概率论与数理统计作业(五)答案[1]
概率论与数理统计习题5答案
AJ Lin
2013.12
5. 一本书共有 100 万个印刷符号, 排版时每个符号被排错的概率为 0.0001, 校对时每个排版错误
被改正的概率为 0.9,求校对后错误不多于 15 个的概率。 1, 第n个印刷符号校对后仍印错 解:设随机变量 X n , 0, 其它. 则 X n , n 1 是独立同分布随机变量序列,有 p P{xn 1} 0.0001 0.1 10 5 。 作 Yn X k , (n 106 ) , Yn 为校对后错误总数。 按中心极限定理,有 Y np 15 np 3 5 5 P{Yn 15} P n (5 / [10 10 (1 10 )]) (1.58) 0.9495 . npq npq
AJ Lin
2013.12
习题 5 答案
1. 一部件包括 10 部分,每部分的长度是一个随机变量,它们相互独立,服从同一分布,其数学 期望为 2mm,均方差为 0.05mm,规定总长度为( 20 0.1 )mm 时产品合格,试求产品合格的 概率。 (其中 (0.63) 0.7357 , (1.63) 0.9484 ) 解:令 X i 表示第 i 部分的长度, i 1, 2, ,10 ,据题意知, X 1 , X 2 , , X 10 相互独立同分布,且 E ( X i ) 2 , D ( X i ) 0.052 ,故产品合格的概率为
300 X k 300 1.29 400 300 1.29 1 P k 1 300 0.0489 300 0.0489
300 X k 300 1.29 1 P k 1 3.39 1 3.39 1 0.9997 0.0003 . 300 0.0489 (2)设 Y 表示这天售出价格为 1.2 元的蛋糕个数,则 Y ~ B 300, 0.2 ,又 np 300 0.2 60, np (1 p ) 60 0.8 48 , Y ~ N 60, 48 ,所求概率为 Y 60 60 60 P Y 60 1 P Y 60 1 P 1 (0) 0.5 . 48 48 8. (1)一个复杂系统由 100 个相互独立的元件组成,在系统运行期间每个元件损坏的概率为 0.1,
西南交通大学概率论和数理统计第五次作业答案
3
西南交通大学 2019—2020 学年第(一)学期《概率论与数理统计 B》课程习题答案
解:因为 X n
N (0,1) ,所以
9. 设 X1, X 2,, X5 是独立且服从相同分布的随机变量,且每一个 Xi i 1,2,,5都服从
N
0,1
。(1)试给出常数 c
,使得
c
X12
X
2 2
服从 2 分布,并指出它的自由度;(2)试给
出常数 d ,使得 d X1 X 2 服从 t 分布,并指出它的自由度。
X
2 3
X
2 4
11. 设 X1, X 2 ,, X n 是取自总体 X 的一个样本,其中 X 服从参数为 的泊松分布,其
中 未知, 0 ,求 的矩估计与最大似然估计,如得到一组样本观测值:
X
0 1 2 34
频数 17 20 10 2 1
求 的矩估计值与最大似然估计值。
解: EX ,故 的矩估计量 ˆ X 。
X
另,X 的密度函数为
f X x
e x 0
x 0 x0
故似然函数为
L
对数似然函数为
n
en
Xi
i 1
0
X i 0, i 1,2,, n 其他
ln
L
n
ln
n
X
i
i 1
d
ln L
d
n
n
i 1
Xi
0
解得 的最大似然估计量 ˆ n 1 。
概率论与数理统计习题册 第五章 答案
P{X
>
4500}
=1−
P{X
≤
4500}
= 1 − Φ⎜⎜⎝⎛
4500 − 4475 612.5
⎟⎟⎠⎞
≈ 1− Φ(1.01) = 1− 0.8413 = 0.1587
(2) P{4400
<
X
<
4500} = Φ⎜⎜⎝⎛
4500 − 4475 612.5
⎟⎟⎠⎞
−
Φ⎜⎜⎝⎛
4400 − 4475 612.5
E( Xi ) = 10× 0.4 + 9× 0.3 + 8× 0.2 + 7 × 0.05 + 6× 0.05 = 8.95 ,
D( Xi
)
=
E
(
X
2 i
)
−
( EX i
)2
=1.225 ,
设总分为 X ,则 X ~ N (500 × 8.95, 500 ×1.225) ,即 X ~ N (4475, 612.5) . 因此
n
∑ 解 设有 n 个数相加,X i 分别为每个数的舍入误差。记 X = Xi ,E( Xi ) = 0 , i =1
16
∑ D( Xi )
=
1 12
由定理一知,随机变量 Z
=
k =1
Xi − n⋅0 n / 12
近似地服从正态分布 N (0,1)
(1) 所求概率
P{ X ≤ 15} = P{−15 ≤ X ≤ 15} = P{ −15 < X < 15 } 55 55 55
P{| Xn − a |< 0.1} ≥ 0.95 的 n 的最小值应不小于自然数
概率论与数理统计练习册(理工类) - 第5,6章答案
答;收入至少400元的概率几乎为0.
(2)设出售1.2元的蛋糕数量为Y,则Y ~ B(300, 0.2), E(Y ) = 60, D(Y ) = 48.
P{Y
60}
=
Y P{
− 60
0}
=
(0)
=
0.5
48
答:售出价格为1.2元的蛋糕多于60只的概率0.5.
