同济大学高等数学第六版第一册第四章第三节分部积分法
高等数学课件4-3分部积分法
经济应用:在经济学领域,分部积分 法可以用于求解各种经济问题,例如 在宏观经济学、微观经济学等领域, 可以用于求解各种经济问题。
感谢您的耐心观看
汇报人:
添加副标题
高等数学课件4-3分部积分法
汇报人:
目录
CONTENTS
01 添加目录标题
02 分部积分法的基本 概念
03 分部积分法的计算 步骤
04 分部积分法的应用 实例
05 分部积分法的注意 事项
06 分部积分法的扩展 知识
添加章节标题
分部积分法的基本概念
分部积分法的定义
分部积分法是一种用于求解不定积分的方法
积分顺序:先对u 积分,再对v积分
积分结果:u和v 的乘积减去v的积 分
分部积分法的应用范围
求解一阶微 分方程
求解二阶微 分方程
求解高阶微 分方程
求解常微分 方程
求解偏微分 方程
求解积分方 程
分部积分法的计算步骤
确定被积函数和积分变量
分部积分法的基本思想:将复杂函数分解为简单函数 确定被积函数:选择合适的函数进行分解 确定积分变量:选择合适的变量进行积分 计算步骤:按照分部积分法的公式进行计算 注意事项:选择合适的函数和变量,避免出现错误
不当
注意积分公式 的使用,避免 公式使用错误
注意积分结果 的验证,避免 积分结果错误
注意积分上下限的取值
积分上下限的取值范围要合理,不 能超出函数的定义域
积分上下限的取值要保证积分结果 的正确性,不能出现错误
添加标题
添加标题
添加标题
添加标题
积分上下限的取值要满足积分条件, 不能出现无穷大或无穷小
积分上下限的取值要符合实际问题, 不能脱离实际背景
高等数学 第四章 第三节 分部积分法
(再次使用分部积分法)u x , e x dx dv
x e 2( xe e ) C .
2 x x x
结论
若被积函数是幂函数和正(余)弦函数 或幂函数和指数函数的乘积, 就考虑设幂函 数为 u, 使其降幂一次(假定幂指数是正整数)
例3 求积分 x arctan xdx . 2 x dv 解 令 u arctan x , xdx d
微分部分
积分部分
+
x
2
cos x
sin x
cos x
sin x
2x
2
结束
0
+
2 2 x cos xdx x sinx 2 x cos x 2 sinx C
例13 求积分 x e dx .
微分部分
2
x
竖式算法
选 u x 2 , v' e x
积分部分
+
x
2
e
x
2x
sec x tan x tan x sec xdx
2
sec x tan x (sec 2 x 1) sec xdx
这是一个 sec x tan x (sec 3 x tan x )dx 循环积分
sec x tan x I ln cos x
1 解出I即可 I (se cx tan x lncos x ) C 2
2 x e e
2 x2
x2
C.
例9
解:原式 x ln(1 x ) xd ln(1 x )
2 2
求 ln( x 1)dx
2
2x x ln( 1 x ) x dx 2 1 x
同济大学高数第六版基本概念及公式总结(土木数学兴趣小组)
四川建院土木1301(数学兴趣小组)目录第一章函数与极限薚……………………………………………………………………第一节函数……………………………………………………………………………….. 第二节数列的极限………………………………………………………………………………….. 第三节函数的极限…………………………………………………………………………………第四节无穷小与无穷大…………………………………………………………………………….. 第五节极限四则运算法则……………………………………………………………………………第六节极限存在准则、两个重要极限………………………………………………………………第七节无穷小的比较…………………………………………………………………………………第八节函数的连续性与间断点………………………………………………………………………第九节连续函数的运算与初等函数的连续性…………………………………………………….. 第十节闭区间上连续函数的性质……………………………………………………………………第二章导数与微分………………………………………………………………………. 第一节导数的概念……………………………………………………………………………………. 第二节函数的求导法则………………………………………………………………………………第三节初等函数的求导问题…………………………………………………………………………. 双曲函数与反双曲函数的导数…………………………………………………………………………第四节高阶导数………………………………………………………………………………………第五节隐函数的导数、由参数方程所确定的函数的导数相关辩化率……………………………第六节函数的微分…………………………………………………………………………………….第三章中值定理与导数的应用…………………………………………………………第一节中值定理………………………………………………………………………………….. 第二节洛必达法则……………………………………………………………………………………第三节泰勒公式………………………………………………………………………………………第四节函数单调性的判定法…………………………………………………………………………第五节函数的极值与最值……………………………………………………………………………第六节曲线的凹凸与拐点……………………………………………………………………………第七节曲率……………………………………………………………………………………………第八节方程的近似解…………………………………………………………………………………第四章不定积分……………………………………………………………………….. 第一节不定积分的概念及其性质………………………………………………………………第二节不定积分的换元积分………………………………………………………………………第三节不定积分的分部积分法…………………………………………………………………….. 第四节几种特殊类型函数的积分……………………………………………………………………第五章定积分…………………………………………………………………………. 第一节定积分概念与性质…………………………………………………………………………第二节微积分基本定理………………………………………………………………………….. 第三节定积分换元积分法与分部积分法……………………………………………………..第四节广义积分……………………………………………………………………………..第六章定积分的应用……………………………………………………………….定积分的元素法……………………………………………………………………………………功水压力和引力…………………………………………………………………………………. 平均值……………………………………………………………………………………………..第七章空间解析几何与向量代数…………………………………………………. 第一节空间直角坐标系…………………………………………………………………………. 第二节向量及其加减法向量与数的乘法………………………………………………………第三节向量的坐标………………………………………………………………………………第四节数量积向量积混合积…………………………………………………………………. 第五节曲面及其方程……………………………………………………………………………第六节空间曲线及其方程………………………………………………………………………. 第七节平面及其方程…………………………………………………………………………….. 第八节空间直线及其方程………………………………………………………………………. 第九节二次曲面…………………………………………………………………………………第八章多元函数微分法及其应用…………………………………………………第一节多元函数的基本概念………………………………………………………………….第二节偏导数………………………………………………………………………………….