FIR滤波器设计与实现
fir滤波器的主要设计方法 -回复
fir滤波器的主要设计方法-回复fir滤波器是一种基本的数字滤波器,主要用于数字信号处理中的滤波操作。
它的设计方法有很多种,包括频率采样法、窗函数法、最优权系数法等。
本文将一步一步回答"[fir滤波器的主要设计方法]",让我们一起来了解一下吧。
一、频率采样法频率采样法是fir滤波器设计的最基本方法之一。
它的主要思想是在频域中对滤波器的频响特性进行采样,然后通过反变换得到滤波器的冲激响应。
这种方法的优点是设计简单,适用于各种滤波器的设计。
1. 确定滤波器的截止频率和通带、阻带的要求。
根据应用的具体需求,确定滤波器的频率范围和滤波特性。
2. 设计理想的滤波器频率响应。
根据频率范围和滤波特性的要求,设计所需的滤波器频率响应。
常见的有低通、高通、带通、带阻等类型。
3. 进行频率采样。
根据滤波器频率响应的要求,在频域中进行一系列均匀或者非均匀的采样点。
4. 反变换得到滤波器的冲激响应。
对采样得到的频率响应进行反傅里叶变换,得到滤波器的冲激响应。
5. 标准化处理。
对得到的冲激响应进行标准化处理,使得滤波器的增益等于1。
6. 实现滤波器。
根据得到的冲激响应,使用差分方程或者卷积的方法实现fir滤波器。
二、窗函数法窗函数法是一种常用的fir滤波器设计方法,它主要是通过在频域中将理想的滤波器乘以一个窗函数来实现滤波器的设计。
1. 确定滤波器的截止频率和通带、阻带的要求,根据具体应用的需求确定滤波器的频率范围和滤波特性。
2. 设计理想的滤波器频率响应。
根据频率范围和滤波特性要求,设计所需的滤波器频率响应。
3. 选择窗函数。
根据滤波器的频率响应和窗函数的性质,选择合适的窗函数。
4. 计算窗函数的系数。
根据选择的窗函数,计算窗函数的系数。
5. 实现滤波器。
将理想滤波器的频率响应与窗函数相乘,得到实际的滤波器频率响应。
然后使用反变换将频率响应转换为滤波器的冲激响应。
6. 标准化处理。
对得到的冲激响应进行标准化处理,使得滤波器的增益等于1。
FIR滤波器的设计及特点
FIR滤波器的设计及特点FIR滤波器(Finite Impulse Response Filter)是一种数字滤波器,它的特点是其冲激响应是有限长度的。
FIR滤波器通过对输入序列做线性加权的运算来实现滤波的效果。
FIR滤波器的设计需要确定滤波器的系数以及长度,其设计方法有很多种,其中比较常用的有窗函数法、频率采样法以及最小二乘法。
FIR滤波器的设计方法之一是窗函数法,它是根据所设定的频率响应曲线来进行设计的。
具体的步骤是:首先,在频率域上设定所需的频率响应曲线;然后,将该曲线转换到时域上,得到滤波器的单位冲激响应;最后,对单位冲激响应进行加窗处理,得到最终的滤波器系数。
在窗函数法中,常用的窗函数有矩形窗、汉宁窗、哈宁窗等,不同的窗函数会导致滤波器具有不同的性能,如频域主瓣宽度、滤波器的过渡带宽度等。
另一种常用的FIR滤波器设计方法是频率采样法,它是通过在频率域上进行采样来确定滤波器的系数。
在频域上,滤波器的频率响应可以表示为幅度特性和相位特性。
通过选取一组频率,在这些频率上等幅响应,并且在其余的频率上衰减至零,然后对这些采样点进行IFFT运算,即可得到滤波器的系数。
频率采样法的特点是可以直观地设计滤波器,但是在采样点之间的频率响应无法得到保证,会产生幅度插值误差。
最小二乘法是一种通过最小二乘准则来设计滤波器的方法。
它在时域上通过对输入序列和输出序列之间的误差进行最小化,得到最优的滤波器系数。
最小二乘法可以看作是一种优化问题的求解方法,需要解决一个线性规划问题,因此需要求解线性方程组来确定滤波器的系数。
1.稳定性:FIR滤波器是一种无反馈结构的滤波器,其零点可以完全控制在单位圆内,因此具有稳定性保证。
2.线性相位特性:FIR滤波器的冲激响应通常是对称的,因此它不会引入相位失真,可以保持输入信号的相位。
3.精确控制频率响应:FIR滤波器的频率响应可以通过设计滤波器系数来精确控制,具有很高的灵活性。
4.零相移滤波:由于线性相位特性,FIR滤波器可以实现零相移的滤波效果,适用于对输入信号相位要求较高的应用。
数字信号处理实验报告-FIR滤波器的设计与实现
数字信号处理实验报告-FIR滤波器的设计与实现在数字信号处理中,滤波技术被广泛应用于时域处理和频率域处理中,其作用是将设计信号减弱或抑制被一些不需要的信号。
根据滤波器的非线性抑制特性,基于FIR(Finite Impulse Response)滤波器的优点是稳定,易设计,可以得到较强的抑制滤波效果。
本实验分别通过MATLAB编程设计、实现、仿真以及分析了一阶低通滤波器和平坦通带滤波器。
实验步骤:第一步:设计一阶低通滤波器,通过此滤波器对波型进行滤波处理,分析其对各种频率成分的抑制效果。
为此,采用零极点线性相关算法设计滤波器,根据低通滤波器的特性,设计的低通滤波器的阶次为n=10,截止频率为0.2π,可以使设计的滤波器被称为一阶低通滤波器。
第二步:设计平坦通带滤波器。
仿真证明,采用兩個FIR濾波器組合而成的阻礙-提升系統可以實現自定義的總三值響應的設計,得到了自定義的總三值響應函數。
实验结果:1、通过MATLAB编程,设计完成了一阶低通滤波器,并通过实验仿真得到了一阶低通滤波器的频率响应曲线,证明了设计的滤波器具有良好的低通性能,截止频率为0.2π。
在该频率以下,可以有效抑制波形上的噪声。
2、设计完成平坦通带滤波器,同样分析其频率响应曲线。
从实验结果可以看出,此滤波器在此频率段内的通带性能良好,通带范围内的信号透过滤波器后,损耗较小,滞后较小,可以满足各种实际要求。
结论:本实验经过实验操作,设计的一阶低通滤波器和平坦通带滤波器具有良好的滤波特性,均已达到预期的设计目标,证明了利用非线性抑制特性实现FIR滤波处理具有较强的抑制滤波效果。
本实验既有助于深入理解FIR滤波器的设计原理,也为其他应用系统的设计和开发提供了指导,进而提高信号的处理水平和质量。