28
一、选择题:
概率论与数理统计练习题
x} = (x)
n→
n
n
Xi −n
(C) lim P{ i=1
x} = (x)
n→
n
n
Xi −
(D) lim P{ i=1
x} = (x)
n→
n
二、填空题:
224
1.对于随机变量 X,仅知其 E( X ) = 3,D( X ) = 1 ,则可知 P{| X − 3 | 3} 225
一、选择题:
概率论与数理统计练习题
系
专业
班 姓名
学号
第五章 大数定律与中心极限定理
1.设 n 是 n 次重复试验中事件 A 出现的次数,p 是事件 A 在每次试验中出现的概率,则对任意
的
0
均有
lim
P
n
−
p
n→ n
[A ]
(A) = 0
(B) = 1
(C) 0
(D) 不存在
系
专业
班 姓名
学号
第六章 数理统计的基本知识
§6.1 总体、样本与统计量、§6.2 抽样分布
1.设 X1, X 2 , X 3 是取自总 X 体的样本,a 是一个未知参数,下述哪个样本函数是统计量[ B ]
概率论与数理统计习题集及答案_5
概率论与数理统计习题集及答案---------------------------------------《概率论与数理统计》作业集及答案第1章概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= .(2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为:.(2)A 与B 都发生,而C 不发生表示为:.(3)A 与B 都不发生,而C 发生表示为:.(4)A 、B 、C 中最多二个发生表示为:.(5)A 、B 、C 中至少二个发生表示为:.(6)A 、B 、C 中不多于一个发生表示为:.2. 设}42:{},31:{},50:{≤(1)=⋃B A ,(2)=AB ,(3)=BA ,(4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= .2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。
概率论与数理统计作业(五)答案[1]
1、设随机变量,,X Y Z 相互独立,且()5,()11,()8E X E Y E Z ===,则(231)E X Y ++= ;(4)E Y ZX -= . 解 (231)2()3()125311144E X Y E X E Y ++=++=⨯+⨯+=(4)()4()()()4()1184E Y ZX E Y Z E X E Y E Z E X -=-=⋅-=⨯-⨯= 2、设随机变量X 的分布律为123101X P p p p -且已知2()0.1,()0.9E X E X ==,则1p = ;2p = ;3p = . 解 由已知得()12313222212313123123()1010.1()1010.90.4,0.1,0.51E X p p p p p E X p p p p p p p p p p p =-⨯+⨯+⨯=-+=⎧⎪=-⨯+⨯+⨯=+=⇒===⎨⎪++=⎩ 3、设随机变量(,)X Y 的概率密度为2,01,0(,)0,x y xf x y <<<<⎧=⎨⎩其他 则()E XY = . 解 100()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.4、已知4.1)(=X E ,24.0)(=X D ,则)(2X E = . 解 由[]22()()()D X E X E X =-得[]222()()()0.24 1.4 2.2E X D X E X =+=+=5、已知随机变量~(2)X P ,且22-=X Z ,则()=Z E _________,()D Z = _________. 解 由于~(2)X P ,故()2,() 2.E X D X ==于是()(22)2()2E Z E X E X =-=-= ()(22)4()D Z D X D X =-==6、设连续型随机变量X 的密度函数为()1221-+-=x x e x f π()+∞<<∞-x则()=X D _______. 解由于()2222(1)221(1)x xx x f x --⋅-+---⎝⎭===故21,2X N ⎛⎫⎛ ⎪ ⎪⎝⎭⎝⎭,于是()2212D X σ===⎝⎭. 7、设随机变量~(,)X U a b ,且()3=X E ,()34=X D ,则a = ,b = .解 由于~(,)X U a b ,故()()23321,5144()123a b E X a b a b b a D X b a +⎧==⎪+=⎧⎪⇒⇒==⎨⎨-=⎩⎪=-=⎪⎩.8、已知随机变量~(,),()12,()8X b n p E X D X ==,则p = ;n = .解 由于~(,)X b n p ,故 ()()12136,3(1)8E X np n p D X np p ==⎧⎪⇒==⎨=-=⎪⎩. 9、设~(1,9),~(2,4)X N Y N 且,X Y 相互独立,则(23)E X Y -= ,(23)D X Y -= . 解 由于~(1,9),~(2,4)X N Y N ,故 ()1,()9,()2,(E X D X E Y D Y ==== 于是2222(23)2()3()21324(23)2()(3)()29(3)472E X Y E X E Y D X Y D X D Y -=-=⨯-⨯=--=+-=⨯+-⨯=10、已知()2,()3,cov(,)1D X D Y X Y ===-,则cov(321,42)X Y X Y -++-= . 解 cov(321,42)3cov(,)10cov(,)8cov(,)X Y X Y X X X Y Y Y -++-=+-3()10cov(,)8()3210(1)8328D X X Y D Y =+-=⨯+⨯--⨯=- 二、计算题1、已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望和方差. 解 设任取出的5个产品中的次品数为X ,则514901090551001002332109010905510010041510901055100100C C (0)0.583,(1)0.340C C C C C (2)0.070,(3)0.007C C C C C (4)0,(5)0.C C C P X P X C P X P X P X P X ==================故X 的分布律为0123450.5830.3400.0700.00700X P于是()0.58300.34010.07020.007304E X =⨯+⨯+⨯+⨯+⨯+⨯= 222()(00.501)0.583(10.501)0.340(50.501)00.432.D X =-⨯+-⨯++-⨯= 2、设随机变量X 的概率密度为,01(,)2,120,x x f x y x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求(),()E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰22()()[()].6D XE X E X =-=3、设随机变量,X Y 的概率密度分别为22e ,0()0,0x X x f x x -⎧>=⎨≤⎩ 44e ,0()0,y Y y f y y -⎧>=⎨≤⎩求2(),(23)E X Y E X Y +-. 