第三节全微分………………………………………………………………………………….第四节多元复合函数的求导法则……………………………………………………………. 第五节隐函数的求导法则……………………………………………………………………第六节微分法在几何上的应用………………………………………………………………..第七节方向导数与梯度………………………………………………………………………..第八节多元函数的极值及其求法……………………………………………………………….第九章重积分………………………………………………………………………第一节二重积分的概念与性质…………………………………………………………….第二节二重积分的计算…………………………………………………………………………第三节二重积分的应用…………………………………………………………………………第四节三重积分的概念及其计算法……………………………………………………………. 第五节利用柱面坐标和球面坐标计算三重积分………………………………………………第十章曲线积分与曲面积分………………………………………………………第一节对弧长的曲线积分…………………………………………………………………….第二节对坐标的曲线积分…………………………………………………………………….第三节格林公式及其应用……………………………………………………………………. 第四节对面积的曲面积分……………………………………………………………………. 第五节对坐标的曲面积分……………………………………………………………………. 第六节高斯公式通量与散度………………………………………………………………第七节斯托克斯公式环流量与旋度………………………………………………………第十一章无穷级数………………………………………………………………第一节常数项级数的概念和性质………………………………………………………….. 第二节常数项级数的申敛法…………………………………………………………………. 第三节幂级数…………………………………………………………………………………. 第四节函数展开成幂级数……………………………………………………………………第五节函数的幂级数展开式的应用…………………………………………………………第七节傅里叶级数……………………………………………………………………………. 第八节正弦级数与余弦级数…………………………………………………………………. 第九节周期为2l的周期函数的傅里叶级数………………………………………………...第十二章微分方程……………………………………………………………….. 第一节微分方程的基本概念……………………………………………………………….. 第二节可分离变量的微分方程………………………………………………………………第三节齐次方程……………………………………………………………………………第四节一阶线性微分方程…………………………………………………………………第五节全微分方程……………………………………………………………………………第六节可降阶的高阶微分方程………………………………………………………………第七节高阶线性微分方程……………………………………………………………………第八节二阶常系数齐次线性微分方程………………………………………………….. 第九节二阶常系数非齐次线性微分方程……………………………………………………第十节欧拉方程………………………………………………………………………………第十一节微分方程的幂级数解法……………………………………………………………. 第十二节常系数线性微分方程组解法举例…………………………………………………第一章 函数与极限第一节 函 数教学目的:本节主要是复习高中阶段学过的集合以及函数的概念、性质;介绍邻域、分段函数、复合函数、初等函数的概念。
关于高等数学同济第六版上册期末复习重点
关于高等数学同济第六版上册期末复习重点标准化管理部编码-[99968T-6889628-J68568-1689N]第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列 {xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列 1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列 1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
第3节 分部积分法
1 所以 sec xdx (sec xtanx ln sec x tanx ) C . 2
3
34
高等数学
●
戴本忠
17
1 例10 求 I n 2 2 n dx , 其中 n 为正整数 . (x a ) 解 当 n 1 时, 根据分部积分法 1 ( x 2 a 2 ) n 1 dx
高等数学
●
戴本忠
例9 解
求 sec 3 xdx .
3 sec xdx sec xdtan x
(tan x)sec2x (sec x)secxtanx
sec xtanx sec xtan 2 xdx sec xtanx sec x (sec 2 x 1)dx sec xtanx sec 3 xdx sec xdx sec xtanx ln sec x tanx sec 3 xdx .
●
戴本忠
10
例2
解
求 xe x dx .
令 u x, dv e dx,
x
那么 du dx, v e x .
x x x x x x x e d x x e e d x x e e C e ( x 1) C .
例3 解
求 x 2e x d x .
1 x 2 arctan x 1 x 2 d(arctan x )
1 x arctan x
2
34
1 1 x 2 dx 1 x
2
高等数学
●
戴本忠
21
1 x arctan x
2
1 dx 2 1 x 令 x tan t
同济高等数学第六版上册第四章ppt
5. 求下列积分: dx ; (1) 2 2 x (1 x ) 提示:
dx ( 2) 2 . 2 sin x cos x
(1)
1 1 (1 x 2 ) x 2 1 2 2 2 2 2 2 x 1 x x (1 x ) x (1 x )
arcsin u C
(直接配元)
f [ ( x)] ( x)dx f ( ( x))d ( x)
2 12 C C 1
因此所求曲线为 y x 1
2
O
x
目录
上页
下页
返回
结束
从不定积分定义可知: d f ( x)d x f ( x) 或 d f ( x)dx f ( x) dx (1) dx
( 2)
F ( x) dx F ( x) C k dx
第四章 不定积分
微分法: F ( x) ( ? ) 积分法: ( ? ) f ( x) 互逆运算
第一节 不定积分的概念与性质
一、 原函数与不定积分的概念 二、 基本积分表 三、不定积分的性质
第四章
目录
上页
下页
返回
结束
问题: 1. 在什么条件下, 一个函数的原函数存在 ? 2. 若原函数存在, 它如何表示 ? 定理1. 若函数 f ( x ) 在区间 I 上连续 , 则 f ( x ) 在 I 上 (下章证明) 存在原函数 . 初等函数在定义区间上连续
x x e d x e C
(12)
x a C (13) a x dx ln a
目录
上页
下页
返回
结束
dx 例2. 求 3 . x x
高等数学(同济大学)第六版课件上第4章
例2. 质点在距地面 处以初速 垂直上抛 , 不计阻
力, 求它的运动规律.
解: 取质点运动轨迹为坐标轴, 原点在地面, 指向朝上 ,
质点抛出时刻为
此时质点位置为 初速为
设时刻 t 质点所在位置为
则
dx v(t)
(运动速度)
dt
再由此求 x(t)
d2 x d t2
dv dt
g
(加速度)
先由此求 v(t)
y
的所有积分曲线组成 的平行曲线族.
o
x0
x
机动 目录 上页 下页 返回 结束
例1. 设曲线通过点( 1 , 2 ) , 且其上任一点处的切线
斜率等于该点横坐标的两倍, 求此曲线的方程.
