………………4分 (3)该校学生捐款数额不低于40元的有100201600480400+⨯=(人). ……………5分 22.解:(1)画出图形、面积为24. ………………………………………………2分(每个1分) (2)画出图形、周长为22. ……………………………………………4分(每个1分) (3)画出图形(答案不唯一). ……………………………………………5分五、解答题(本题共22分,第23、24题各7分,第25题8分)23.解:(1)抛物线24y ax bx a =+-经过(10)A -,,(04)C ,两点, 404 4.a b a a --=⎧∴⎨-=⎩,B解得13.a b =-⎧⎨=⎩,………………………………………………………………………1分∴抛物线的解析式为234y x x =-++. ………………………………………2分(2)点(1)D m m +,在抛物线上,2134m m m ∴+=-++.∴2230m m --=. 1m ∴=-或3m =.点D 在第一象限,1m ∴=-舍去.∴点D 的坐标为(34),. …………………………………………………3分 抛物线234y x x =-++与x 轴的另一交点B 的坐标为(4),0,(04)C ,, ∴.45OC OB CBO BCO =∴∠=∠=°. 设点D 关于直线BC 的对称点为点E .CD AB ∥,45ECB CBO DCB ∴∠=∠=∠=°.∴E 点在y 轴上,且3CE CD ==. ∴OE =1.(01)E ∴,. ………………………………………………………………4分即点D 关于直线BC 对称的点的坐标为(0,1).(3)过点D 作BD 的垂线交直线PB 于点Q ,过点D 作DH x ⊥轴于H ,过点Q 作QG DH ⊥于G . ∴90QDB QGD DHB ∠=∠=∠=°..45PBD ∠=°,45BQD ∴∠=°..QD BD ∴= QDG BDH ∠+∠90=°,90DQG QDG ∠+∠=°, DQG BDH ∴∠=∠.QDG DBH ∴△≌△. 4QG DH ∴==,1DG BH ==. (13)Q ∴-,.………………………………………………………………………5分设直线BP 的解析式为y kx b +=.由点(13)Q -,,点(40)B ,,求得直线BP 的解析式为31255y x =-+.…………6yOA BC DE解方程组234,31255y x x y x ⎧=-++⎪⎨=-+⎪⎩得112,566;25x y ⎧=-⎪⎪⎨⎪=⎪⎩2240.x y =⎧⎨=⎩,(舍) ∴点P 的坐标为266525⎛⎫- ⎪⎝⎭,. ……………………………………………………7分24.解:(1)CE= AD . …………………………………………………………………………2分 (2)AD . ……………………………………………………………………4分 (3)CE 与AD 之间的数量关系是 α2sin 2CE AD =. 证明:∵AB =AC ,DB =DE , ∴.AB ACDB DE= ∵∠BAC =∠BDE , ∴△ABC ∽△DBE . ∴,.AB BCABC DBE DB BE=∠=∠ ∴,AB DBBC BE =.ABD ABC DBC DBE DBC CBE ∠=∠-∠=∠-∠=∠ ∴△ABD ∽△CBE .…………………………………………………………5分∴ .AD BD CE BE =过点D 作DF ⊥BE 于点F .∴1α.22BDF BDE ∠=∠=∴α22sin 2sin .2BE BF BD BDF BD ==⋅∠=⋅ …………………………6分 ∴1.α2sin2AD CE=∴α2sin 2CE AD =.…………………………………………………………7分25.解:(1)在Rt △AOB 中,OA = 3,AB = 5,由勾股定理得4OB =.F图3EDCAB∴A (3,0),B (0,4). 设直线AB 的解析式为y kx b +=.∴30,4.k b b +=⎧⎨=⎩ 解得 4,34.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为443y x +=-.…………1分 (2)如图,过点Q 作QF ⊥AO 于点F. ∵ AQ = OP= t ,∴3AP t =-. 由△AQF ∽△ABO ,得QF AQBO AB=. ∴45QF t =.∴45QF t =. …………2分 ∴14(3)25S t t =-⋅,∴22655S t t =-+.………………………3分(3)四边形QBED 能成为直角梯形. ①如图,当DE ∥QB 时, ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP=90°. 由△APQ?∽△ABO ,得AQ APAO AB=. ∴335t t-=. 解得98t =. ……………………………5分 ②如图,当PQ ∥BO 时, ∵DE ⊥PQ ,∴DE ⊥BO ,四边形QBED 是直角梯形.此时∠APQ =90°.由△AQP?∽△ABO ,得.AQ APAB AO= 即353t t-=. y xEDQ POB AF A BOPQ DExy ABOP QDE xy解得158t =. ………………………6分 (4)52t =或4514t =. ………………………8分。

北京市门头沟区初三二模数学试题及答案

北京市门头沟区初三二模数学试题及答案

门头沟区初三年级第二次统一练习数 学 试 卷考生须知1.本试卷共6页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡的密封线内准确填写学校、班级和姓名。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.2的倒数是A .12 B .2 C .12- D .2- 2.一种细胞的直径约为0.00000156米.将0.00000156用科学记数法表示应为 A .61.5610⨯ B .61.5610-⨯ C .51.5610-⨯ D .415.610-⨯ 3.两圆的半径分别为5cm 和2cm ,圆心距为7cm ,则这两圆的位置关系是 A .内切 B .外切 C .外离 D .内含 4.右图所示的是一个几何体的三视图,则这个几何体是 A .长方体 B .正方体 C .圆柱体 D .三棱柱5.已知一组数据1,4,5,2,3,则这组数据的极差和方差分别是A .4,2B .4,3C .2,3D .1,56.若圆锥侧面展开图的扇形面积为65πcm 2,扇形的弧长为10πcm ,则圆锥的母线长是A .5cmB .10cmC .12cmD .13cm7.桌面上有三张背面相同的卡片,正面分别写有数字1、2、3.先将卡片背面朝上洗匀, 然后从中同时抽取两张,则抽到的两张卡片上的数字之积为奇数的概率是A .16 B .23 C . 13 D . 128.如图,正方形ABCD 的边长为2,动点P 从点C 出发,在正方形的边上沿着C B A →→的方向运动(点P 与 A 不重合). 设点P 的运动路程为x , 则下列图象中,表示△ADP 的面积y 与x 的函数关系的是二、填空题(本题共16分,每小题4分) 9.在函数2y x =-x 的取值范围是 .10.如图,在△ABC 中,DE ∥BC ,AD =3,BD =6,AE =4,则EC 的长是 . 11.已知一个多边形的内角和是外角和的2倍,则这个多边形的边数是4 3 2 1 0 1 2 3 x yC 43 2 1 0 12 3 xyB43 2 1 0 12 3 x y AB ACP主视图 左视图43 2 1 012 3 xyD EDCBA12.如图,在矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 的内部, 延长BG 交DC 于点F .若DC =2DF ,则AD AB = ;若DC=nDF ,则AD AB= (用含n 的式子表示).三、解答题(本题共30分,每小题5分)1310184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭.14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩并求它的正整数解.15.已知:如图,DB ∥AC ,且12DB AC =,E 是AC 的中点. 求证:BC=DE . AECB DGE DCBAF16.已知20y x -=,求y x y y x y x y xy x x-++-⋅+-2222222的值.17.列方程或方程组解应用题:为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?18.已知二次函数m x x y ++=22的图象与x 轴有且只有一个公共点. (1)求m 的值;(2)若此二次函数图象的顶点为A ,与y 轴的交点为B ,求A 、B 两点的坐标;(3)若1(,)P n y 、2(2,)Q y 是二次函数图象上的两点,且12y y >,请你直接写出n 的取值范围.四、解答题(本题共20分,每小题5分)19.如图,在梯形ABCD 中,AD //BC ,BD ⊥CD ,∠C =60°, AD 3BC =43AB 的长.ABCD20.已知:如图,O ⊙的直径AB 与弦CD 相交于点E ,BC BD =,O ⊙的切线BF 与弦AD 的延长线相交于点F .(1)求证:CD BF ∥;(2)连结BC ,若O ⊙的半径为4,3cos 4BCD ∠=, 求线段AD 、CD 的长.21.某校初三年级的学生积极参加“博爱在京城”的募捐活动. 小明把本年级学生400人的捐款情况进行了统计,并绘制成了如下不完整的频数分布表和频数分布直方图.请你根据以上图表提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图; (2)捐款金额的中位数落在哪个组内?(3)若该校共有学生1600人,请你估计该校学生捐款金额不低于40元的有多少人? 分组/元 频数 频率 10≤x <20 40 0.10 20≤x <30 80 0.20 30≤x <40 0.40 40≤x <50 100 50≤x <60 20 0.05 合 计4001.00AD FBO E102030405060频数图1ABD 22.如图1,有一张菱形纸片ABCD ,AC =8,BD =6.(1)若沿着AC 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图2中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的面积;(2)若沿着BD 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图3中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的周长;(3)沿着一条直线剪开,把它分成两部分,把剪开的两部分拼成与上述两种都不全等的平行四边形,请在图4中用实线画出你所拼成的平行四边形. (注:上述所画的平行四边形都不能与原菱形全等)五、解答题(本题共22分,第23、24题各7分,第25题8分)23.已知抛物线y =ax 2+bx -4a 经过A (-1,0)、C (0,4)两点,与x 轴交于另一点B . (1)求抛物线的解析式;(2)若点D (m ,m +1)在第一象限的抛物线上, 求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连结BD ,若点P 为抛物线上一点,且∠DBP =45°,求点P 的坐标. 周长为D C BA图3D CBA图4图2AB CD面积为11yxO24.已知在△ABC和△DBE中,AB=AC,DB=DE,且∠BAC=∠BDE.(1)如图1,若∠BAC=∠BDE=60°,则线段CE与AD 之间的数量关系是;(2)如图2,若∠BAC=∠BDE=120°,且点D在线段AB上,则线段CE与AD之间的数量关系是__________________;(3)如图3,若∠BAC=∠BDE=α,请你探究线段CE与AD之间的数量关系(用含α的式子表示),并证明你的结论.ADB图1BACDE图3EBACD图225.如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A , 与y 轴交于点B , 且OA = 3,AB = 5.点P 从点O 出发沿OA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AO 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BO -OP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)求直线AB 的解析式;(2)在点P 从O 向A 运动的过程中,求△APQ 的面积S 与t 之间的函数关系式(不必写出t 的取值 范围);(3)在点E 从B 向O 运动的过程中,四边形QBED能否成为直角梯形?若能,请求出t 的值;若不 能,请说明理由;(4)当DE 经过点O 时,请你直接写出t 的值. y xEDQPOBAC门头沟区初三年级第二次统一练习数学试卷评分参考一、选择题(本题共32分,每小题4分) 题号 1 2 3 45 6 7 8 答案A B B C A DCD二、填空题(本题共16分,每小题4分)题号 9 10 11 12答案x ≥28六22n n三、解答题(本题共30分,每小题5分) 13.计算:10184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭.解:10184sin 45(3)4-⎛⎫-︒+-π+ ⎪⎝⎭2224142=-⨯++ 4分5=. 5分14.解不等式组245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩并求它的正整数解.解: 245(2),3(1)3,x x x x +≤+⎧⎨-<+⎩ 由①,得x ≥-2. 1分由②,得x <3. 2分不等式组的解集在数轴上表示如下:3 所以原不等式组的解集为-2≤x <3. 4分 所以原不等式组的正整数解为1,2. 5分15. 证明:∵E 是AC 的中点, ∴EC=21AC .…………………………………………………………………… 1分 ∵12DB AC =,∴DB = EC . ……………………………………2分 ∵DB ∥AC ,∴DB ∥EC .……………………………………… 3分 ∴四边形DBCE 是平行四边形. ……………… 4分 ∴BC=DE . ……………………………………… 5分16.解:y x y y x y x yxy x x-++-⋅+-2222222 =yx y y x y x y x y x x -+++-⋅-2))(()(222分① ②· AECBD= 22x yx y x y +-- = 22x y x y+-. 3分当20y x -=时,x y 2=. 4分原式=242x xx x+-=-6. 5分17.解:设甲工厂每天加工x 件新产品,则乙工厂每天加工1.5x 件新产品. ………………1分 依题意,得1200120010.1.5x x-=…………………………………………………………3分 解得x=40. …………………………………………………………………………4分经检验,40x =是所列方程的解,且符合实际问题的意义. 当x=40时,1.5x=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件. ………………………………5分 18. 解:(1)根据题意,得△=2240m -=.解得1m =. ……………………………………………………………………1分(2)当1m =时,221y x x =++.二次函数图象的顶点A 的坐标为(-1,0), ………………………………2分 与y 轴的交点B 的坐标为(0,1). …………………………………………3分(3)n 的取值范围是2n >或4n <-. ………………………………………………5分 四、解答题(本题共20分,每小题5分)19. 解:如图,分别过点A 、D 作AE ⊥BC 于点E ,DF ⊥BC 于点F . ……………………1分 ∴ AE // DF . 又∵ AD // BC ,∴ 四边形AEFD 是矩形.∴ 3 …………………………………………………………………… 2分 ∵ BD ⊥CD ,∠C=60°,BC=43∴ DC=BC·cos60°=143232=. ∴ CF=DC·cos60°=12332=. ∴ AE=DF= DC·sin60°=3233=. …………………………………………… 3分∴23BE BC EF CF =--= ………………………………………………………… 4分在Rt △ABE 中,∠AEB=90°,∴ 22223(23)21AE BE ++. ………………………………………… 5分 20.解:(1)由直径AB 平分CD , 可证AB CD ⊥.1分BF 与O ⊙相切,AB 是O ⊙的直径,AB BF ∴⊥. 2分 CD BF ∴∥.3分(2)连结BD.AB 是O ⊙的直径, 90ADB ∴∠=°. 在Rt ADB △中,3cos cos A C ==,428AB =⨯=, FE DC B A AD FBO E3cos864AD AB A∴=⋅=⨯=.4分在Rt AED△中,39cos642AE AD A=⋅=⨯=,∴DE=2222937622AD AE⎛⎫-=-=⎪⎝⎭.由直径AB平分CD,可求237CD DE==.5分21.解:(1)补全频数分布表和频数分布直方图. …………………………3分(每个1分)(2)捐款金额的中位数落在30≤x<40这个组内.………………………………4分(3)该校学生捐款数额不低于40元的有100201600480400+⨯=(人).……………5分22.解:(1)画出图形、面积为24.………………………………………………2分(每个1分)(2)画出图形、周长为22.……………………………………………4分(每个1分)(3)画出图形(答案不唯一).……………………………………………5分五、解答题(本题共22分,第23、24题各7分,第25题8分)23.解:(1)抛物线24y ax bx a=+-经过(10)A-,,(04)C,两点,404 4.a b aa--=⎧∴⎨-=⎩,解得13.ab=-⎧⎨=⎩,………………………………………………………………………1分∴抛物线的解析式为234y x x=-++.………………………………………2分(2)点(1)D m m+,在抛物线上,2134m m m∴+=-++.∴2230m m--=. 1m∴=-或3m=.点D在第一象限,1m∴=-舍去.∴点D的坐标为(34),.…………………………………………………3分抛物线234y x x=-++与x轴的另一交点B的坐标为(4),0,(04)C,,∴.45OC OB CBO BCO=∴∠=∠=°.设点D关于直线BC的对称点为点E.CD AB∥,45ECB CBO DCB∴∠=∠=∠=°.∴E点在y轴上,且3CE CD==.∴OE=1.(01)E∴,.………………………………………………………………4分即点D关于直线BC对称的点的坐标为(0,1).(3)过点D作BD的垂线交直线PB于点Q,过点D作DH x⊥轴于H,过点Q作QG DH⊥于G.∴90QDB QGD DHB∠=∠=∠=°..45PBD∠=°,45BQD∴∠=°..QD BD∴=QDG BDH∠+∠90=°,90DQG QDG∠+∠=°,DQG BDH∴∠=∠.QDG DBH∴△≌△. 4QG DH∴==,1DG BH==.(13)Q∴-,.………………………………………………………………………5分yOA BCDE设直线BP 的解析式为y kx b +=.由点(13)Q -,,点(40)B ,,求得直线BP 的解析式为31255y x =-+.…………6分 解方程组234,31255y x x y x ⎧=-++⎪⎨=-+⎪⎩得112,566;25x y ⎧=-⎪⎪⎨⎪=⎪⎩2240.x y =⎧⎨=⎩,(舍)∴点P 的坐标为266525⎛⎫- ⎪⎝⎭,. ……………………………………………………7分24.解:(1)CE= AD . …………………………………………………………………………2分 (2)3. ……………………………………………………………………4分(3)CE 与AD 之间的数量关系是 α2sin2CE AD =. 证明:∵AB =AC ,DB =DE , ∴.AB ACDB DE= ∵∠BAC =∠BDE , ∴△ABC ∽△DBE . ∴,.AB BCABC DBE DB BE =∠=∠ ∴,AB DBBC BE =.ABD ABC DBC DBE DBC CBE ∠=∠-∠=∠-∠=∠ ∴△ABD ∽△CBE .…………………………………………………………5分∴ .AD BDCE BE = 过点D 作DF ⊥BE 于点F . ∴1α.22BDF BDE ∠=∠=∴α22sin 2sin .2BE BF BD BDF BD ==⋅∠=⋅ …………………………6分∴ 1.α2sin2AD CE= ∴α2sin 2CE AD =.…………………………………………………………7分25.解:(1)在Rt △AOB 中,OA = 3,AB = 5,由勾股定理得224OB AB OA =-. ∴A (3,0),B (0,4). 设直线AB 的解析式为y kx b +=.∴30,4.k b b +=⎧⎨=⎩ 解得 4,34.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为443y x +=-.…………1分 (2)如图,过点Q 作QF ⊥AO 于点F. ∵ AQ = OP= t ,∴3AP t =-.由△AQF ∽△ABO ,得QF AQBO AB =. F图3EDCA BF ABO P Q D E xyQ O A B C DPG H y∴45QF t =.∴45QF t =. …………2分 ∴14(3)25S t t =-⋅,∴22655S t t =-+.………………………3分(3)四边形QBED 能成为直角梯形.①如图,当DE ∥QB 时, ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP=90°.由△APQ ∽△ABO ,得AQ APAO AB=. ∴335t t -=. 解得98t =. ……………………………5分 ②如图,当PQ ∥BO 时, ∵DE ⊥PQ ,∴DE ⊥BO ,四边形QBED 是直角梯形. 此时∠APQ =90°.由△AQP ∽△ABO ,得.AQ APAB AO = 即353t t-=. 解得158t =. ………………………6分(4)52t =或4514t =. ………………………8分y xEDQ POB AABOP QDE xy。