解 22-2200001()()2[].2x x x x X E X xf x dx xe dx xe e dx e dx +∞+∞+∞+∞--+∞--∞===-+==⎰⎰⎰⎰ 222201()()22x X E X x f x dx x e dx +∞+∞--∞===⎰⎰.401()()4.4y Y E Y yf y dy ye dy +∞+∞--∞===⎰⎰222401()()4.8y Y E Y y f y d y y e d y +∞+∞--∞===⎰⎰ 从而113()()().244E X Y E X E Y +=+=+=22115(23)2()3()23.288E X Y E X E Y -=-=⨯-⨯=4、设二维随机变量(,)X Y 在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求cov(,)X Y 和XY ρ.解 如图S D =12D S =,故(,)X Y 的概率密度为2,(,)(,)0,x y Df x y ∈⎧=⎨⎩其他11001()(,)23x DE X xf x y dxdy dx xdy -===⎰⎰⎰⎰11222001()(,)26x DE X x f x y dxdy dx x dy -===⎰⎰⎰⎰222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y ==1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以:1111cov(,)()()()123336X Y E XY E X E Y =-⋅=-⨯=-. 112XY ρ-===-。
概率论与数理统计第五章课后习题及参考答案
概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
概率论与数理统计第五章习题解答
第五章 假设检验与一元线性回归分析 习题详解解:这是检验正态总体数学期望μ是否为提出假设:0.32:,0.32:10≠=μμH H由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验当零假设H 0成立时,变量:)1,0(~61.10.320N X n X U -=-=σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u计算得: 6.31)6.318.310.326.310.306.32(61=+++++⨯=x89.061.10.326.310-=-=-=n x u σμ因 0.89 1.96u =<它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显着为32.0kg/cm 2。
解:这是检验正态总体数学期望μ是否大于10提出假设:10:,10:10>≤μμH H 即:10:,10:10>=μμH H由题设,样本容量5n =,221.0=σ,1.01.020==σ,km x 万1.10=,所以用U 检验当零假设H 0成立时,变量:)1,0(~51.010N X n X U -=-=σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251.0101.100=-=-=n x u σμ 因 2.24 1.64u =>它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ所以可以认为这批新摩托车的平均寿命μ有显者提高。
解:这是检验正态总体数学期望μ是否小于240提出假设:240:,240:10<≥μμH H即:240:,240:10<=μμH H由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验当零假设H 0成立时,变量:)1,0(~625240N X n X U -=-=σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.16252402200-=-=-=n x u σμ 因 1.959 1.64u =-<-它落入拒绝域,于是拒绝H 0,而接受H 1,即可以认为240<μ 所以可以认为今年果园每株梨树的平均产量μ显着减少。
概率论与数理统计第五章习题参考答案
0.05
⎭
查表得: χ 20.95 (8) = 15.507 ,故拒绝域为 (15.507, + ∞) .
代入样本值 s = 0.007 得 K 值为 K = 8 × (0.007)2 = 15.68 > 15.507 (0.005) 2
所以拒绝 H 0 ,故可以认为这批导线的标准差显著地偏大。
7. 某厂使用两种不同的原料 A, B 生产同一类产品,现抽取用原料 A 生产的样品 220 件,测得平均 重量为 2.46kg,标准差为 0.57kg。抽取用原料 B 生产的样品 205 件,测得平均重量为 2.55kg,标 准差为 0.48kg。设这两个总体都服从正态分布,且方差相等,问在显著水平α = 0.05 下能否认为 使用原料 B 生产的产品平均重量较使用原料 A 生产的产品平均重量为大?
当假设 H 0 为真时,取检验统计量
T = X − 3.25 ~ t(4) S/ 5
由
P ⎪⎨⎧ ⎪⎩
X − 3.25 S/ 5
>
t
0.01 2
(4)⎪⎬⎫ ⎪⎭
=
0.01
查表得: t 0.01 (4) = 4.6041,故拒绝域为 (−∞,−4.6041) U (4.6041,+∞) .
2
代入样本值 x = 3.252, s = 0.013 得 T 值为 T = 3.252 − 3.25 = 0.344 < 4.6041 0.013 / 5
当假设 H 0′ 为真时,取检验统计量
F = S12 ~ F (10,8)
S
2 2
由
P⎪⎨⎧ ⎪⎩
S12
S
2 2
<
F 1−
0.05
概率论与数理统计试卷试题及答案5
概率论与数理统计试卷一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设A 、B 满足1)(=A B P ,则 . 【 】(a )A 是必然事件;(b )0)(=A B P ;(c )B A ⊃;(d ))()(B P A P ≤.2. 设X ~N (μ,σ2),则概率P (X ≤1+μ)=( ) 【 】 A ) 随μ的增大而增大 ; B ) 随μ的增加而减小; C ) 随σ的增加而增加; D ) 随σ的增加而减小.3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个简单随机样本,则下列表达式中不是统计量的是 . 【 】 (a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4. 在假设检验中, 0H 表示原假设, 1H 表示备择假设, 则成为犯第二类错误 的是 . 【 】 (a )1H 不真, 接受1H ; (b )0H 不真, 接受1H ; (c )0H 不真, 接受0H ; (d )0H 为真, 接受1H .5.设n 21X ,,X ,X Λ为来自于正态总体),(N ~X 2σμ的简单随机样本,X 是样本均值,记2n1i i21)X X(1n 1S --=∑=,2n1i i22)X X(n1S -=∑= ,2n1i i23)X(1n 1S μ--=∑=,2n1i i24)X(n1S μ-=∑=,则服从自由度为1-n 的t 分布的随机变量是 . 【】 (a )1n S X T 1-μ-=;(b )1n S X T 2-μ-=;(c )nS X T 3μ-=;(d )nS X T 4μ-=.………………………………… 装 ……………………………… 订 ……………………………… 线 …………………………………二、填空题(将答案写在该题横线上。