解:
y
所求曲线过点 ( 1 , 2 ) , 故有
(1, 2)
因此所求曲线为 y x2 1
o
x
机动 目录 上页 下页 返回 结束
C2
由x(0) x0 , 得C2 x0 , 于是所求运动规律为
x(t)
1 2
gt
2
v0t
x0
机动 目录 上页 下页 返回 结束
从不定积分定义可知:
(1)
d dx
f (x)d x
f (x)
或 d
f (x)dx
f (x)dx
(2) F(x) dx F(x) C 或 d F(x) F(x) C
x
x x(t)
x0 x(0) o
机动 目录 上页 下页 返回 结束
先求 由
知
v(t) ( g) d t gt C1
由v(0) v0 , 得C1 v0 , 故
v(t) gt v0
再求
《高等数学》 详细上册答案(一--七)
2014届高联高级钻石卡基础阶段学习计划《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h第1章第1节映射与函数函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的建立习题1-14(3) (6)(8),5(3)★,9(2),15(4)★,17★4(4)(7),5(1),7(2),15(1)本节有两部分内容考研不要求,不必学习:1. “二、映射”;2. 本节最后——双曲函数和反双曲函数第二天3h1章第2节数列的极限数列极限的定义数列极限的性质(唯一性、有界性、保号性)习题1-21(2) (5)(8)★3(1)1. 大家要理解数列极限的定义中各个符号的含义与数列极限的几何意义;2. 对于用数列极限的定义证明,看懂即可。
第1章第3节函数的极限函数极限的概念函数的左极限、右极限与极限的存在性函数极限的基本性质(唯一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等)习题1-32,4★3,1. 大家要理解函数极限的定义中各个符号的含义与函数极限的几何意义;2. 对于用函数极限的定义证明,看懂即可。
同济大学(高等数学)_第四章_不定积分
第四章 不定积分前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法.第1节 不定积分的概念与性质1.1 不定积分的概念在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为()s s t =,则质点在时刻t 的瞬时速度表示为()v s t '=.实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t 的瞬时速度()v v t =,求出质点的位移函数()s s t =.即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.1。
1。
1原函数定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数.例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0),x x x=>所以ln x 是1x在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件.定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有()()'=F x f x .简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数.定理1的证明,将在后面章节给出。
关于原函数,不难得到下面的结论:若()()'=F x f x ,则对于任意常数C ,()+F x C 都是()f x 的原函数.也就是说,一个函数如果存在原函数,则有无穷多个.假设()F x 和()φx 都是()f x 的原函数,则[()()]0'-≡F x x φ,必有()()φ-F x x =C ,即一个函数的任意两个原函数之间相差一个常数.因此我们有如下的定理:定理2 若()F x 和()φx 都是()f x 的原函数,则()()-=F x x C φ(C 为任意常数). 若()()'=F x f x ,则()+F x C (C 为任意常数)表示()f x 的所有原函数.我们称集合{}()|F x C C +-∞<<+∞为()f x 的原函数族.由此,我们引入下面的定义.1。
高等数学课件 分部积分法
tan x ⋅ lncos x + ∫ tan2 xdx 原式 = = tan x ⋅ lncos x + ∫ (sec2 x −1) dx
= tan x ⋅ lncos x +tan x − x + C
高等数学( 高等数学(上)
第四章 不定积分
第三节 分部积分法
例7 求 解 令 x= t , 则 x = t 2 , dx = 2t d t 原式 = 2∫ t e d t
− xsin x − cos x x2
说明: 说明 此题若先求出
− cos x + 2sin x + 2cos x d x ∫ x f ′(x) dx = ∫ 2 x x
高等数学( 高等数学(上)
第四章 不定积分
第三节 分部积分法
例12 求 I = ∫
e
arctan x
2 32 (1+ x )
t
令 u = t , v′ = et
= 2( te − ∫ e dt )
t
t
= 2(t et − et ) + C
= 2e x ( x −1) + C
高等数学( 高等数学(上)
第四章 不定积分
第三节 分部积分法
例8 求 解 令 u = x2 + a2 , v′ =1, 则 x u′ = 2 2 , v = x
高等数学( 高等数学(上)
第四章 不定积分
第三节 分部积分法
例3 求 ∫ x arctan x dx. 解 令 u = arctanx, v′ = x 1 1 2 ′= 则 u , v= x 2 2 1+ x 1 2 1 x2 ∴ 原式 = x arctan x − ∫ dx 2 2 2 1+ x 1 2 1 1 = x arctan x − ∫ (1− ) dx 2 2 2 1+ x 1 2 1 = x arctan x − (x − arctan x) + C 2 2
高数书题目重点目录整理
高数书题目重点目录整理2015考研数学高等数学教材导学【注】1导学用书:同济大学《高等数学》(上、下册)(第6版)2 请各位学员认真研读课本内容及完成选择习题,打下一个牢固的基础。
无论是教材上的定理、例题,还是课后的习题,曾作为历年的考研真题出现过。
第1章函数、极限、连续1、映射与函数(一)复习内容P1-16(表示1至16页,下同),双曲函数开始之后的不复习。
(二)选做习题P21-22 第4-12题,第14-16题。
2、数列的极限(一)复习内容P23-30(二)选做习题P30-31 第1、5、6题。
3、函数的极限(一)复习内容P31-37(二)选做习题P37-39 第1-4题,第12题。
4、无穷小与无穷大(一)复习内容P39-41(二)选做习题P42 第4、5、6、7题。
5、极限运算法则(一)复习内容P43-49(二)选做习题P49 第1-5题。
6、极限存在准则两个重要极限(一)复习内容P50-55(除Cauchy极限存在准则)(二)选做习题P56-57 第1、2、4题。
7、无穷小的比较(一)复习内容P57-59(二)选做习题P59-60 第1-4题。
8、函数的连续性与间断点(一)复习内容P60-64(二)选做习题P64-65 第1-5题,第7-8题。
9、连续函数的运算与初等函数的连续性(一)复习内容P66-69(二)选做习题P69-70 习题1-9全做P74 总习题一第1-13题。