2019年北京市门头沟区初三数学二模试题及详细解析

2019年北京市门头沟区初三数学二模试题及详细解析

2019年北京市门头沟区九年级第二学期综合练习(二)数学试卷及详细解析2019年5月一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1. 2013年12月2日1时30分,中国于西昌卫星发射中心成功将“嫦娥三号”探测器送入轨道.2013年12月15日4时35分,“嫦娥三号”探测器与“玉兔号”月球车分离,“玉兔号”月球车顺利驶抵月球表面,留下了中国在月球上的第一个足迹.“玉兔号”月球车一共在月球上工作了972天,约23 000小时.将23 000用科学记数法表示为 A .2.3 × 103B .2.3 × 104C .23 × 103D .0.23 × 1052.在下面四个几何体中,俯视图是矩形的是A B C D3.在下列运算中,正确的是 A .235a a a ⋅=B .()325a a =C .623a a a ÷=D .55102a a a +=4.如果23a b -=222a b ab a a b ⎛⎫+-⋅ ⎪-⎝⎭的值为 A 3 B .23 C .33 D .435.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七 巧板拼成的正方形,如果在此正方形中随机取一点, 那么此点取自黑色部分的概率为 A .932B .516C .38D .7166.已知点A (1,m )与点B (3,n )都在反比例函数ky x=(0k >)的图象上,那么m 与n 的关系是 A .m n <B .m n >C .m = nD .不能确定OABCDFEDCBA7.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB = 30°,OD = 2,那么DC 的长等于 A .2 B .4 C 3D .238.团体购买某公园门票,票价如下表:购票人数 1 ~ 50 51 ~ 100 100以上 门票价格13元 / 人11元 / 人9元 / 人某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1 290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为 A .20B .35C .30D .40二、填空题(本题共16分,每小题2分) 9. 函数131y x =-的自变量x 的取值范围是 .10.写出一个比2大且比3小的无理数: .11.如图,在矩形ABCD 中,E 是CD 的延长线上一点,连接BE 交AD 于点F .如果AB = 4,BC = 6,DE = 3,那么AF 的长为 .12.用一组a ,b ,c (0c ≠)的值说明命题“如果a b <,那么a bc c<”是错误的,这组值可以是a = ,b = ,c = .13.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个 更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x 人,小和尚y 人,可列方程组为 .14.下图是利用平面直角坐标系画出的老北京一些地点的分别示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(2-,3-),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为 .北第14题图 第15题图15.如图,在平面直角坐标系xOy 中,△AOB 可以看作是△OCD 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD 得到△AOB 的过程:. 16.当三角形中一个内角α是另一个内角β的一半时,我们称该三角形为“特征三角形”,其中α称为“特征角”三、解答题 (本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:()054sin 451π-+︒+-.18.解不等式1211232x x --≤,并把它的解集在数轴上表示出来.–1–2–3–4123419.已知:关于x 的一元二次方程2420x x m -+=有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.ba20.下面是小明同学设计的“已知底边及底边上的高作等腰三角形”的尺规作图的过程.已知:如图1,线段a 和线段b .求作:△ABC ,使得AB = AC ,BC = a ,BC 边上的高为b . 作法:如图2,① 作射线BM ,并在射线BM 上截取BC = a ; ② 作线段BC 的垂直平分线PQ ,PQ 交BC 于D ; ③ 以D 为圆心,b 为半径作圆,交PQ 于A ; ④ 连接AB 和AC .则△ABC 就是所求作的图形. 根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明:证明:由作图可知BC = a ,AD = b .∵ PQ 为线段BC 的垂直平分线,点A 在PQ 上,∴ AB = AC ( )(填依据). 又∵ AD 在线段BC 的垂直平分线PQ 上, ∴ AD ⊥BC .∴ AD 为BC 边上的高,且AD = b .21.如图,在□ABCD 中,点E 是BC 边的一点,将边AD 延长至点F ,使得AFC DEC ∠=∠,连接CF ,DE .(1)求证:四边形DECF 是平行四边形; (2)如果AB =13,DF =14,12tan 5DCB ∠=,求CF 的长. FEDCBA图1图222.如图,在平面直角坐标系xOy 中,一次函数y x b =-+的图象与反比例函数4y x=-的图象交于点A (4-,n )和B . (1)求b 的值和点B 的坐标;(2)如果P 是x 轴上一点,且AP = AB ,直接写出点P 的坐标.23.如图,点C 在⊙O 上,AB 为直径,BD 与过点C 的切线垂直于D ,BD 与⊙O 交于点E .(1)求证:BC 平分∠DBA ; (2)如果1cos 2ABD ∠=,OA = 2,求DE 的长.B24.如图,E 为半圆O 直径AB 上一动点,C 为半圆上一定点,连接AC 和BC ,AD 平分∠CAB交BC 于点D ,连接CE 和DE .如果AB = 6 cm ,AC = 2.5 cm ,设A ,E 两点间的距离为x cm ,C ,E 两点间的距离为y 1 cm ,D ,E 两点间的距离为y 2 cm .EO小明根据学习函数经验,分别对函数y 1和y 2随自变量x 变化而变化的规律进行了探究. 下面是小明的探究过程,请将它补充完整:(1)按下表中自变量x 值进行取点、画图、测量,得到了y 1和y 2与x 几组对应值:问题:上表中的m = cm ;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 2)和(x ,y 1),并画出函数y 1和y 2的图象;(3)结合函数的图象,解决问题:当△ACE 为等腰三角形时,AE 的长度约为 cm(结果精确到0.01).25.2019年1月有300名教师参加了“新技术支持未来教育”培训活动,会议就“面向未来的教育”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析.下面给出了部分信息:a. 关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24):频数(发言人数)Array次数 / 次b. 关于“家庭教育”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11c.“面向未来的教育”和“家庭教育”这两问题发言次数的平均数、众数、中位数如下:根据以上信息,回答下列问题:(1)表中m的值为;(2)在此次采访中,参会教师更感兴趣的问题是(填“面向未来的教育”或“家庭教育”),理由是;(3)假设所有参会教师都接受调查,估计在“家庭教育”这个问题上发言次数超过8次的参会教师有位.26.在平面直角坐标系xOy 中,抛物线223y ax ax a =--(0a ¹)顶点为P ,且该抛物线与x轴交于A ,B 两点(点A 在点B 的左侧).我们规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线223y ax ax a =--顶点P 的坐标(用含a 的代数式表示); (2)如果抛物线223y ax ax a =--经过(1, 3).① 求a 的值;② 在①的条件下,直接写出“G 区域”内整点的个数.(3)如果抛物线223y ax ax a =--在“G 区域”内有4个整点,直接写出a 的取值范围.27.如图,在等边三角形ABC 中,点D 为BC 边上的一点,点D 关于直线AB 的对称点为点E ,连接AD 、DE ,在AD 上取点F ,使得∠EFD = 60°,射线EF 与AC 交于点G . (1)设∠BAD = α,求∠AGE 的度数(用含α的代数式表示); (2)用等式表示线段CG 与BD 之间的数量关系,并证明.AB CD EFG28.对于平面直角坐标系xOy 中的动点P 和图形N ,给出如下定义:如果Q 为图形N 上一个动点,P ,Q 两点间距离的最大值为d max ,P ,Q 两点间距离的最小值为d min ,我们把d max + d min 的值叫点P 和图形N 间的“和距离”,记作(),d P N 图形. (1)如图,正方形ABCD 的中心为点O ,A (3,3).① 点O 到线段AB 的“和距离”(),d O AB =线段 ;② 设该正方形与y 轴交于点E 和F ,点P 在线段EF 上,(),7d P ABCD =正方形, 求点P 的坐标.x图1(2)如图2,在(1)的条件下,过C ,D 两点作射线CD ,连接AC ,点M 是射线CD 上的一个动点,如果(),6d M AC <+线段M 点横坐标t 取值范围.x图22019年北京市门头沟区九年级第二第二学期综合练习(二)参考答案及评分标准2019年5月三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:()054sin45 1.π-+︒+-141=+ (3)分2=+…………………………………………………………………………………………5分18.(本小题满分5分)解:1211232x x--≤3643x x≤--……………………………………………………………………………………1分3463x x≤--……………………………………………………………………………………2分3x≤-…………………………………………………………………………………………3分3.x≥-………………………………………………………………………………………4分把它的解集在数轴上表示为:–1–2–3–41234……………………………………………5分19.(本小题满分5分)解:(1)由题意得2(4)4120m>∆=-+⨯⨯,………………………………………………………1分H FEDCB A解得2.m < ………………………………………………………………………………… 2分(2)∵ m 为非负整数,∴0,1.m = ………………………………………………………………………………… 3分当0m =时,原方程为240x x -=, 解得 10x =,2 4.x =当1m =时,原方程为2420x x -+=, 解得此方程的根不是整数, ∴ 1m =应舍去.∴0.m =……………………………………………………………………………………… 5分 20.(本小题满分5分) 解:(1)尺规作图正确;………………………………………………………………………………… 3分 (2)填空正确. (5)分21.(本小题满分5分)(1)证明:∵ 四边形ABCD 是平行四边形, ∴ A D ∥B C .……………………………………………………………………………… 1分∴ ∠ADE =∠DEC . ∵ ∠AFC =∠DEC , ∴ ∠AFC =∠ADE , ∴ DE ∥FC .∴ 四边形D E C F 是平行四边形.………………………………………………………… 2分 (2)解:如图,过点D 作DH ⊥BC 于点H , ……………………………………………………… 3分∵ 四边形ABCD 是平行四边形, ∴ AB=CD =13∵ 12tan 5BCD ∠=,CD =13, ∴ DH =12,CH =5.………………… 4分 ∵ DF =14, ∴ CE =14. ∴ EH =9.∴ DE.∴CF=DE =15.………………………………………………………………………………… 5分 22.(本小题满分5分)BB 解:(1)把A (-4,n )代入4y x=-中,得1n =,………………………………………………… 1分把A (-4,1)代入y x b =-+中,得3b =- ……………………………………………2分解方程组3,4.y x y x =--⎧⎪⎨=-⎪⎩得4,1.x y =-⎧⎨=⎩ , 1,4.x y =⎧⎨=-⎩ ∴ 点B 的坐标是(1,4)- ………………………………………………………………… 3分(2)点P 的是坐标(3,0)或(11,0)-. ………………………………………………………… 5分23.(本小题满分6分) (1)证明:连接OC ,∵ DC 是⊙O 的切线, ∴ DC ⊥OC .…………………… 1分 又∵ DC ⊥BD , ∴ OC ∥BD .∴ ∠1=∠3. ……………………………………………………………………………… 2分∵ OC =OB , ∴ ∠1=∠2. ∴ ∠2=∠3.∴ B C 平分∠D B A ;……………………………………………………………………… 3分 (2)解:连接AE 和AC ,∵ AB 是⊙O 的直径,DC ⊥BD ,∴ ∠ACB =∠AEB =∠CDB =90°. ∵ 1cos 2ABD ∠=,OA = 2,BC 平分∠DBA , ∴ ∠ABD =60°,∠2=∠3=30°,AB =4. 在Rt △ACB 中,∠ACB =90°,AB =4,∠2=30°,∴ BC =在Rt △CDB 中,∠CDB =90°,BC =,∠3=30°, ∴ BD =3.在Rt △AEB 中,∠AEB =90°,AB =4,∠ABE =60°, ∴ BE =2.∴DE =1. ……………………………………………………………………………………… 6分24.(本小题满分6分)解:(1)3.00; (1)分(2)略;…………………………………………………………………………………………… 3分(3)2.5,2.,3.00. …………………………………………………………………………… 6分25.(本小题满分6分)解:(1)11; (2)分 (2)略;…………………………………………………………………………………………… 4分(3)200 . ………………………………………………………………………………………… 6分26.(本小题满分6分)解:(1)∵()222314y ax ax a a x a =--=--,……………………………………………………… 1分∴ 该抛物线的顶点为()1,4.a - ……………………………………………………………… 2分(2)① ∵ 抛物线223y ax ax a =--经过(1, 3),∴323a a a =--,解得3.4a =- (3)分 ②6个. ……………………………………………………………………………………… 4分(3)2132a --≤<,12.23a <≤ …………………………………………………………………… 6分27.(本小题满分7分)解:(1)∵ △ABC 是等边三角形,∴∠BAC=60°. ……………………………………………………………………………… 1分∵ ∠BAD = α, ∴∠D A C=∠B A C-∠B A D=60°-α. (2)分又∵ ∠AFG = ∠EFD = 60°,∴ ∠A G E =180°-∠D A C -∠A F G = 60°+MHA B CD E F Gxα. ……………………………………………… 3分 (2)线段C G 与B D 之间的数量关系是C G=2B D . (4)分证明如下:在AC 上截取CH =BD ,交AC 于H ,连接BE ,BH ,AE , BH 交AD 于M . ∵ D ,E 关于AB 对称,∴ ∠BAE =∠BAD =α,∠ABE =∠ABC =60°,∴ BD = BE ,AD = AE .∴ ∠EAC =∠BAE +∠BAC =60°+α. ∴ ∠EAC =∠AGE . ∴ EA = EG .∵ 等边△ABC 中,AB = BC ,∠ABD =∠C = 60°. ∴ △A B D ≌△B CH (S A S ). (5)分∴ AD =BH ,∠HBC = ∠DAB = α. ∴ EG = BH .∴ ∠ABM =∠ABC -∠HBC = 60°-α. ∴ ∠BMD =∠ABM +∠BAD = 60°. ∴ ∠BMD =∠EFD = 60°. ∴ EG // BH . ∴ 四边形E G H B 是平行四边形. (6)分∴ BE = GH .∴ BE = GH = CH = BD . ∴ C G = G H + C H= 2B D . ……………………………………………………… 7分28.(本小题满分7分)解:(1)①3② 如图,设P (0,t ). ∵ 点P 在线段EF 上, ∴ -3≤t ≤3 .当0≤t ≤3时,由题意可知d max =PC ,d min =PE . ∴ PE = 3-t ,PF = t +3,CF =3. ∵(),7d P ABCD =正方形, ∴ PC + PE =7. ∴ PC = 4+ t .在Rt △PCF 中,由勾股定理得 ()()222433t t +=++, 解得1.t =………………………………………………………………………………… 4分∴ P (0,1).当0>t≥-3时,由对称性可知P(0,-1).综上,P的坐标为(0,1)和(0,-1). ………………………………………………5分(2)-<<…………………………………………………………………………………7分3 3.t说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

北京市门头沟区2019-2020学年中考数学二模试卷含解析

北京市门头沟区2019-2020学年中考数学二模试卷含解析

北京市门头沟区2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩()m 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数是()A.1.65m B.1.675m C.1.70m D.1.75m2.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)3.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )A.-5<t≤4B.3<t≤4C.-5<t<3 D.t>-54.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x -1 0 1 3y135- 32953下列结论:(1)abc<0(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为()A.4个B.3个C.2个D.1个5.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )A .18B .16C .14D .126.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .77.下列计算正确的是( ) A .a+a=2a B .b 3•b 3=2b 3 C .a 3÷a=a 3 D .(a 5)2=a 78.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .9.计算22x x x +-的结果为( ) A .1 B .x C .1x D .2x x+ 10.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。

