2020年普通高等学校招生全国统一考试数学卷(江苏卷)含答案

合集下载

2020年江苏省高考数学试卷 试题+答案详解

2020年江苏省高考数学试卷 试题+答案详解
24.在三棱锥 A—BCD 中,已知 CB=CD= 5 ,BD=2,O 为 BD 的中点,AO⊥平面 BCD,AO=2,
E 为 AC 的中点. (1)求直线 AB 与 DE 所成角的余弦值;
1
(2)若点 F 在 BC 上,满足 BF= BC,
4
设二面角 F—DE—C 的大小为θ,求 sinθ的值.
25.甲口袋中装有 2 个黑球和 1 个白球,乙口袋中装有 3 个白球.现从甲、乙两口袋中各任 取一个球交换放入另一口袋,重复 n 次这样的操作,记甲口袋中黑球个数为 Xn,恰有 2 个 黑球的概率为 pn,恰有 1 个黑球的概率为 qn. (1)求 p1·q1 和 p2·q2; (2)求 2pn+qn 与 2pn-1+qn-1 的递推关系式和 Xn 的数学期望 E(Xn)(用 n 表示) .
a1
d 2
q 2
1
aq120
,∴
d
q
4
.
b1 1 q
1
b1 1
12【答案】 4 5
【解析】∵
5x2
y2
y4
1,∴
y
0

x2
1 y4 5y2

x2
y2
1 y4 5y2
y2
1 5y2
+
4y2 5
2
1 4y2 4 , 5y2 5 5
当且仅当
1 5y2
4y2 5
,即
x2
3 , y2 10
等差数列 an 的前 n 项和公式为 Pn
na1
nn 1
d 2
d n2 2
a1
d 2
n

等比数列bn 的前
n

2020年江苏高考数学试题及答案

2020年江苏高考数学试题及答案

的一条渐近线方程为222105()x y a a -=>的图象向右平移个单位长度,则平移后的图象中与π6b n }是公比为q 的等比数列.已知数列q 的值是▲ . 的最小值是▲ .22x y +中,已知,A ,B 是圆C :3(0)2P ,221()2x y +-=面积的最大值是▲ .的对边分别为a ,b ,c ,已知3,2,45a c B ===︒,使得,求的值.4cos 5ADC ∠=-tan DAC ∠某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底上).经测量,左侧曲线AO 上任一点;右侧曲线BO 上任一点F 到2140a =,直线AP与椭圆E的右准线相交于点Q,求OP与的面积分别为S1,S2,若OAB△MAB△S所以平面.AB ⊥1AB C 又因为平面,所以平面平面.AB ⊂1ABB 1AB C ⊥1ABB 16.本小题主要考查正弦定理、余弦定理、同角三角函数关系、两角和与差的三角函数等基础知识,考查运算求解能力.满分14分.解:(1)在中,因为,ABC △3,2,45a c B ===︒由余弦定理,得, 2222cos b a c ac B =+-292232cos 455b =+-⨯⨯︒=所以.5b =在中,由正弦定理, ABC △sin sin b cB C=得, 52=sin 45sin C︒所以 5sin .5C =(2)在中,因为,所以为钝角,ADC △4cos 5ADC ∠=-ADC ∠而,所以为锐角. 180ADC C CAD ∠+∠+∠=︒C ∠故则. 225cos 1sin ,5C C =-=sin 1tan cos 2C C C ==因为,所以,.4cos 5ADC ∠=-23sin 1cos 5ADC ADC ∠=-∠=sin 3tan cos 4ADC ADC ADC ∠∠==-∠从而. 31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯17.本小题主要考查函数的性质、用导数求最值、解方程等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)设都与垂直,是相应垂足. 1111,,,AA BB CD EF MN 1111,,,A B D F 由条件知,当时, 40O'B =则. 31140640160,800BB =-⨯+⨯=1160AA =由得 21160,40O'A =80.O'A =所以(米).8040120AB O'A O'B =+=+=4223328()0.()4t t x t t x ----+≤*令则. 3242=()(328),t t t t ∆----642=538t t t ∆-++记64253()1),28(t t t t t ϕ-++=≤≤则恒成立,53222062(31)(3())06t t t t t t 't ϕ-+=--<=所以在上是减函数,则,即. ()t ϕ[1, 2](2)()(1)t ϕϕϕ≤≤2()7t ϕ≤≤所以不等式有解,设解为, ()*12x x x ≤≤因此. 217n m x x ∆-≤-=≤②当时,01t <<.432()()11 34241f h t t t t ---=+---设, 432 = 342(41)t t t t v t +---322 ()=1212444(1)(31),v't t t t t t +--=+-令,得. ()0v t '=33t =当时,,是减函数;33(0)t ∈,()0v t '<()v t 当时,,是增函数. (1)33t ∈,()0v t '>()v t ,,则当时,.(0)1v =-(1)0v =01t <<()0v t <(或证:.) 2()(1)(31)(1)0v t t t t =++-<则,因此.(1)(1)0f h ---<1()m n -∉,因为,所以. 22m n ⊆[][-,,]217n m -≤+<③当时,因为,均为偶函数,因此也成立. 20t -≤<()f x ()g x 7n m -≤综上所述,.7n m -≤20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)因为等差数列是“λ~1”数列,则,即, {}n a 11n n n S S a λ++-=11n n a a λ++=也即,此式对一切正整数n 均成立.1(1)0n a λ+-=若,则恒成立,故,而,1λ≠10n a +=320a a -=211a a -=-这与是等差数列矛盾.{}n a 所以.(此时,任意首项为1的等差数列都是“1~1”数列)1λ=(2)因为数列是“”数列, *{}()n a n ∈N 3~23所以,即. 1133n n n S S a ++-=1133n n n n S S S S ++-=-因为,所以,则. 0n a >10n n S S +>>113113n n n n S S S S ++-=-令,则,即. 1n n n S b S +=23113n n b b -=-221(1)(1)(1)3n n n b b b -=->解得,即,也即, 2n b =12n n S S +=14n n S S +=所以数列是公比为4的等比数列.{}n S 因为,所以.则 111S a ==14n n S -=21(1),34(2).n n n a n -=⎧=⎨⨯≥⎩(3)设各项非负的数列为“”数列,*{}()n a n ∈N ~3λ则,即.11133311n n n S S a λ++-=33311n n n n S S S S λ++-=-因为,而,所以,则. 0n a ≥11a =10n n S S +≥>31311=1n n n n S S S S λ++--令,则,即.(*) 31=n nn S S c +3311( 1)n n n c c c λ-=-≥333(1)(1)( 1)n n n c c c λ-=-≥①若或,则(*)只有一解为,即符合条件的数列只有一个.0λ≤=1λ=1n c {}n a (此数列为1,0,0,0,…)②若,则(*)化为, 1λ>3232(1)(1)01n nnc c c λλ+-++=-因为,所以,则(*)只有一解为, 1n c ≥3232101n n c c λλ+++>-=1n c 即符合条件的数列只有一个.(此数列为1,0,0,0,…){}n a③若,则的两根分别在(0,1)与(1,+∞)内, 01λ<<3232101nn c c λλ+++=-则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t ).所以或.1n n S S +=31n n S t S +=由于数列从任何一项求其后一项均有两种不同结果,所以这样的数列有无数多个,则对应的{}n S {}n S 有无数多个.{}n a 综上所述,能存在三个各项非负的数列为“”数列,的取值范围是.{}n a ~3λλ01λ<<数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换](本小题满分10分)平面上点在矩阵对应的变换作用下得到点. (2,1)A -11a b ⎡⎤=⎢⎥-⎣⎦M (3,4)B -(1)求实数,的值;a b (2)求矩阵的逆矩阵.M 1-M B .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知点在直线上,点在圆上(其中,1π(,)3A ρ:cos 2l ρθ=2π(,)6B ρ:4sinC ρθ=0ρ≥).02θ≤<π(1)求,的值;1ρ2ρ(2)求出直线与圆的公共点的极坐标.l C C .[选修4-5:不等式选讲](本小题满分10分)设,解不等式.x ∈R 2|1|||4x x ++<【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)在三棱锥A —BCD 中,已知CB =CD =,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.5,设二面角F—DE—C的大小为个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换次这样的操作,记甲口袋中黑球个数为(2)由得,所以. cos 2,4sin ,ρθρθ=⎧⎨=⎩4sin cos 2θθ=sin 21θ=因为,,所以,. 0ρ≥0 2θ≤<π4θπ==22ρ所以公共点的极坐标为. (22,)4πC .[选修4-5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分.解:当x >0时,原不等式可化为,解得; 224x x ++<203x <<当时,原不等式可化为,解得;10x -≤≤224x x +-<10x -≤≤当时,原不等式可化为,解得.1x <-224x x ---< 2 1x -<<-综上,原不等式的解集为. 2|2}3{x x -<<22.【必做题】本小题主要考查空间向量、异面直线所成角和二面角等基础知识,考查空间想象能力和运算求解能力.满分10分.解:(1)连结OC ,因为CB =CD ,O 为BD 中点,所以CO ⊥B D .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥O C .以为基底,建立空间直角坐标系O –xyz . {}OB OC OA ,,因为BD =2,,AO =2,5CB CD ==所以B (1,0,0),D (–1,0,0),C (0,2,0),A (0,0,2).因为E 为AC 的中点,所以E (0,1,1).则=(1,0,–2),=(1,1,1),AB DE 所以. |||102|15||15||||53cos AB DE AB DE AB DE +-=⋅⋅==<>⨯ ,因此,直线AB 与DE 所成角的余弦值为. 1515(2)因为点F 在BC 上,,=(–1,2,0). 14BF BC =BC 所以. 111(,,0)442BF BC ==- 又, 20,0DB = (,)故. 71(,,0)42DF DB BF =+=. 11216=9327q -+=(2)当时,2n ≥,① 1111312111111111113333C C C C 120(1)C C C C 39n n n n n n n p p q p q p q ------=⋅⋅+⋅⋅+⋅--=+ 111111113322211211111111111133333333C C C C C C C C ()(1)C C C C C C C C n n n n n q p q p q ----=⋅⋅+⋅+⋅⋅+⋅⋅--,② 112=93n q --+,得. 2⨯+①②()1111124121222399333n n n n n n n p q p q q p q -----+=+-+=++从而,又, 1112(211)3n n n n p q p q ---+-+=111312p q -+=所以,.③ 11112()1()3331n n n n p q -+++==*n ∈N 由②,有,又, 1313()595n n q q --=--135115q -=所以,. 1113()1595n n q -=-+*n ∈N 由③,有,. 13111()210111()()33925n n n n n p q =+=-+-+[]*n ∈N 故,. 311111()()109235n n n n p q --=--+*n ∈N 的概率分布n X n X 01 2P 1n n p q -- n q n p 则. *1()0(1)121(),3n n n n n n E X p q q p n =⨯--+⨯+⨯=+∈N。