第2章函数、极限、连续1、导数概念(一)复习内容P77-86(二)选做习题P86-88 习题2-1全做。
2、函数的求导法则(一)复习内容P88-96(例17不学)(二)选做习题P97-99 第1、5题,第5-11题,第13、14题。
3、高阶导数(一)复习内容P99-102(二)选做习题P103 习题2-3除第5题全做。
4、隐函数及由参数方程所确定的函数的导数相关变化率(一)复习内容P104-111(二)选做习题P111-113 习题2-4除第9题全做。
考研数学一二三大纲详解教材分析
高等数学考研指定教材:同济大学数学系主编高等数学上下册第六版第一章函数与极限7天考小题学习内容复习知识点与对应习题大纲要求第一节:映射与函数一般章节函数的概念,常见的函数有界函数、奇函数与偶函数、单调函数、周期函数、复合函数、反函数、初等函数具体概念和形式.集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看习题1-1:4,5,6,7,8,9,13,15,16重点1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极第二节:数列的极限一般章节数列定义,数列极限的性质唯一性、有界性、保号性本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看习题1-2:1第三节:函数的极限一般章节函数极限的基本性质不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等 P33例4,例5例7不用做,定理2,3的证明不用看,定理4不用看习题1-3:1,2,3,4第四节:无穷大与无穷小重要无穷小与无穷大的定义,它们之间的关系,以及与极限的关系无穷小重要,无穷大了解例2不用看,定理2不用证明习题1-4:1,6第五节:极限的运算法则掌握极限的运算法则6个定理以及一些推论注意运算法则的前提条件是否各自极限存在定理1,2的证明理解,推论1,2,3,定理6的证明不用看P46例3,例4,P47例6习题1-5:1,2,3,4,5重点第六节:极限存在准则理解两个重要极限重要两个重要极限要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限,函数极限的存在问题夹逼定理、单调有界数列必有极限,利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看P51例1习题1-6:1,2,4第七节:无穷小的比较重要无穷小阶的概念同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小,重要的等价无穷小尤其重要,一定要烂熟于心以及它们的重要性质和确定方法定理1,2的证明理解P57例1P58例5习题1-7:全做限.9.理解函数连续性的概念含左连续与右连续,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理,并会应用这些性质.第八节:函数的连续性与间断点重要,基本必考小题函数的连续性,间断点的定义与分类第一类间断点与第二类间断点,判断函数的连续性连续性的四则运算法则,复合函数的连续性,反函数的连续性和间断点的类型;例1-例5习题1-8:1,2,3,4,5重点第九节:连续函数的运算与初等函数的连续性了解连续函数的运算与初等函数的连续性包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性定理3,4的证明不用看例4-例8 习题1-9:1,2,3,4,5,6重点第十节:闭区间上连续函数的性质重要,不单独考大题,但考大题特别是证明题会用到理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理零点定理对于证明根的存在是非常重要的一种方法.一致连续性不用看例1-例2习题1-10:1,2,3,5要会用5题的结论自我小结总复习题一:除了7,8,9以外均做,3,5,11,14重点本章测试题-检验自己是否对本章的复习合格合格成绩为80分以上,如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑;第二章导数与微分6天小题的必考章节学习内容复习知识点与对应习题大纲要求第一节: 导数的概念重要导数的定义、几何意义、物理意义数三不作要求,可不看,数三要知道导数的经济意义:边际与弹性,单侧与双侧可导的关系,可导与连续之间的关系非常重要,经常会出现在选择题中,函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限. 会求平1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些面曲线的切线方程和法线方程.导数定义年年必考例1-例6习题2-1:3,4,5,6,7,8,11,15,16,17,18,19,重点20物理量,理解函数的可导性与连续性之间的关系.第二节:函数的求导法则考小题复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,幂、指数函数求导法,反函数求导法,分段函数求导法基本求导法则与求导公式要非常熟定理1,3的证明不用看,例1,17不用做,定理2的证明理解,例6,7,8重点做习题2-2:除2,3,4,12不用做,其余全做,13,14重点做 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.第三节:高阶导数重要,考的可能性很大高阶导数和N阶导数的求法归纳法,分解法,用莱布尼兹法则用泰勒展开式求高阶导例1-例7 习题2-3:5,6,7,11不用做,其余全做,4,12重点做第四节:隐函数及由参数方程所确定的函数的导数考小题由参数方程确定的函数的求导法数三不用看,变限积分的求导法,隐函数的求导法相关变化率不用看例1-例10习题2-4:9,10,11,12均不用做,数三5,6,7,8也可以不做,其余全做,4重点做第五节:函数的微分考小题函数微分的定义,微分运算法则,微分几何意义微分在近似计算中的应用不用看,考纲不作要求例1-例6 习题2-5:5,6,7,8,9,10,11,12均不用做,其余全做自我小结总复习题二:4,10,15,16,17,18均不用做,其余全做,2,3,6,7,14重点做,数三不用做12,13第二章测试题第三章微分中值定理与导数的应用8天考大题难题经典章节学习内容复习知识点与对应习题大纲要求第一节:微分中值定理最重要,与中值定理应用有关的证明题微分中值定理及其应用费马定理及其几何意义,罗尔定理及其几何意义,拉格朗日定理及其几何意义、柯西定理及其几何意义四个定理要会证明,及其重要例1,习题3-1:除了13,15不用做,其余全部重点做1.理解并会用罗尔Rolle定理、拉格朗日Lagrange中值定理和泰勒Taylor定理,了解并会用柯西Cauchy中值定第二节:洛必达法则重要,基本必考洛比达法则及其应用洛比达法则要会证明,重要例1-例10,习题3-2:全做,1,3,4重点做理.2.掌握用洛必达法则求未定式极限的方法.3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.5.了解曲率和曲率半径的概念,会计算曲率和曲率半径.