2019年北京市门头沟中考模拟初三二模数学试卷含答案

2019年北京市门头沟中考模拟初三二模数学试卷含答案

门头沟区2019年初三年级综合练习(二)数学试卷2019年5月考生须知1.本试卷共10页,三道大题,28个小题,满分100分.考试时间120分钟;2 .在试卷和答题卡上认真填写学校和姓名,并将条形码粘贴在答题卡相应位置处;3 .试题答案一律填涂或书写在答题卡上,在试卷上作答无效;4 .在答题卡上,选择题、作图题用2B铅笔作答,其它试题用黑色字迹签字笔作答;5.考试结束,将试卷、答题卡和草稿纸一并交回.、选择题(本题共16分,每小题2 分)第1- 8题均有四个选项,符合题意的选项只有一个.法表示为5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板",它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为2.3.4.3A. 2.3 X 10 4B. 2.3 X 10C. 23 X1035D. 0.23 X 10在下面四个几何体中,俯视图是矩形的是B D在下列运算中,正确的是A. a2 a3B. 6 2 3C. a a aD. 5 5 10a a 2a如果a b 2 3,那么代数式a2b22a汽的值为A. 3B. 2.3C. 3.3D. 4.3A.932B. §167D.—161. 2013年12月2日1时30分,中国于西昌卫星发射中心成功将“嫦娥三号”探测器送入轨道. 2013 年12 月15日4时35分,“嫦娥三号”探测器与“玉兔号”月球车分离, “玉兔号”月球车顺利驶抵月球表面,留下了中国在月球上的第一个足迹.“玉兔号”月球车一共在月球上工作了972 天,约23 000小时.将23 000用科学记数y 轴的正方向,如果表示右安门的点的坐标为( 2 , 3),表示朝阳门的点的坐标为(3, 2),那么表示西便 k6 •已知点A (1, m 与点B ( 3, n )都在反比例函数 y —( k >0 )的图象上,那么 m 与n 的关系是 xA . m < nB. m >nC.m = nD.不能确定7.如图,线段 AB 是O O 的直径,弦 CD 丄AB / CAB = 30OD = 2,那么DC 的长等于A . 2 B. 4C. 3D. 2.3 8.团体购买某公园门票,票价如下表: 购票人数 1 ~ 50 51 ~ 100 100以上 门票价格13元/人11元/人9元/人某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游 览公园,则共需支付门票费为 1 290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为A . 20B. 35C. 30D. 4011.如图,在矩形 ABCDK E 是CD 的延长线上一点,连接BE 交AD 于点F .如果AB = 4 , BC = 6 , DE = 3,那么二、填空题(本题共16分,每小题2分)9.函数y - 的自变量x 的取值范围是 3x 1 10.写出一个比2大且比3小的无理数:ACAF 的长为 12.用一组a , b, c ( c 0)的值说明命题“如果a < b ,那么a < - ”是错误的,这组值可以是a = c13 .《算法统宗》是中国古代数学名著,作者是明代著名数学家 程大位.在其中有这样的记载“一百馒头一百僧,大僧三个 更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x 人,小和尚y 人,可列方程组为 14 .下图是利用平面直角坐标系画出的老北京一些地点的分别示意图,这个坐标系分别以正东和正北方向为 x 轴和DBy轴的正方向,如果表示右安门的点的坐标为( 2 , 3),表示朝阳门的点的坐标为(3, 2),那么表示西便第14题图 第15题图15. 如图,在平面直角坐标系 xOy 中,△ A0閉以看作是厶OCD§过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ OCD#到厶AOB 的过程: __________________ .16. 当三角形中一个内角 a 是另一个内角 卩的一半时,我们称该三角形为"特征三角形”,其中a 称为"特征角”.如果一个“特征三角形”为直角三角形,那么“特征角”度数为____ .三、解答题 (本题共68分,第17〜22题每小题5分,第23〜26题每小题6分,第27〜28题每小题7分)解答应写出文字说明、证明过程或演算步骤1 2 118.解不等式2x 1< 3x 2,并把它的解集在数轴上表示出来.19•已知:关于x 的一元二次方程x 2 4x 2m 0有两个不相等的实数根.(1) 求m 的取值范围; (2)如果m 为非负整数,且该方程的根都是整数,求 m 的值.20.下面是小明同学设计的“已知底边及底边上的高作等腰三角形”的尺规作图的过程. 已知:如图1,线段a 和线段b .a求作:△ ABC 使得AB = AC , BC = a, BC 边上的高为b . 作法:如图2,① 作射线BM 并在射线BM 上截取BC = a ;门的点的坐标为rrrriiinnn f”地安门安•天r l r T 1卜I --- I - - ► -4 一 ■» - 4 - ---- 1---- 1 -----1宣武门 正阳门 崇文门I-——|__卜=4 一半一 4一斗一」一」 -------------- 1 I I I 1 I H I I I I 二1=丄二* 3 一3三」 右安门 永定门」一!_■、■丄一丄■」■」■」■」■」I I I I I I I I I Ir ■'"T""T " 3上--------- 1 --------- IIi1 1i1 2/ A 1L =— _十= .十 二=1 1I 11 D1 1卜.-+ - --1 --1 17/11v11/[11 C BO1-3 -2-11i1 -11y17.计算:5 4si n451 .-4-3 -2 -10 1② 作线段BC 的垂直平分线 PQ PQ 交BC 于D; ③ 以D 为圆心,b 为半径作圆,交PQ 于A ; ④ 连接AB 和AC贝仏ABC 就是所求作的图形.根据上述作图过程,回答问题:(1) 用直尺和圆规,补全图 2中的图形; (2) 完成下面的证明:证明:由作图可知 BC = a , AD = b .••• PQ 为线段BC 的垂直平分线,点 A 在PQ±,••• AB = AC( ____________________________________ )(填依据)又••• AD 在线段BC 的垂直平分线 PQ 上,ADL BCAD 为BC 边上的高,且 AD = b .21•如图,在口ABCD^,点E 是BC 边的一点,将边 AD 延长至点F ,使得 AFC DEC ,连接CF, DE(1) 求证:四边形 DECf 是平行四边形;12(2) 如果 AB=13, DF=14, tan DCB 12,求 CF 的长.5422.如图,在平面直角坐标系xOy 中,一次函数y x b 的图象与反比例函数 y -的图象交于点 A ( 4 , n )x和B.(1) 求b 的值和点B 的坐标;(2) 如果P 是x 轴上一点,且 AP = AB 直接写出点 P 的坐标.x23.如图,点 C 在O O 上,AB 为直径,BD 与过点C 的切线垂直于 D, BD 与O O 交于点E.(1) 求证:BC 平分/ DBA(2) 如果 cos ABD -,OA = 2,求 DE 的长.224•如图,E 为半圆O 直径AB 上一动点,C 为半圆上一定点,连接 AC 和 BC AD 平分/ CAB 交 BC 于点D,连接CE和DE 如果AB = 6 cm , AC = 2.5 cm ,设A , E 两点间的距离为 x cm , C, E 两点间的距离为 y - cm, D, E 两点间的距离为y 2 cm.yB小明根据学习函数经验,分别对函数 y i 和y 2随自变量x 变化而变化的规律进行了探究.F 面是小明的探究过程,请将它补充完整:(1)按下表中自变量 x 值进行取点、画图、测量,得到了y i 和y 2与x 几组对应值:x /cm1 2 34 5 6 y 〃cm 2.502.27 2.47 m3.734.565.46 y 2/cm2.97 2.201.681.692.192.973.85问题:上表中的 m =cm ;(2)在同一平面直角坐标系 xOy 中,描出补全后的表中各组数值所对应的点( x ,y 2)和(x ,y i ),并画出函数y i 和y 2的图象;(3)结合函数的图象,解决问题:当厶 ACE 为等腰三角形时,AE 的长度约为 _____ cm (结果精确到0.01 ).25. 2019年1月有300名教师参加了“新技术支持未来教育”培训活动, 会议就“面向未来的教育” 和“家庭教育”这两个问题随机调查了 60位教师,并对数据进行了整理、描述和分析•下面给出了部分信息:a.关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组:O w x v 4,4w x v 8, 8w x v 12, 12w x v 16, 16w x v 20, 20 w x < 24):CAO5频数(发言人数)b. 关于"家庭教育”问题发言次数在8w x v 12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11c. “面向未来的教育”和"家庭教育”这两问题发言次数的平均数、众数、中位数如下:根据以上信息,回答下列问题:(1)表中m的值为_______ ;(2)在此次采访中,参会教师更感兴趣的问题是_______________ (填“面向未来的教育”或“家庭教育”),理由是_________________________________________________________ ;(3)假设所有参会教师都接受调查,___________________________________________________________________ 估计在“家庭教育”这个问题上发言次数超过8次的参会教师有 _____________________________________________________ 位.26. 在平面直角坐标系xOy中,抛物线y ax2 2ax 3a (a1 0 )顶点为P,且该抛物线与x轴交于A, B两点(点A在点B的左侧)•我们规定:抛物线与x轴围成的封闭区域称为“ G区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1 )求抛物线y ax2 2ax 3a顶点P的坐标(用含a的代数式表示);(2)如果抛物线y ax2 2ax 3a经过(1,3 ).① 求a 的值;② 在①的条件下,直接写出“ G 区域”内整点的个数. ax 2 2ax 3a 在“G 区域”内有4个整点,直接写出 a 的取值范围上取点F ,使得/ EFD = 60。

北京门头沟区2019年初三数学门头沟一模试题(word版)

北京门头沟区2019年初三数学门头沟一模试题(word版)

北京门头沟区2019年初三数学门头沟一模试题(word 版)数学试卷在以下各题的四个备选答案中,只有一个是正确的. 1.-12的相反数是A 、-2B 、-12C 、12D 、22.2018年全国春运客流量在历史上首次突破三十亿人次,达到3158000000人次,将 3158000000用科学计数法表示为A.3.158910⨯B.3.158810⨯C.31.58810⨯D.0.31581010⨯ 3.把a a 93-分解因式,结果正确的选项是A.)3)(3(-+a a aB.)9(2-a aC.2)3(-a aD.2)3(+a a4.如图,直线l 1∥l 2,∠1=40°,∠2=75°,那么∠3等于A.55°B.60°C.65°D.70°5.某班7名同学在一次“1分钟仰卧起坐”测试中,成绩分别为〔单位:次〕:39,39,45,42,37,41,39、这组数据的众数、中位数分别是 A 、42,37 B 、39,40 C 、39,41D.39,396.有四张背面完全相同且不透明的卡片,每张卡片的正面分别写有数字-2,3,0,8-,将它们背面朝上,洗均匀后放置在桌面上,假设随机抽取一张卡片,那么抽到的数字恰好是无理数的概率是 A.41B.21C.43D.17.等腰梯形的底角为45°,高为2,上底为2,那么这个梯形的面积为 A 、2B 、6C 、8D 、128.如图,在正方形ABCD 中,AB =3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 自A 点出发沿折 线AD —DC —CB 以每秒3cm 的速度运动,到达B 点时运动同 时停止,设△AMN 的面积为y 〔cm 2〕,运动时间为x 〔秒〕, 那么以下图象中能大致反映y 与x 之间的函数关系的是 【二】填空题〔此题共16分,每题4分〕N MD CBAl 2l 13219.假设二次根式32-x 有意义,那么x 的取值范围是.10.把方程011102=--x x 化为n m x =+2)(的形式〔其中m 、n 为常数,且n ≥0〕,结果为.11.如图,半径为10的⊙O 中,弦AB 的长为16,那么这条弦的 弦心距为.12.如图,对面积为1的△ABC 逐次进行以下操作: 第一次操作,分别延长AB 、BC 、CA 至A 1、B 1、C 1, 使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、 B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作, 分别延长A 1B 1,B 1C 1,C 1A 1至A 2,B 2,C 2,使得 A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接 A 2,B 2,C 2,得到△A 2B 2C 2,记其面积为S 2……, 按此规律继续下去,可得到△A 5B 5C 5,那么其面积为 S 5=_________.第n 次操作得到△A n B n C n , 那么△A n B n C n 的面积S n =.【三】解答题〔此题共30分,每题5分〕 13.计算:10212)3(2--+---π14.解分式方程:21213=++-x xx 15.232-=+x x ,求)2)(12()1(2++-+x x x 的值. 16.:如图,AB ∥ED ,AE 交BD 于点C ,且BC =DC 、 求证:AB =ED 、 17.如图,A 、B 为反比例函数xk y =〔0<x 〕图象上的两个点. 〔1〕求k 的值及直线AB 的解析式;〔2〕假设点P 为x 轴上一点,且满足△OAP 的面积为3, 求出P 点坐标.18.如图,在一次课外数学实践活动中,小明站在操场 的A 处,他的两侧分别是旗杆CD 和一幢教学楼EF , 点A 、D 、F 在同一直线上,从A 处测得旗杆顶部和 教学楼顶部的仰角分别为45°和60°,DF =14m , EF =15m ,求旗杆CD 高、(结果精确到0.01m , 参考数据:2≈1.414,3≈1.732)【四】解答题〔此题共20分,第19题5分,第20题5分,第21题6分,第22题4分〕 19.:如图,在△ABC 中,∠ACB =90°,点E 为AB 的中点, 过点E 作ED ⊥BC 于D ,F 在DE 的延长线上,且AF =CE ,假设 AB =6,AC =2,求四边形ACEF 的面积.20.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交BC 、AC 于D 、E 两点,过点D 作DF ⊥AC ,垂足为F .EDCB A〔1〕求证:DF 是⊙O 的切线;〔2〕假设AE =DE ,DF =2,求⊙O 的半径.21.图1、图2是北京市2006——2017年户籍人口数和户籍65岁及以上人口数的统计图和2017年北京市户籍人口各年龄段统计图请你根据以上信息解答以下问题:〔1〕2017年北京市65岁及以上人口数约有多少万人?〔结果保留四位有效数字〕 〔2〕补全条形统计图;〔3〕根据联合国教科文组织的规定,一个国家〔地区〕65岁以上的人口占人口总数的7%以上,这个国家〔地区〕那么进入了老龄化社会.由此可见北京市已经步入了老龄化社会.小明通过学习知道养老方式有三种:家庭养老、机构养老和社区养老.小明同学调查了他所居住小区的120名65岁及以上的老人,选择养老方式如下表所示.如果按照小明的统计数据,请你通过计算估计,2017年北京市65岁及以上的老人选择机构养老....的约有多少万人? 小明居住小区65岁及以上的老人选择养老方式的人数统计表 22.阅读下面材料:小伟遇到这样一个问题:如图1,在正方形ABCD 中,点E 、F 分别为DC 、BC 边上的点,∠EAF =45°,连结EF ,求证:DE +BF =EF 、 小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上、他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题、他的方法是将△ADE 绕点A 顺时针旋转90°得到△ABG 〔如图2〕,此时GF 即是DE +BF 、 请回答:在图2中,∠GAF 的度数是、 参考小伟得到的结论和思考问题的方法,解决以下问题: 〔1〕如图3,在直角梯形ABCD 中,AD ∥BC 〔AD >BC 〕, ∠D =90°,AD =CD =10,E 是CD 上一点,假设∠BAE =45°, DE =4,那么BE =、〔2〕如图4,在平面直角坐标系xOy 中,点B 是x 轴上一 动点,且点A 〔3-,2〕,连结AB 和AO ,并以AB 正方形ABCD ,假设C 〔x ,y 〕,试用含x 的代数式表示y ,那么y =、 【五】解答题〔此题共22分,第23题7分,第24题723.:关于x 的一元二次方程02)21(22=-++-k x k x 〔1〕求k 的取值范围;〔2〕当k 为负整数时,抛物线2)21(22-++-=k x k x y与x 轴的交点是整数点,求抛物线的解析式;〔3〕假设〔2〕中的抛物线与y 轴交于点A ,过A 作x 线与抛物线交于点B ,连接OB ,将抛物线向上平移n 使平移后得到的抛物线的顶点落在△OAB 的内部〔不包括 △OAB 的边界〕,求n 的取值范围.24.:在△ABC 中,BC =2AC ,∠DBC =∠ACB ,BD =BC ,CD 交线段AB 于点E 、 〔1〕如图l ,当∠ACB =90°时,直接写出线段DE 、CE 之间的数量关系;FE D A BCD A GFE D A BC图1图2C D A O Bxy图4〔2〕如图2,当∠ACB =120°时,求证:DE =3CE ;〔3〕如图3,在〔2〕的条件下,点F 是BC 边的中点,连接DF ,DF 与AB 交于G ,△DKG 和△DBG 关于直线DG 对称〔点B 的对称点是点K 〕,延长DK 交AB 于点H 、假设BH =10,求CE 的长. 25.在平面直角坐标系中,二次函数322-+=x x y 的图象与x 轴交于A 、B 两点〔点A 在点B 的左侧〕,交y 轴于点E .点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直线l 过点F 且与y 轴平行.一次函数y =-x +m 的图象过点C ,交y 轴于D 点. 〔1〕求点C 、点F 的坐标; 〔2〕点K 为线段AB 上一动点,过点K 作x 轴的垂线与直线CD 交于点H ,与抛物线交于点G ,求线段HG 长度的最大值;〔3〕在直线l 上取点M ,在抛物线上取点N ,使以点A ,C ,M ,N 为顶点的四边形是平行四边形,求点N 的坐标.。

北京门头沟区2019年初三数学门头沟一模试题(word版)

北京门头沟区2019年初三数学门头沟一模试题(word版)