实验四FIR数字滤波器设计与软件实现
实验四FIR数字滤波器设计与软件实现
实验目的:
掌握FIR数字滤波器的设计与软件实现方法,了解滤波器的概念与基
本原理。
实验原理:
FIR数字滤波器全称为有限脉冲响应数字滤波器,其特点是具有有限
长度的脉冲响应。
滤波器通过一系列加权系数乘以输入信号的延迟值,并
将这些值相加得到输出信号。
FIR滤波器的频率响应由滤波器系数所决定。
实验步骤:
1.确定所需的滤波器的设计规格,包括截止频率、通带波纹、阻带衰
减等。
2.选择适当的滤波器设计方法,如窗函数、最佳近似法、最小二乘法等。
3.根据所选方法,计算滤波器的系数。
4.在MATLAB环境下,使用滤波器的系数实现滤波器。
5.输入所需滤波的信号,经过滤波器进行滤波处理。
6.分析输出的滤波信号,观察滤波效果是否符合设计要求。
实验要求:
1.完成FIR数字滤波器的设计和软件实现。
2.对比不同设计方法得到的滤波器性能差异。
3.分析滤波结果,判断滤波器是否满足设计要求。
实验器材与软件:
1.个人电脑;
2.MATLAB软件。
实验结果:
根据滤波器设计规格和所选的设计方法,得到一组滤波器系数。
通过
将滤波器系数应用于输入信号,得到输出滤波信号。
根据输出信号的频率
响应、通带波纹、阻带衰减等指标,评估滤波器的性能。
实验注意事项:
1.在选择设计方法时,需要根据滤波器要求和实际情况进行合理选择。
2.在滤波器实现过程中,需要注意滤波器系数的计算和应用。
3.在实验过程中,注意信号的选择和滤波结果的评估方法。
fir数字滤波器的设计与实现
FIR数字滤波器的设计与实现介绍在数字信号处理中,滤波器是一种常用的工具,用于改变信号的频率响应。
FIR (Finite Impulse Response)数字滤波器是一种非递归的滤波器,具有线性相位响应和有限脉冲响应。
本文将探讨FIR数字滤波器的设计与实现,包括滤波器的原理、设计方法和实际应用。
原理FIR数字滤波器通过对输入信号的加权平均来实现滤波效果。
其原理可以简单描述为以下步骤: 1. 输入信号经过一个延迟线组成的信号延迟器。
2. 延迟后的信号与一组权重系数进行相乘。
3. 将相乘的结果进行加和得到输出信号。
FIR滤波器的特点是通过改变权重系数来改变滤波器的频率响应。
不同的权重系数可以实现低通滤波、高通滤波、带通滤波等不同的滤波效果。
设计方法FIR滤波器的设计主要有以下几种方法:窗函数法窗函数法是一种常用简单而直观的设计方法。
该方法通过选择一个窗函数,并将其与理想滤波器的频率响应进行卷积,得到FIR滤波器的频率响应。
常用的窗函数包括矩形窗、汉宁窗、哈密顿窗等。
不同的窗函数具有不同的特性,在设计滤波器时需要根据要求来选择合适的窗函数。
频率抽样法频率抽样法是一种基于频率抽样定理的设计方法。
该方法首先将所需的频率响应通过插值得到一个连续的函数,然后对该函数进行逆傅里叶变换,得到离散的权重系数。
频率抽样法的优点是可以设计出具有较小幅频纹波的滤波器,但需要进行频率上和频率下的补偿处理。
最优化方法最优化方法是一种基于优化理论的设计方法。
该方法通过优化某个性能指标来得到最优的滤波器权重系数。
常用的最优化方法包括Least Mean Square(LMS)法、Least Square(LS)法、Parks-McClellan法等。
这些方法可以根据设计要求,如通带波纹、阻带衰减等来得到最优的滤波器设计。
实现与应用FIR数字滤波器的实现可以通过硬件和软件两种方式。
硬件实现在硬件实现中,可以利用专门的FPGA(Field-Programmable Gate Array)等数字集成电路来实现FIR滤波器。
FIR滤波器设计与实现
FIR滤波器设计与实现FIR滤波器的设计可以分为两个部分:滤波器的规格确定和滤波器的设计方法。
在滤波器的规格确定阶段,需要确定滤波器的通带、阻带、过渡带等参数。
这些参数的确定通常是根据具体应用需求来确定的。
在滤波器的设计方法阶段,常用的方法有频率采样法(也称为窗函数法)、最优化法(如最小均方误差法)和多项式逼近法等。
这些方法的选择通常依赖于滤波器的规格和设计的要求。
对于FIR滤波器的实现,常用的方法有直接实现法、级联实现法和并行实现法。
直接实现法是最简单直观的实现方法,它根据滤波器的差分方程直接计算输出信号。
级联实现法是将滤波器划分为多个级联的二阶或一阶滤波器,通过级联计算可以减小滤波器的阶数,从而减少计算量。
并行实现法是将输入信号分成多个并行的分支,每个分支都经过一个独立的滤波器,然后将各个滤波器的输出信号相加得到最终的输出信号。
这些方法的选择通常依赖于滤波器的计算复杂度和实现的要求。
FIR滤波器的设计与实现需要考虑的问题有很多,如滤波器的阶数选择、滤波器的性能要求、滤波器的实时性要求等。
滤波器的阶数选择与滤波器的频率响应和计算复杂度有关,一般来说,阶数越高,频率响应越接近理想滤波器,但计算复杂度也越高。
滤波器的性能要求与应用的具体需求有关,如滤波器的截止频率、滤波器的衰减特性等。
滤波器的实时性要求与滤波器的计算速度有关,一般来说,实时性要求高的应用需要更快的滤波器计算速度。
综上所述,FIR滤波器的设计与实现是一项复杂的任务,需要综合考虑滤波器的规格、设计方法和实现方法,并进行权衡和选择。
它在数字信号处理中具有广泛的应用,如音频处理、图像处理、通信系统等。
通过合理的设计和实现,可以实现对信号的滤波和处理,从而满足不同应用的需求。
实验四FIR数字滤波器的设计
实验四FIR数字滤波器的设计
FIR数字滤波器也称作有限脉冲响应数字滤波器,是一种常见的数字滤波器设计方法。
在设计FIR数字滤波器时,需要确定滤波器的阶数、滤波器的类型(低通、高通、带通、带阻)以及滤波器的参数(截止频率、通带波纹、阻带衰减、过渡带宽等)。
下面是FIR数字滤波器的设计步骤:
1.确定滤波器的阶数。
阶数决定了滤波器的复杂度,一般情况下,阶数越高,滤波器的性能越好,但计算量也越大。
阶数的选择需要根据实际应用来进行权衡。