第三节:泰勒公式掌握其应用泰勒中值定理,麦克劳林展开式可不看公式的证明例1-例3 习题3-3:8,9不用做,其余全做10123重点做第四节:函数的单调性与曲线的凹凸区间考小题求函数的单调性、凹凸性区间、极值点、拐点、渐近线选择题及大题会用到例1-例12习题3-4:3125,512,812,9135,102不用做,其余全做,3,4,5,6,13,15重点做第五节:函数极值与最大值最小值考小题为主函数的极值一个必要条件,两个充分条件,最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题例5,6,7不用看习题3-5:123698,9,10,11,12,13,14,15,16均不用做,其余全做第六节:函数图形的描绘重要简单了解利用导数作函数图形一般出选择题及判断图形题,对其中的渐进线和间断点要熟练掌握,一元函数的最值问题三种情形;例1-例3 习题3-6:2-5第七节:曲率数三不作要求,仅数一、数二要求曲率、曲率的计算公式,与曲率相关的问题弧微分、曲率中心计算公式、渐屈线、渐伸线不用看例1-例3,习题3-7:1-6第八节:方程近似解不用看自我小结总复习题三:数一、数二全做,数三15不用做;其中22,3,7,8,9,10,34,113,12,17,18,20重点做第三章测试题总结第四章不定积分7天重要,本章数二考大题可能性更大学习内容复习知识点与对应习题大纲要求第一节:不定积分的概念与原函数与不定积分的概念与基本性质它们各自的定义,之间的关系,求不定积分与求微分1.理解原函数概念,理解不定积分性质重要或导数的关系,基本的积分公式,原函数的存在性,原函数的几何意义和力学意义数三不作要求例1-例16 习题4-1:1,2,3,4,6的概念.2.掌握不定积分的基本公式,掌握不定积分换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.第二节:换元积分法重要,第二类换元积分法更为重要不定积分的换元积分法,第二类换元法例1-例27习题4-2:1,212389101325均不用做,其余全做第三节:分部积分法考研必考不定积分的分部积分法例1-例10 习题4-3:1-24第四节:有理函数积分重要有理函数积分法,可化为有理函数的积分, 例1-例8 习题4-4:1-24不定积分计算总复习题四:1-40第五节:积分表的使用不用看自我小结总结本章第五章定积分6天重要,考研必考学习内容复习知识点与对应习题大纲要求第一节:定积分的概念与性质理解定积分的概念与性质可积存在定理定积分的7个性质理解及熟练应用,性质7积分中值定理要会证明定积分近似计算不用看习题5-1:1,2,3,6,8,9,10均不用做,其余全做,5,11,12重点做1.理解原函数概念,理解定积分的概念.2.掌握定积分的基本公式,掌握定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解广义反常积分的概念,会计算广义反常积分.第二节:微积分基本公式重要微积分的基本公式积分上限函数及其导数极其重要,要会证明牛顿-莱布尼兹公式重要,要会证明例5不用做,例6极其重要,记住结论习题5-2:6124567,7,8均不用做,其余全做,2数三不做,92,10,11,12,13重点做第三节:定积分的换元积分法与分部积分法重要,分部积分法更为重要定积分的换元法与分部积分法例1-例10 例5,例6,例7,例12经典例题,记住结论习题5-3:1123612141516,71389不用做,其余全做,重点做147****2526,2,6,77101213第四节:反常积分考小题反常积分无界函数反常积分与无穷限反常积分例1-例5习题:5-4:全做,3题结论记住第五节:反常积分的审敛法不用看总复习题五:13,2345,15,16不用做,其余全做,重点做3,5,7,8,9,101238910,13,14,17自我小结总结本章第六章定积分的应用4天考小题为主学习内容复习知识点与对应习题大纲要求第一节:定积分的元素法理解定积分元素法 1. 掌握用定积分表达和计算一些几何量与物理量平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等及函数的平均值等.第二节:定积分在几何学上的应用面积最重要一元函数积分学的几何应用求平面曲线的弧长与曲率仅数一看,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积数三不作要求,求旋转面的面积定积分的几何应用相关计算定积分应用的一些计算习题6-2:数一全做;数二、数三21-30不用做第三节:定积分在物理学上的应用数三不用看,数一数二了解定积分的物理应用用定积分求引力,用定积分求液体静压力,用定积分求功;综合题目的求解;数三不用看,数一数二了解例1-例5 习题6-3:数一、数二做总复习题六:数一全做;数二6不用做;数三只做3,4,5自我小结总结本章第七章常微分方程 9天本章对数二相对重要,必考章节学习内容复习知识点与对应习题大纲要求第一节:微分方程基本概念了解微分方程及其阶、解、通解、初始条件和特解,例1、2、3、4,例2数三不用看习题7-1:134,224,32,423,51.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量第二节:可分离变量的微分方程理解可分离变量的微分方程的概念及其解法例1、2、3、4,例2,3,4数三不作要求习题7-2:1,2第三节:齐一阶齐次微分方程的形式及其解法次方程理解例2不用看,可化为齐次的方程不用看习题7-3:1,2代换解某些微分方程.4.会用降阶法解下列微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.第四节:一阶线性微分方程重要,熟记公式一阶线性微分方程、伯努利方程仅数一考,记住公式即可,例1,3,4,习题7-4:1,2,3,8仅数一做第五节:可降解的高阶微分方程仅数一、数二考,理解全微分方程会求全微分方程会用降阶法解下列微分方程:和,例1—6习题:7-5:数三不用做、数一数二只做1,2第六节:高阶线性微分方程理解线性微分方程解的结构重要微分方程的特解、通解二阶线性微分方程举例不用看;常数变易法不用看定理1,2,3,4重点看习题7-6:1,3,4第七节:常系数齐次线性微分方程最重要,考大题特征方程,微分方程通解中对应项例1,2,3,6,7例4,5不用做习题7-7:1,2第八节:常系数非齐次线性微分方程最重要,考大题会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程例1-4,例5不用看习题7-8:1,2,6重点做第九节:欧拉方程仅数一考,了解欧拉方程的通解习题7-9:数一只做5,8 第十节不用看自我小结总复习题十二:1124,22,313578,434,5,7,8,10其中8,10仅数一做第八章空间解析几何和向量代数4天仅数一考,考小题,了解学习内容复习知识点与对应习题大纲要求第一节:向量及其向量概念,向量的线性运算,空间直角坐标系,利用坐标作向量的线性运算,向量1.理解空间直角坐标系,理解向量的概念及其表示.线性运算的模、方向、投影例1-例2.掌握向量的运算线性运算、数量积、向量积、混合积,了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系平行、垂直、相交等解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.第二节:数量积,向量积,混合积向量的数量积,向量的向量积例1-例7习题7-2:3,4,6,9,10第三节:曲面及其方程曲面方程旋转曲面、柱面、二次曲面;旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程例1-例5 习题7-3:,8,9,10第四节:空间曲线及其方程空间直线及其方程空间直线的对称式方程与参数方程,两直线的夹角,直线与平面的夹角例1-例4 习题7-4:2,3,5,6第五节:平面及其方程平面, 平面方程,两平面之间的夹角例1-例5习题7-5:1,2,3,5,6,9第六节:空间直线及方程直线与直线的夹角以及平行,垂直的条件,点到平面和点到直线的距离,球面,母线平行于坐标轴的柱面例1-例7 习题7-6:1-9,11,12自我小结总复习题七:1,9-21第九章多元函数微分法及其应用 10天考大题的经典章节,但难度一般不大学习内容复习知识点与对应习题大纲要求第一节:多元函数基本概念了解二元函数的极限、连续性、有界性与最大值最小值定理、介值定理例1—8,习题8—1:2,3,4,5,6,81.