北京门头沟区2019年初三数学门头沟一模试题(word 版)在以下各题的四个备选答案中,只有一个是正确的.1.-12的相反数是A 、-2B 、-12 C 、12 D 、2 2.2018年全国春运客流量在历史上首次突破三十亿人次,达到3158000000人次,将 3158000000用科学计数法表示为A.3.158910⨯B.3.158810⨯C.31.58810⨯D.0.31581010⨯3.把a a 93-分解因式,结果正确的选项是A.)3)(3(-+a a aB.)9(2-a aC.2)3(-a aD.2)3(+a a4.如图,直线L1∥L2,∠1=40°,∠2=75°,那么∠3等于 A.55°B.60° C.65°D.70°5.某班7名同学在一次“1分钟仰卧起坐”测试中,成绩分别为〔单位:次〕:39,39,45,42,37,41,39、这组数据的众数、中位数分别是A 、42,37B 、39,40C 、39,41D.39,396.有四张背面完全相同且不透明的卡片,每张卡片的正面分别写有数字-2,3,0,8-,将它们背面朝上,洗均匀后放置在桌面上,假设随机抽取一张卡片,那么抽到的数字恰好是无理数的概率是A.41B.21C.43D.17.等腰梯形的底角为45°,高为2,上底为2,那么这个梯形的面积为l 2l 1321A 、2B 、6C 、8D 、128.如图,在正方形ABCD 中,AB =3CM ,动点M 自A 点出发沿AB 方向以每秒1CM 的速度运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3CM 的速度运动,到达B点时运动同时停止,设△AMN 的面积为Y 〔CM2〕,运动时间为X 〔秒〕, 那么以下图象中能大致反映Y 与X 之间的函数关系的是【二】填空题〔此题共16分,每题4分〕9.假设二次根式32-x 有意义,那么X 的取值范围是. 10.把方程011102=--x x 化为n m x =+2)(的形式〔其中M 、N 为常数,且N ≥0〕,结果为.11.如图,半径为10的⊙O 中,弦AB 的长为16弦心距为.12.如图,对面积为1的△ABC 逐次进行以下操作: 第一次操作,分别延长AB 、BC 、CA 至A1、B1、C1,使得A1B =2AB ,B1C =2BC ,C1A =2CA ,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2……,按此规律继续下去,可得到△A5B5C5,那么其面积为S5=_________.第N 次操作得到△ANBNCN ,那么△ANBNCN 的面积SN =.【三】解答题〔此题共30分,每题5分〕13.计算:10212)3(2--+---π14.解分式方程:21213=++-x x x15.232-=+x x ,求)2)(12()1(2++-+x x x 的值. 16.:如图,AB ∥ED ,AE 交BD 于点C ,且BC =DC 、求证:AB =ED 、 17.如图,A 、B 为反比例函数x k y =〔0<x 〕图象上的两个点. 〔1〕求K 的值及直线AB 的解析式;〔2〕假设点P 为X 轴上一点,且满足△OAP 的面积为3,求出P 点坐标.18.如图,在一次课外数学实践活动中,小明站在操场的A 处,他的两侧分别是旗杆CD 和一幢教学楼EF , N M D C BA EDC B A点A 、D 、F 在同一直线上,从A 处测得旗杆顶部和教学楼顶部的仰角分别为45°和60°,DF =14M ,EF =15M ,求旗杆CD 高、(结果精确到0.01M , 参考数据:2≈1.414,3≈1.732)【四】解答题〔此题共20分,第19题5分,第20题5分,第21题6分,第22题4分〕19.:如图,在△ABC 中,∠ACB =90°,点E 为AB 的中点,过点E 作ED ⊥BC 于D ,F 在DE 的延长线上,且AF =CEAB =6,AC =2,求四边形ACEF 的面积. 20.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 、AC 于D 、E 两点,过点D 作DF ⊥AC ,垂足为F.〔1〕求证:DF 是⊙O 的切线; 〔2〕假设=DE ,DF =2,求⊙O 的半径.21.图1、图2是北京市2006——2017计图和2017年北京市户籍人口各年龄段统计图请你根据以上信息解答以下问题:〔1〕2017年北京市65 〔2〕补全条形统计图;〔3〕根据联合国教科文组织的规定,一个国家〔地区〕65岁以上的人口占人口总数的7%以上,这个国家〔地区〕那么进入了老龄化社会.由此可见北京市已经步入了老龄化社会.小明通过学习知道养老方式有三种:家庭养老、机构养老和社区养老.小明同学调查了他所居住小区的120名65岁及以上的老人,选择养老方式如下表所示.如果按照小明的统计数据,请你通过计算估计,2017年北京市65岁及以上的老人选择机构养老的约有多少万人?小伟遇到这样一个问题:如图1,在正方形ABCD 中,点E 、F 分别为DC 、BC 边上的点,∠EAF =45°,连结EF ,求证:DE +BF =EF 、小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上、他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题、他的方法是将△ADE 绕点A 顺时针旋转90°得到△ABG 〔如图2〕,此时GF 即是DE +BF 、请回答:在图2中,∠GAF 的度数是、参考小伟得到的结论和思考问题的方法,解决以下问题: 〔1〕如图3,在直角梯形ABCD 中,AD ∥BC 〔AD 》BC ∠D =90°,AD =CD =10,E 是CD 上一点,假设∠DE =4,那么BE =、〔2〕如图4,在平面直角坐标系XOY 中,点B 是X 动点,且点A 〔3 ,2〕,连结AB 和AO ,并以AB 正方形ABCD ,假设C 〔X ,Y 〕,试用含X 那么Y =、 F E D A B C DA G F E D ABC 图1图2CD A O B x y 图4【五】解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕23.:关于X 的一元二次方程2)21(22=-++-k x k x 〔1〕求K 的取值范围;〔2〕当K 为负整数时,抛物线)21(2++-=k x k x y 与X 轴的交点是整数点,求抛物线的解析式;〔3〕假设〔2〕中的抛物线与Y 轴交于点A ,过A 作线与抛物线交于点B ,连接OB ,将抛物线向上平移N 使平移后得到的抛物线的顶点落在△OAB △OAB 的边界〕,求N 的取值范围.24.:在△ABC 中,BC =2AC ,∠DBC =∠ACB ,BD =BC ,CD 交线段AB 于点E 、 〔1〕如图L ,当∠ACB =90°时,直接写出线段DE 、CE 之间的数量关系;〔2〕如图2,当∠ACB =120°时,求证:DE =3CE ;〔3〕如图3,在〔2〕的条件下,点F 是BC 边的中点,连接DF ,DF 与AB 交于G ,△DKG 和△DBG 关于直线DG 对称〔点B 的对称点是点K 〕,延长DK 交AB 于点H 、假设BH =10,求CE 的长.25.在平面直角坐标系中,二次函数322-+=x x y 的图象与X 轴交于A 、B 两点〔点A 在点B 的左侧〕,交Y 轴于点E.点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直线L 过点F 且与Y 轴平行.一次函数Y =-X +M 的图象过点C ,交Y 轴于D 点.〔1〕求点C 、点F 的坐标;〔2〕点K 为线段AB 上一动点,过点K 作X 轴的垂线与直线CD 交于点H ,与抛物线交于点G ,求线段HG 长度的最大值;〔3〕在直线L 上取点M ,在抛物线上取点N ,使以点A ,C ,M ,N 为顶点的四边形是平行四边形,求点N 的坐标.。

北京市门头沟区2019-2020学年中考数学二模考试卷含解析

北京市门头沟区2019-2020学年中考数学二模考试卷含解析

北京市门头沟区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.a2·a3﹦a6B.a3+ a3﹦a6C.|-a2|﹦a2D.(-a2)3﹦a62.如果关于x的不等式组2030x ax b-≥⎧⎨-≤⎩的整数解仅有2x=、3x=,那么适合这个不等式组的整数a、b组成的有序数对(,)a b共有()A.3个B.4个C.5个D.6个3.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为24.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5.正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为()A.8 B.172C.283D.7786.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于()A .50°B .60°C .55°D .65°7.如图,把长方形纸片ABCD 折叠,使顶点A 与顶点C 重合在一起,EF 为折痕.若AB=9,BC=3,试求以折痕EF 为边长的正方形面积( )A .11B .10C .9D .168.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°9.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( ) A .9710-⨯B .10710-⨯C .11710-⨯D .12710-⨯10.已知二次函数y =ax 2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c <1;②a ﹣b+c <1;③b+2a <1;④abc >1.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③11.设α,β是一元二次方程x 2+2x -1=0的两个根,则αβ的值是( ) A .2 B .1 C .-2 D .-112.一元二次方程210x x --=的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).14.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n根图形需要____________根火柴.15.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_____.16.如图,点A是双曲线y=﹣9x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx上运动,则k的值为_____.177+3)73_____.18.已知抛物线y=-x2+mx+2-m,在自变量x的值满足-1≤x≤2的情况下.若对应的函数值y的最大值为6,则m的值为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE 上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.20.(6分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?21.(6分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.(Ⅰ)收集、整理数据请将表格补充完整:(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.22.(8分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.23.(8分)2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.24.(10分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部 a 85 b s初中2高中部85 c 100 160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.25.(10分)某街道需要铺设管线的总长为9000m,计划由甲队施工,每天完成150m.工作一段时间后,y m与甲队工作时间x(天)因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度()之间的函数关系图象.(1)直接写出点B的坐标;(2)求线段BC所对应的函数解析式,并写出自变量x的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.26.(12分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度数;(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.27.(12分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解. 【详解】a 2·a 3﹦a 5,故A 项错误;a 3+ a 3﹦2a 3,故B 项错误;a 3+ a 3﹦- a 6,故D 项错误,选C. 【点睛】本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则. 2.D 【解析】 【分析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b<4,求出2<a≤4、9≤b <12,即可得出答案. 【详解】解不等式2x−a≥0,得:x≥2a, 解不等式3x−b≤0,得:x≤3b,∵不等式组的整数解仅有x =2、x =3, 则1<2a ≤2、3≤3b<4, 解得:2<a≤4、9≤b <12, 则a =3时,b =9、10、11; 当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个, 故选:D . 【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值. 3.A 【解析】 【分析】根据中位数,众数,平均数,方差等知识即可判断; 【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1. 故选A . 【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型. 4.D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.5.D【解析】【分析】根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【详解】∵正方形ABCD的面积为16,正方形BPQR面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴AB AR DR DS=,∴431DS =,∴DS=34,∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-12×4×3-12×34×1=778,故选:D.【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.6.B【解析】【分析】由圆周角定理即可解答.【详解】∵△ABC是⊙O的内接三角形,∴∠A=12∠BOC,而∠BOC=120°,∴∠A=60°.故选B.【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.7.B【解析】【分析】根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【详解】如图,∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵H BHC BCHCE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EHC ≌△FBC , ∴BF=HE , ∴BF=HE=DE , 设BF=EH=DE=x , 则AF=CF=9﹣x ,在Rt △BCF 中,由BF 2+BC 2=CF 2可得x 2+32=(9﹣x )2, 解得:x=4,即DE=EH=BF=4, 则AG=DE=EH=BF=4,∴GF=AB ﹣AG ﹣BF=9﹣4﹣4=1, ∴EF 2=EG 2+GF 2=32+12=10, 故选B .【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键. 8.C 【解析】 【分析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数.【详解】∵//AB CD ,40ABF ︒∠=, ∴180140CFB B ︒︒∠=-∠=, ∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=, 故选C .【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.9.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.000000007用科学记数法表示为7×10-1.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值. 11.D 【解析】试题分析:∵α、β是一元二次方程的两个根,∴αβ==-1,故选D .考点:根与系数的关系. 12.A 【解析】 【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况. 【详解】21,1,14145a b c b ac ==-=-∴∆-=+=Q∴方程有两个不相等的实数根.故选A. 【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.43 【解析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可. 解:如图所示,在RtABC 中,tan ∠ACB=ABBC,∴BC=0tan tan 60AB x ACB =∠, 同理:BD=tan 30x,∵两次测量的影长相差8米,∴00tan 30tan 60x x-=8,∴3故答案为43.“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.14.62n+【解析】【分析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成,……∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.15.5π【解析】【分析】根据题意得出球在无滑动旋转中通过的路程为12圆弧,根据弧长公式求出弧长即可.【详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为14圆的周长,然后沿着弧O1O2旋转14圆的周长,则圆心O运动路径的长度为:112544π⨯⨯+×2π×5=5π,故答案为5π.【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.16.1 【解析】【分析】根据题意得出△AOD∽△OCE,进而得出AD OD OAEO CE OC==,即可得出k=EC×EO=1.【详解】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴AD OD OAEO CE OC===tan60°=3,∴AODEOCSS∆∆=()23=1,∵点A是双曲线y=-9x在第二象限分支上的一个动点,∴S△AOD=12×|xy|=92,∴S△EOC=32,即12×OE×CE=32,∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.17.4【解析】利用平方差公式计算.【详解】解:原式=(7)2-(3)2=7-3=4.故答案为:4.【点睛】本题考查了二次根式的混合运算.18.m=8或【解析】【分析】求出抛物线的对称轴分三种情况进行讨论即可.【详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)说明见解析;(2)当∠B=30°时,四边形ACEF是菱形.理由见解析.【解析】试题分析:(1)证明△AEC≌△EAF,即可得到EF=CA,根据两组对边分别相等的四边形是平行四边形即可判断;(2)当∠B=30°时,四边形ACEF是菱形.根据直角三角形的性质,即可证得AC=EC,根据菱形的定义即可判断.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.20.(1)见解析;(2)1;(3)估计全校达标的学生有10人【解析】【分析】(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数.(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.【详解】解:(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1.(3)1200×(50%+30%)=10(人).答:估计全校达标的学生有10人.21.(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【解析】【分析】(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3% .【详解】(Ⅰ)年份2014 2015 2016 2017 2018动车组发送旅客量a 亿人次0.87 1.14 1.46 1.80 2.17铁路发送旅客总量b 亿人次 2.52 2.76 3.07 3.42 3.82动车组发送旅客量占比× 100 34.5 % 41.3 % 47.6 % 52.6 % 56.8 %(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,故答案为折线图;(Ⅲ)预估2019 年春运期间动车组发送旅客量占比约为60%,预估理由是之前每年增加的百分比依次为7%、6%、5%、4%,据此预测2019 年增加的百分比接近3%.【点睛】本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.22.(2)AM=165;(2)»AP=23π;(3)7≤d<4或3.【解析】【分析】(2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.【详解】(2)在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴AMAB=AB'AC,即AM4=45,∴AM=165;(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G,∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP为等边三角形,∴AP n=60π4360⨯⨯=23π.(3)由(2)可知:△AOP为等边三角形,∴33∴3当点B′在直线CD上时,如图4所示,在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴22AB'AD-7,∴CB′=47.∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有一个交点时,7<4或3【点睛】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.23.有48艘战舰和76架战机参加了此次阅兵.【解析】【分析】设有x艘战舰,y架战机参加了此次阅兵,根据题意列出方程组解答即可.【详解】设有x艘战舰,y架战机参加了此次阅兵,根据题意,得124 328 x yx y+=⎧⎨=-⎩,解这个方程组,得4876 xy=⎧⎨=⎩,答:有48艘战舰和76架战机参加了此次阅兵.【点睛】此题考查二元一次方程组的应用,关键是根据题意列出等量关系进行解答. 24.(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.【解析】【分析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分75808585100a 855++++==,众数b=85, 高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)222222++++=5S 初中(75-85)(80-85)(85-85)(85-85)(100-85)=70, ∵22S S 初中高中<,∴初中代表队选手成绩比较稳定.【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.25.(1)(10,7500)(2)直线BC 的解析式为y=-250x+10000,自变量x 的取值范围为10≤x≤40.(3)1250米.【解析】【分析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B 的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500. ∴点B 的坐标为(10,7500)(2)设直线BC 的解析式为y=kx+b ,依题意,得:解得:∴直线BC 的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x 的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250. ∴乙队工作25天后剩余管线的长度是1250米.【点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.26.:(1) 30º;(2)33ABCD S 梯形=. 【解析】 分析:(1)由已知条件易得∠ABC=∠A=60°,结合BD 平分∠ABC 和CD ∥AB 即可求得∠CDB=30°;(2)过点D 作DH ⊥AB 于点H ,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=3,这样即可由梯形的面积公式求出梯形ABCD 的面积了.详解:(1) ∵在梯形ABCD 中,DC ∥AB ,AD =BC ,∠A =60°,∴∠CBA=∠A=60º,∵BD 平分∠ABC ,∴∠CDB=∠ABD=12∠CBA=30º, (2)在△ACD 中,∵∠ADB=180º–∠A –∠ABD=90º.∴BD=AD tan ⋅A=2tan60º=23.过点D 作DH ⊥AB ,垂足为H ,∴AH=AD sin ⋅A=2sin60º=3.∵∠CDB=∠CBD=12∠CBD=30º, ∴DC=BC=AD=2∵AB=2AD=4∴()()ABCD 11S AB CD DH 4233322=+⋅=+=梯形.点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.27.这棵树CD 的高度为8.7米【解析】试题分析:首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.试题解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).(米).在直角△BCD中,CD=BCsin∠CBD=10×2答:这棵树CD的高度为8.7米.考点:解直角三角形的应用。

门头沟区2019年九年级一模数学试卷(含评分标准)

门头沟区2019年九年级一模数学试卷(含评分标准)