2020年江苏省【数学真题】普通高等学校招生全国统一考试试卷(原卷)

2020年江苏省【数学真题】普通高等学校招生全国统一考试试卷(原卷)

『高考真题·真金试炼』『知己知彼·百战不殆』绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=52x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x = ,则f (-8)的值是____.8.已知2sin ()4πα+ =23,则sin 2α的值是____. 9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=∈,则22x y +最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.。

2020年江苏省高考数学试卷(含答案详解)

2020年江苏省高考数学试卷(含答案详解)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.8.已知2sin ()4πα+=23,则sin 2α的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+- (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知(0)2P ,A ,B 是圆C :221(362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;(2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ∈R ,解不等式2|1|||4x x ++≤.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD =,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

2020年江苏卷(含答案)

2020年江苏卷(含答案)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,2},{0,2,3}A B =-=,则AB =_____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=52x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x = ,则f (-8)的值是____. 8.已知2sin ()4πα+ =23,则sin 2α的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______. 12.已知22451(,)x y y x y R +=∈,则22xy +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知3(0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△P AB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围; (3)若()422242() 2() (48 () 4 3 0)2 2f x x x g x x h x t t x t t t =-=-=--+<,,≤,[] , 2,2D m n =⊆-⎡⎣,求证:7n m -20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值; (2)若数列{}n a 是32-”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<). (1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ∈R ,解不等式2|1|||4x x ++≤.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2; (2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示) .2020年普通高等学校招生全国统一考试(江苏卷)参考答案数学Ⅰ一、填空题(共计70分)1.{}0,22.33.24.19 5.3- 6.32 7.4- 8.139.2π 10.524x π=- 11.4 12.45 13.0或18514.1.【解析】∵{}1,0,1,2A =-,{}0,2,3B = ∴{}2,0=B A .故答案为:{}0,2.2.【解析】∵复数()()12z i i =+-,∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.3.【解析】∵数据4,2,3,5,6a a -的平均数为4 ∴4235620a a ++-++=,即2a =.故答案为:2.4.【解析】根据题意可得基本事件数总为6636⨯=个. 点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个. ∴出现向上的点数和为5的概率为41369P ==.故答案为:19.5.【解析】由于20x >,所以12y x =+=-,解得3x =-.故答案为:3-6.【解析】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为y x =,即2b a a =⇒=,所以3c =,双曲线的离心率为32c a =.故案为:32.7.【解析】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-,故答案为:4- 8.【解析】∵)2sin 1(21)cos 22sin 22()4(sin 22ααααπ+=+=+ 121(1sin 2)sin 2233αα∴+=∴=.故答案为:139.【解析】正六棱柱体积为262⨯,圆柱体积为21()222ππ⋅=所求几何体体积为2π.故答案为:2π10.【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈当1k =-时524x π=-.故答案为:524x π=- 11.【解析】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题意1q ≠. 等差数列{}n a 的前n 项和公式为()2111222n n n d d P na d n a n -⎛⎫=+=+- ⎪⎝⎭, 等比数列{}n b 的前n 项和公式为()1111111n n n b q b bQ q qq q-==-+---, 依题意n n n S P Q =+,即22111212211nn b b d d n n n a n q q q ⎛⎫-+-=+--+ ⎪--⎝⎭, 通过对比系数可知111212211dd a q b q⎧=⎪⎪⎪-=-⎪⎨⎪=⎪⎪=-⎪-⎩⇒112021d a q b =⎧⎪=⎪⎨=⎪⎪=⎩,故4d q +=.故答案为:4 12.【解析】∵22451x y y +=,∴0y ≠且42215y x y -=∴42222221144+5555y y x y y y y -+=+=≥,当且仅当221455y y =,即2231,102x y ==时取等号.∴22xy +的最小值为45. 13.【解析】∵,,A D P 三点共线,∴可设()0PA PD λλ=>,∵32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,∴32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+, 若0m ≠且32m ≠,则,,B D C 三点共线,∴321m m λλ⎛⎫-⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =.∵4AB =,3AC =,90BAC ∠=︒,∴5BC =. 设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,∵()cos cos 0θπθ+-=,∴()()2570665x x x --+=-,解得185x =,∴CD 的长度为185.当0m =时,32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.14.【解析】 ∵PB PA =,∴AB PC ⊥.设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去)当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为故答案为:二、解答题(共计90分)15.【解析】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB . 由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C . (2)由于1B C ⊥平面ABC ,AB平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C , 由于AB平面1ABB ,所以平面1AB C ⊥平面1ABB .16.【解析】(1)由余弦定理得2222cos 92235b a c ac B =+-=+-⨯=,所以b =由正弦定理得sin sin sin sin 5c b c B C C B b =⇒==.(2)由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以3sin 5ADC ∠==.由于,2ADC ππ⎛⎫∠∈⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以cos 5C ==.所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅34555525⎛⎫=⨯+-= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以cos DAC ∠==所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.17.【解析】(1)由题意得2311||40640||8040800O A O A ''=-⨯+⨯∴= ||||||8040120AB O A O B ''∴=+=+=米(2)设总造价为()f x 万元,21||8016040O O '=⨯=,设||O E x '=, 32131()(1606)[160(80)],(040)800240f x k x x k x x =+-+--<<3221336()(160),()()0208008080080f x k x x f x k x x x '∴=+-∴=-=∴=(0舍去)当020x <<时,()0f x '<;当2040x <<时,()0f x '>,因此当20x时,()f x 取最小值,答:当20O E '=米时,桥墩CD 与EF 的总造价最低.18.