概率论与数理统计学1至7章课后答案
第五章作业题解5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率.解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得)2100|7300(|)94005200(<-=<<X P X P982100700112222=-=-≥εσ.5.2 设随机变量X 服从参数为λ的泊松分布, 使用切比雪夫不等式证明 1{02}P X λλλ-<<≥. 解:因为)(~λP X ,所以λμ==)(X E 。
λσ==)(2X Var 故由切比雪夫不等式,得)|(|)20(λλλ<-=<<X P X P λλλλεσ111222-=-=-≥不等式得证.5.3 设由机器包装的每包大米的重量是一个随机变量, 期望是10千克, 方差是0.1千克2. 求100袋这种大米的总重量在990至1010千克之间的概率.解:设第i 袋大米的重量为X i ,(i =1,2,…,100),则100袋大米的总重量为∑==1001i i X X 。
因为 10)(=i X E ,1.0)(=i X Var ,所以 100010100)(=⨯=X E ,101.0100)(=⨯=X Var 由中心极限定理知,101000-X 近似服从)1,0(N故 )10|1000(|)1010990(<-=<<X P X P1)10(2)10|101000(|-Φ≈<-=X P998.01999.021)16.3(2=-⨯=-Φ=5.4 一加法器同时收到20个噪声电压,(1,2,,20)i V i = ,设它们是相互独立的随机变量,并且都服从区间[0,10]上的均匀分布。
记201k k V V ==∑,求(105)P V >的近似值。
陈国华等主编概率论与数理统计第五章习题解答
x>0 x≤0
(α > 0, β > 0)
a a 1 1 1 dx = ∫ cos(tx) ⋅ dx + ∫ sin(tx) ⋅ dx −a −a −a 2a 2a 2a 1 1 1 = ⋅ sin(tx) |a sin(at ) x =− a = at 2a t t −1 (2)参数为 λ 的指数分布的特征函数为, φ X (t ) = (1 − i ) ,参数为 λ 的指数分布可看做
1
π (1 + x 2 )
(−∞ < x < +∞) ;
⎧A ⎪ (D) X i 的概率函数为 : g ( x) = ⎨ x 3 ⎪0 ⎩
x ≥1 x <1
(i = 1,2,3, ) .
答案:CABAD 三.解答题
1.一颗骰子连续掷 4 次,点数总和记为 X ,估计 p (10 < X < 18) .
3.已知随机变量 X 的数学期望为 10,方差 DX 存在且 P (−20 < X < 40) ≤ 0.1 ,则
DX ≥ . 4.设 X 1 , X 2 , , X n, 为独立同分布的随机变量序列,且 X i (i = 1,2, ) 服从参数为 2 的
指数分布,则 n → ∞ 当时, Yn =
1 n 2 ∑ X i 依概率收敛于 n i =1
1 1 ln n + ln n = 0 2 2
n
DX n = EX n = ln n
n 1 1 D ( Xi) = 2 ∑ 2 n n i =1
2
∑ ln i → 0(n → ∞)
i =1
根据马尔可夫大数定律, {X n } 服从大数定律。
3 、 已 知 随 机 变 量 X 和 Y 的 数 学 期 望 、 方 差 以 及 相 关 系 数 分 别 为 E ( X ) = E (Y ) = 2 ,
李贤平 《概率论与数理统计 第五章》答案
第5章 极限定理1、ξ为非负随机变量,若(0)a Eea ξ<∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。
2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >,1{()}()P h c c Eh ξξ-≥≤。
4、{}k ξ各以12概率取值s k 和sk -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξ的算术平均值?6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件:(1)1{2}2kk P X =±=; (2)(21)2{2}2,{0}12k k k k k P X P X -+-=±===-; (3)11221{2},{0}12kk k P X k P X k --=±===-。
7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的,证明这时对{}k ξ大数定律成立。
8、已知随机变量序列12,,ξξ的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明对{}k ξ成立大数定律。
9、对随机变量序列{}i ξ,若记11()n n n ηξξ=++,11()n n a E E nξξ=++,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a E a ηη→∞⎧⎫-=⎨⎬+-⎩⎭。
10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而0mn→时,2221~2n mn n n m -⎛⎫⎛⎫ ⎪⎪-⎝⎭⎝⎭。
12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试求有10个或更多终端在使用的概率。
13、求证,在x o >时有不等式222111222211t x x x x e e dt e x x-∞--≤≤+⎰。
哈工大概率论与数理统计课后习题答案五
习 题 五1.假设有10只同种电器元件,其中两只废品,从这批元件中任取一只,如果是废品,则扔掉重新取一只,如仍是废品,则扔掉再取一只,试求在取到正品之前,已取出的废品只数的数学期望和方差。
解 设X 为已取出的废品只数,则X 的分布为012828218101091098X P ⋅⋅⋅即012881104545XP所以 82245459EX =+=, 2844,454515EX =+=224488().1581405DX EX EX =-=-= 2.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若1周5个工作日里无故障,可获利10万元;发生一次故障仍可获利5万元,发生两次故障所获利润零元;发生三次或三次以上故障就要亏损2万元。