21CBA门头沟区2019年初三年级一模试卷数 学 试 卷2019年4月一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1.“蛟龙号”是一艘由中国自行设计、自主集成研制的载人潜水器,也是“863”计划中的一个重大研究专项.2010年5月至7月,“蛟龙号”在中国南海中进行了多次下潜任务,其中最大下潜深度超过了7 000米.将7 000用科学记数法表示为 A .7 × 104B .7 × 103C .0.7 × 105D .70×1022.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是A .a b <B .a b >-C .2a >-D .b a >3.京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介.在下面的四个京剧脸谱中,不是轴对称图形的是A B C D4.如图,△ABC 为等边三角形,如果沿图中虚线剪去∠B , 那么∠1+∠2等于 A .120° B .135° C .240°D .315°5.如果一个多边形的内角和是外角和的2倍,那么这个多边形的边数为 A .5B .6C .7D .8A C BA6.如果30x y -=,那么代数式()2222x yx y x xy y +⋅--+的值为A .27-B .27C .72-D .727.如图,⊙O 的半径为2,点A 为⊙O 上一点,半径OD ⊥弦BC 于D ,如果∠BAC =60°, 那么OD 的长是 A .2 BC .1D8.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图:根据该折线图,下列结论错误的是 A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳二、填空题(本题共16分,每小题2分) 9.分解因式:22ab ab a -+=10.函数y =的自变量x11.写出一个图象经过点(1,1),且在第一象限内函数值随着自变量的值增大而减小的函数表达式: .12.如果在多项式241a +中添加一个单项式,可使其成为一个完全平方式,那么添加的单项式为 .(写出一个即可)13.如图,一张三角形纸片ABC ,其中∠C = 90°,AC = 6,BC = 8.如果小明同学将纸片做了两次折叠.第一次使点A 落在C 处,在纸片上的折痕长记为m ;然后将纸片 展平做第二次折叠,使点A 落在B 处,在纸片上的折痕长记为n . 那么m ,n 之间的关系是m n .(填“>”,“=”或“<” )14.某农科院在相同条件下做了某种苹果幼树移植成活率的试验,结果如下:那么该苹果幼树移植成活的概率估计值为 .(结果精确到0.1)15.如图,在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A ’O B ’ ,其中点A ’ 与点A 对应,点B’ 与点B 如果A (3-,0),B (1-,2).那么点A ’ 的 坐标为 ,点B 经过的路径¼'BB的长度为 .(结果保留π)16.顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:那么最短交货期为 工作日.三、解答题 (本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤.17.计算:()201122cos453π-⎛⎫+---︒ ⎪⎝⎭.18.解不等式组()41710,853x x x x ⎧++⎪⎨--⎪⎩≤<并求该不等式组的所有非负整数解.19.下面是小明同学设计的“作圆的内接正方形”的尺规作图的过程.已知:如图1,⊙O .求作:正方形ABCD ,使正方形ABCD 内接于⊙O . 作法:如图2,① 过点O 作直线AC ,交⊙O 于点A 和C ;② 作线段AC 的垂直平分线MN ,交⊙O 于点B 和D ; ③ 顺次连接AB ,BC ,CD 和DA ; 则正方形ABCD 就是所求作的图形.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明:证明: ∵ AC 是⊙O 的直径,∴ ∠ABC =∠ADC = °, 又∵点B 在线段AC 的垂直平分线上, ∴ AB = BC ,∴ ∠BAC = ∠BCA = °. 同理 ∠DAC = 45°.∴ ∠BAD = ∠BAC +∠DAC = 45° + 45° = 90°. ∴ ∠DAB = ∠ABC = ∠ADC = 90°,∴ 四边形ABCD 是矩形( )(填依据), 又∵ AB = BC ,∴ 四边形ABCD 是正方形.20.已知:关于x 的方程2(3)30mx m x +--=(m 为实数,m ≠0).(1)求证:此方程总有两个实数根;(2)如果此方程的两个实数根都为正整数,求整数m 的值.图2图1PADBA21.如图,在△ABD 中,∠ABD = ∠ADB ,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,连接BC ,DC 和AC ,AC 与BD 交于点O . (1)用尺规补全图形,并证明四边形ABCD 为菱形;(2)如果AB = 5,3cos 5ABD ∠=,求BD 的长.22. 如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象与反比例函数6y x=的图象交于点A (m ,3)和B (6-,n ),与x 轴交于点C . (1)求直线y kx b =+的表达式; (2)如果点P 在x 轴上,且S △ACP =32S △BOC ,直接写出点P 的坐标.23.如图,点D 在⊙O 上,过点D 的切线交直径AB 的延长线于点P ,DC ⊥AB 于点C .(1)求证:DB 平分∠PDC ; (2)如果DC = 6,3tan 4P ∠=,求BC 的长.24.如图,在△ABC 中,AB = AC ,D 是AB 的中点,P 是线段BC 上一动点,连接AP 和DP .如果BC = 8cm ,设B ,P 两点间的距离为x cm ,D ,P 两点间的距离为y 1 cm ,A ,P 两点间的距离为y 2 cm .PDCB A小明根据学习函数经验,分别对函数y 1和y 2随自变量x 变化而变化的规律进行了探究. 下面是小明的探究过程,请将它补充完整:(1)按下表中自变量x 值进行取点、画图、测量,得到了y 1和y 2与x 几组对应值:(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 2)和(x ,y 1),并画出函数y 1和y 2的图象;(3)结合函数图象,解决问题:当DP = AP 时,BP 的长度约为 cm (结果精确到0.01).25.某工厂的甲、乙两个车间各生产了400个新款产品,为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围在165≤x <180为合格),分别从甲、乙两个车间生产的产品中随机各抽取了20个样品迸行检测,获得了它们的数据(尺寸),并对数据进行了整理、描述和分析.下面给出了部分信息:a .甲车间产品尺寸的扇形统计图如下(数据分为6组:165≤x <170,170≤x <175,175≤x <180,180≤x <185,185≤x <190,190≤x ≤195):b .甲车间生产的产品尺寸在175≤x <180这一组的是:175 176 176 177 177 178 178 179 179 c .甲、乙两车间生产产品尺寸的平均数、中位数、众数如下:根据以上信息,回答下列问题: (1)表中m 的值为 ;(2)此次检测中,甲、乙两车间生产的产品合格率更高的是 (填“甲”或“乙”),理由是 ; (3)如果假设这个工厂生产的所有产品都参加了检测,那么估计甲车间生产该款新产品中合格产品有 个.A :165≤x <170B :170≤x <175C :175≤x <180D :180≤x <185E :185≤x <190F :190≤x ≤19526.在平面直角坐标系xOy 中,一次函数4y x =+的图象与x 轴交于点A ,与过点(0,5)平行于x 轴的直线l 交于点B ,点A 关于直线l 的对称点为点C . (1)求点B 和点C 坐标;(2)已知某抛物线的表达式为222y x mx m m =-+-.① 如果该抛物线顶点在直线4y x =+上,求m 的值;② 如果该抛物线与线段BC 有公共点,结合函数图象,直接写出m 的取值范围.27.如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F . (1)根据题意补全图1,并证明PE = PF ;(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明;(3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系.PPEECCBBOOAA图1 图228.对于平面直角坐标系xOy 中的线段MN 和点P ,给出如下定义:点A 是线段MN 上一个动点,过点A 作线段MN 的垂线l ,点P 是垂线l 上的另外一个动点.如果以点P 为旋转中心,将垂线l 沿逆时针方向旋转60°后与线段MN 有公共点,我们就称点P 是线段MN 的“关联点”.如图,M (1,2),N (4,2).(1) 在点P 1(1,3),P 2(4,0),P 3(3,2)中,线段MN 的“关联点”有 ; (2) 如果点P 在直线1y x =+上,且点P 是线段MN 的“关联点”,求点P 的横坐标x 的取值范围;(3) 如果点P 在以O (1,1-)为圆心,r 为半径的⊙O 上,且点P 是线段MN 的“关联点”,直接写出⊙O 半径r 的取值范围.备用图门头沟区2019年初三年级一模试卷数学试卷答案及评分参考2019年4月三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:()21122cos45.3π-⎛⎫+----︒⎪⎝⎭9112=+--……………………………………………………………………………4分7. =…………………………………………………………………………………………………5分18.(本小题满分5分)解:原不等式组为()41710,853x xxx⎧++⎪⎨--⎪⎩≤<解不等式①,得x≥2-.……………………………1分解不等式②,得72x<.………………………………2分∴该不等式组的解集为2-≤x<72.…………………………3分∴该不等式组的非负整数解为0,1,2,3.…………………………5分19.(本小题满分5分)解:(1)尺规作图正确;…………3分(2)填空正确.……………5分20.(本小题满分5分)(1)证明:∵m≠0,①②A∴ 方程 2(3)30mx m x +--= 为一元二次方程. …………… 1分依题意,得22(3)12(+3)m m m ∆=-+=2(+3)m =.…………… 2分 ∵ 无论m 取何实数,总有2(+3)m ≥0,∴ 此方程总有两个实数根. ……………………………… 3分(2)解:由求根公式,得(3)(3)2m m x m --±+=.∴ 11x =,23x m=-(m ≠0). ……………………… 4分∵ 此方程的两个实数根都为正整数,∴ 整数m 的值为1-或3-. ………………………… 5分21.(本小题满分5分)(1)补全的图形如图所示.…………………………………………… 1分证明:由题意可知BC = DC = AB . ∵ 在△ABD 中,=ABD AD B ∠∠, ∴ AB = AD .∴ BC = DC = AD = AB .∴ 四边形ABCD 为菱形.…………………………… 3分(2)解:∵ 四边形ABCD 为菱形,∴ BD ⊥AC ,OB=OD . (4)分在Rt △ABO 中,90AOB ∠=︒,AB =5,3cos 5ABD ∠=,∴ cos 3OB AB ABD =⋅∠=.∴ 2=6BD OB =.……………………………………………………… 5分22.(本小题满分5分)解:(1)由题意可求:m = 2,n = -1.………………………………………… 2分将(2,3),B (-6,-1)带入y kx b =+,得32,16.k b k b =+⎧⎨-=-+⎩ 解得 1,22.k b ⎧=⎪⎨⎪=⎩ ∴ 直线的解析式为122y x =+. ……………………………………………… 3分 (2)(-2,0)或(-6,0). ………………………………………………… 5分23.(本小题满分6分)(1)证明:如图1,连接OD . ∵ DP 是⊙O 的切线,∴ OD ⊥DP .∴ 90ODP ∠=︒.……………………………… 1分∴ 90.ODB BDP ∠+∠=︒又 ∵DC ⊥OB ,∴ 90DCB ∠=︒.………………………………………………… 2分∴90BDC OBD ∠+∠=︒. ∵OD =OB ,∴.ODB OBD ∠=∠ ∴BDP BDC ∠=∠.∴D B 平分∠P D C .…………………………………………… 3分(2)解:如图2,过点B 作BE ⊥DP 于点E . ∵,BDP BDC ∠=∠ BC ⊥DC , ∴B C =B E . (4)分∵DC =6,3tan 4P ∠=, ∴DP =10,PC =8.……………… 5分 设CB = x , 则BE = x ,BP = 8 - x . ∵ △PEB ∽△PCD , ∴8610x x-=. ∴ 3=x .∴ 3BC =…………………………6分24.(本小题满分6分)解:(1)2.50; (2)分 (2)略;............................................. 4分 (3)4.67. (6)分25.(本小题满分6分)解:(1)177.5;……… 2分(2)略;………………4分 (3)280 . (6)分26.(本小题满分6分)解:(1)∵ 直线4y x =+与x 轴交于点A ,∴ 点A 坐标为(-4,0).∵ 直线4y x =+与与过点(0,5)且平行于x 轴的直线l 交于点B ,∴ 点B 坐标为(1,5). ……………… 1分 ∵ 点A 关于直线l 的对称点为点C ,∴ 点C 坐标为(-4,10). (2)分(2)① ∵ 抛物线的表达式为222y x mx m m =-+-, ∴ 顶点坐标为(m ,-m ). ……… 3分∵ 抛物线顶点在直线4y x =+上, ∴4m m -=+, ∴ m = - 2.… 4分A② 6 4.m ≤≤-……………6分27.(本小题满分7分)解:(1)补全图形(如图1); ………………… 1分证明:略. ………………………… 3分(2)线段OE ,OP 和OF 之间的数量关系是OF +OE . ……………………………… 4分证明:如图2,作PQ ⊥PO 交OB 于Q .∴ ∠2+∠3 = 90°,∠1+∠2 = 90°. ∴ ∠1=∠3.又∵ OC 平分∠AOB ,∠AOB =90°, ∴∠4 =∠5 = 45°. 又∵ ∠5 +∠6 = 90°, ∴∠6 = 45°,∴∠4 = ∠6 . ∴ PO= PQ .∴ △EPO ≌ △FPQ . ………………………5分 ∴ PE =PF ,OE = FQ .又∵OQ = OF +FQ = OF + OE .又∵ OQ=,∴OF + OE . ……………………… 6分(3)线段OE ,OP 和OF 之间的数量关系是OF - OE . (7)分28.(本小题满分7分)解:(1)P 1和P 3;…………………………………… 2分 (2)线段MN 的“关联点”P 的位置如图所示,∵ 直线1y x =+经过点M (1,2),∴ x ≥1. …………………………… 3分 设直线1y x =+与P 4N 交于点A .过点A 作AB ⊥MN 于B ,延长AB 交x 轴于C.由题意易知,在△AMN 中,MN = 3,∠AMN = 45°,∠ANM = 30°. 设AB = MB = a ,∴ tanAB ANM BN ∠=,即tan303aa︒=-,解得a = (4)分 ∴ 点A 的横坐标为11x a =+==∴x …………………………5分 综上 1x ≤ ……………… 6分 图2图1(33≤……………………7分r说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

2019年门头沟区初三年级第二次统一练习

2019年门头沟区初三年级第二次统一练习

2019年门头沟区初三年级第二次统一练习数 学 试 卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.-6的倒数是A .6B .6-C .16 D .16- 2.PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为 A .62.510⨯ B .50.2510-⨯ C . 62.510-⨯ D .72510-⨯ 3.右图所示的是一个几何体的三视图,则这个几何体是A .球B .圆锥C .圆柱D .三棱柱4.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是 A .8B .6C .5D .35.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为A .15B .13C .58 D .38 6.已知圆锥侧面展开图的扇形半径为2cm ,面积是24cm 3π,则扇形的弧长和圆心角的度数分别为A .4πcm 1203,︒B.2πcm 1203,︒C .4πcm 603,︒D .2πcm 603,︒左视图 俯视图7.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下表所示:设甲、乙两人射击成绩的平均数依次为x 甲、x 乙,射击成绩的方差依次为2S 甲、2S 乙,则下列判断中正确的是A .x x =乙甲,22S S =乙甲B .x x =乙甲, 22>S S 乙甲C .x x =乙甲,22<S S 乙甲D .<x x 乙甲, 22<S S 乙甲8.如图,在平行四边形ABCD 中,AC = 12,BD = 8,P 是AC 上的一个动点,过点P 作EF ∥BD ,与平行四边形的 两条边分别交于点E 、F .设CP=x ,EF=y ,则下列图象 中,能表示y 与x 的函数关系的图象大致是A .B .C .D . 二、填空题(本题共16分,每小题4分)9. 在函数y =x 的取值范围是 . 10.分解因式:216ax a -= . 11.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在 点C 处测得建筑物AB 的顶点A 的仰角为30︒,然后 向建筑物AB 前进20m 到达点D 处,又测得点 A 的 仰角为60︒,则建筑物AB 的高度是 m . 12.如图,将边长为2的正方形纸片ABCD 折叠,使点B落在CD 上,落点记为E (不与点C ,D 重合),点A 落在点F 处,折痕MN 交AD 于点M ,交BC 于点N . 若12CE CD =,则BN 的长是 ,AM BN 的值 等于 ;若1CE CD n=(2n ≥,且n 为整数), 则AM BN的值等于 (用含n 的式子表示).A BCDEFMN PF E D CBAADB30︒60︒三、解答题(本题共30分,每小题5分)13114sin45(3)4-⎛⎫︒+-π+ ⎪⎝⎭.14.已知关于x的一元二次方程2630x x m-+-=有两个相等的实数根,求m的值及方程的根.15.已知13xy=,求2222332x y yxx y x y x xy y--⋅+-++的值.16.已知:如图,在△ABC中,∠ABC=90º,BD⊥AC 于点D,点E在BC的延长线上,且BE=AB,过点E 作EF⊥BE,与BD的延长线交于点F.求证:BC=EF.17.如图,在平面直角坐标系xOy中,一次函数y=3x的图象与反比例函数kyx=的图象的一个交点为A(1, m).(1)求反比例函数kyx=的解析式;(2)若点P在直线OA上,且满足P A=2OA,直接写出点P的坐标.18.列方程或方程组解应用题:为帮助地震灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.四、解答题(本题共20分,每小题5分)19.如图,在四边形ABCD中,∠DAB=60º,AC平分∠DAB,BC⊥AC,AC与BD交于点E,AD=6,CEtan BEC∠BC、DE的长及四边形ABCD的面积.AB CDFE A BCDE20.如图,AB 是⊙O 的直径,C 是AB 延长线上一点,点D 在⊙O 上,且∠A=30°,∠ABD =2∠BDC . (1)求证:CD 是⊙O 的切线;(2)过点O 作OF ∥AD ,分别交BD 、CD 于点E 、F .若OB =2,求 OE 和CF 的长.21.某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.请你根据以上信息解答下列问题:(1)这次共调查了学生多少人?E 组人数在这次调查中所占的百分比是多少? (2)求出表1中a 的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.表1 阅读课外书籍人数分组统计表DF 阅读课外书籍人数分组统计图图1人数阅读课外书籍人数分组所占百分比统计图图26%26%30%20%AB C D E F22. 如图1,矩形MNPQ 中,点E 、F 、G 、H 分别在NP 、PQ 、QM 、MN 上,若4321∠=∠=∠=∠,则称四边形EFGH 为矩形MNPQ 的反射四边形.在图2、图3中,四边形ABCD 为矩形,且4=AB ,8=BC .(1)在图2、图3中,点E 、F 分别在BC 、CD 边上,图2中的四边形EFGH 是利用正方形网格在图上画出的矩形ABCD 的反射四边形.请你利用正方形网格在图3上画出矩形ABCD 的反射四边形EFGH ;(2)图2、图3中矩形ABCD 的反射四边形EFGH 的周长是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD 的反射四边形EFGH 的周长各是多少;(3)图2、图3中矩形ABCD 的反射四边形EFGH 的面积是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD 的反射四边形EFGH 的面积各是多少.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 在平面直角坐标系xOy 中,抛物线224276883m m y x x m m --=-++-+经过原点O ,点B (-2,n )在这条抛物线上.(1)求抛物线的解析式;(2)将直线2y x =-沿y 轴向下平移b 个单位后得到直线l , 若直线l 经过B 点,求n 、b 的值;(3)在(2)的条件下,设抛物线的对称轴与x 轴交于点C ,直线l 与y 轴交于点D ,且与抛物线的对称轴交于点E .若P 是抛物线上一点,且PB =PE ,求P 点的坐标.MNPQ GHEF1 23 4图1图3图2F24.已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB . (1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ;(2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点. 请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.25. 如图,在平面直角坐标系xOy 中, 已知矩形ABCD 的两个顶点B 、C 的坐标分别是B (1,0)、C (3,0).直线AC 与y 轴交于点G (0,6).动点P 从点A 出发,沿线段AB 向点B 运动.同时动点 Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E . (1)求直线AC 的解析式;(2)当t 为何值时,△CQE 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使得以C 、Q 、E 、H 为顶点的四边形是菱形?图1O MABCD图2DCB MO 图3A。