【解析】(1)∵椭圆E 的方程为22143x y +=,∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=.∴12AF F △的周长为426+= (2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥,∴31,2A ⎛⎫⎪⎝⎭∵准线方程为4x =,∴()4,Q Q y∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d . ∵31,2A ⎛⎫⎪⎝⎭,()11,0F -,∴直线1AF 的方程为()314y x =+∵点O 到直线AB 的距离为35,213S S = ∴2113133252S S AB AB d ==⨯⨯⨯=⋅,∴95d = ∴113439x y -+=①,∵2211143x y +=②∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 19.【解析】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立. 令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =.故()2h x x =.(2)令()()()()()1ln 0F x h x g x k x x x =-=-->,()01F =.又()1x F x k x-'=⋅. 若k 0<,则()F x 在0,1上递增,在()+∞,1上递减,则()()10F x F ≤=, 即()()0h x g x -≤,不符合题意.当0k =时,()()()()()0,F x h x g x h x g x =-==,符合题意.当0k >时,()F x 在0,1上递减,在()+∞,1上递增,则()()10F x F ≥=, 即()()0h x g x -≥,符合题意. 综上所述,0k ≥.由()()()21f x h x x x kx k -=-+--()()2110x k x k =-+++≥当102k x +=<,即1k <-时,()211y x k x k =-+++在()+∞,0为增函数,因为()()0010f h k -=+<,故存在()00,x ∈+∞,使()()0f x h x -<,不符合题意.当102k x +==,即1k =-时,()()20f x h x x -=≥,符合题意. 当102k x +=>,即1k >-时,则需()()21410k k ∆=+-+≤,解得13k -<≤. 综上所述,k 的取值范围是[]0,3k ∈.(3)∵()423422243248x x t t x t t x -≥--+≥-对任意[,][x m n ∈⊂恒成立,()423422432x x t t x t t -≥--+对任意[,][x m n ∈⊂恒成立,等价于()222()2320x t xtx t -++-≥对任意[,][x m n ∈⊂恒成立.故222320x tx t ++-≥对任意[,][x m n ∈⊂恒成立.令22()232M x x tx t =++-,当201t <<,2880,11t t ∆=-+>-<-<,此时1n m t -≤<<,当212t ≤≤,2880t ∆=-+≤,但()234248432x t t x t t -≥--+对任意的[,][x m n ∈⊂恒成立.等价于()()()2322443420x t t x t t --++-≤对任意的[,][x m n ∈⊂恒成立.()()()2322443420x t t x t t --++-=的两根为12,x x ,则4231212328,4t t x x t t x x --+=-⋅=,所以12=n m x x --==.令[]2,1,2t λλ=∈,则n m -=构造函数()[]()325381,2P λλλλλ=-++∈,()()()23103331P λλλλλ'=-+=--,所以[]1,2λ∈时,()0P λ'<,()P λ递减,()()max 17P P λ==. 所以()max n m -=n m -≤.20.【解析】(1)∵+111111101n n n n n n S S a a a a a λλλ++++-=∴==∴≡∴=/(2)∵0 n a ,∴n n S S 1+,∴21211n n S S+.∴21121211)(33n n n n S S S S -=-++.1111112222222+1+1+11()()()3n n n n n n S S S S S S ∴-=-+1111111222222+1+1+1+11()=2=443n n nn n n n n n n S S S S S S S S S -∴-=+∴∴∴= 111S a ==,14n n S -=.1224434,2n n n n a n ---∴=-=⋅≥21,134,2n n n a n -=⎧∴=⎨⋅≥⎩(3)假设存在三个不同的数列{}n a 为"3"λ-数列.111113333333+11+1+1()()n n n n n n n S S a S S S S λλ+-=∴-=- 1133+1n n S S ∴=或11221123333333+1+1+1()()n n n n n n S S S S S S λ-=+++1n n S S ∴=或22113333333+1+1(1)(1)(2)0n n n n SS S S λλλ-+-++=∵对于给定的λ,存在三个不同的数列{}n a 为"3"λ-数列,且0n a ≥1,10,2n n a n =⎧∴=⎨≥⎩或()22113333333+1+1(1)(1)(2)01n n n n S S S S λλλλ-+-++=≠有两个不等的正根. ()22113333333+1+1(1)(1)(2)01n n n n S S SS λλλλ-+-++=≠可转化为()2133333+1+12133(1)(2)(1)01n n nnS S S S λλλλ-++-+=≠,不妨设()1310n n S x x S +⎛⎫=> ⎪⎝⎭,则()3233(1)(2)(1)01x x λλλλ-+++-=≠有两个不等正根,设()()3233(1)(2)(1)01f x x x λλλλ=-+++-=≠.①当1λ<时,32323(2)4(1)004λλλ∆=+-->⇒<<,即01λ<<,此时()3010f λ=-<,33(2)02(1)x λλ+=->-对,满足题意. ②当1λ>时,32323(2)4(1)004λλλ∆=+-->⇒<<,即1λ<<()3010f λ=->,33(2)02(1)x λλ+=-<-对,此情况有两个不等负根,不满足题意舍去. 综上,01λ<<数学Ⅱ(附加题)【选做题】A .[选修4-2:矩阵与变换]21.【解析】(1)∵平面上点()2,1A -在矩阵 11 a M b ⎡⎤=⎢⎥-⎣⎦对应的变换作用下得到点()3,4B - ∴ 1 2 31 14a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦,∴21324a b -=⎧⎨--=-⎩,解得22a b =⎧⎨=⎩(2)设1m n Mc d -⎡⎤=⎢⎥⎣⎦,则12 2 1 0=2 20 1m c n d MM m c n d -++⎡⎤⎡⎤=⎢⎥⎢⎥-+-+⎣⎦⎣⎦∴21202021m c n d m c n d +=⎧⎪+=⎪⎨-+=⎪⎪-+=⎩,解得25151525m n c d ⎧=⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪=⎩,∴121 5512 55M -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ B .[选修4-4:坐标系与参数方程]22.【解析】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43πρρ=∴=,因为点B 为直线6πθ=上,故其直角坐标方程为y x =, 又4sin ρθ=对应的圆的直角坐标方程为:2240x y y+-=,由2240y x x y y ⎧=⎪⎨⎪+-=⎩解得00xy ==⎧⎨⎩或1x y ⎧=⎪⎨=⎪⎩对应的点为())0,0,,故对应的极径为20ρ=或22ρ=.(2)cos 2,4sin ,4sin cos 2,sin 21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=,当4πθ=时ρ=54πθ=时0ρ=-<(舍);即所求交点坐标为当(22,),4πC.[选修4-5:不等式选讲]23.【解析】1 224xx x<-⎧⎨---≤⎩或10224xx x-≤≤⎧⎨+-≤⎩或224xx x>⎧⎨++≤⎩21x∴-≤<-或10x-≤≤或23x<≤,所以解集为22,3⎡⎤-⎢⎥⎣⎦【必做题】24.【解析】(1)连,CO BC CD BO OD CO BD==∴⊥以,,OB OC OA为,,x y z轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E-∴∴()()1,1,1,2,0,1=-=DEAB,∴1515351,cos-=-=DEAB从而直线AB与DE所成角的余弦值为1515(2)设平面DEC一个法向量为1(,,),n x y z=1120(1,2,0),x yn DCDCx y zn DE⎧+=⋅=⎧⎪=∴⎨⎨++=⋅=⎪⎩⎩令112,1(2,1,1)y x z n=∴=-=∴=-∴()1,1,21-=n设平面DEF一个法向量为()1112,,zyxn=112211171171(,,0),424420x yn DFDF DB BF DB BCn DE x y z⎧⎧+=⋅=⎪⎪=+=+=∴⎨⎨⋅=⎪⎩⎪++=⎩令111272,5(2,7,5)y x z n=-∴==∴=-()5,7,22-=n∴13137866,cos21-=-=nn,因此12239sin1313θ==25.【解析】(1)11131232,333333p q ⨯⨯====⨯⨯,211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯, 211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯.(2)1111131212++333339n n n n n p p q p q ----⨯⨯=⨯⨯=⨯⨯, 111112*********+(1)+33333393n n n n n n q p q p q q -----⨯⨯+⨯⨯=⨯⨯+--⨯=-⨯⨯⨯,因此112122+333n n n n p q p q --+=+,从而11111212(2+),21(2+1)333n n n n n n n n p q p q p q p q ----+=+∴+-=-,即1111121(2+1),2133n n n n n n p q p q p q -+-=-∴+=+.又n X 的分布列为故()213n n n n E X p q =+=+.。