求1周内期望利润是多少? 解 设一周所获利润为T (万元),则T 的可能值为10,5,0,2-.又设X 为机器一周内发生故障的次数,则~(5,0.2)X B ,于是,5(10)(0)(0.8)0.3277P T P X =====145(5)(1)0.2(0.8)0.4096P T P X C ====⨯=类似地可求出T 的分布为205100.05790.20480.40960.3277T P -所以一周内的期望利润为20.057950.4096100.3277ET =-⨯+⨯+⨯5.209=(万元)3.假设自动线加工的某种零件的内径X (毫米)服从正态分布(,1)N μ,内径小于10或大于12为不合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (元)与零件的内径X 有如下关系:1,10,20,1012,5,12.X T X X ⎧-<⎪=≤≤⎨⎪->⎩若若若问平均内径μ取何值时,销售一个零件的平均利润最大. 解1(10)20(1012)5(E T P X P X P X =-⨯<+⨯≤≤-⨯>10()20[(12)(10)]5[1(12)]1μμμμ-=-Φ+Φ--Φ---Φ-25(12)21(10)5μμ=Φ--Φ--25(12)21(10)dETd ϕμϕμμ=--+-22(10)(12)2221250μμ----=-即221[(12)(10)]22125e μμ----= 两边取对数得 21222ln25μ-= 即12511ln221μ=-. 时,平均利润最大.4.从学校到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25,设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望. 解 2~(3,)5X B ,分布律为3323()()()0,1,2,3.55k k k P X k C k -===即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 54722415061251251251255EX =++==5.设随机变量服从几何分布,其分布列为1()(1)k P X k p p -==-,01,1,2,p k <<=求EX 与DX 解1 111111(1)()k k kk k k k k x qx qEX k p p p kqp x p x ∞∞∞∞--======'⎛⎫'=-=== ⎪⎝⎭∑∑∑∑其中1q p =-由函数的幂级数展开有 011k k x x∞==-∑, 所以21111.1(1)x qx qEX p px x p=='⎡⎤=-==⎢⎥--⎣⎦ 因为221211()(1)k k x q x qk k x EX k pqp x x p x ∞∞-====''⎡⎤⎡⎤'===⎢⎥⎢⎥-⎣⎦⎣⎦∑∑22p p -=, 所以2222221().p qDX EX EX p p p -=-=-=解22123k EX P pq pq kpq -=+++++21(123),k p q q kq -=+++++设21123,k S q q kq -=+++++ (1) 则2323,k qS q q q kq =+++++(2)(1)–(2)得211(1)11k q S q q q q--=+++++=-, 所以2211(1)S q p ==-,从而,得 211EX pS p p p==⋅=.22222123n EX p pq pq n pq -=+++++222211(123)n p q q n q pS -=+++++,22232123,n qS q q q n q =+++++2112(1)135(21),n q S q q n q S --=++++-+23235(21),n qS q q q n q =++++-+21222(1)12()111n q qq S q q q q p--=+++++=+=+-,2212q S p p =+, 于是 212312S qS p p p==+, 所以 22321212()q qEX p p p p p =+=+, 故得X 的方差为2222221211().q q pDX EX EX p p p p p-=-=+-==6.设随机变量X 分别具有下列概率密度,求其数学期望和方差. (1)||1()2x f x e -=;(2)1||,||1,()0,||1;x x f x X -≤⎧=⎨>⎩ (3)2215(2),02,()160,x x x f x ⎧-≤≤⎪=⎨⎪⎩其他; (4),01,()2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他解 (1)||102x EX x e dx +∞--∞=⋅=⎰,(因为被积函数为奇函数)22||2012x x DX EX x e dx x e dx +∞+∞---∞===⎰⎰202x xx exe dx +∞+∞--=-+⎰2[] 2.x x xee dx +∞+∞--=-+=⎰(2)11(1||)0,EXx x dx -=-=⎰3411222310101(1||)2()2[]346x x DX EX x x dx x x dx -==-=-=-=⎰⎰. (3)2232543001515(2)(44)1616EX x x dx x x x dx =-=-+⎰⎰26450154415161166541615x x x ⎡⎤=-+=⋅=⎢⎥⎣⎦, 22654015(44)16EX x x x dx =-+⎰2765015448167657x x x ⎡⎤=-+=⎢⎥⎣⎦, 所以2281()177DX EX EX =-=-=. (4)223122220111128(2)313333x EXx dx x x dx x =+-=+-=+-=⎰⎰,1223230112114(2)(81)(161)43412EX x dx x x dx =+-=+---=⎰⎰,所以1411126DX =-=. 7.在习题三第4题中求11EX+解 因X 的分布为 012311112488X P所以11111111671224384896EX =+⨯+⨯+⨯=+.8.设随机变量X 的概率密度为,02,(),24,0,ax x f x cx b x ⎧<<⎪=+≤≤⎨⎪⎩其他.已知32,(13)4EX P X =<<=,求(1),,a b c 的值(2)随机变量XY e =的数学期望和方差.解 (1)2421()()f x dx axdx cx b dx +∞-∞==++⎰⎰⎰24422202226,22a c x x bx a b c =++=++24222()()xf x dx ax dx cx b xdx +∞-∞==++⎰⎰⎰856633a cb =++, 2312335()422axdx cx b dx a c b =++=++⎰⎰,解方程组13281856633252a b c a b c a b c ⎧++=⎪⎪++=⎨⎪⎪++=⎩得 14a =, 1b =,14c =-.(2)242202111()()(1)(1)444X x x x EYE e e f x dx xe dx x e dx e +∞-∞===+-+=-⎰⎰⎰,24222220211()()(1)44X x xx EY E e e f x dx xe dx x e dx +∞-∞===+-+⎰⎰⎰2222211(1)[(1)]44e e e =-+-222221()(1)4DY EY EY e e =-=-.9.游客乘电梯从底层到电视塔顶层观光;电梯于每个整点的第5分钟,25分钟和55分钟从底层起行。
概率论与数理统计(经管类)第五章课后习题答案
Φ 2.5
7. 某车间有同型号机床 200 台,它们独立地工作者,每台开动的概率均为 0.6,开动时耗电均为 1 千瓦. 问电厂至少要供给该车间多少电力,才能以 99.9%的概率保证用电需要? 解:用 X 表示 200 台机台开动的台数. X~B(200,0.6) np 200 0.6 120, npq 6.9, 设 N 为满足条件的最小正整数 P0 P Φ Φ 0 N N 120 6.9 120 6.9 120 6.9 X 120 6.9 Φ N 120 6.9
D X
2
1
µ|
250 1002
3σ .