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形第二节:偏导数理解偏导数的概念,高阶偏导数的求解重要例1—8,习题8—2:1,2,3,4,6,9第三节:全微分理解全微分的定义,可微分的必要条件和充分条件全微分在近似计算中应用不用看例1,2,3,习题8—3:1,2,3,4第四节:多元复合函数求导,全微分形式的不变性多元复合函数的求导法则理解,重要例1—6,习题8—4:1—12 式的不变性.4.理解方向导数与梯度的概念并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.会用隐函数的求导法则.7.了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.第五节:隐函数的求导公式理解,小题隐函数存在的3个定理方程组的情形不用看例1—4,习题8—5:1—9第六节:多元函数微分学的几何应用仅数一考,考小题了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程一元向量值函数及其导数不用看例2—7,习题8—6: 1—9第七节:方向导数与梯度仅数一考,考小题方向导数与梯度的概念与计算例1—5,习题8—7:1—8,10第八节:多元函数的极值及其求法重要,大题的常考题型多元函数极值与最值的概念,二元函数极值存在的必要条件和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值例1-9,习题8—8:1—10第九节:二元函数的泰勒公式仅数一考,了解n阶泰勒公式,拉格朗日型余项极值充分条件的证明不用看第十节最小二乘法不用看例1,习题8—9:1,2,3自我小结总复习题八:1—3,5,6,8,11—19本章测试题——检验自己是否对本章的复习合格合格成绩为80分以上,如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑;第十章重积分7天重要,数二、数三相对于数一,本章更加重要,数二、数三基本必考大题学习内容复习知识点与对应习题大纲要求第一节:二重积分的概念与性质了解二重积分的定义及6个性质习题9—1:1,4,51. 理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法直角坐标、极坐标,会计算三重积分直角坐标、柱面坐标、球面坐标.3.会用重积分、曲线积分及曲面积分求一些几何量与物理量曲面面积、质量、质心、形心、转动惯量、引力.第二节:二重积分的计算法重要,数二、数三极其重要会利用直角坐标、极坐标计算二重积分二重积分换元法不用看例1-6,习题9—2:1,2,4,6,7,8,12,14,15,16第三节:三重积分仅数一考,理解三重积分的概念,利用直角坐标、柱面坐标、球面坐标计算三重积分的计算三重积分的计算重要例1-4,习题9—3:1,2,4—10第四节:重积分的应用仅数一考,了解曲面的面积、质心、转动惯量、引力第五节含参变量的积分不用看例1—7,习题9—4:2,5,6,8,10,11,14自我小结总复习题九:1,2,3,6,7,8,9,10总结第十一章曲线积分与曲面积分8天仅数一考,数二、数三均不考,数一考大题,考难题的经典章节学习内容复习知识点与对应习题大纲要求第一节:对弧长的曲线积分重要弧长的曲线积分的概念理解,性质了解及计算重要例1、2,习题10—1:1,3,4,51.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.2.掌握计算两类曲线积分的方法.3.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.4.了解两类曲面积分的概第二节:对坐标的曲线积分重要对坐标的曲线积分概念理解、性质了解及计算重要,两类曲线积分的联系了解例1-5,习题10—2:3—8第三节:格林公式及掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,其应用重要曲线积分的基本定理不用看例1-7,习题10—3:1-6念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式,斯托克斯公式计算曲面、曲线积分.5.了解散度与旋度的概念,并会计算.6.会用重积分、曲线积分及曲面积分求一些几何量与物理量平面图形的面积、体积、曲面面积、弧长、功及流量等.第四节:对面积的曲面积分重要对面积的曲面积分的概念理解、性质了解与计算重要例1、2,习题10—4:1,4,5,6,7,8第五节:对坐标的曲面积分重要对坐标的曲面积分的概念理解、性质了解及计算重要,两类曲面积分之间的联系了解例1-3,习题10—5:3,4第六节:高斯公式重要、通量不用看与散度了解会用高斯公式计算曲面、曲线积分,散度的概念及计算沿任意闭曲面的曲面积分为零的条件不用看例1-5,习题10—6:1,3第七节:斯托克斯公式重要、环流量不用看与旋度了解会用斯托克斯公式计算曲面、曲线积分,旋度的概念及计算空间曲面积分与路径无关的条件不用看例1-4,习题10—7: 1, 2自我小结总复习题十:1-4,6, 7总结第十二章无穷级数6天数二不考,数一、数三考大题,考难题经典章节学习内容复习知识点与对应习题大纲要求第一节:常数项级数的概念和性质一般考点级数收敛、发散的定义,收敛级数的基本性质考选择题柯西审敛原理不用看例1-3,习题11—1:1—41.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条第二节:常数项级数的审敛法理解正项级数及其审敛法;交错级数及其审敛法、绝对收敛与条件收敛绝对收敛级数的性质不用看例1-10,习题11—2:1—5第三节:幂级数重要函数项级数的概念了解;幂级数及其收敛性最重要;幂级数的运算乘、除不用看。
高等数学课件 4第三节 分部积分法ppt
令 x tan t ( t ), 则
I
et sec3
t
2 sec2 t d t
2
e t cos t d t
e t sin t e t sin t d t
e t sin t e t cos t e t cos t d t
故 I 1 (sin t cos t)e t C
1 x2
2
2.
原式
ex 1 cos
dx x
ex sin x dx
1 cos x
ex
tan
x 2
C.
(第一个积分分部积分)
3. 求 sin(ln x)dx.
解: sin(ln x)dx x sin(ln x) xd[sin(ln x)]
x
sin(ln
x)
x cos(ln
x)
1 x
dx
x2 a2
(x2 a2) a2 dx
x2 a2
x2 a2 dx x x2 a2 x2 a2 dx
a2
dx
x2 a2
x x2 a2 a2 ln | x x2 a2 | x2 a2 dx
∴ 原式 = 1 x x2 a2 a2 ln ( x x2 a2 ) C.
1
earctanx
1 x2
x dearctanx 1 x2
1 1
x2
earctanx (1
x)
I
I 1 x earctanx C . 2 1 x2
例16.
求
(1
xe x x)2
dx.