解析2020年普通高等学校招生全国统一考试(江苏卷)数学

解析2020年普通高等学校招生全国统一考试(江苏卷)数学

机密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:,其中S是柱体的底面积,h是柱体的高.柱体的体积V Sh一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合A={-1,0,1,2},B={0,2,3},则A∩B=.【命题意图】本题考查集合中的简单的交集计算.【解析】由集合A={-1,0,1,2},B={0,2,3},所以A∩B={0,2}.答案:{0,2}2.已知i是虚数单位,则复数z=(1+i)(2−i)的实部是.【命题意图】本题主要考查复数的四则运算.【解析】z=(1+i)(2−i)=3+i,则实部为3.答案:33.已知一组数据4,2a,3-a,5,6的平均数为4,则a的值是.【命题意图】本题主要考查数据特征中的平均数的计算.=4可知a=2.【解析】由4+2a+(3-a)+5+65答案:24.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是.【命题意图】本题主要考查古典概型.【解析】总事件数为6×6=36,满足条件的事件有(1,4),(2,3),(3,2),(4,1)共4种,则点数和为5的概率为436=19.答案:195.如图是一个算法流程图,若输出y 的值为-2,则输入x 的值为 .【命题意图】本题主要考查流程图选择问题,注意选择条件. 【解析】由题可知y ={2x ,x>1,x+1,x≤1,当y =-2时,得x +1=-2,则x =-3. 答案:-36.在平面直角坐标系xOy 中,若双曲线x 2a 2 -y 25=1(a >0)的一条渐近线方程为y =√52x ,则该双曲线的离心率是 .【命题意图】本题主要考查双曲线的性质,渐近线问题. 【解析】由x 2a2−y 25=0得渐近线方程为y =±√5ax , 又a >0,则a =2,由c 2=a 2+5=9,c =3,得离心率e =c a =32. 答案:32【光速解题】e =√1+(√52)2=32.答案:327.已知y =f (x )是奇函数,当x ≥0时,f (x )=x 23,则f (-8)的值是 . 【命题意图】本题主要考查函数性质,利用奇偶性求函数值. 【解析】y =f (x )是奇函数,当x ≥0时,f (x )=x 23, 则f (-8)=-f (8)=-823=-4.答案:-48.已知sin 2(π4+α)=23,则sin 2α的值是 .【命题意图】本题主要考查三角函数恒等变换,利用整体思想求值. 【解析】方法一:因为sin 2(π4+α)=23, 由sin 2(π4+α)=12[1−cos (π2+2α)] =12(1+sin 2α)=23,解得sin 2α=13. 方法二:sin 2α=-cos (π2+2α) =2sin 2(π4+α)-1=13.答案:139.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是 cm 3.【命题意图】本题主要考查正棱柱、圆柱的体积计算,要求学生要熟记公式.【解析】记此六角螺帽毛坯的体积为V ,正六棱柱的体积为V 1,圆柱的体积为V 2,则V 1=6×12×2×2×sin 60°×2=12√3(cm 3),V 2=π×(0.5)2×2=π2(cm 3), 所以V =V 1-V 2=12√3-π2(cm 3).答案:12√3-π210.将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象与y 轴最近的对称轴方程是 .【命题意图】本题主要考查三角函数的图象的平移变换和性质.重点考查直观想象的数学核心素养. 【解析】设f (x )=y =3sin (2x +π4),将函数f (x )=3sin (2x +π4)的图象向右平移π6个单位长度得g (x )=f (x -π6)= 3sin (2x -π3+π4)=3sin (2x -π12),则y =g (x )的图象的对称轴为2x - π12=π2+k π,k ∈Z,即x =7π24+kπ2,k ∈Z,k =0时,x =7π24,k =-1时,x =-5π24,所以平移后的图象与y 轴最近的对称轴的方程是x =-5π24. 答案:x =-5π24【误区警示】解决本题时一定要看清要求的对称轴方程是平移后的图象与y 轴最近的对称轴方程.求出平移后的图象的对称轴方程为x =7π24+kπ2(k ∈Z),不要误认为k =0时,x =7π24就是本题的答案,还应验证k =-1时,x =-5π24,两者进行比较,才能得出答案.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列,已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是 .【命题意图】本题主要考查根据前n 项和求数列的通项公式,多写一项,进行作差运算,根据结构得到数列通项.重点考查学生数学运算的核心素养.【解析】设数列{a n },{b n }的首项分别为a 1,b 1,前n 项和分别为A n ,B n ,则A n =d2n 2+(a 1-d2)n ,B n =b1q -1q n +b11−q ,结合S n =n 2-n +2n -1,得{d2=1,q =2,解得{d =2,q =2,所以d +q =4.答案:412.已知5x 2y 2+y 4=1(x ,y ∈R),则x 2+y 2的最小值是 .【命题意图】本题主要考查不等式,利用消元法结合基本不等式求最值. 【解析】因为5x 2y 2+y 4=1(x ,y ∈R),所以y ≠0, 所以x 2=1−y 45y 2,则x 2+y 2=15y 2+45y 2≥2√425=45, 当且仅当15y 2=45y 2时,即y 2=12, x 2=310时,x 2+y 2的最小值是45.答案:45【光速解题】4=(5x 2+y 2)·4y 2≤[(5x 2+y 2)+4y 22]2=254(x 2+y 2)2,故x 2+y 2≥45,当且仅当5x 2+y 2=4y 2=2,即x 2=310,y 2=12时,取等号.所以(x 2+y 2)min =45. 答案:4513.在△ABC中,AB=4,AC=3,∠BAC=90°,D在边BC上,延长AD到P,使得AP=9,若=m+(32-m)(m 为常数),则CD的长度是.【命题意图】本题主要考查平面向量共线的应用.重点考查直观想象及数学运算的核心素养.【解析】作AE⊥BC,交BC于点E.设=λ=λm+λ(32-m),因为C,D,B三点共线,所以λm+λ(32-m)=1,解得λ=23,所以AD=3=AC,所以CD=2·AC·cos C=185.答案:18514.在平面直角坐标系xOy中,已知P(√32,0),A,B是圆C:x2+(y-12)2=36上的两个动点,满足P A=PB,则△P AB面积的最大值是.【命题意图】本题主要考查直线与圆相交问题,通过设圆心角表示面积,利用导数求最值.突出考查数学运算的核心素养.【解析】方法一:如图,作PC所在直径EF,交AB于点D,因为P A=PB,CA=CB=R=6,所以PC⊥AB.要使面积S△P AB最大,则P,D位于C的两侧,并设CD=x,计算可知PC=1,故PD=1+x,AB=2BD=2√36−x2,故S△P AB=12AB·PD=(1+x)√36−x2,设∠BCD=θ,则x=6cos θ,S△P AB=(1+x)√36−x2=(1+6cos θ)·6sin θ=6sin θ+18sin 2θ,0<θ<π2, 记函数f (θ)=6sin θ+18sin 2θ,则f'(θ)=6cos θ+36cos 2θ=6(12cos 2θ+cos θ-6), 令f'(θ)=6(12cos 2θ+cos θ-6)=0, 解得cos θ=23(cos θ=-34<0舍去),显然,当0<cos θ<23时,f'(θ)<0,f (θ)单调递减;当23<cos θ<1时,f'(θ)>0,f (θ)单调递增; 结合cos θ在(0,π2)上单调递减,故cos θ=23时,f (θ)最大,此时sin θ=√1−cos 2θ=√53, 故f (θ)max =6×√53+36×√53×23=10√5,即△P AB 面积的最大值是10√5.方法二:由已知PC =1,设12∠ACB =α(α∈(0,π2)),则△P AB 的面积S =12·(6cosα+1)·12sin α=6sin α(6cos α+1), 令S'=6(12cos 2α+cos α-6) =6(4cos α+3)(3cos α-2)=0,解得cos α0=23(负值舍去),所以S 在(0,α0)上单调递增,在(α0,π2)上单调递减,所以S max =6×√53×5=10√5. 