0.975.
3. 设随机变量 X 服从正态分布N µ, σ .试估计概率P |X 解:因 X 服从正态分布,则D X σ P |X µ| 3σ
D X
2
σ 3σ
2
1 9
4. 已知随机事件 X 的期望 E(X)=100,方差 D(X)=10,估计 X 落在(80,120)内的概率. 解: P 80 120 P |X 100| 20 1
Y
1,2,··· ,0
∑
X ,n
1,2,
, Φ x 为标准正态分布函数,则
lim
P
1 = B .(依据棣莫弗‐拉普拉斯中心极限定理)
Φ 1 D.1.6 0, 事件 A 不发生, 1, 事件 A 发成 , (i=1,2,…,100),且 P(A)=0.8, X1,X2,…,X100 相互独
1 Φ 1.66 1 1 Φ 1.67 0.9525 6. 有一批建筑房屋用的木柱,其中 80%的长度不小于 3 米,现从这批木材中随机抽取 100 根,问其中至少 有 30 根短于 3 米得概率是多少? 解:用 X 表示 100 根木柱中短于 3 米得根数则 X~B(100,0.2), np PX 1 1 100 0.2 20, npq 30 1 P X 30 P X 4 20 30 4 0.0062 20 4,
《概率论与数理统计》第05章习题解答
第五章 习题参考解答1、解:22 0() 0 i xi i e x f x -⎧>⎪=⎨⎪⎩ (i =1,2,3,4)其它(1)==)()()()(),,,(43214321x f x f x f x f x x x x f 42412,0,1,2,3,40,ii i x e x i -⎧∑⎪=>=⎨⎪⎩其它(2){}2.17.01212.17.0,1212121<<⎭⎬⎫⎩⎨⎧<<=⎭⎬⎫⎩⎨⎧<<<<XP X P XX P=1211.211.222111122120.70.722()()22x x f x d x f x d x ed x ed x --=⎰⎰⎰⎰121.42.4()()e eee----=--(3).161)()(,21)()(,41)(,21,21)(2========nX D X D X E X E X D X E θθ(4)1212111()()()224E X X E X E X =⋅=⨯=22121221111(0.5)()(0.5)().2248E X X E X E X D X ⎡⎤-=⋅-==⋅=⎣⎦ (5)=)(21X X D []221221)(])[(X X E X X E -22221)41()(-=XX E=22221)41()()(-X E X E16316141)41()4141(22=-=-+= (22()()[()]i i i E X D X E X =+ )2、解(未修改):(1){}{}[]33312318575m ax ()8585()(1)0.595510iiP X X X P X <-⎡⎤<==Φ=Φ=⎢⎥⎣⎦=∏{}[]1313132(6080)(7590){6080}{7590}{6080}{7590}80756075()()(1.5)(0)((0.5)( 1.5))((1.5)(0))10100.69150.339210.43320.62470.43320.7873.P X X P X P X P X P X <<<<=<<+<<-<<⋅<<--=Φ-Φ+Φ-Φ-Φ-Φ-Φ-Φ=+-+-⨯= () (3)100)()(,75)()(====X D X D X E X E i i22()()[()]5725i i i E X D X E X =+=,108764.15725)()()()(113232221232221⨯===XE XE X E XXX E632321232221321755725)]([)()()4(-=-=X X X E XXX E X X X D1400)(14)()(9)(4)32(321321==++=--X D X D X D X D X XX D{}{}.4443.0)]14.0(1[)2107574(74148)5(21=Φ-=-Φ=≤=≤+X P XX P3、解(未修改):(1){}{}{}{}3213,2,1321321=⋅=⋅=====XP XP X P XXX P{}{}{}.10!15!0!0!151,00,112000398.0125!35!251510555521212115653525---------=⋅+⋅===+====+≈=⋅⋅=e eeeeXX P X X P X X P ee e e ) (!4、(1)设总体21236(52,(6.3,,,X N X X X ⋅⋅⋅ )),是来自X 的容量为36的 样本,求{}50.853.8P X <<。
《概率论与数理统计》习题五答案
《概率论与数理统计》习题及答案习题五1.一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}.【解】设i X 表每次掷的点数,则41i i X X==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯= 从而 22291735()()[()].6212i i i D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 又X 1,X 2,X 3,X 4独立同分布.从而44117()()()414,2i i i i E X E X E X =====⨯=∑∑ 44113535()()()4.123i i i i D X D X D X =====⨯=∑∑ 所以 235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈ 2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形.而至少要生产n 件,则i =1,2,…,n ,且X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8.现要求n ,使得1{0.760.84}0.9.n i i X P n =≤≤≥∑即0.80.9ni X n P -≤≤≥∑ 由中心极限定理得0.840.80.760.80.9,0.160.16n n n n n n --⎛⎫⎛⎫Φ-Φ≥ ⎪ ⎪⎝⎭⎝⎭ 整理得0.95,10n ⎛⎫Φ≥ ⎪ ⎪⎝⎭查表 1.64,10n ≥ n ≥268.96, 故取n =269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),()140,()42,E X D X ==1400.95{0}().42m P X m P X m -⎛⎫=≤≤=≤=Φ ⎪⎝⎭查表知 140 1.64,42m -= ,m =151. 所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k k V,求P {V >105}的近似值.【解】易知:E (V k )=5,D (V k )=10012,k =1,2,…,20 由中心极限定理知,随机变量201205~(0,1).10010020201212k k V Z N =-⨯==⨯⨯∑近似的 于是105205{105}1010020201212P V P ⎧⎫⎪⎪-⨯⎪>=>⎨⎬⎪⎪⨯⎪⎪⎩⎭1000.3871(0.387)0.348,102012V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⎭即有 P {V >105}≈0.3485. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?【解】设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}11000.20.8P X P X ≥=-<≈-Φ⨯⨯ 1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少?