2.确定滤波器的类型。
根据实际需求,选择低通、高通、带通或带阻滤波器。
低通滤波器用于去除高频噪声,高通滤波器用于去除低频噪声,带通滤波器用于保留一定范围内的频率信号,带阻滤波器用于去除一定范围内的频率信号。
3.确定滤波器的参数。
根据实际需求,确定滤波器的截止频率、通带波纹、阻带衰减和过渡带宽等参数。
这些参数决定了滤波器的性能。
4.设计滤波器的频率响应。
使用窗函数、最小二乘法等方法,根据滤波器的参数来设计滤波器的频率响应。
5.将频率响应转换为滤波器的系数。
根据设计的频率响应,使用逆快速傅里叶变换(IFFT)等方法将频率响应转换为滤波器的系数。
6.实现滤波器。
将滤波器的系数应用到数字信号中,实现滤波操作。
7.优化滤波器性能。
根据需要,可以对滤波器进行进一步优化,如调整滤波器的阶数、参数等,以达到较好的滤波效果。
以上是FIR数字滤波器的设计步骤,根据实际需求进行相应的调整,可以得到理想的滤波器。
FIR滤波器和IIR滤波器原理及实现
FIR滤波器和IIR滤波器原理及实现FIR和IIR滤波器是数字信号处理中常用的滤波器类型,用于从输入信号中提取或抑制特定频率成分。
它们分别基于有限脉冲响应(FIR)和无限脉冲响应(IIR)的原理设计而成。
下面将分别介绍FIR和IIR滤波器的原理及实现方式。
一、FIR滤波器H(z)=b0+b1•z^(-1)+b2•z^(-2)+...+bM•z^(-M)其中,b0、b1、..、bM是FIR滤波器的系数,M为滤波器的阶数。
1.确定滤波器的设计要求,包括通带和阻带的边界频率、通带和阻带的衰减要求等。
2.根据设计要求,选择合适的滤波器设计方法,如FIR滤波器可以通过窗函数设计、频率采样法设计等。
3.根据设计方法计算得到滤波器的系数,即b0、b1、..、bM。
4.将计算得到的系数应用到差分方程中,实现滤波器。
5.将输入信号通过差分方程进行滤波处理,得到输出信号。
二、IIR滤波器IIR滤波器是一种具有无限长度的单位脉冲响应的滤波器,它具有反馈回路,可以实现对信号频率的持续平滑。
IIR滤波器的离散时间系统函数可以表示为:H(z)=[b0+b1•z^(-1)+b2•z^(-2)+...+bM•z^(-M)]/[1+a1•z^(-1)+a2•z^(-2)+...+aN•z^(-N)]其中,b0、b1、..、bM和a1、a2、..、aN分别为IIR滤波器的前向和反馈系数,M和N分别为前向和反馈滤波器的阶数。
实现IIR滤波器的步骤如下:1.确定滤波器的设计要求,选择合适的滤波器类型(低通、高通、带通、带阻等)。
2.根据设计要求,选择合适的设计方法(脉冲响应不变法、双线性变换法等)。
3.根据设计方法计算得到滤波器的系数,即b0、b1、..、bM和a1、a2、..、aN。
4.将计算得到的系数应用到差分方程中,实现IIR滤波器。
5.将输入信号通过差分方程进行滤波处理,得到输出信号。
IIR滤波器的优点是可以实现较窄的通带和截止频率,具有良好的频率响应特性,但由于反馈回路的存在,容易出现稳定性问题,设计和实现相对较为复杂。
FIR滤波器设计与实现
FIR滤波器设计与实现一、FIR滤波器的设计原理y(n)=b0*x(n)+b1*x(n-1)+b2*x(n-2)+...+bM*x(n-M)其中,b0、b1、..、bM是滤波器的系数,M是滤波器的阶数。
在设计FIR滤波器时,需要确定滤波器的截止频率、滤波器类型(低通、高通、带通、带阻)以及滤波器的阶数。
通常情况下,滤波器的阶数越高,滤波器的性能越好,但计算复杂度也越高。
1.确定滤波器的截止频率和滤波器类型。
根据信号的频谱特性和滤波器的要求,确定滤波器的截止频率和滤波器类型。
2.确定滤波器的阶数。
根据滤波器的设计要求和计算资源的限制,确定滤波器的阶数。
3.计算滤波器的系数。
通过设计方法(如窗函数法、频率采样法、最优化法等),计算滤波器的系数。
4.实现滤波器。
根据计算得到的滤波器系数,使用差分方程或直接形式等方法实现FIR滤波器。
二、FIR滤波器的实现方法1.差分方程形式差分方程形式是FIR滤波器的一种常见实现方法,它基于差分方程对输入信号进行逐点计算。
根据滤波器的差分方程,可以使用循环结构对输入信号进行滤波。
2.直接形式直接形式是另一种常见的FIR滤波器实现方法,它基于滤波器的系数和输入信号的历史值对输出信号进行逐点计算。
直接形式的计算过程可表示为:y(n)=b0*x(n)+b1*x(n-1)+b2*x(n-2)+...+bM*x(n-M)其中,b0、b1、..、bM是滤波器的系数,x(n)、x(n-1)、..、x(n-M)是输入信号的历史值。
直接形式的优点是计算过程简单,缺点是计算量比较大,特别是当滤波器的阶数较高时。
除了差分方程形式和直接形式外,还有其他一些高级实现方法如离散余弦变换(DCT)和快速卷积等,它们能够进一步提高FIR滤波器的计算效率和性能。
总结:本文介绍了FIR滤波器的设计原理和实现方法。
FIR滤波器采用离散时间信号的卷积运算,通过确定截止频率、滤波器类型和阶数,计算滤波器系数,并使用差分方程或直接形式等方法实现滤波器。
FIR数字滤波器的设计
FIR数字滤波器的设计
FIR(有限冲激响应)数字滤波器的设计主要包括以下几个步骤:
1.确定滤波器的要求:根据应用需求确定滤波器的类型(如低通、高通、带通、带阻等)和滤波器的频率特性要求(如截止频率、通带波动、阻带衰减等)。
2.确定滤波器的长度:根据频率特性要求和滤波器类型,确定滤波器的长度(即冲激响应的系数个数)。
长度通常根据滤波器的截止频率和阻带宽度来决定。
3.设计滤波器的冲激响应:使用一种滤波器设计方法(如窗函数法、频率抽样法、最小二乘法等),根据滤波器的长度和频率特性要求,设计出滤波器的冲激响应。
4.计算滤波器的频率响应:将设计得到的滤波器的冲激响应进行傅里叶变换,得到滤波器的频率响应。
可以使用FFT算法来进行计算。
5.优化滤波器的性能:根据频率响应的实际情况,对滤波器的冲激响应进行优化,可以通过调整滤波器的系数或使用优化算法来实现。