北京市门头沟区2019-2020学年中考第二次质量检测数学试题含解析

北京市门头沟区2019-2020学年中考第二次质量检测数学试题含解析

北京市门头沟区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算-3-1的结果是( )A .2B .-2C .4D .-42.下列运算正确的是( )A .a 2•a 3=a 6B .(12)﹣1=﹣2C .16 =±4D .|﹣6|=6 3.要使分式有意义,则x 的取值应满足( ) A .x=﹣2 B .x≠2 C .x >﹣2 D .x≠﹣24.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为( ) A .686×104 B .68.6×105 C .6.86×106 D .6.86×105 5.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是( )A .B .C .D .6.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )A .31B .35C .40D .507.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°8.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AB=c ,∠A=α,则CD 长为( )A.c•sin2αB.c•cos2αC.c•sinα•tanαD.c•sinα•cosα9.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(32,0)B.(2,0)C.(52,0)D.(3,0)10.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积()A.11 B.10 C.9 D.1611.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角α的余切值为()A.2 B.12C5D512.若函数2yx=与y=﹣2x﹣4的图象的交点坐标为(a,b),则12a b+的值是()A.﹣4 B.﹣2 C.1 D.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.14.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.15.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组1~2组1~3组1~4组1~5组1~6组1~7组1~8组盖面朝上次数165 335 483 632 801 949 1122 1276盖面朝上频率0.550 0.558 0.537 0.527 0.534 0.527 0.534 0.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.16.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.17.函数y=2+1x中自变量x的取值范围是___________.18.已知:如图,矩形ABCD中,AB=5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A 恰好落在CD上点F处,则AE的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.20.(6分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.21.(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?22.(8分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表: 血型 A B AB O 人数 10 5(1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A 型的概率是多少?并估计这3000人中大约有多少人是A 型血?23.(8分)如图,⊙O 中,AB 是⊙O 的直径,G 为弦AE 的中点,连接OG 并延长交⊙O 于点D ,连接BD 交AE 于点F ,延长AE 至点C ,使得FC=BC ,连接BC .(1)求证:BC 是⊙O 的切线;(2)⊙O 的半径为5,tanA=34,求FD 的长.24.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题:(1)填空:每天可售出书 本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?25.(10分)先化简,再求代数式(22222x y x x xy y x xy ---+-)÷2y x y-的值,其中x=sin60°,y=tan30°. 26.(12分)如图,在四边形ABCD 中,∠BAC=∠ACD=90°,∠B=∠D .(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=13AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.27.(12分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.故选D.2.D【解析】【分析】运用正确的运算法则即可得出答案.【详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.3.D试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.考点:分式有意义的条件.4.D【解析】根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:686000=6.86×105,故选:D.5.B【解析】【分析】俯视图是从上面看几何体得到的图形,据此进行判断即可.【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B.【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.6.C【解析】【分析】根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.【详解】解:∵图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,…∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C.本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.7.C【解析】【分析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数.【详解】∵//AB CD ,40ABF ︒∠=,∴180140CFB B ︒︒∠=-∠=,∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=,故选C .【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等. 8.D【解析】【分析】根据锐角三角函数的定义可得结论.【详解】在Rt △ABC 中,∠ACB=90°,AB=c ,∠A=a ,根据锐角三角函数的定义可得sinα=BC AB , ∴BC=c•sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt △DCB 中,∠CDB=90°,∴cos ∠DCB= CD BC, ∴CD=BC•cosα=c•sinα•cosα,故选D .9.C【解析】【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDC AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.10.B【解析】【分析】根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【详解】如图,∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵H BHC BCHCE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故选B.【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.11.B【解析】【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2α=.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义. 12.B【解析】【分析】求出两函数组成的方程组的解,即可得出a、b的值,再代入12a b+求值即可.【详解】解方程组224yx y x ⎧=⎪⎨⎪=--⎩①②, 把①代入②得:2x=﹣2x ﹣4, 整理得:x 2+2x+1=0,解得:x=﹣1,∴y=﹣2,交点坐标是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴12a b+=﹣1﹣1=﹣2, 故选B .【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a 、b 的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3或1.2【解析】【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.14..【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.15.0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【解析】【分析】根据用频率估计概率解答即可.【详解】∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,∴这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.16.4m【解析】设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可. 【详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴,即,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴,即,解得:DN=x﹣1.5,∵两人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路灯AD的高度是4m.17.x≥﹣12且x≠1【解析】【详解】试题解析:根据题意得:2+10 {-10 xx≥≠解得:x≥﹣12且x≠1.故答案为:x≥﹣12且x≠1.18.5 3【分析】根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF=AB=5,EF=EA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.【详解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折叠的性质可知,BF=AB=5,EF=EA,在Rt△BCF中,CF4,∴DF=DC﹣CF=1,设AE=x,则EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=53,故答案为:53.【点睛】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)①∠OCE=45°;②EF =【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在OCE∆中,∠E=30°,利用内角和定理,得:∠OCE=45°.②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=OCE=45°.等腰直角三角形的斜倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=则EF=GE-FG=【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.20.11米【解析】【分析】过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,根据相似三角形的性质即可得到结论.【详解】解:过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴,∴∴MF=,∵∴答:旗杆MN的高度约为11米.【点睛】本题考查了相似三角形的应用,正确的作出辅助线是解题的关键.21.(1)10,144;(2)详见解析;(3)96【解析】【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=126 5025,3000×625=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.23.(1)证明见解析(2【解析】【分析】(1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;(2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长. 【详解】(1)∵点G是AE的中点,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半径,∴BC是⊙O的切线;(2)连接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直径,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG•FG,∴4=4FG ,∴FG=1∴由勾股定理可知:【点睛】本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG ,∠D=∠OBD 是解(1)的关键,证明证明△DAG ∽△FDG 是解(2)的关键.24.(1)(300﹣10x ).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x )本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x 元,∴每天可售出书(300﹣10x )本.故答案为300﹣10x .(2)设每本书上涨了x 元(x≤10),根据题意得:(40﹣30+x )(300﹣10x )=3750,整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.25.-【解析】【分析】先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可【详解】原式()()22,2x y x x y x x y y x y ⎡⎤--=-⋅⎢⎥--⎢⎥⎣⎦112,2x y x y x y y ⎛⎫-=-⋅ ⎪--⎝⎭()()()()22,22x y x y x y x y x y x y x y y ⎡⎤---=-⋅⎢⎥----⎢⎥⎣⎦()()22,2x y x y x y x y x y y--+-=⋅-- ()()2,2y x y x y x y y --=⋅-- 1,x y=--sin60tan30x y =︒==︒=Q∴原式===- 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.26.(1)证明见解析;(2)从运动开始经过2s 或53s 或125s时,△BEP 为等腰三角形. 【解析】【分析】(1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P 在BC 和DA 上的情况求出t 的值.【详解】解:(1)∵∠BAC=∠ACD=90°,∴AB ∥CD ,∵∠B=∠D ,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB ,∴AD ∥BC ,∴四边形ABCD 是平行四边形.(2)∵∠BAC=90°,BC=5cm ,AB=3cm ,′由勾股定理得:AC=4cm ,即AB 、CD 间的最短距离是4cm ,∵AB=3cm ,AE=13AB , ∴AE=1cm ,BE=2cm ,设经过ts 时,△BEP 是等腰三角形,当P 在BC 上时,①BP=EB=2cm,t=2时,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=12BE=1cm∵cos∠ABC=35 AB BMBC BP==,∴BP=53 cm,t=53时,△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,则BP=2BN,∴cosB=35 BNBE=,∴3 25 BN=,BN=65 cm,∴BP=125,∴t=125时,△BEP是等腰三角形;当P在CD上不能得出等腰三角形,∵AB、CD间的最短距离是4cm,CA⊥AB,CA=4cm,当P在AD上时,只能BE=EP=2cm,过P作PQ⊥BA于Q,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=221325-,AP=5x=22135-cm,∴t=5+5+3﹣2213-=68221-,答:从运动开始经过2s或53s或125s或68221-s时,△BEP为等腰三角形.【点睛】本题主要考查平行四边形的判定定理及一元二次方程的解法,要求学生能够熟练利用边角关系解三角形. 27.水坝原来的高度为12米【解析】试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x 的值即可.试题解析:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水坝原来的高度为12米..考点:解直角三角形的应用,坡度.。

北京市门头沟区2019-2020学年中考第二次大联考数学试卷含解析

北京市门头沟区2019-2020学年中考第二次大联考数学试卷含解析

北京市门头沟区2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若a 与5互为倒数,则a=( )A .15B .5C .-5D .15- 2.不等式组1351x x -<⎧⎨-≤⎩的解集是( ) A .x >﹣1 B .x≤2 C .﹣1<x <2 D .﹣1<x≤23.将5570000用科学记数法表示正确的是( )A .5.57×105B .5.57×106C .5.57×107D .5.57×1084.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )A .B .C .D . 5.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A→B→C→D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D . 6.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+B .()2213y x =-+7.如图,在△ABC 中,∠C=90°,∠B=10°,以A 为圆心,任意长为半径画弧交AB 于M 、AC 于N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △ACD :S △ACB =1:1.其中正确的有( )A .只有①②③B .只有①②④C .只有①③④D .①②③④8.对于两组数据A ,B ,如果s A 2>s B 2,且A B x x ,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不相同D .数据A 的波动小一些9.计算36÷(﹣6)的结果等于( )A .﹣6B .﹣9C .﹣30D .6 10.在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A′的坐标是( )A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1) 11.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A .2人B .16人C .20人D .40人 12.已知反比例函数,下列结论不正确的是( )A .图象必经过点(﹣1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若,则 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A 是直线y=﹣3x 与反比例函数y=k x的图象在第二象限内的交点,OA=4,则k 的值为_____.14.如图,AB 为⊙0的弦,AB=6,点C 是⊙0上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是______________.15.已知:如图,在△AOB 中,∠AOB=90°,AO=3 cm ,BO=4 cm .将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D=__________cm .16.计算:3a r ﹣(a r ﹣2b r)=____.17.计算:|﹣5|9.形ABCD 的周长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB AE =,12∠=∠,C D ∠=∠,求证:ABC AED ≌△△。