答案:10√5二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【命题意图】本题主要考查立体几何线面平行、面面垂直的证明,考查学生空间想象能力和推理能力.【证明】(1)因为E,F分别是AC,B1C的中点,所以EF∥AB1,因为EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1.(2)因为B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB,又因为AB⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以AB⊥平面AB1C,因为AB⊂平面ABB1,所以平面AB1C⊥平面ABB1.16.(本小题满分14分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=3,c=√2,B=45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ADC=-45,求tan∠DAC的值.【命题意图】本题主要考查正余弦定理及两角和差公式的应用,考查学生解题的严谨性.【解析】(1)由余弦定理,得cos B=cos 45°=a 2+c2-b22ac=26√2=√22,因此b2=5,即b=√5,由正弦定理csinC =bsinB,得√2sinC=√5√22,因此sin C=√55.(2)因为cos∠ADC=-45,所以sin∠ADC=√1−cos2∠ADC=35,因为∠ADC∈(π2,π),所以C∈(0,π2),所以cos C=√1−sin2C=2√55,所以sin∠DAC=sin(π-∠DAC)=sin(∠ADC+∠C)=sin∠ADC cos C+cos∠ADC sin C=2√525,因为∠DAC ∈(0,π2),所以cos ∠DAC =√1−sin 2∠DAC =11√525, 故tan ∠DAC =sin∠DACcos∠DAC =211. 17.(本小题满分14分)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO'为铅垂线(O'在AB 上),经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO'的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO'的距离b (米)之间满足关系式h 2=-1800b 3+6b.已知点B 到OO'的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO'的桥墩CD 和EF .且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元),桥墩CD 每米造价32k (万元)(k >0),问O'E 为多少米时,桥墩CD 与EF 的总造价最低?【命题意图】本题主要考查实际生活问题中的模型建立及导数的实际应用.重点考查数学建模的核心素养. 【解析】(1)过A ,B 分别作MN 的垂线,垂足为A',B', 则AA'=BB'=-1800×403+6×40=160(米).令140a 2=160,得a =80,所以AO'=80,AB =AO'+BO'=80+40=120(米). (2)设O'E =x ,则CO'=80-x ,由{0<x <400<80−x <80,得0<x <40.设总造价为y ,则y =3k2[160−140(80-x )2]+k [160−(-1800x 3+6x)] =k800(x 3-30x 2+160×800), y'=k800(3x 2-60x )=3k800x (x -20),因为k >0,所以令y'=0,得x =0或x =20, 所以当0<x <20时,y'<0,y 单调递减;当20<x <40时,y'>0,y 单调递增.所以,当x =20时,y 取最小值,即当O'E 为20米时,造价最低. 18.(本小题满分16分)在平面直角坐标系xOy 中,若椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B. (1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求·的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别是S 1,S 2,若S 2=3S 1,求M 的坐标.【命题意图】本题考查了(1)利用椭圆的定义求焦点三角形的周长;(2)求平面向量数量积最值问题;(3)面积比值转化为高之比,从而转化为平行线间的距离求出直线方程.考查数学运算、直观想象的核心素养. 【解析】(1)△AF 1F 2的周长=2a +2c =6.(2)由椭圆方程得A (1,32),设点P (t ,0),则直线AP 方程为y =321−t (x -t ),令x =a 2c =4得y Q =6−32t 1−t =12−3t 2(1−t ), 即Q (4,12−3t 2−2t),=(t -4,12−3t 2t -2),·=t 2-4t =(t -2)2-4≥-4, 即·的最小值为-4.(3)设O 到直线AB 的距离为d 1,M 到直线AB 的距离为d 2, 若S 2=3S 1,则12×|AB |×d 2=12×|AB |×d 1×3,即d 2=3d 1, 由题意可得直线AB 的方程为y =34(x +1), 即3x -4y +3=0,所以d 1=35,d 2=95.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点, 设平行于AB 的直线l 为3x -4y +m =0,与直线AB 的距离为95, 所以√9+16=95,即m =-6或12.当m =-6时,直线l 为3x -4y -6=0, 即y =34(x -2),联立{y =34(x -2)x 24+y 23=1,可得(x -2)(7x +2)=0,即{x M =2y M =0,或{x M =−27y M =−127, 所以M (2,0)或(-27,-127).当m =12时,直线l 为3x -4y +12=0, 即y =34(x +4),联立{y =34(x +4)x 24+y 23=1,可得214x 2+18x +24=0,Δ<0,所以无解.综上所述,M 点坐标为(2,0)或(-27,-127).19.(本小题满分16分)已知关于x 的函数y =f (x ),y =g (x )与h (x )=kx +b (k ,b ∈R)在区间D 上恒有f (x )≥h (x )≥g (x ). (1)若f (x )=x 2+2x ,g (x )=-x 2+2x ,D =(-∞,+∞).求h (x )的表达式; (2)若f (x )=x 2-x +1,g (x )=k ln x ,h (x )=kx -k ,D =(0,+∞).求k 的取值范围;(3)若f (x )=x 4-2x 2,g (x )=4x 2-8,h (x )=4(t 3-t )x -3t 4+2t 2(0<|t |≤√2),D =[m ,n ]⊆[-√2,√2],求证:n -m ≤√7.【命题意图】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.【解析】(1)由f (x )=g (x )得x =0.又f'(x )=2x +2,g'(x )=-2x +2,所以f'(0)=g'(0)=2,所以,函数h (x )的图象为过原点,斜率为2的直线,所以h (x )=2x.经检验:h (x )=2x 符合题意. (2)h (x )-g (x )=k (x -1-ln x ), 设φ(x )=x -1-ln x ,则φ'(x )=1-1x =x -1x , φ(x )≥φ(1)=0,所以当h (x )-g (x )≥0时,k ≥0.设m (x )=f (x )-h (x )=x 2-x +1-(kx -k )=x 2-(k +1)x +(1+k )≥0, 当x =k+12≤0时,m (x )在(0,+∞)上递增,所以m(x)>m(0)=1+k≥0,所以k=-1.>0时,Δ≤0,当x=k+12即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤√2时,≤0.