6.实现滤波器:将设计得到的滤波器的冲激响应转化为差分方程或直接形式,并使用数字信号处理器(DSP)或其他硬件进行实现。
7.验证滤波器的性能:使用测试信号输入滤波器,检查输出信号是否满足设计要求,并对滤波器的性能进行验证和调整。
以上是FIR数字滤波器的一般设计步骤,具体的设计方法和步骤可能因应用需求和设计工具的不同而有所差异。
在实际设计中,还需要考虑滤波器的实时性、计算复杂度和存储资源等方面的限制。
FIR数字滤波器设计与软件实现
实验四:FIR数字滤波器设计与软件实现1.实验目的(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。
(2)学会调用MA TLAB函数设计FIR滤波器。
(3)通过观察频谱的相位特性曲线,建立线性相位概念。
(4)掌握FIR数字滤波器的MATLAB软件实现方法。
2.实验原理设计FIR数字滤波器一般采用直接法,如窗函数法和频率采样法。
本实验采用窗函数法设计FIR滤波器,要求能根据滤波需求确定滤波器指标参数,并按设计原理编程设计符合要求的FIR数字滤波器。
本实验软件实现是调用MATLAB提供的fftfilt函数对给定输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。
3. 实验内容及步骤(1) FIR数字滤波器设计根据窗函数法设计FIR数字滤波器的原理和步骤,设计一个线性数字低通滤波器,要求通带临界频率fp=120Hz,阻带临界频率fs=150Hz,通带内的最大衰减Ap=0.1dB,阻带内的最小衰减As=60db,采样频率Fs=1000Hz。
观察设计的滤波器频率特性曲线,建立线性相位概念。
(2) FIR数字滤波器软件实现利用第(1)步设计的数字滤波器,调用fftfilt函数对信号进行滤波,观察滤波前后的信号波形变化。
4.思考题(1)简述窗函数法设计FIR数字滤波器的设计步骤。
(2)简述信号在传输过程中失真的可能原因。
5.实验报告要求(1)结合实验内容打印程序清单和信号波形。
(2)对实验结果进行简单分析和解释。
(3)简要回答思考题。
常用窗函数技术参数及性能比较一览表窗类型最小阻带衰减主瓣宽度精确过渡带宽窗函数矩形窗21dB 4π/M 1.8π/M boxcar三角窗25dB 8π/M 6.1π/M bartlett汉宁窗44dB 8π/M 6.2π/M hanning哈明窗53dB 8π/M 6.6π/M hamming 布莱克曼窗74dB 12π/M 11π/M blackman 取凯塞窗时用kaiserord函数来得到长度M和βkaiser附录:(1)FIR数字滤波器设计clear;clc;close all;format compactfp=120, Ap=0.1, fs=150, As=60 ,Fs=1000,wp=2*pi*fp/Fs,ws=2*pi*fs/Fs ,Bt=ws-wp; M=ceil(11*pi/Bt);if mod(M,2)==0; N=M+1, else N=M, end;wc=(wp+ws)/2,n=0:N-1;r=(N-1)/2;hdn=sin(wc*((n-r)+eps))./(pi*((n-r)+eps));win=blackman(N); hn=hdn.*win',figure(1);freqz(hn,1,512,Fs);grid on;图(一)FIR数字滤波器(2)FIR数字滤波器软件实现n=[0:190];xn=sin((2*pi*120/1000)*n)+sin((2*pi*150/1000)*n);yn=fftfilt(hn,xn);figure(2)subplot(2,1,1);plot(xn);title('滤波前信号') ;subplot(2,1,2);plot(yn);title('滤波后信号');图(2)FIR数字滤波器软件实现思考题:(1) 用升余弦窗设计一线性相位低通FIR数字滤波器,并读入窗口长度。
FIR滤波器设计与实现实验报告
FIR滤波器设计与实现实验报告实验报告:FIR滤波器设计与实现一、实验目的本实验旨在通过设计和实现FIR滤波器来理解数字滤波器的原理和设计过程,并且掌握FIR滤波器的设计方法和实现技巧。
二、实验原理1.选择滤波器的类型和阶数根据滤波器的类型和阶数的不同,可以实现不同的滤波效果。
常见的滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
选择适当的滤波器类型和阶数可以实现对不同频率分量的滤波。
2.确定滤波器的系数在设计FIR滤波器时,系数的选择对滤波器的性能有重要影响。
通常可以使用窗函数法、最小二乘法、频率采样法等方法来确定系数的值。
常见的窗函数有矩形窗、汉明窗和布莱克曼窗等。
三、实验步骤1.确定滤波器的类型和阶数根据实际需求和信号特点,选择合适的滤波器类型和阶数。
例如,如果需要设计一个低通滤波器,可以选择实验中使用的巴特沃斯低通滤波器。
2.确定滤波器的频率响应根据滤波器的类型和阶数,确定滤波器的频率响应。
可以通过matlab等软件来计算和绘制滤波器的频率响应曲线。
3.确定滤波器的系数根据频率响应的要求,选择合适的窗函数和窗长度来确定滤波器的系数。
可以使用matlab等软件来计算和绘制窗函数的形状和频率响应曲线。
4.实现滤波器的功能将滤波器的系数应用于输入信号,通过加权求和得到输出信号的采样点。
可以使用matlab等软件来模拟和验证滤波器的功能。
四、实验结果在实际实验中,我们选择了一个4阶低通滤波器进行设计和实现。
通过计算和绘制滤波器的频率响应曲线,确定了窗函数的形状和窗长度。
在实际实验中,我们通过实现一个滤波器功能的matlab程序来验证滤波器的性能。
通过输入不同频率和幅度的信号,观察滤波器对信号的影响,验证了设计的滤波器的功能有效性。
五、实验总结通过本实验,我们深入了解了FIR滤波器的设计原理和实现方法。