解:
(1
xe x x)2
dx
xe
xd
1
1
x
xex 1 d( xex ) 1 x 1 x
高等数学-第4章 4.3 分部积分法
§4.3 分部积分法前面我们介绍了直接积分法和换元积分法,但对于某些不定积分,用前面介绍的方法往往不能奏效,如:⎰xdx x cos 、⎰dx xe x 、⎰xdx ln 等.为此,本节将利用两个函数乘积的微分运算法则,推出一种新的求不定积分的方法——分部积分法.设函数()x u u =、()x v v =均可微,根据两个函数乘积的微分法则,有()udv vdu uv d +=。
移项得 ()vdu uv d udv -=,两边积分得 ()⎰⎰⎰-=vdu uv d dv u ⎰-=vdu uv ,即 udv uv vdu =-⎰⎰ 。
上式叫做不定积分的分部积分公式.例1 求积分⎰dx xe x .解 选取x u =,)(x x e d dx e dv ==,则x e v =,于是⎰dx xe x =()C x e c e xe dx e xe e xd x x x x x x +-=+-=-=⎰⎰1)(。
如果选取xe u =,)2(2x d xdx dv ==,则221x v =,于是 22211222x xx x x xe dx e d x e x e dx ⎛⎫==- ⎪⎝⎭⎰⎰⎰。
上式右边的积分⎰dx e x x 221比左边的积分⎰dx xe x 更复杂。
可见,dv u 和的选择不当将直接影响到积分的计算.所以在用分部积分法求积分时,关键是在于恰当地选取dv u 和,选取dv u 和一般要考虑以下两点:(1)v 要容易求得.(2)⎰vdu 要比⎰udv 容易积出.例2 求积分⎰xdx x cos .解 选取x u =,)(sin cos x d xdx dv ==,则x v sin =,于是cos (sin )sin sin sin cos x xdx xd x x x xdx x x x C ==-=++⎰⎰⎰。
为了简化写法,应用分部积分公式时,dv u 和可默记在心里不必写出,可通过凑微分,将积分()f x dx ⎰变成udv ⎰的形式,然后使用公式。
同济六版高数课件青岛大学
同济六版高数教材注重数学基础知识的传授和数学思维的培养,涵盖了高等数学的主要内容,包括极限、导数、微积 分、线性代数、微分方程等。
影响与评价
同济六版高数教材是国内高校应用较为广泛的高等数学教材之一,被广大师生认可和推荐,对于提高学 生的数学素养和思维能力具有积极的作用。
青岛大学高数课程概述
03
第二章:导数与微分
导数定义与性质
01
导数的定义
导数描述了函数在某一点处的切线的 斜率,是函数局部变化率的一种度量 。
02
导数的性质
导数具有一些重要的性质,如线性性 质、乘积法则、商的法则、链式法则 等。
03
导数的几何意义
导数在几何上表示函数图像在某一点 处的切线的斜率,即函数值增量与自 变量增量之比在增量趋于0时的极限 。
探讨多元函数在某点附近的变化率,为偏导数和全微 分的研究奠定基础。
偏导数与全微分
偏导数
描述多元函数在某一变量上的变化率,通过偏 导数可研究函数局部性质。
全微分
全面研究多元函数在各变量上的变化,通过全 微分可近似计算函数值的变化。
链式法则
探讨复合函数偏导数的计算方法,简化复杂函数的偏导数计算。
二重积分与三重积分
微分的几何意义
微分在几何上表示函数图像在某一点处的切线的纵坐标增量。
微分的应用
微分在近似计算、误差估计、求极值等方面有重要应用。
04
第三章:不定积分
不定积分定义与性质
不定积分定义
不定积分是微积分中的一个重要概念, 它表示一个函数的原函数或反导数。 给定一个函数f(x),其不定积分记作 ∫f(x)dx,表示f(x)的一个原函数。
物理应用
定积分在物理中有广泛的应用,例如在计算匀加 速直线运动的路程、变力做功等问题中都会用到 定积分的计算方法。
高等数学 第4章 第三节 分部积分法
x2
x a2
n
'
1 x2 a2
n
n
2x x2 a2
(2n 1)I n n N
n1
解
In
1 x2 a2
n dx
x x2 a2
n
xd
1 x2 a2 n
x x2 a2
n
x2
2nx a2
2 n1
dx
x x2 a2
e
x
sin
xdx
1 2
e
x
sin
x
cos
x
C
注意:移项时应该给等式的右边添加任意常数 C
6
例10 求 e 2x cos 3xdx
解 I e 2x cos 3xdx 1 cos 3xde2x
1
e 2x cos 3x 3
2 e 2x sin3xdx
2
1 e 2x cos 3x 3 sin3xde2x
第三节 分部积分法
1、公式推导
设ux及vx具有连续导数,则 udv uv vdu
证 uv uv uv uv uv uv
则 uvdx uv vudx udv uv vdu
例1 求 x cos xdx
解: 设 x u, v ' dx cos xdx d sin x dv, 即 sin x v.
sec x tan x sec3 x sec xd x
sec x tan x sec3 xdx ln sec x tan x
移项、两边同除以系数,得
s e c3
xd x
1 2
secx
tan
x
ln
secx
tan
高等数学第四章不定积分第三节 分部积分法
复原法在求不定积分时有着广泛的应用。
2020/2/13
10
例7 求积分 sec3 xdx.
解 sec3 xdx secxd tan x
secx tan x secx tan2 xdx
secx tan x secx(sec2 x 1)dx secx tan x sec3 xdx secxdx secx tan x sec3 xdx ln secx tan x sec3 xdx 1 (secx tan x ln secx tan x ) C
?
分部积分公式
2020/2/13
2
二 分部积分法 (Integration by Parts)
下面利用两个函数乘积的求导法则,得 出求积分的基本方法——分部积分法.
设函数u u( x)和v v( x)具有连续导数,
uv uv uv, 移项 uv uv uv,
2
2020/2/13
11
例8
求积分
In
1 (a2 x2 )n dx, n N
解 用分部积分法,当 n 1时,有
1
In1 (a 2 x x 2 )n1 dx
x2
(a 2 x 2 )n1 2(n 1) (a 2 x2 )n dx
x
1
a2
(a2 x2 )n1 2(n 1) [(a2 x2 )n1 (a2 x2 )n ]dx
2
dx
x2 2
arctan
x
1
1
x2
1
(1
)dx arctan x ( x arctan x) C.
高等数学(同济第六版)上册期末复习重点(可编辑修改word版)
高等数学(同济第六版)上册期末复习重点第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法2、分部积分法(注意加 C )定积分:1、定义2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程)4、空间平面5、空间旋转面(柱面)第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1 则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2 称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1… 中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前面我们在复合函数微分法的基 础上,得到了换元积分法。换元积分 法是积分的一种基本方法。本节我们 将介绍另一种基本积分方法——分部 积分法,它是两个函数乘积的微分法 则的逆转。
一、基本内容
问题ቤተ መጻሕፍቲ ባይዱ
xe
x
dx ?
解决思路 利用两个函数乘积的求导法则.
设函数u u( x ) 和v v ( x )具有连续导数, v uv , uv uv , uv u uv
解三 彻底换元
令 t arctan e x 则 x ln tan t
1 dx sec2 tdt tan t arctan e x t 1 dx sec 2 tdt ex tan t tan t
1 t 2 dt td cot tdt sin t
x2
C,
两边同时对 x求导, 得
x2
,
xf ( x )dx xf ( x ) f ( x )dx
2 x e e
2 x2
x2
C.