(*)由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+3t4-2t2-84令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤√2),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立,所以φ(t)在[1,√2]上是减函数,则φ(√2)≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为{x|x1≤x≤x2},因此n-m≤x2-x1=√Δ≤√7.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),.令v'(t)=0,得t=√33)时,v'(t)<0,v(t)是减函数;当t∈(0,√33,1)时,v'(t)>0,v(t)是增函数;当t∈(√33v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-√2,√2],所以n-m≤√2+1<√7.③当-√2≤t <0时,因为f (x ),g (x )均为偶函数, 因此n -m ≤√7也成立. 综上所述,n -m ≤√7. 20.(本小题满分16分)已知数列{a n }(n ∈N *)的首项a 1=1,前n 项和为S n ,设λ与k 是常数,若对一切正整数n ,均有S n+11k-S n 1k=λa n+11k成立,则称此为“λ-k ”数列.(1)若等差数列{a n }是“λ-1”数列,求λ的值;(2)若数列{a n }是“√33-2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ-3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由.【命题意图】本题以数列为载体,综合考查等差数列的基本性质,及解决数列综合问题的能力,综合考查代数推理、转化化归及综合运用数学知识探究与解决问题的能力. 【解析】(1)k =1时,a n +1=S n +1-S n =λa n +1,所以λ=1. (2)√S n+1-√S n =√33√a n+1,a n +1=S n +1-S n =√33√a n+1(√S n+1+√S n ), 因此√S n+1+√S n =√3√a n+1.√S n+1=23√3a n+1,S n +1=43a n +1=43(S n +1-S n ). 从而S n +1=4S n .又S 1=a 1=1,所以S n =4n -1,a n =S n -S n -1=3·4n -2,n ≥2. 综上,a n ={1,n =13·4n -2,n ≥2.(3)设各项非负的数列{a n }(n ∈N *)为“λ-3”数列, 则S n+113-S n 13=λa n+113,即√S n+13-√S n 3=λ√S n+1-S n 3.因为a n ≥0,且a 1=1,所以S n +1≥S n >0, 则√S n+1S n3-1=λ√S n+1S n-13.令√S n+1S n3=c n ,则c n -1=λ√c n 3-13(c n ≥1),即(c n -1)3=λ3(c n 3-1)(c n ≥1).(*)①若λ≤0或λ=1,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…) ②若λ>1,则(*)化为(c n -1)(c n2+λ3+2λ3-1c n +1)=0,因为c n ≥1,所以c n 2+λ3+2λ3-1c n +1>0,则(*)只有一解为c n =1,即符合条件的数列{a n }只有一个.(此数列为1,0,0,0,…)③若0<λ<1,则c n 2+λ3+2λ3-1c n +1=0的两根分别在(0,1)与(1,+∞)内,则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t ). 所以S n +1=S n 或S n +1=t 3S n .由于数列{S n }从任何一项求其后一项均有两种不同结果, 所以这样的数列{S n }有无数多个,则对应的{a n }有无数多个.综上所述,能存在三个各项非负的数列{a n }为“λ-3”数列,λ的取值范围是0<λ<1. 21.【选做题】A .平面上点A (2,-1)在矩阵M =[a 1-1b]对应的变换作用下得到点B (3,-4). (1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵M -1.【命题意图】本题主要考查矩阵的基本运算及对应变换. 【解析】(1)[a1-1b ][2-1]=[2a -1-2-b] =[3-4], 所以{2a -1=3,-2-b =−4.解得{a =2,b =2.(2)由(1)知M =[21-12]. |M |=2·2+1·1=5,所以M -1=[25-151525].B.在极坐标系中,已知点A (ρ1,π3)在直线l :ρcos θ=2上,点B (ρ2,π6)在圆C :ρ=4sin θ上(其中ρ≥0,0≤θ<2π). (1)求ρ1,ρ2的值;(2)求直线l 与圆C 的公共点的极坐标.【命题意图】本题主要考查极坐标公式及极坐标的意义、极坐标的求法.【解析】(1)ρ1=2cosπ3=4,ρ2=4sin π6=2.(2)联立得4sin θcos θ=2得sin 2θ=1, 因为ρ≥0,0≤θ<2π, 所以θ=π4,ρ=2√2,所以公共点的极坐标为(2√2,π4). C.设x ∈R,解不等式2|x +1|+|x |<4.【命题意图】本题主要考查含有绝对值的不等式的解法. 【解析】当x >0时,2x +2+x <4,解得0<x <23;当-1≤x ≤0时,2x +2-x <4,解得-1≤x ≤0;当x <-1时,-2x -2-x <4,解得-2<x <-1. 综上,解集为(-2,23).22.在三棱锥A -BCD 中,已知CB =CD =√5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点. (1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.【命题意图】本题主要考查利用空间向量法求异面直线所成的角及二面角.重点考查如何建立空间直角坐标系,求出相应点的坐标,再利用公式求角.【解析】建立如图所示的空间直角坐标系,则A (0,0,2),B (1,0,0),C (0,2,0),D (-1,0,0),E (0,1,1).(1)=(1,0,−2),=(1,1,1),则cos<,>==√1515.故直线AB 与DE 所成角的余弦值为√1515. (2)由已知得F (34,12,0),=(74,12,0),=(1,1,1),设平面DEF 的一个法向量为n 1=(x 1,y 1,z 1),则{x 1+y 1+z 1=0,74x 1+12y 1=0, 令x 1=2,得{y 1=−7,z 1=5,所以n 1=(2,-7,5).设平面DEC 的一个法向量为n 2=(x 2,y 2,z 2), 又=(1,2,0),则{x 2+y 2+z 2=0,x 2+2y 2=0, 令x 2=2,得{y 2=−1,z 2=−1,所以n 2=(2,-1,-1), 所以|cos θ|=|n 1·n 2||n 1||n 2|=√6×√78=√1313, 所以sin θ=√1−cos 2θ=√1−113=2√3913. 23.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1,q 1和p 2,q 2;(2)求2p n +q n 与2p n -1+q n -1的递推关系式和X n 的数学期望E (X n )(用n 表示).【命题意图】本题主要考查概率的求法及数学期望的求法.重点考查学生利用所学知识解决实际问题的能力.【解析】(1)p 1=13×1=13,q 1=23×1=23.p 2=13p 1+23×13q 1=727, q 2=23p 1+(23×23+13×13)q 1=1627. (2)当n ≥2时,p n =13p n -1+23×13q n -1=13p n -1+29q n -1,q n =23p n -1+(23×23+13×13)q n -1+23×(1-p n -1-q n -1)=-19q n -1+23, 所以2p n +q n =13(2p n -1+q n -1)+23, 则2p n +q n -1=13(2p n -1+q n -1-1), 又2p 1+q 1-1=13,所以2p n +q n =1+(13)n. X n 的概率分布如下:X n 0 1 2 P1-p n -q nq np n则E (X n )=q n +2p n =1+(13)n.。