通过设计和实现一个具体的滤波器,我们掌握了滤波器类型和阶数的选择方法,以及系数的确定方法。
FIR滤波器设计与实现-毕业设计
FIR滤波器设计与实现-毕业设计实验二 FIR滤波器设计与实现班级:10通信成员:一、实验目的通过实验巩固FIR滤波器的认识和理解。
熟练掌握FIR低通滤波器的窗函数设计方法。
理解FIR的具体应用。
二、实验内容在通信、信息处理以及信号检测等应用领域广泛使用滤波器进行去噪和信号的增强。
FIR滤波器由于可实现线性相位特性以及固有的稳定特征而等到广泛应用,其典型的设计方法是窗函数设计法。
设计流程如下:(1)设定指标:截止频率fc,过渡带宽度△f,阻带衰减A。
(2)求理想低通滤波器(LPF)的时域响应hd(n)。
(3)选择窗函数w(n),确定窗长N。
(4)将hd(n)右移(N-1)/2点并加窗获取线性相位FIR滤波器的单位脉冲响应h(n)。
(5)求FIR的频域响应H(e),分析是否满足指标。
如不满足,转(3)重新选择,否则继续。
(6)求FIR的系统函数H(z)。
(7)依据差分方程由软件实现FIR滤波器或依据系统函数由硬件实现。
实验要求采用哈明窗设计一个FIR低通滤波器并由软件实现。
哈明窗函数如下:w(n) 0.54-0.46cos(),0≤n≤N-1;设采样频率为fs 10kHz。
实验中,窗长度N和截止频率fc应该都能调节。
具体实验内容如下:(1)设计FIR低通滤波器(FIR_LPF)(书面进行)。
(2)依据差分方程编程实现FIR低通滤波器。
(3)输入信号x(n) 3.0sin(0.16)+cos(0.8)到fc 2000Hz,N 65的FIR_LPF,求输出信号y(n),理论计算并画出0≤f≤fs范围输入信号x(n)和输出信号y(n)的幅度谱,标出峰值频率,观察滤波器的实际输出结果,分析其正确性。
(4)输入信号x(n) 1.5sin(0.2)-cos(0.4)+1.2sin(0.9)到fc 1100Hz,N 65的FIR_LPF,求输出信号y(n),理论计算并画出0≤f≤fs范围输入信号x (n)和输出信号y(n)的幅度谱,标出峰值频率,观察滤波器的实际输出结果,分析其正确性。
FIR滤波器的设计
FIR滤波器的设计FIR(Finite Impulse Response)滤波器是一种常见的数字滤波器,其特点是具有有限的脉冲响应。
在设计FIR滤波器时,主要需要确定滤波器的阶数、滤波器的频率响应以及滤波器的系数。
滤波器的阶数是指滤波器中的延迟元素的数量。
阶数越高,滤波器的频率响应越陡峭,但也会引起计算复杂度的增加。
一般情况下,我们可以根据滤波器的需求选择合适的阶数。
滤波器的频率响应决定了滤波器在频域中的增益和衰减情况。
通常,我们会通过设计一个理想的频率响应曲线,然后利用窗函数将其转化为离散的频率响应。
设计FIR滤波器的一个常用方法是使用窗函数法。
窗函数可以将滤波器的理想频率响应曲线转换为离散的频率响应。
常见的窗函数有矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
以设计低通滤波器为例,我们可以按照以下步骤进行FIR滤波器的设计:1.确定滤波器的阶数,即延迟元素的数量。
2.设计一个理想的频率响应曲线,包括通带的增益和截至频率,以及阻带的衰减和截止频率。
3.将理想的频率响应曲线通过其中一种窗函数进行离散化。
4.将离散化后的频率响应转换为时域的单位脉冲响应。
5.根据单位脉冲响应计算滤波器的系数。
具体的设计步骤如下:1.确定滤波器的阶数。
根据滤波器的要求和计算能力,选择一个合适的阶数。
2.设计理想的频率响应曲线。
根据滤波器的需求,确定通带和阻带的要求,以及对应的截至频率和衰减。
3.利用窗函数将理想频率响应曲线离散化。
根据选择的窗函数,进行相应的计算,得到离散化后的频率响应。
4.将离散化后的频率响应进行反变换,得到时域的单位脉冲响应。
5.根据单位脉冲响应计算滤波器的系数。
将单位脉冲响应传递函数中的z替换为频率响应值,然后进行反变换,得到滤波器的系数。
设计FIR滤波器需要根据具体的需求和设计要求进行合理的选择和计算。
通过选择合适的阶数、频率响应和窗函数,可以设计出满足需求的FIR滤波器。
FIR滤波器设计与实现实验报告
FIR滤波器设计与实现实验报告目录一、实验概述 (2)1. 实验目的 (3)2. 实验原理 (3)3. 实验设备与工具 (4)4. 实验内容与步骤 (6)5. 实验数据与结果分析 (7)二、FIR滤波器设计 (8)1. 滤波器设计基本概念 (9)2. 系数求解方法 (10)频谱采样法 (11)最小均方误差法 (14)3. 常用FIR滤波器类型 (15)线性相位FIR滤波器 (16)非线性相位FIR滤波器 (18)4. 设计实例与比较 (19)三、FIR滤波器实现 (20)1. 硬件实现基础 (21)2. 软件实现方法 (22)3. 实现过程中的关键问题与解决方案 (23)4. 滤波器性能评估指标 (25)四、实验结果与分析 (26)1. 实验数据记录与处理 (27)2. 滤波器性能测试与分析 (29)通带波动 (30)虚部衰减 (31)相位失真 (32)3. 与其他设计方案的对比与讨论 (33)五、总结与展望 (34)1. 实验成果总结 (35)2. 存在问题与不足 (36)3. 未来发展方向与改进措施 (37)一、实验概述本次实验的主要目标是设计并实现一个有限脉冲响应(Finite Impulse Response,简称FIR)滤波器。
FIR滤波器是数字信号处理中常用的一种滤波器,具有线性相位响应和易于设计的优点。
本次实验旨在通过实践加深我们对FIR滤波器设计和实现过程的理解,提升我们的实践能力和问题解决能力。
在实验过程中,我们将首先理解FIR滤波器的基本原理和特性,包括其工作原理、设计方法和性能指标。
我们将选择合适的实验工具和环境,例如MATLAB或Python等编程环境,进行FIR滤波器的设计。
我们还将关注滤波器的实现过程,包括代码编写、性能测试和结果分析等步骤。