(2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩第人治愈其他令1001.ii X X ==∑ (1) X ~B (100,0.8),1001{75}1{75}11000.80.2i i P X P X =>=-≤≈-Φ⨯⨯∑1( 1.25)(1.25)0.8944.=-Φ-=Φ=(2) X ~B (100,0.7), 1001{75}1{75}11000.70.3i i P X P X =>=-≤≈-Φ⨯⨯∑1(1(1.09)0.1379.21=-Φ=-Φ= 7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则 p =0.05,n =1000,X ~B (1000,0.05),E (X )=50,D (X )=47.5.故130{20} 6.895 6.89547.547.5P X ϕ⎛⎫===- ⎪⎝⎭6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率. 【解】11()10,0.1i E T λ=== 21()100,i D T λ== ()1030300,E T =⨯= ()3000.D T =故{350}111(0.913)0.1814.P T >≈-Φ=-Φ=-Φ= 9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时).【解】设至少需n 件才够用.则E (T i )=10,D (T i )=100,E (T )=10n ,D (T )=100n .从而1{3068}0.95,n i i P T =≥⨯=∑即0.05.≈Φ 故0.95, 1.64272.n =Φ=≈所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.(1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率.易知E (X i =1.1),D (X i )=0.19,i =1,2, (400)而400i i X X=∑,由中心极限定理得400400 1.1~(0,1).i X N -⨯=∑近似地 于是{450}1{450}1P X P X >=-≤≈-Φ1(1.147)0.1357.=-Φ=(2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8)由拉普拉斯中心极限定理得3404000.8{340(2.5)0.9938.4000.80.2P Y -⨯⎛⎫≤≈Φ=Φ= ⎪⨯⨯⎝⎭11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515)要求女孩个数不少于男孩个数的概率,即求P {X ≤5000}. 由中心极限定理有5000100000.515{5000}(3)1(3)0.00135.100000.5150.485P X -⨯⎛⎫≤≈Φ=Φ-=-Φ= ⎪⨯⨯⎝⎭12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入?(2)至多有多少人能够进入?【解】用X i 表第i 个人能够按时进入掩蔽体(i =1,2,…,1000).令 S n =X 1+X 2+…+X 1000.(1) 设至少有m 人能够进入掩蔽体,要求P {m ≤S n ≤1000}≥0.95,事件90010000.9{}.10000.90.190n n S m m S --⨯⎛⎫≤=≤ ⎪⨯⨯⎝⎭ 由中心极限定理知:10000.9{}1{}10.95.10000.90.1n n m P m S P S m -⨯⎛⎫≤=-<≈-Φ≥ ⎪⨯⨯⎝⎭从而 9000.05,90m -⎛⎫Φ≤ ⎪⎝⎭ 故900 1.65,90m -=- 所以 m =900-15.65=884.35≈884人(2) 设至多有M 人能进入掩蔽体,要求P {0≤S n ≤M }≥0.95.{}0.95.90n P S M ≤≈Φ= 90M =900+15.65=915.65≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求:(1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”.于是所求概率为1120100000.006{120}100000.0060.994100000.0060.994P X ϕ-⨯⎛⎫=≈ ⎪⨯⨯⨯⨯⎝⎭21(60/59.64)230.181116011e 59.6459.64259.640.0517e 0ϕπ--⎛⎫== ⎪⎝⎭=⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60”于是所求概率为{060}100000.0060.994100000.0060.994P X ≤≤≈Φ-Φ⨯⨯⨯⨯ (0)0.5.59.64⎛=Φ-Φ≈ ⎝ 14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考)【解】令Z =X -Y ,有()0,()()()()2()() 3.E Z D Z D X Y D X D Y D X D Y ρ==-=+-=所以 2()31{|()|6}{||6}.63612D X Y P ZE Z P X Y --≥=-≥≤== 15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数.(1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是0.2,因此,X ~B (100,0.2),故X 的概率分布是100100{}C 0.20.8,1,2,,100.k k k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}1000.20.81000.20.8P X ≤≤≈Φ-Φ⨯⨯⨯⨯ (2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.【解】设X i (i =1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X 1,X 2,…,X n 视为独立同分布的随机变量,而n 箱的总重量T n =X 1+X 2+…+X n 是独立同分布随机变量之和,由条件知:()50,i E X = 5,=()50,n E T n = =依中心极限定理,当n ~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).≈Φ>=Φ 2>解出n <98.0199,即最多可装98箱.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、设随机变量,,X Y Z 相互独立,且()5,()11,()8E X E Y E Z ===,则(231)E X Y ++= ;
(4)E Y Z
X -= . 解 (231)2()3()125311144E X Y E X E Y ++=++=⨯+⨯+=
(4)()4()()()4()1184E Y Z
X E Y Z E X E Y E Z E X -=-=⋅-=⨯-⨯= 2、设随机变量X 的分布律为
123101X P p p p -
且已知2()0.1,()0.9E X E X ==,则1p = ;2p = ;3p = . 解 由已知得
()123132222
123131231
23()1010.1()1010.90.4,0.1,0.51
E X p p p p p E X p p p p p p p p p p p =-⨯+⨯+⨯=-+=⎧⎪=-⨯+⨯+⨯=+=⇒===⎨⎪++=⎩ 3、设随机变量(,)X Y 的概率密度为
2,01,0(,)0,
x y x
f x y <<<<⎧=⎨
⎩其他 则()E XY = . 解 10
0()(,)d d d 2d 0.25x
E XY xyf x y x y x x y y +∞+∞
-∞
-∞
===⎰
⎰
⎰⎰.