2019-2020学年北京市门头沟区中考数学统考试题

2019-2020学年北京市门头沟区中考数学统考试题

2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.设点()11A ,x y 和()22B ,x y 是反比例函数k y x=图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限 2.如图所示,某公司有三个住宅区,A 、B 、C 各区分别住有职工30人,15人,10人,且这三点在一条大道上(A ,B ,C 三点共线),已知AB =100米,BC =200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A .点AB .点BC .A ,B 之间D .B ,C 之间3.如图,△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N 作直线MN ,交BC 于点D ,连结AD ,则∠BAD 的度数为( )A .65°B .60°C .55°D .45°4.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .1005.下列各组单项式中,不是同类项的一组是( )A .2x y 和22xyB .3xy 和2xy -C .25x y 和22yx -D .23-和36.如图,矩形ABCD 中,E 为DC 的中点,AD :AB =3:2,CP :BP =1:2,连接EP 并延长,交AB 的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②2BF =PB•EF ;③PF•EF =22AD ;④EF•EP =4AO•PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④7.如图,AB 是O 的直径,弦CD AB ⊥,CDB 30∠=,CD 23=,则阴影部分的面积为( )A .2πB .πC .π3 D .2π38.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象可能是( )A .B .C .D .9.如图,在△ABC 中,∠C=90°,点D 在AC 上,DE ∥AB ,若∠CDE=165°,则∠B 的度数为( )A .15°B .55°C .65°D .75°10.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( )A .1B .2C .3D .4二、填空题(本题包括8个小题)11.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=_____度.12.不等式1253x ->的解集是________________13.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.14.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.15.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B 饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.16.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____17.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________18.如果a c eb d f===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.三、解答题(本题包括8个小题)19.(6分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?20.(6分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.21.(6分)如图,AB 为⊙O 的直径,点E 在⊙O ,C 为弧BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC .试判断直线CD 与⊙O 的位置关系,并说明理由若AD=2,AC=6,求⊙O 的半径.22.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).23.(8分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC 如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D 在BA 的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD 的长.(结果精确到0.1米)24.(10分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A 1、A 2,图案为“蝴蝶”的卡片记为B )25.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A ,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A 型车与B 型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A ,B 两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车与B 型车各多少辆?26.(12分)先化简,再求值:(x+2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =1.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大, ∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.∴该停靠点的位置应设在点A;故选A.【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.3.A【解析】【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.5.A【解析】【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.6.B【解析】【分析】由条件设,AB=2x,就可以表示出,x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=3x,CD=2x ∵CP:BP=1:2∴CP=33x,BP=233x∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC =3,tan∠EBC=ECBC=3∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=43x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·EF=3x·22AD 2=2×x )2=6x 2,∴PF·EF≠2AD 2,故③错误.在Rt △ECP 中,∵∠CEP=30°,∴x∵tan ∠PAB=PB AB =∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt △AOB 和Rt △POB 中,由勾股定理得,,∴4AO·2又EF·2 ∴EF·EP=4AO·PO .故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.7.D【解析】分析:连接OD ,则根据垂径定理可得出CE=DE ,继而将阴影部分的面积转化为扇形OBD 的面积,代入扇形的面积公式求解即可.详解:连接OD,∵CD ⊥AB ,∴12CE DE CD === (垂径定理),故OCE ODE S S ,=即可得阴影部分的面积等于扇形OBD 的面积,又∵30CDB ∠=︒,∴60COB ∠= (圆周角定理),∴OC=2,故S 扇形OBD=260π22π3603⨯=, 即阴影部分的面积为2π3. 故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.8.C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.9.D【解析】【分析】 根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE ∥AB ,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C ﹣∠A=180°﹣90°﹣15°=75°,故选D .【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.10.B【解析】【分析】先将点A(1,0)代入y =x 2﹣4x+m ,求出m 的值,将点A(1,0)代入y =x 2﹣4x+m ,得到x 1+x 2=4,x 1•x 2=3,即可解答【详解】将点A(1,0)代入y =x 2﹣4x+m ,得到m =3,所以y =x 2﹣4x+3,与x 轴交于两点,设A(x 1,y 1),b(x 2,y 2)∴x 2﹣4x+3=0有两个不等的实数根,∴x 1+x 2=4,x 1•x 2=3,∴AB =|x 1﹣x 2|=2;故选B .【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.二、填空题(本题包括8个小题)11.30°【解析】【分析】根据旋转的性质得到∠BOD=45°,再用∠BOD 减去∠AOB 即可.【详解】∵将△AOB 绕点O 按逆时针方向旋转45°后,得到△COD ,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD -∠AOB=45°-15°=30°.故答案为30°.12.7<-x【解析】【分析】首先去分母进而解出不等式即可.【详解】去分母得,1-2x>15移项得,-2x>15-1合并同类项得,-2x>14系数化为1,得x<-7.故答案为x<-7.【点睛】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13.1【解析】【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【详解】由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.14.【解析】试题解析:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴==.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15.950【解析】【分析】设工作日期间C 饮料数量为x 瓶,则B 饮料数量为2x 瓶,A 饮料数量为4x 瓶,得到工作日期间一天的销售收入为:8x+6x+5x =19x 元,和周六销售销售收入为:12x+9.6x+7.5x =29.1x 元,再结合题意得到10.1x ﹣(5﹣3)=503,计算即可得到答案.【详解】解:设工作日期间C 饮料数量为x 瓶,则B 饮料数量为2x 瓶,A 饮料数量为4x 瓶,工作日期间一天的销售收入为:8x+6x+5x =19x 元,周六C 饮料数量为1.5x 瓶,则B 饮料数量为3.2x 瓶,A 饮料数量为6x 瓶,周六销售销售收入为:12x+9.6x+7.5x =29.1x 元,周六销售收入与工作日期间一天销售收入的差为:29.1x ﹣19x =10.1x 元,由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在B 、C 饮料上(B 、C 一瓶的差价为2元),且是消费者付B 饮料的钱,取走的是C 饮料;于是有:10.1x ﹣(5﹣3)=503解得:x =50工作日期间一天的销售收入为:19×50=950元,故答案为:950.【点睛】本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.16.143. 【解析】【详解】解:令AE=4x ,BE=3x ,∴AB=7x.∵四边形ABCD 为平行四边形,∴CD=AB=7x ,CD ∥AB ,∴△BEF ∽△DCF. ∴3377BF BE x DF CD x ===, ∴DF=143 【点睛】本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键. 17.222()2a b a ab b +=++【解析】由图形可得:()2222a b a ab b +=++18.3【解析】 ∵a c e b d f===k ,∴a=bk ,c=dk ,e=fk ,∴a+c+e=bk+dk+fk=k(a+b+c), ∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题(本题包括8个小题)19.(1)A 种奖品每件16元,B 种奖品每件4元.(2)A 种奖品最多购买41件.【解析】【分析】(1)设A 种奖品每件x 元,B 种奖品每件y 元,根据“如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设A 种奖品购买a 件,则B 种奖品购买(100﹣a )件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a 的一元一次不等式,解之取其中最大的整数即可得出结论.【详解】(1)设A 种奖品每件x 元,B 种奖品每件y 元,根据题意得:20153801510280x y x y +=⎧⎨+=⎩, 解得:164x y =⎧⎨=⎩, 答:A 种奖品每件16元,B 种奖品每件4元;(2)设A 种奖品购买a 件,则B 种奖品购买(100﹣a )件,根据题意得:16a+4(100﹣a )≤900,解得:a≤1253, ∵a 为整数,∴a≤41,答:A 种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.20.2.4元/米3【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x元,则今年用水价格为每立方米1.2x元由题意列方程得:30155 1.2x x-=解得x2=经检验,x2=是原方程的解1.2x2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.21.(1)直线CD与⊙O相切;(2)⊙O的半径为1.1.【解析】【详解】(1)相切,连接OC,∵C为BE的中点,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;(2)连接CE,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22AC AD-=2,∵CD是⊙O的切线,∴2CD=AD•DE,∴DE=1,∴CE=22CD DE+=3,∵C为BE的中点,∴BC=CE=3,∵AB为⊙O的直径,∴∠ACB=90°,∴AB=22AC BC+=2.∴半径为1.122.5.6千米【解析】【分析】设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=yx,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.设PD的长为x千米,DA的长为y千米,在Rt△PAD中,tan∠DPA=DA DP,即tan18°=yx,∴y=0.33x,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.23.1.9米【解析】试题分析:在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC•sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD的长约为1.9米.考点:解直角三角形的应用24.4 9【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2 BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.25.(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.26.(x﹣y)2;2.【解析】【分析】首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【详解】原式= x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2028,y=2时,原式=(2028﹣2)2=(﹣2)2=2.【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°2.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π-B .8433π-C .8233π-D .843π- 3.已知5a =,27b =,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-4.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .245.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系 如图所示,给出以下结论:①a =8;②b =92;③c =1.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③6.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( ) A .1 B .2 C .3 D .47.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4()a b cm -C .2()a b cm +D .4bcm 8.将二次函数2yx 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+9.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示,下列说法错误的是( )A .小明中途休息用了20分钟B .小明休息前爬山的平均速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度109153 )A .2到3之间B .3到4之间C .4到5之间D .5到6之间二、填空题(本题包括8个小题)11.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.12.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .13.分解因:22424x xy y x y --++=______________________.14.化简:4= .15.如果抛物线y =(k ﹣2)x 2+k 的开口向上,那么k 的取值范围是_____.16.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC ∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .17.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖______块;第n 个图案有白色地面砖______块.18.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 三、解答题(本题包括8个小题) 19.(6分)如图,在平面直角坐标系xOy 中,直线y =x+b 与双曲线y =k x 相交于A ,B 两点, 已知A (2,5).求:b 和k 的值;△OAB 的面积.20.(6分)先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.21.(6分)某中学九年级甲、乙两班商定举行一次远足活动,A、B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为1y千米、2y千米,1y、2y与x的函数关系图象如图所示,根据图象解答下列问题:直接写出1y、2y与x的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?甲、乙两班相距4千米时所用时间是多少小时?22.(8分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星6C卫星发射升空,卫星进入预定轨道.如图,火星从地面C处发射,当火箭达到A点时,从位于地面雷达站D处测得DA的距离是6km,仰角为42.4︒;1秒后火箭到达B点,测得DB的仰角为45.5︒.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求发射台与雷达站之间的距离CD;求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?24.(10分)先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中a=1+2,b=1﹣2. 25.(10分)先化简,再求值:2211()111x x x x -÷+--,其中12x =-. 26.(12分)已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题分析:根据勾股定理即可得到AB ,BC ,AC 的长度,进行判断即可.试题解析:连接AC ,如图:根据勾股定理可以得到:510.∵51+51=10)1.∴AC 1+BC 1=AB 1.∴△ABC 是等腰直角三角形.∴∠ABC=45°.故选C . 考点:勾股定理. 2.C【解析】【分析】连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD ,在Rt △OCD 中,OC =12OD =2, ∴∠ODC =30°,CD =2223OD OC +=∴∠COD =60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π- , 故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.3.D【解析】【详解】根据a =5,2b ,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D.4.B【解析】∵四边形ABCD 是平行四边形,∴DC=AB ,AD=BC ,∵AC 的垂直平分线交AD 于点E ,∴AE=CE ,∴△CDE 的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD 的周长=2×6=12,故选B .5.A【解析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.6.B【解析】【分析】先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|=2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.7.D【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图②中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.B【解析】【分析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h)1+k,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B.【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.9.C【解析】【分析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:28007040=(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:380028002510060-=-米/分,D正确.故选C.考点:函数的图象、行程问题.。

2019届中考北京市门头沟区九年级二模数学试卷(含解析)

2019届中考北京市门头沟区九年级二模数学试卷(含解析)

门头沟区2019年初三年级综合练习(二)数学试卷2019.5一、选择题(共8道小题,每小题2分,共16分)下列各题均有四个选项,其中只有一个..是符合题意的.1.2013年12月2日1时30分,中国于西昌卫星发射中心成功将“嫦娥三号”探测器送入轨道.2013年12月15日4时35分,“嫦娥三号”探测器“玉兔号”月球车分离.“玉兔号”月球车顺利驶抵月球表面,留下了中国在月球上的第一个足迹.“玉兔号”月球车一共在月球上工作了972天,月23000小时.将23000用科学计数法表示为A. 2.3×103B. 2.3×104C. 23×103D. 0.23×1052.在下面四个几何体中,俯视图是矩形的是A. B. C. D.3. 下列运算中,正确的是A. a2•a3=a5B. (a2) 3=a5C. a6÷a2=a4D. a5+a5=2a104. 如果23a b-=,那么代数式222a b aba a b⎛⎫+-•⎪-⎝⎭的值为A. 3B. 23C. 33D. 435. 七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为A.932B.516C.38D.7166. 已知点A(1,m)与点B(3,n)都在反比例函数()0ky kx=>的图象上,那么m与n的关系是1. 本试卷共10页,五道大题,28个小题,满分100分。

考试时间120分钟。

2. 请在试卷上准确填写学校名称、姓名和考试编号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束后,请交回答题卡、试卷。

考生须知第 2 页 共 15 页A. m <nB. m >nC. m =nD. 不能确定7. 如图,线段AB 是O e 的直径,弦CD ⊥AB ,∠CAB =30°,OD =2,那么DC 的长等于A. 2B. 4C.3D.238. 团体购买某公园门票,票价如下表:购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么该公司这两个部门的人数之差为A. 20B. 35C. 30D. 40二、填空题(本题共16分,每小题2分) 9. 函数131y x =-的自变量x 的取值范围是_______________. 10. 写出个比2大且比3小的无理数_______________.11. 如图,在矩形ABCD 中,E 是CD 的延长线上一点,连接BE 交AD 于点F .如果AB =4,BC =6,DE =3,那么AF 的长是_______________.12. 用一组a ,b ,c (c ≠0)的值说明命题“如果a < b ,那么c a bc<”是错误的,这组值可以是a = ________,b = ________,c = ________.13. 《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x 人,小和尚y 人,可列方程组为__________________________.14. 下图是利用平面直角坐标系画出的老北京一些地点的分布示意图,这个坐标系分别以正东和正北方向FCEBADCOB A为x 轴和y 轴的正方向.如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为________.第14题 第15题15. 如图,在平面直角坐标系xOy 中,△AOB 可以看作是△OCD 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD 得到△AOB 的过程_____________________.16. 当三角形中的一个内角α是另一个内角β的一半时,我们称该三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”为直角三角形,那么“特征角”度数为_____________.三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分) 解答题应写出文字说明、证明过程或演算步骤 17. 计算:()0-5+4sin 45|1|π+-o18. 解不等式121-1232x x ≤-,并把它的解集在数轴上表示出来.第 4 页 共 15 页19. 已知:关于x 的一元二次方程2420x x m -+=有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为非负数,且该方程的根都是整数,求m 的值.20. 下面是小明同学设计的“已知底边及底边上的高作等腰三角形”的尺规作图的过程.已知:如图1,线段a 和线段b .求作:△ABC ,使得AB =AC ,BC =a ,BC 边上的高为b . 作法:如图2,①作射线BM ,并在射线BM 上截取BC =a ; ②作线段BC 的垂直平分线PQ ,PQ 交BC 于D ; ③以D 为圆心,b 为半径作圆,交PQ 于A ; ④连接AB 和AC .则△ABC 就是所求作的图形.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明: 证明:由作图可知BC =a ,AD =b .∵PQ 为线段BC 的垂直平分线,点A 在PQ 上,∴AB =AC (_______________________________________)(填依据) 又∵AD 在线段BC 的垂直平分线PQ 上, ∴AD ⊥BC .∴AD 为BC 边上的高,且AD =b .21. 如图,在ABCD Y 中,点E 是BC 边的一点,将边AD 延长至点F ,使得∠AFC =∠DEC .连接CF ,DE .(1)求证:四边形DECF 是平行四边形;DEbM(2)如果AB=13,DF=14,12tan5DCB∠=,求CF的长.22. 如图,在平面直角坐标系xOy中,一次函数y x b=-+的图象与反比例函数4yx=-的图象交于点A(-4,n)和B.(1)求b的值和点B的坐标;(2)如果P是x轴上一点,且AP=AB,直接写出点P的坐标.23. 如图,点C在Oe上,AB为直径,BD与过点C的切线垂直于D,BD与Oe交于点E.(1)求证:BC平分∠DBA;(2)如果1cos2ABD∠=,OA=2,求DE的长.B第 6 页共15 页24.如图,E 为半圆O 直径AB 上的一动点,C 为半圆上一定点.连接AC 和BC ,AD 平分∠ CAB 交BC 于点D ,连接CE 和DE .如果AB =6cm ,AC =2.5cm ,设A ,E 两点间的距离为x cm ,C ,E 两点之间的距离为y 1 cm ,D ,E 两点间的距离为y 2 cm .小明根据学习函数的经验,分别对函数y 1和y 2随自变量x 变化而变化的规律进行了探究. 下面是小明的探究过程,请将它补充完整:(1)按下表中自变量x 值进行取点、画图、测量,得到了y 1和y 2与x 几组对应值:x /cm 0 1 2 3 4 5 6 y 1/cm 2.50 2.27 2.27 m 3.73 4.56 5.46 y 2/cm2.972.201.681.692.192.973.85问题:上表中的m =__________cm .(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x , y 1)和(x , y 2),并画出函数y 1和y 2的图象;(3)结合函数图象,解决问题:当△ACE 为等腰三角形时,AE 的长度为_________cm .(结果精确到001)DCAB25. 2019年1月有300名教师参加了“新技术支持未来教育”培训活动,会议就“面向未来的教育”和“家庭教育”这两个问题随机调查了60名教师,并对数据进行了整理、描述和分析.下面给出了部分信息:a.关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组::0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24):频数(次数/次b.关于“家庭教育”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 9 10 10 10 10 10 10 11 11 11 11c.“面向未来的教育”和“家庭教育”这两问题发言次数的平均数、中位数、众数如下:(1)表中m的值为;(2)此次采访中,参会教师更感兴趣的是___________________(填“面向未来的教育”和“家庭教育”)理由是;(3)假设多有参会教师都接受调查,估计在“家庭教育”这个问题上发言次数超过8次的参会教师有名.第8 页共15 页26. 在平面直角坐标系xOy 中,抛物线()2230y ax ax a a =--≠,顶点为P ,且该抛物线与x 轴交于A ,B两点(点A 在点B 的左侧).我们规定:抛物线与x 轴围城的封闭区域称为“G 区域”(不包含边界);横、纵坐标都是整数的 称为整点.(1)求抛物线223y ax ax a =--顶点P 的坐标(用含a 的代数式表示); (2)如果抛物线223y ax ax a =--经过点(1,3) ①求a 的值;②在①的条件下,直接写出“G 区域”内整点的个数.(3)如果抛物线223y ax ax a =--在“G 区域”内有4个整数点,直接写出a 的取值范围围.第 10 页 共 15 页27. 如图,等边三角形ABC 中,D 为BC 边上一点,点D 关于直线AB 的对称点是点E ,连接AD ,DE ,在AD 上取点F ,使得∠ EFD = 60°,射线EF 与AC 交于点G .(1)设∠BAD =α,求∠AGE 的度数(用含α的代数式表示)(2)探究CG 与DE 之间的等量关系,并证明.E D AC28. 对于平面直角坐标系xOy 中的动点P 和图形N ,给出如下定义:如果Q 为图形N 上一个动点,P ,Q 两点间距的最大值为d max ,P ,Q 两点间距离最小值为d min ,我们把max min d d 的值叫做点P 和图形N 间的“和距离”,记作d (P .图形N ).如图,正方形ABCD 的中心为点O ,A (3,3).(1)点O 到线段AB 的“和距离”d (O ,AB )=_____________;(2)设该正方形与y 轴交于点E 和F ,点P 在线段EF 上,d (P ,正方形ABCD ) = 7,求点P 的坐标.第 12 页 共 15 页门头沟区2019年初三年级综合练习(二)数学试卷答案及评分参考 2019年5月三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:()054sin 45 1.π-+︒+- 141=++………………………………………………………………………………3分 2=+ …………………………………………………………………………………………5分 18.(本小题满分5分)解:1211232x x --≤3643x x ≤-- ................................................................................................ 1分 3463x x ≤-- ................................................................................................ 2分 3x ≤- ...................................................................................................... 3分 3.x ≥- (4)分把它的解集在数轴上表示为:–1–2–3–41234…………………………………………… 5分19.(本小题满分5分)解:(1)由题意得2(4)4120m >∆=-+⨯⨯,……………………………………………………… 1分解得 2.m < ………………………………………………………………………………… 2分(2)∵ m 为非负整数,∴ 0,1.m = ………………………………………………………………………………… 3分当0m =时,原方程为240x x -=, 解得 10x =,2 4.x =当1m =时,原方程为2420x x -+=, 解得此方程的根不是整数, ∴ 1m =应舍去.∴ 0.m =……………………………………………………………………………………… 5分BH FEDCB A20.(本小题满分5分) 解:(1)尺规作图正确;………………………………………………………………………………… 3分 (2)填空正确.……………………………………………………………………………………… 5分 21.(本小题满分5分)(1)证明:∵ 四边形ABCD 是平行四边形,∴ AD ∥BC .……………………………………………………………………………… 1分∴ ∠ADE =∠DEC . ∵ ∠AFC =∠DEC , ∴ ∠AFC =∠ADE , ∴ DE ∥FC .∴ 四边形DECF 是平行四边形.………………………………………………………… 2分 (2)解:如图,过点D 作DH ⊥BC 于点H , ……………………………………………………… 3分∵ 四边形ABCD 是平行四边形, ∴ AB=CD =13∵ 12tan 5BCD ∠=,CD =13, ∴ DH =12,CH =5.………………… 4分 ∵ DF =14, ∴ CE =14. ∴ EH =9. ∴ DE .∴ CF=DE =15.………………………………………………………………………………… 5分22.(本小题满分5分)解:(1)把A (-4,n )代入4y x=-中,得1n =,………………………………………………… 1分 把A (-4,1)代入y x b =-+中,得3b =- …………………………………………… 2分解方程组3,4.y x y x =--⎧⎪⎨=-⎪⎩得4,1.x y =-⎧⎨=⎩ , 1,4.x y =⎧⎨=-⎩ ∴ 点B 的坐标是(1,4)- ………………………………………………………………… 3分 (2)点P 的是坐标(3,0)或(11,0)-. ………………………………………………………… 5分23.(本小题满分6分) (1)证明:连接OC ,∵ DC 是⊙O 的切线, ∴ DC ⊥OC .…………………… 1分 又∵ DC ⊥BD , ∴ OC ∥BD .∴ ∠1=∠3. ……………………………………………………………………………… 2分 ∵ OC =OB , ∴ ∠1=∠2. ∴ ∠2=∠3.∴ BC 平分∠DBA ;……………………………………………………………………… 3分第 14 页 共 15 页B(2)解:连接AE 和AC ,∵ AB 是⊙O 的直径,DC ⊥BD ,∴ ∠ACB =∠AEB =∠CDB =90°. ∵ 1cos 2ABD ∠=,OA = 2,BC 平分∠DBA , ∴ ∠ABD =60°,∠2=∠3=30°,AB =4. 在Rt △ACB 中,∠ACB =90°,AB =4,∠2=30°,∴ BC =在Rt △CDB 中,∠CDB =90°,BC =3=30°, ∴ BD =3.在Rt △AEB 中,∠AEB =90°,AB =4,∠ABE =60°, ∴ BE =2.∴ DE =1. ……………………………………………………………………………………… 6分24.(本小题满分6分)解:(1)3.00;………………………………………………………………………………………… 1分(2)略;…………………………………………………………………………………………… 3分 (3)2.50,2.00,3.00. …………………………………………………………………………… 6分25.(本小题满分6分)解:(1)11;………………………………………………………………………………………… 2分 (2)略;…………………………………………………………………………………………… 4分 (3)200 . ………………………………………………………………………………………… 6分26.(本小题满分6分)解:(1)∵ ()222314y ax ax a a x a =--=--,……………………………………………………… 1分∴ 该抛物线的顶点为()1,4.a - ……………………………………………………………… 2分 (2)① ∵ 抛物线223y ax ax a =--经过(1, 3),∴ 323a a a =--,解得3.4a =-………………………………………………………… 3分② 6个. ……………………………………………………………………………………… 4分(3)2132a --≤<,12.23a <≤ …………………………………………………………………… 6分27.(本小题满分7分)解:(1)∵ △ABC 是等边三角形,∴ ∠BAC = 60°. ……………………………………………………………………………… 1分 ∵ ∠BAD = α,∴ ∠DAC =∠BAC -∠BAD = 60°- α. ……………………………………………………… 2分 又∵ ∠AFG = ∠EFD = 60°,∴ ∠AGE =180°-∠DAC -∠AFG = 60°+ α. ……………………………………………… 3分MH AB C D E F Gx(2)线段CG 与BD 之间的数量关系是CG = 2BD . …………………………………………… 4分证明如下:在AC 上截取CH =BD ,交AC 于H , 连接BE ,BH ,AE , BH 交AD 于M . ∵ D ,E 关于AB 对称,∴ ∠BAE =∠BAD =α,∠ABE =∠ABC =60°,∴ BD = BE ,AD = AE .∴ ∠EAC =∠BAE +∠BAC =60°+α.∴ ∠EAC =∠AGE . ∴ EA = EG . ∵ 等边△ABC 中,AB = BC ,∠ABD =∠C = 60°.∴ △ABD ≌△BCH (SAS ). ………………………………………………… 5分 ∴ AD =BH ,∠HBC = ∠DAB = α. ∴ EG = BH .∴ ∠ABM =∠ABC -∠HBC = 60°-α. ∴ ∠BMD =∠ABM +∠BAD = 60°. ∴ ∠BMD =∠EFD = 60°. ∴ EG // BH .∴ 四边形EGHB 是平行四边形. ……………………………………………… 6分 ∴ BE = GH .∴ BE = GH = CH = BD .∴ CG = GH + CH= 2BD . ……………………………………………………… 7分28.(本小题满分7分)解:(1)① 3;………………………………………………………………………………… 2分② 如图,设P (0,t ). ∵ 点P 在线段EF 上, ∴ -3≤t ≤3 .当0≤t ≤3时,由题意可知d max =PC ,d min =PE . ∴ PE = 3-t ,PF = t +3,CF =3. ∵(),7d P ABCD =正方形, ∴ PC + PE =7. ∴ PC = 4+ t .在Rt △PCF 中,由勾股定理得 ()()22433t t +=++解得 1.t =………………………………………………………………………………… 4分 ∴ P (0,1).当0>t ≥-3时,由对称性可知P (0,-1).综上,P 的坐标为(0,1)和(0,-1). ……………………………………………… 5分(2)3 3.t -<< ………………………………………………………………………………… 7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