通过这次实验,我们期望能够深入理解FIR滤波器的设计和实现过程,并能够将理论知识应用到实践中,提高我们的工程实践能力。
本次实验报告将按照“设计原理设计方法实现过程实验结果与分析”的逻辑结构进行组织,让读者能够清晰地了解我们实验的全过程,以及我们从中获得的收获和启示。
fir滤波器的设计及实现
fir滤波器的设计及实现
FIR滤波器的设计及实现步骤如下:
1.调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示
xt及其频谱。
2.设计低通滤波器,从高频噪声中提取xt中的单频抑制载波调幅信
号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。
观察xt的频谱,确定滤波器指标参数。
3.根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用
MATLAB函数firl设计一个FIR低通滤波器,并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。
绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。
4.重复步骤3,滤波器指标不变,但改用等波纹最佳逼近设计FIR
滤波器,调用MATLAB函数remezord和remez设计FIR数字滤波器。
比较两种设计方法的滤波器的阶数。
FIR 数字滤波器设计和实现.
2北京邮电大学信息与通信工程学院概述:IIR 和FIR 比较IIR 与FIR 性能比较IIR 数字滤波器:幅频特性较好;但相频特性较差; 有稳定性问题;FIR 数字滤波器:可以严格线性相位,又可任意幅度特性因果稳定系统可用FFT 计算(计算两个有限长序列的线性卷积但阶次比IIR 滤波器要高得多3北京邮电大学信息与通信工程学院概述:IIR 和FIR 比较IIR 与FIR 设计方法比较IIR DF :无限冲激响应,H(Z 是z -1的有理分式,借助于模拟滤波器设计方法,阶数低(同样性能要求。
其优异的幅频特性是以非线性相位为代价的。
缺点:只能设计特定类型的滤波器,不能逼近任意的频响。
FIR DF :有限冲激响应,系统函数H(Z 是z -1的多项式,采用直接逼近要求的频率响应。
设计灵活性强缺点:①设计方法复杂;②延迟大;③阶数高。
(运算量比较大,因而在实现上需要比较多的运算单元和存储单元FIR DF 的技术要求:通带频率ωp ,阻带频率ωs 及最大衰减αp ,最小衰减αs 很重要的一条是保证H(z 具有线性相位。
4北京邮电大学信息与通信工程学院概述:FIR DF 设计方法FIR 数字滤波器设计FIR 滤波器的任务:给定要求的频率特性,按一定的最佳逼近准则,选定h(n 及阶数N 。
三种设计方法:n 窗函数加权法o 频率采样法p FIR DF 的CAD --切比雪夫等波纹逼近法5北京邮电大学信息与通信工程学院概述:FIR DF 零极点FIR 滤波器的I/O 关系:10N r y(nh(rx(n r−==−∑0121(, ,,,...,=−h n n N FIR 滤波器的系统传递函数:1211011N N N rN r h(z h(z .....h(N H(zh(rzz −−−−−=++−==∑⇒在Z 平面上有N-1 个零点;在原点处有一个(N-1阶极点,永远稳定。
FIR 系统定义:一个数字滤波器DF 的输出y(n,如果仅取决于有限个过去的输入和现在的输入x(n, x(n-1,. ......, x(n-N+1,则称之为FIR DF 。
fir数字滤波器的设计与实现
fir数字滤波器的设计与实现一、引言数字滤波器是数字信号处理中的重要组成部分,它可以用于去除信号中的噪声,平滑信号等。
其中,fir数字滤波器是一种常见的数字滤波器。
本文将介绍fir数字滤波器的设计与实现。
二、fir数字滤波器概述fir数字滤波器是一种线性相位、有限脉冲响应(FIR)的数字滤波器。
它通过一系列加权系数对输入信号进行卷积运算,从而实现对信号的过滤。
fir数字滤波器具有以下特点:1. 稳定性好:由于其有限脉冲响应特性,使得其稳定性优于IIR(无限脉冲响应)数字滤波器。
2. 线性相位:fir数字滤波器在频域上具有线性相位特性,因此可以保持输入信号中各频率分量之间的相对时延不变。
3. 设计灵活:fir数字滤波器可以通过改变加权系数来实现不同的频率响应和截止频率。
三、fir数字滤波器设计步骤1. 确定需求:首先需要确定所需的频率响应和截止频率等参数。
2. 选择窗函数:根据需求选择合适的窗函数,常用的有矩形窗、汉明窗、布莱克曼窗等。
3. 计算滤波器系数:利用所选窗函数计算出fir数字滤波器的加权系数。
常见的计算方法有频率采样法、最小二乘法等。
4. 实现滤波器:将计算得到的加权系数应用于fir数字滤波器中,实现对信号的过滤。
四、fir数字滤波器实现方法1. 直接形式:直接将计算得到的加权系数应用于fir数字滤波器中,实现对信号的过滤。
该方法简单易懂,但是需要大量运算,不适合处理较长的信号序列。
2. 快速卷积形式:利用快速傅里叶变换(FFT)来加速卷积运算。
该方法可以大大减少计算量,适合处理较长的信号序列。
五、fir数字滤波器应用案例1. 语音处理:fir数字滤波器可以用于去除语音信号中的噪声和杂音,提高语音质量。
2. 图像处理:fir数字滤波器可以用于图像去噪和平滑处理,提高图像质量。
3. 生物医学信号处理:fir数字滤波器可以用于生物医学信号的滤波和特征提取,如心电信号、脑电信号等。
六、总结fir数字滤波器是一种常见的数字滤波器,具有稳定性好、线性相位和设计灵活等优点。
fir、iir数字滤波器的设计与实现
一、概述数字滤波器是数字信号处理中的重要部分,它可以对数字信号进行滤波、去噪、平滑等处理,广泛应用于通信、音频处理、图像处理等领域。
在数字滤波器中,fir和iir是两种常见的结构,它们各自具有不同的特点和适用场景。