4、已知4.1)(=X E ,24.0)(=X D ,则)(2
X E = . 解 由[]2
2()()()D X E X E X =-得
[]2
22()()()0.24 1.4 2.2E X D X E X =+=+=
5、已知随机变量~(2)X P ,且22-=X Z ,则()=Z E _________,()D Z = _________. 解 由于~(2)X P ,故()2,() 2.E X D X ==于是
()(22)2()2E Z E X E X =-=-= ()(22)4()D Z D X D X =-==
6、设连续型随机变量X 的密度函数为
()1
221-+-=x x e x f π()+∞<<∞-x
则()=X D _______. 解
由于
(
)22
2
2
(1)221
(1)x x
x x f x --
⋅-+---⎝⎭
=
=
=
故21,2X N ⎛⎫⎛ ⎪ ⎪⎝⎭⎝⎭
,于是()2
21
2D X σ===⎝⎭. 7、设随机变量~(,)X U a b ,且()3=X E ,()3
4
=X D ,则a = ,b = .
解 由于~(,)X U a b ,故
()()2332
1,5144()123a b E X a b a b b a D X b a +⎧
==⎪+=⎧⎪⇒⇒==⎨⎨-=⎩⎪=-=⎪⎩
.
8、已知随机变量~(,),()12,()8X b n p E X D X ==,则p = ;n = .
解 由于~(,)X b n p ,故 ()()12
136,3(1)8
E X np n p D X np p ==⎧⎪⇒==⎨
=-=⎪⎩. 9、设~(1,9),~(2,4)X N Y N 且,X Y 相互独立,则(23)E X Y -= ,(23)D X Y -= . 解 由于~(1,9),~(2,4)X N Y N ,故 ()1,()9,()2,(
E X D X E Y D Y ==== 于是2222(23)2()3()21324(23)2()(3)()29(3)472
E X Y E X E Y D X Y D X D Y -=-=⨯-⨯=--=+-=⨯+-⨯=
10、已知()2,()3,cov(,)1D X D Y X Y ===-,则cov(321,42)X Y X Y -++-= . 解 cov(321,42)3cov(,)10cov(,)8cov(,)X Y X Y X X X Y Y Y -++-=+-
3()10cov(,)8()
3210(1)83
28
D X X Y D Y =+-=⨯+⨯--⨯=- 二、计算题
1、已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望和方差. 解 设任取出的5个产品中的次品数为X ,则
514901090
55100100
233210901090
551001004151090
1055100100
C C (0)0.583,(1)0.340
C C C C C (2)0.070,(3)0.007C C C C C (4)0,(5)0.
C C C P X P X C P X P X P X P X ==================
故X 的分布律为
012345
0.5830.3400.0700.00700
X P
于是
()0.58300.34010.07020.0073
04
E X =⨯
+⨯+⨯+⨯+⨯+⨯= 2
2
2
()(00.501)0.583(10.501)0.340(50.
501)00.4
32.D X =-⨯+-⨯++
-⨯= 2、设随机变量X 的概率密度为
,
01(,)2,120,x x f x y x x ≤<⎧⎪
=-≤≤⎨⎪⎩
其他
求(),()E X D X .
解 2
1
3
1
2
2
3201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞
-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰
122232017
()()d d (2)d 6
E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰
22()()[()].6
D X
E X E X =-=
3、设随机变量,X Y 的概率密度分别为
22e ,0()0,0x X x f x x -⎧>=⎨
≤⎩ 44e ,
0()0,
y Y y f y y -⎧>=⎨≤⎩
求2(),(23)E X Y E X Y +-. 解 22-2200001()()2[].2x x x x X E X xf x dx xe dx xe e dx e dx +∞
+∞+∞+∞--+∞
--∞===-+==⎰
⎰⎰⎰ 22
2201()()22x X E X x f x dx x e dx +∞+∞--∞===⎰⎰.
401
()()4.4y Y E Y yf y dy ye dy +∞+∞--∞===⎰⎰
2224
01()()4.8
y Y E Y y f y d y y e d y +∞+∞--∞===⎰⎰ 从而
113
()()().244
E X Y E X E Y +=+=+=
22115
(23)2()3()23.288
E X Y E X E Y -=-=⨯-⨯=
4、设二维随机变量(,)X Y 在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求cov(,)X Y 和XY ρ.
解 如图S D =1
2
D S =,故(,)X Y 的概率密度为
2,(,)(,)0,x y D
f x y ∈⎧=⎨
⎩其他
11001
()(,)23x D
E X xf x y dxdy dx xdy -===⎰⎰⎰⎰
1122
2001()(,)26x D
E X x f x y dxdy dx x dy -===⎰⎰⎰⎰
2
2
2
111
()()[()].6318
D X
E X E X ⎛⎫=-=-= ⎪⎝⎭
同理11
(),().318
E Y D Y ==
110
1
()(,)d d 2d d d 2d .12
x
D
D
E XY xyf x y x y xy x y x xy y -====
⎰⎰⎰⎰⎰⎰
所以:1111cov(,)()()()123336
X Y E XY E X E Y =-⋅=
-⨯=-. 11
2XY ρ-
=
=
=-。