2020年江苏省高考数学试卷及答案

2020年江苏省高考数学试卷及答案

2020年最新绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数 学参考公式:样本数据1x ,2x ,,n x 的标准差锥体体积公式222121[()()()]n s x x x x x x n=-+-++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高 其中R 为球的半径一、填空题:本大题共1小题,每小题5分,共70分. 1.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω 2.一个骰子连续投2次,点数和为4的概率3.),(11R b a bi a ii∈+-+表示为,则b a += 4.{}73)1(2-<-=x x x A ,则A Z 的元素的个数 5.b a ,的夹角为120,,3,1==b a 则=-b a 56在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率7. 某地区为了解70~80岁老人的日平均睡眠时间(单位:h ), 随机选择了50位老人进行调查。

下表是这50位老人日睡眠时间的 频率分布表。

序号 (i ) 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率 (i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.5 10 0.20 3 [6,7) 6.5 20 0.40 4 [7,8) 7.5 10 0.20 5[8,9) 8.5 4 0.08在上述统计数据的分析中,一部分计算算法流程图,则输出的S 的值是 。

8.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b= ▲ 9.在平面直角坐标系中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点P (0,p )在线段AO 上(异于端点),设p c b a ,,,均为非零实数,直线CP BP ,分别交AB AC ,于点F E ,,一同学已正确算的OE 的方程:01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛-y a p x c b ,请你求OF 的方程: 10.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10。

2020年江苏省高考数学试卷(含答案详解)

2020年江苏省高考数学试卷(含答案详解)

平行,OO 为铅垂线( O 在 AB 上).经测量,左侧曲线 AO 上任一点 D 到 MN 的距离 h1 (米)与 D 到 OO 的距离来自a(米)之间满足关系式
h1
1 40
a2
;右侧曲线
BO
上任一点
F

MN
的距离
h2
(米)与
F

OO
的距离
b(米)
之间满足关系式
h2
1 b3 800
6b .已知点
B
到 OO 的距离为
绝密★启用前
2020 年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ 注意事项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。本卷满分为 160 分,考试时间 为 120 分钟。考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题 卡的规定位置. 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作 答一律无效. 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式: 柱体的体积V Sh ,其中 S 是柱体的底面积, h 是柱体的高. 一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答.题.卡.相.应.位.置. 上.. 1.已知集合 A {1, 0,1, 2}, B {0, 2, 3},则 A B _____.
【答案】2 【解析】 【分析】 根据平均数的公式进行求解即可.
【详解】∵数据 4, 2a, 3 a, 5, 6 的平均数为 4 ∴ 4 2a 3 a 5 6 20 ,即 a 2 .

2020年普通高等学校招生全国统一考试数学(江苏卷)

2020年普通高等学校招生全国统一考试数学(江苏卷)

绝密★启用前2020年普通高等学校招生全国统一考试数学(江苏卷)(本试卷共8页,20小题,满分160分,考试用时100分钟)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相应位置上。

1.已知集合A={-1,0,1,2},B={0,2,3},则A∩B=.2.已知i是虚数单位,则复数z=(1+i)(2-i)的实部是.3.已知一组数据4,2a,3-a,5,6的平均数为4,则a的值是.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是.5.下图是一个算法流程图.若输出y的值为-2,则输入x的值是.6.在平面直角坐标系xOy中,若双曲线x 2a2−y25=1(a>0)的一条渐近线方程为y=√52x,则该双曲线的离心率是.7.已知y=f(x)是奇函数,当x≥0时,f(x)=x 23,则f(-8)的值是.8.已知sin2(π4+α)=23,则sin 2α的值是.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是cm3.10.将函数y=3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 .11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n+2n -1(n ∈N *),则d+q 的值是 .12.已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是 .13.在△ABC 中,AB=4,AC=3,∠BAC=90°,D 在边BC 上,延长AD 到P ,使得AP=9,若PA⃗⃗⃗⃗⃗ =m PB ⃗⃗⃗⃗⃗ +(32-m)PC ⃗⃗⃗⃗⃗ (m 为常数),则CD 的长度是 .14.在平面直角坐标系xOy 中,已知P (√32,0),A ,B 是圆C :x 2+(y -12)2=36上的两个动点,满足PA=PB ,则△PAB 面积的最大值是 .二、解答题:本大题共6小题,共计90分。

精品解析:2020年江苏省高考数学试卷(解析版)

精品解析:2020年江苏省高考数学试卷(解析版)