本文将围绕fir和iir数字滤波器的设计与实现展开讨论,介绍它们的原理、设计方法和实际应用。
二、fir数字滤波器的设计与实现1. fir数字滤波器的原理fir数字滤波器是一种有限冲激响应滤波器,它的输出仅依赖于输入信号的有限个先前值。
fir数字滤波器的传递函数可以表示为:H(z) = b0 + b1 * z^(-1) + b2 * z^(-2) + ... + bn * z^(-n)其中,b0、b1、...、bn为滤波器的系数,n为滤波器的阶数。
fir数字滤波器的特点是稳定性好、易于设计、相位线性等。
2. fir数字滤波器的设计方法fir数字滤波器的设计通常采用频率采样法、窗函数法、最小均方误差法等。
其中,频率采样法是一种常用的设计方法,它可以通过指定频率响应的要求来确定fir数字滤波器的系数,然后利用离散傅立叶变换将频率响应转换为时域的脉冲响应。
3. fir数字滤波器的实现fir数字滤波器的实现通常采用直接型、级联型、并行型等结构。
其中,直接型fir数字滤波器是最简单的实现方式,它直接利用fir数字滤波器的时域脉冲响应进行卷积计算。
另外,还可以利用快速傅立叶变换等算法加速fir数字滤波器的实现。
三、iir数字滤波器的设计与实现1. iir数字滤波器的原理iir数字滤波器是一种无限冲激响应滤波器,它的输出不仅依赖于输入信号的有限个先前值,还依赖于输出信号的先前值。
iir数字滤波器的传递函数可以表示为:H(z) = (b0 + b1 * z^(-1) + b2 * z^(-2) + ... + bn * z^(-n)) / (1 +a1 * z^(-1) + a2 * z^(-2) + ... + am * z^(-m))其中,b0、b1、...、bn为前向系数,a1、a2、...、am为反馈系数,n为前向路径的阶数,m为反馈路径的阶数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FIR滤波器设计与实现实验报告实验时间:2014年5月29日专业:微电子学实验人员:12微电子1228402027 许一飞、1228402045 祁响、 1228402046 刘秦华一.实验目的:(1)通过实验巩固FIR滤波器的认识和理解。
(2)熟悉掌握FIR低通滤波器的窗函数设计方法。
(3)理解FIR的具体应用。
二.实验内容:在通信、信息处理以及信号检测等应用领域广泛使用滤波器进行去噪和信号的增强。
FIR滤波器由于可实现线性相位特性以及固有的稳定特征而等到广泛应用,其典型的设计方法是窗函数设计法。
设计流程如下:(1)设定指标:截止频率fc,过渡带宽度△f,阻带衰减A。
(2)求理想低通滤波器(LPF)的时域响应h d(n)。
(3)选择窗函数w(n),确定窗长N。
(4)将h d(n)右移(N-1)/2点并加窗获取线性相位FIR滤波器的单位脉冲响应h(n)。
(5)求FIR的频域响应H(e jw),分析是否满足指标。
如不满足,转(3)重新选择,否则继续。
(6)求FIR的系统函数H(z)。
(7)依据差分方程由软件实现FIR滤波器或依据系统函数由硬件实现。
实验要求采用哈明窗设计一个FIR低通滤波器并由软件实现。
哈明窗函数如下:w(n)=0.54-0.46cos(2πn/(N-1)),0≤n≤N-1;(公式 1)设采样频率为f s=10kHz。
实验中,窗长度N和截止频率f c应该都能调节。
具体实验内容如下:(1)设计FIR低通滤波器(FIR_LPF)(书面进行)。
(2)依据差分方程编程实现FIR低通滤波器。
(3)输入信号x(n)=3.0sin(0.16πn)+cos(0.8πn)到f c=2000Hz,N=65的FIR_LPF,求输出信号y(n),理论计算并画出0≤f≤f s范围输入信号x(n)和输出信号y(n)的幅度谱,标出峰值频率,观察滤波器的实际输出结果,分析其正确性。
(4)输入信号x(n)=1.5sin(0.2nπ)-cos(0.4nπ)+1.2sin(0.9n π)到fc=1100Hz,N=65的FIR_LPF,求输出信号y(n),理论计算并画出0≤f≤f s范围输入信号x(n)和输出信号y(n)的幅度谱,标出峰值频率,观察滤波器的实际输出结果,分析其正确性。
(5)输入信号x(n)=1.5sin(0.2nπ)-cos(0.4nπ)+1.2sin(0.9n π)到fc=2100Hz,N=65的FIR_LPF,求输出信号y(n),理论计算并画出0≤f≤f s范围输入信号x(n)和输出信号y(n)的幅度谱,标出峰值频率,观察滤波器的实际输出结果,分析其正确性。
(6)输入信号x(n)=1.5sin(0.2nπ)-cos(0.4nπ)+5.0sin(0.9n π)到f c=1100Hz,N=65的FIR_LPF,求输出信号y(n),理论计算并画出0≤f≤f s范围输入信号x(n)和输出信号y(n)的幅度谱,标出峰值频率,观察滤波器的实际输出结果,分析其正确性。
(7)输入信号x(n)=1.5sin(0.2nπ)-cos(0.4nπ)+1.2sin(0.9n π)到f c=1990Hz,N=65的FIR_LPF,求输出信号y(n),理论计算并画出0≤f≤f s范围输入信号x(n)和输出信号y(n)的幅度谱,标出峰值频率,观察滤波器的实际输出结果,分析其正确性。