北京市门头沟区2019年初三数学二模试题评标答案

北京市门头沟区2019年初三数学二模试题评标答案

门头沟区2019年初三年级综合练习(二)数学试卷答案及评分参考2019年5月一、选择题(本题共16分,每小题2分)题号12345678答案B D A A C B D C二、填空题(本题共16分,每小题2分)题号910111213141516答案13x ¹略247略略(-3,1)略30°,45°三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:()054sin 45 1.π-+︒+-1412=+⨯+………………………………………………………………………………3分2=+…………………………………………………………………………………………5分18.(本小题满分5分)解:1211232x x --≤3643x x ≤--……………………………………………………………………………………1分3463x x ≤--……………………………………………………………………………………2分3x ≤-…………………………………………………………………………………………3分3.x ≥-………………………………………………………………………………………4分把它的解集在数轴上表示为:……………………………………………5分19.(本小题满分5分)解:(1)由题意得2(4)4120m >∆=-+⨯⨯,………………………………………………………1分解得 2.m <…………………………………………………………………………………2分(2)∵m 为非负整数,∴0,1.m =…………………………………………………………………………………3分当0m =时,原方程为240x x -=,解得10x =,2 4.x =当1m =时,原方程为2420x x -+=,解得此方程的根不是整数,∴1m =应舍去.20.(本小题满分5分)解:(1)尺规作图正确;…………………………………………………………………………………3分(2)填空正确.………………………………………………………………………………………5分21.(本小题满分5分)(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .………………………………………………………………………………1分∴∠ADE =∠DEC .∵∠AFC =∠DEC ,∴∠AFC =∠ADE ,∴DE ∥FC .∴四边形DECF 是平行四边形.…………………………………………………………2分(2)解:如图,过点D 作DH ⊥BC 于点H ,………………………………………………………3分∵四边形ABCD 是平行四边形,∴AB=CD =13∵12tan 5BCD ∠=,CD =13,∴DH =12,CH =5.…………………4分∵DF =14,∴CE =14.∴EH =9.∴DE=15.∴CF=DE =15.…………………………………………………………………………………5分22.(本小题满分5分)解:(1)把A (-4,n )代入4y x=-中,得1n =,…………………………………………………1分把A (-4,1)代入y x b =-+中,得3b =-……………………………………………2分解方程组3,4.y x y x =--⎧⎪⎨=-⎪⎩得4,1.x y =-⎧⎨=⎩,1,4.x y =⎧⎨=-⎩∴点B 的坐标是(1,4)-…………………………………………………………………3分(2)点P 的是坐标(3,0)或(11,0)-.…………………………………………………………5分23.(本小题满分6分)(1)证明:连接OC ,∵DC 是⊙O 的切线,∴DC ⊥OC .……………………1分又∵DC ⊥BD ,∴OC ∥BD .∴∠1=∠3.………………………………………………………………………………2分∵OC =OB ,∴∠1=∠2.∴∠2=∠3.(2)解:连接AE 和AC ,∵AB 是⊙O 的直径,DC ⊥BD ,∴∠ACB =∠AEB =∠CDB =90°.∵1cos 2ABD ∠=,OA =2,BC 平分∠DBA ,∴∠ABD =60°,∠2=∠3=30°,AB =4.在Rt △ACB 中,∠ACB =90°,AB =4,∠2=30°,∴BC =.在Rt △CDB 中,∠CDB =90°,BC =,∠3=30°,∴BD =3.在Rt △AEB 中,∠AEB =90°,AB =4,∠ABE =60°,∴BE =2.∴DE =1.………………………………………………………………………………………6分24.(本小题满分6分)解:(1)3.00;…………………………………………………………………………………………1分(2)略;……………………………………………………………………………………………3分(3)2.50,2.00,3.00.……………………………………………………………………………6分25.(本小题满分6分)解:(1)11;…………………………………………………………………………………………2分(2)略;……………………………………………………………………………………………4分(3)200.…………………………………………………………………………………………6分26.(本小题满分6分)解:(1)∵()222314y ax ax a a x a =--=--,………………………………………………………1分∴该抛物线的顶点为()1,4.a -………………………………………………………………2分(2)①∵抛物线223y ax ax a =--经过(1,3),∴323a a a =--,解得3.4a =-…………………………………………………………3分②6个.………………………………………………………………………………………4分(3)2132a --<,12.23a <≤……………………………………………………………………6分27.(本小题满分7分)解:(1)∵△ABC 是等边三角形,∴∠BAC =60°.………………………………………………………………………………1分∵∠BAD =α,∴∠DAC =∠BAC -∠BAD =60°-α.………………………………………………………2分又∵∠AFG =∠EFD =60°,(2)线段CG 与BD 之间的数量关系是CG =2BD .……………………………………………4分证明如下:在AC 上截取CH =BD ,交AC 于H ,连接BE ,BH ,AE ,BH 交AD 于M .∵D ,E 关于AB 对称,∴∠BAE =∠BAD =α,∠ABE =∠ABC =60°,∴BD =BE ,AD =AE .∴∠EAC =∠BAE +∠BAC =60°+α.∴∠EAC =∠AGE .∴EA =EG .∵等边△ABC 中,AB =BC ,∠ABD =∠C =60°.∴△ABD ≌△BCH (SAS ).…………………………………………………5分∴AD =BH ,∠HBC =∠DAB =α.∴EG =BH .∴∠ABM =∠ABC -∠HBC =60°-α.∴∠BMD =∠ABM +∠BAD =60°.∴∠BMD =∠EFD =60°.∴EG //BH .∴四边形EGHB 是平行四边形.………………………………………………6分∴BE =GH .∴BE =GH =CH =BD .∴CG =GH +CH =2BD .………………………………………………………7分28.(本小题满分7分)解:(1)①3;…………………………………………………………………………………2分②如图,设P (0,t ).∵点P 在线段EF 上,∴-3≤t ≤3.当0≤t ≤3时,由题意可知d max =PC ,d min =PE .∴PE =3-t ,PF =t +3,CF =3.∵(),7d P ABCD =正方形,∴PC +PE =7.∴PC =4+t .在Rt △PCF 中,由勾股定理得()()222433t t +=++,解得 1.t =…………………………………………………………………………………4分∴P (0,1).当0>t ≥-3时,由对称性可知P (0,-1).综上,P 的坐标为(0,1)和(0,-1).………………………………………………5分(2)3 3.t -<<…………………………………………………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

门头沟区初三数学试卷

门头沟区初三数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,是整数的是()A. √9B. -√16C. 2.5D. √252. 下列各数中,绝对值最大的是()A. -3B. 3C. -2.5D. 2.53. 若a > 0,b < 0,则下列不等式中成立的是()A. a + b > 0B. a - b < 0C. -a + b > 0D. -a - b < 04. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解是()A. x1 = 2, x2 = 3B. x1 = 3, x2 = 2C. x1 = -2, x2 = -3D. x1 = -3, x2 = -25. 在平面直角坐标系中,点A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(2,3)D.(-2,3)6. 若sinα = 0.6,则cosα的取值范围是()A. 0 < cosα < 1B. -1 < cosα < 0C. 0 < cosα < √3D. -√3 < cosα < 07. 在等腰三角形ABC中,若AB = AC,且∠BAC = 40°,则∠ABC的度数是()A. 40°B. 50°C. 70°D. 80°8. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 4C. y = 1/xD. y = 3x^29. 已知等差数列{an}中,a1 = 2,公差d = 3,则第10项an的值是()A. 29B. 30C. 31D. 3210. 若x^2 - 2x - 3 = 0,则x^3 - 3x^2 + 3x - 1的值为()A. 0B. 1C. 2D. 3二、填空题(每题5分,共50分)11. 已知sinθ = 0.8,cosθ = 0.6,则tanθ的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C.a6÷a2=a3
4.如果 a-b=2
3
,那么代数式
a2 b2 2a
b
a
a b
的值为
D.a5+a5=2a10
A. 3
B.2 3
C.3 3
D.4 3
5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形块正方形和一
块平行四边形共七块板组成的,如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么
留下了中国在月球上的第一个足迹.“玉兔号”月球车一共在月球上工作了 972 天,约 23 000 小时,将 23
000 用科学记数法表示为
A.2.3×103
B.2.3×104
C.23×103
D.0.23×105
2.在下面四个几何体中,俯视图是矩形的是
3.在下列运算中,正确的是
A.a2·a3=a5
B.(a2)3=a5
5.考试结束,将试卷、答题卡和草稿纸一并交回。
一、选择题(本题共 16 分,每小题 2 分)
第 1-8 题均有四个选项,符合题意的选项只.有.一个.
1.2013 年 12 月 2 日 1 时 30 分,中国于西昌卫星发射中心成功将“嫦娥三号”探测器送入轨道.2013 年 12
月 15 日 4 时 35 分,“嫦娥三号”探测器与“玉兔号”月球车分离,“玉兔号”月球车顺利驶抵月球表面,
A.2
B.4
C. 3
D.2 3
C
A
B
O
D
8.团体购买某公园门票,票价如下表:
购票人数
1~50
51~100
100 以上
门票价格
13 元/人
11 元/人
9 元/人
某单位现要组织其市场部和生产部的员工游览该公园,如果按部门作为团体,选择两个不同的时间分
别购票游览公园,则共需支付门票费为 1290 元;如果两个部门合在一起作为一个团体,同一时间购票游览公
写出文字说明、证明过程或演算步骤
17.计算: 50 4sin 45 1 .
18.解不等式 1 x 1≤ 2 x 1 ,并把它的解集在数轴上表示出来.
2
32
–4 –3 –2 –1 0 1 2 3 4
19.已知:关于 x 的一元二次方程 x2-4x+2m=0 有两个不相等的实数根. (1)求 m 的取值范围; (2)如果 m 为非负整数,且该方程的根都是整数,求 m 的值.
20.下面是小明同学设计的“已知底边及底边上的高作等腰三角形”的尺规作图的过程. 已知:如图 1,线段 a 和线段 b 求作:△ABC,使得 AB=AC,BC=a,BC 边上的高为 b.
a
b
图1 作法:如图 2.
B
CM
图2
①作射线 BM,并在射线 BM 上截取 BC=a; ②作线段 BC 的垂直平分线 PQ,PQ 交 BC 于 D; ③以 D 为圆心,b 为半径作圆,交 PQ 于 A; ④连接 AB 和 AC. 则△ABC 就是所求作的图形. 根据上述作图过程,回答问题: (1)用直尺和圆规,补全图 2 中的图形;
转)得到的,写出一种由△OCD 得到△AOB 的过程:
.
16.当三角形中一个内角 α 是另一个内角 β 的一半时,我们称该三角形为“特征三角形”,其中 α 称为“特
征角”.如果一个“特征三角形”为直角三角形,那么“特征角”度数为
.
三、解答题(本题共 68 分,第 17~22 题每小题 5 分,第 23~26 题每小题 6 分,第 27~28 题每小题 7 分)解答应
百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”
译文:有 100 名和尚分 100 个馒头,正好分完,如果大和尚一人分 3 个,小和尚 3 人分一个,试问大、小
和尚各有几人?
设有大和尚 x 人,小和尚 y 人,可列方程组为
.
14.下图是利用平面直角坐标系画出的老北京一些地点的分布示意图,这个坐标系分别以正东和正北方向
为 x 轴和 y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表
示西便门的点的坐标为
.
北 西便门
地安门
天安门
朝阳门
宣武门 正阳门 崇文门
右安门 永定门
y 3
2A
D
1
C BO –3 –2 –1
–1
x 12
第 14 题图
第 15 题图
15.如图,在平面直角坐标系 xOy 中,△AOB 可以看作是△OCD 经过若干次图形的变化(平移、轴对称、旋
此点取自黑色部分的概率为
9
A.
32
5
B.
16
3
C.8Biblioteka 7D.16
k
6.已知点 A(1,m)与点 B(3,n)都在反比例函数 y= (k>0)的图象上,那么 m 与 n 的关系是
.
x
A.m<n
B. m>n
C. m= n
D.不能确定
7.如图,线段 AB 是⊙O 的直径,弦 CD⊥AB,∠CAB=30°,OD=2,那么 DC 的长等于
AF 的长为
.
B
A
F
C
D
E
ab
12. 用 一 组 a,b,c(c ≠ 0) 的 值 说 明 命 题 “ 如 果 a < b, 那 么 < ” 是 错 误 的 , 这 组 值 可 以 是
cc
a=
,b=
,c=
.
13.《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一
园,则需支付门票费为 990 元,那么该公司这两个部门的人数之差为
A.20
B.35
C.30
D.40
二、填空题(本题共 16 分,每小题 2 分)
4
9.函数 y=
的自变量 x 的取值范围是
3x 1
10.写出一个比 2 大且比 3 小的无理数:
. .
11.如图,在矩形 ABCD 中,E 是 CD 的延长线上一点,连接 BE 交 AD 于点 F.如果 AB=4,BC=6,DE=3,那么
门头沟区 2019 年初三年级综合练习(二) 数学试卷
2019 年 5 月
考 1.本试卷共 10 页,三道大题,28 个小题,满分 100 分。考试时间 120 分钟。
生 2.在试卷和答题卡上认真填写学校和名称,并将条形码粘贴在答题卡相应位置处。
须 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 知 4.在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
(2)完成下面的证明:
证明:由作图可知 BC=a,AD=b .
∵PQ 为线段 BC 的垂直平分线,点 A 在 PQ 上,
∴AB=AC(
)(填依据)
又∵AD 在线段 BC 的垂直平分线 PQ 上.
∴AD⊥BC.
∴AD 为 BC 边上的高,且 AD=b.
相关文档
最新文档