二、小结
合理选择 分公式
u, v ,正确使用分部积
uvdx uv uvdx
思考题
在接连几次应用分部积分公式时, 应注意什么?
x arctan x dx 2 1 x
1 x 2 arctan x ln( x 1 x 2 ) C .
例12
ex cos xdx
解
e cos xdx
x
1
1 x x e cos x e sin xdx
e cos x 2 sin xdex
1 1 sec xdx sec x tan x ln(sec x tan x ) C 2 2
3
例8
sinn xdx ( n N )
解
sin n xdx sin n1 xd cos x sin n1 x cos x cos 2 x ( n 1) sin n 2 xdx sin n1 x cos x ( n 1) sin n 2 xdx ( n 1) sin n xdx
uvdx uv uvdx, udv uv vdu.
分部积分公式
注 分部积分公式的特点:等式两边 u,v 互换位置
分部积分公式的作用:当左边的积分
udv
容易求得
不易求得,而右边的积分
vdu
利用分部积分公式——化难为易 例1 求积分 x cos xdx .
1 2 解(一) 令 u cos x , xdx dx dv 2 2 2 x x x cos xdx 2 cos x 2 sin xdx u 显然, , v 选择不当,积分更难进行.
思考题解答
注意前后几次所选的 u 应为同类型函数.
例
e x cos xdx
第一次时若选 u1 cos x
e x cos xdx e x cos x e x sin xdx
第二次时仍应选 u2 sin x
x[sin(ln x ) cos(ln x )] sin(ln x )dx x sin(ln x)dx [sin(ln x ) cos(ln x )] C . 2 注:本题也可令 t ln x
分部积分过程中出现循环,实质上是得到待求积分 的代数方程,移项即可求得所求积分。注意最后一 定要加上积分常数C
1 e arctan e 2 x dx 1 e 1 对 dx 分子分母同乘以 e x 1 e2 x x 1 dx x e 2 x dx 令 u ex 1 e2 x e (1 e )
x x
1 1 ln u ln(1 u 2 ) 2 du 2 u(1 u )
[分析] 需要将 xe x 作为整体来考虑
解
分子分母同乘以 e x
x 1 ( x 1)e x x(1 xe x )dx xe x (1 xe x )dx
令 t xe x
1 dt ln t ln(1 t ) C t (1 t )
x ln x ln(1 xe x ) C
1 n 1 n1 sin xdx sin x cos x sinn 2 xdx n n 若设 I n sin n xdx 则上述计算公式可表为
n
1 n 1 n1 I n sin x cos x I n 2 n n
——递推公式
反复使用递推公式,最后归结为求 sin x
1
x
cos xdex
x e cos x 2 e sin x 2 ex cos xdx
1
x
2
e e cos xdx 2 2 [ cos x sin x ] C
x
x
类似地有
e x x e sin xdx 2 2 [ sin x cos x ] C
1 1 x arctan x 1 x dx 2 1 x 1 2 1 x arctan x dx 2 1 x 令 x tan t 1 1 dx sec 2 tdt sec tdt 1 x2 1 tan 2 t
2 2
ln(sec t tan t ) C ln( x 1 x 2 ) C
1 1 u arctan u [ 2 ]du u u 1 u 1 1 arctan u ln u ln(1 u2 ) C u 2 1 x x e arctan e x ln(1 e 2 x ) C 2
解二
直接分部积分
x
arctan e arctan e x de x e x dx ex x x x e arctan e e 2 x dx 1 e
或
分子分母同乘以 e 2 x 1 e2 x 1 e 2 x dx e 2 x (1 e 2 x ) dx
1 1 2x 2x 令 t e2 x 2 x d (e ) 2 e (1 e ) 1 1 1 1 1 ]dt dt [ 2 t 1 t 2 t (1 t ) 1 [ln t ln(1 t )] 2
例4
求积分 x ln xdx .
x4 3 解 u ln x , x dx d dv , 4 1 4 1 3 3 x ln xdx 4 x ln x 4 x dx 1 4 1 4 x ln x x C . 4 16
总结 若被积函数是幂函数和对数函数或幂 函数和反三角函数的乘积,就考虑设对数函 数或反三角函数为 u.这样使用一次分部积分 公式就可使被积函数降次、简化、代数化、 有理化。目的、宗旨只有一个:容易积分。
例 13 已 知 f ( x ) 的 一 个 原 函 数 是 e
x2
, 求
xf ( x )dx .
解
f ( x)dx f ( x), f ( x )dx e
f ( x ) 2 xe
xf ( x )dx xdf ( x ) xf ( x ) f ( x )dx ,
e x sin xdx . 例6 求积分
e x sin xdx sin xde x 解 e x sin x e x d (sin x ) e x sin x e x cos xdx e x sin x cos xde x e x sin x (e x cos x e x d cos x ) e (sin x cos x ) e sin xdx 注意循环形式
例3
求积分 x arctan xdx .
x2 解 令 u arctan x , xdx d dv 22 2 x x x arctan xdx 2 arctan x 2 d (arctan x ) x2 x2 1 arctan x dx 2 2 2 1 x x2 1 1 arctan x (1 )dx 2 2 2 1 x x2 1 arctan x ( x arctan x ) C . 2 2
解(二) 令 u x , cos xdx d sin x dv
x cos xdx xd sin x x sin x sin xdx
x sin x cos x C .
分部积分公式运用成败的关键是恰当地选择u,v 一般来说, u,v 选取的原则是: (1)积分容易者选为v (2)求导简单者选为u 分部积分法的实质是:将所求积分化为两个积分 之差,积分容易者先积分。实际上是两次积分。
t cot t cot tdt
t cot t ln sin t C
ex e x arctan e x ln C 2x 1 e 1 x x e arctan e x ln(1 e 2 x ) C 2 x 1 例10 x dx x(1 xe )
x arctan x 例11 求积分 1 x 2 dx. x 2 解 1 x , 2 1 x
x arctan x 2 dx arctan xd 1 x 2 1 x
1 x 2 arctan x 1 x 2 d (arctan x )
3
例5 解
求积分 sin(ln x )dx .
sin(ln x)dx x sin(ln x ) xd[sin(ln x )]
1 x sin(ln x ) x cos(ln x ) dx x x sin(ln x ) x cos(ln x ) xd[cos(ln x )]