三.实验程序function f=FIR(A,a,B,b,C,c,fc,N,S)fs=10000;wc=fc*2*pi/fs;n=0:2*N-1;x=A*sin(a*pi*n)+B*cos(b*pi*n)+C*sin(c*pi*n);n=0:(N-1);w=0.54-0.46*cos(2*pi*n/(N-1));m=n-(N-1)/2+eps;hd=(sin(wc*m))./(pi*m);h=hd.*w;for m=0:N-1y(m+1)=0;for k=0:N-1y(m+1)=y(m+1)+h(k+1)*x(m-k+1+N);endendx=x(n+1+N);s=0:S-1;f=fs*s/S;X=abs(fft(x,S))/(N/2);H=abs(fft(h,S));Y=X.*H;maxim=0;maxi=0;maxk=0;maxl=0;for k=0:S-1if Y(k+1)>maximmaxim=Y(k+1);maxk=k;endendfor l=0:S-1if X(l+1)>maximaxi=X(l+1);maxl=l;endendfa=maxl/S*fs;fb=maxk/S*fs;Ma=max(X);Mb=max(Y);figure(1);subplot(6,1,1);plot(x,'.-')title('x(n)');subplot(6,1,2);plot(n,h,'.-')title('h(n)');subplot(6,1,3);plot(y,'.-')title('y(n)');subplot(6,1,4);stem(f,X,'.','fill');xlabel('f');ylabel('|X|');X_str=sprintf('\n\n\nk=%d\nf=%.2fHz\nA=%.2f',m axl,fa,Ma);text(fa+fs/50,Ma,X_str);subplot(6,1,5);plot(f,H,'.-')xlabel('f');ylabel('|H|');H_str=sprintf('\nfc=%dHz',fc);text(fa+fs/50,l,H_str);subplot(6,1,6);stem(f,Y,'.b','fill')xlabel('f');ylabel('|Y|');Y_str=sprintf('\n\n\nk=%d\nf=%.2fHz\nA=%.2f',m axk,fb,Mb);text(fa+fs/50,Mb,Y_str);四.实验结果(1) x(n)=3.0sin(0.16nπ)+cos(0.8nπ)输入信号是频率为800Hz和4kHz的三角波的叠加,经过截止频率为2KHz的FIR低通滤波器,4kHz频率成分被滤除,800Hz频率成分留下,实验结果下图所示,与理论分析符合。
(2) x(n)=1.5sin(0.2nπ)-cos(0.4nπ)+1.2sin(0.9nπ) 输入信号是频率为1kHz、2kHz和4.5kHz的三角波的叠加,经过截止频率为1.1KHz的FIR低通滤波器,2kHz、4.5kHz频率成分被滤除,1kHz频率成分留下,实验结果如下图所示,与理论分析符合。
(3) x(n)=1.5sin(0.2nπ)-cos(0.4nπ)+1.2sin(0.9nπ)输入信号是频率为1kHz、2kHz和4.5kHz的三角波的叠加,经过截止频率为2.1KHz的FIR低通滤波器,4.5kHz频率成分被滤除,1kHz、2kHz频率成分留下,实验结果与理论分析符合。
(4) x(n)=1.5sin(0.2nπ)-cos(0.4nπ)+5.0sin(0.9nπ)输入信号是频率为1kHz、2kHz和4.5kHz的三角波的叠加,经过截止频率为1.1KHz的FIR低通滤波器,2kHz、4.5kHz频率成分被滤除,1kHz频率成分留下,实验结果如下图所示,与理论分析符合。
(5) x(n)=1.5sin(0.2nπ)-cos(0.4nπ)+1.2sin(0.9nπ)输入信号是频率为1kHz、2kHz和4.5kHz的三角波的叠加,经过截止频率为1.99KHz的FIR低通滤波器,2kHz、4.5kHz频率成分被滤除,1kHz频率成分留下。
但由于截止频率1.99kHz与信号频率2kHz 过于接近,使得我们在实验中用哈明窗设计的FIR滤波器没有能够把2kHz的成分滤除掉,导致实验结果(如下图)与理论分析不符合。
五、思考题(1)当哈明窗长度比65小(32)或大(129)的话,结果如何变化?以x(n)=1.5sin(0.2nπ)-cos(0.4nπ)+1.2sin(0.9nπ) 为例N=32N=129通过所学知识,我们知道哈明窗的窗长主要影响的是过渡带的宽度,窗长越长,窗函数主瓣宽度越窄,所以过渡带也越窄,而窗长对阻带衰减基本没有影响。
通过实验我们可以发现,使用129窗长的FIR滤波器过渡带明显比32窗长的FIR滤波器过渡带要窄得多,这符合我们理论上的认识。
除此以外我们还发现,实验(7)由于截止频率(1.99kHz)与输入信号频率之一(2kHz)过于接近而导致FIR 滤波器无法将其完全滤除,但是输出信号频率(2kHz)在相对幅值上窗长为129的明显比窗长为32的要小得多,说明在一定范围内,窗长越长,滤波的效果越好。
(2)当采用矩形窗的话,实验(3)、(4)的结果是怎样的?实验(3)N=32N=129实验(4)N=32N=129(3)实验(6)的结果说明了什么?答:实验(6)的结果说明:输入信号频率在FIR滤波器截止频率之内的信号可以通过滤波器,在截止频率之外(与截止频率不是很接近)的信号频率则不能通过滤波器,这些信号无论幅值大小,只要频率远大于FIR滤波器截止频率,输出信号中就不会有其频率成分。
六、实验总结通过Matlab编程实现了采用哈明窗设计的FIR低通滤波器。
在这次实验中,我们遇到了技术上和系统上的一些问题。
技术上,如何用编程语言实现时域中波形的输出、幅值-频率的输出、以及如何调用不同窗函数设计不同的FIR滤波器并实现其功能,成员之间都进行了大量的讨论与尝试,在程序的整体性上还有待加强。
系统上,我们发现设计出来的低通滤波器,并不是完全和理想滤波器一样。
比如说,我们设计出来的低通滤波器,当信号频率大于截至频率但是两者很接近时,滤波器并不能很好地把信号频率滤除,所以说在实际应用中,我们需要有技术指标来衡量滤波器是否符合要求。
当然,我们在发现问题的同时也更深刻地理解了FIR滤波器的工作原理、窗函数的设计方法、不同窗函数所对应的功能以及FIR滤波器与理想滤波器之间存在的差距。
窗函数的类型和窗长是我们用窗函数设计不同种类FIR滤波器要考虑的两个重要因素。
在对待实际问题中,我们要基于技术指标合理选择滤波器的参数,做到灵活运用。