2020年高三全国统一考试(江苏卷)数学Ⅰ一、耐心填空题:(本大题共14小题,每小题5分,共计70分.)1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.【答案】{}0,2【解析】【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =∴{}0,2A B =故答案为:{}0,2.【点睛】本题考查了交集及其运算,是基础题型.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.【答案】3【解析】【分析】根据复数的运算法则,化简即可求得实部的值.【详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+∴复数的实部为3.故答案为:3.【点睛】本题考查复数的基本概念,是基础题.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.【答案】2【解析】【分析】根据平均数的公式进行求解即可.【详解】∵数据4,2,3,5,6a a -的平均数为4∴4235620a a ++-++=,即2a =.故答案为:2.【点睛】本题主要考查平均数的计算和应用,比较基础.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____. 【答案】19【解析】【分析】分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可.【详解】根据题意可得基本事件数总为6636⨯=个.点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个.∴出现向上的点数和为5的概率为41369P ==. 故答案为:19. 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题. 5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】【分析】根据指数函数的性质,判断出1y x =+,由此求得x 的值.【详解】由于20x >,所以12y x =+=-,解得3x =-.故答案为:3-【点睛】本小题主要考查根据程序框图输出结果求输入值,考查指数函数的性质,属于基础题.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____. 【答案】32【解析】【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为y x =,即2b a a =⇒=,所以3c =,所以双曲线的离心率为32c a =. 故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 7.已知y =f (x )是奇函数,当x ≥0时,( f 的值是____.【答案】4-【解析】【分析】先求(8)f ,再根据奇函数求(8)f -【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.8.已知2sin ()4πα+ =23,则sin 2α的值是____. 【答案】13【解析】 【分析】 直接按照两角和正弦公式展开,再平方即得结果.【详解】221sin ()(cos )(1sin 2)4222παααα+=+=+121(1sin 2)sin 2233αα∴+=∴= 故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】1232π【解析】 【分析】 先求正六棱柱体积,再求圆柱体积,相减得结果. 【详解】正六棱柱体积为23622=1234⨯⨯⨯ 圆柱体积为21()222ππ⋅= 所求几何体体积为1232π-故答案为: 1232π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.【答案】524x π=-【解析】【分析】先根据图象变换得解析式,再求对称轴方程,最后确定结果.【详解】3sin[2()]3sin(2)6412y x x πππ=-+=-72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈ 当1k =-时524x π=-故答案为:524x π=- 【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.【答案】4【解析】【分析】结合等差数列和等比数列前n 项和公式的特点,分别求得{}{},n n a b 的公差和公比,由此求得d q +.【详解】设等差数列{n a 1q ≠.等差数列{}n a 的前n 等比数列{}n b 的前n 项和公式为依题意n n n S P Q =+,即通过对比系数可知111212211d d a q b q⎧=⎪⎪⎪-=-⎪⎨⎪=⎪⎪=-⎪-⎩⇒112021d a q b =⎧⎪=⎪⎨=⎪⎪=⎩,故4d q +=. 故答案为:4【点睛】本小题主要考查等差数列和等比数列的前n 项和公式,属于中档题.12.已知22451(,)x y y x y R +=∈,则22xy +的最小值是_______. 【答案】45【解析】【分析】根据题设条件可得42215yxy-=,可得4222222114+555y yx y yy y-+=+=,利用基本不等式即可求解.【详解】∵22451x y y+=∴0y ≠且42215yxy-=∴422222222114144+2555555y y yx y yy y y-+=+=≥⋅=,当且仅当221455yy=,即2231,102x y==时取等号.∴22x y+的最小值为45.故答案为:45.【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).13.在△ABC中,43=90AB AC BAC==︒,,∠,D在边BC上,延长AD到P,使得AP=9,若3()2PA mPB m PC=+-(m为常数),则CD的长度是________.【答案】185【解析】【分析】根据题设条件可设()0PA PDλλ=>,结合32PA mPB m PC⎛⎫=+-⎪⎝⎭与,,B D C三点共线,可求得λ,再根据勾股定理求出BC,然后根据余弦定理即可求解.【详解】∵,,A D P三点共线,∴可设()0PA PDλλ=>,∵32PA mPB m PC⎛⎫=+-⎪⎝⎭,∴32PD mPB m PCλ⎛⎫=+-⎪⎝⎭,即32mmPD PB PCλλ⎛⎫-⎪⎝⎭=+,若0m ≠且32m ≠,则,,B D C 三点共线, ∴321m m λλ⎛⎫- ⎪⎝⎭+=,即32λ=, ∵9AP =,∴3AD =,∵4AB =,3AC =,90BAC ∠=︒,∴5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-. ∴根据余弦定理可得222cos 26AD CD AC x AD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-, ∵()cos cos 0θπθ+-=, ∴()()2570665x x x --+=-,解得185x =, ∴CD 5当m =32PA PC =,,C D 重合,此时CD 的长度为0, 当m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去. 【点睛】本题考查了平面向量知识的应用、余弦定理的应用以及求解运算能力,解答本题的关键是设出()0PA PD λλ=>.14.在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y+-=上的两个动点,满足PA PB =,则△P AB 面积的最大值是__________.【答案】【解析】【分析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形PAB 面积,最后利用导数求最大值.【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以2221236(1)(36)(1)2PAB S d d d d ≤⋅-+=-+ 令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去)当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PAB S取最大值为105,故答案为:105【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题. 二、精心解答题:(本大题共6小题,共计90分,)15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【答案】(1)证明详见解析;(2)证明详见解析.【解析】【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ⊥平面1AB C ,来证得平面1AB C ⊥平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C .(2)由于1B C ⊥平面ABC ,AB 平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C ,由于AB 平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值. 【答案】(1)5sin C =;(2)2tan 11DAC ∠=. 【解析】【分析】 (1)利用余弦定理求得b ,利用正弦定理求得sin C .(2)根据cos ADC ∠的值,求得sin ADC ∠的值,由(1)求得cos C 的值,从而求得sin ,cos DAC DAC ∠∠的值,进而求得tan DAC ∠的值.【详解】(1)由余弦定理得22222cos 9223252b ac ac B =+-=+-⨯=,所以5b =由正弦定理得sin 5sin sin sin 5c b c B C C B b =⇒==. (2)由于4cos 5ADC ∠=-,,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以23sin 1cos 5ADC ADC ∠=-∠=.2020年高考(江苏卷) 由于,2ADC ππ⎛⎫∠∈ ⎪⎝⎭,所以0,2C π⎛⎫∈ ⎪⎝⎭,所以225cos 1sin 5C C =-=.所以()sin sin DAC DAC π∠=-∠()sin ADC C =∠+∠sin cos cos sin ADC C ADC C =∠⋅+∠⋅3254525555525⎛⎫=⨯+-⨯= ⎪⎝⎭. 由于0,2DAC π⎛⎫∠∈ ⎪⎝⎭,所以2115cos 1sin 25DAC DAC ∠=-∠=. 所以sin 2tan cos 11DAC DAC DAC ∠∠==∠.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?【答案】(1)120米(2)20O E '=米【解析】【分析】(1)根据A,B 高度一致列方程求得结果;(2)根据题意列总造价的函数关系式,利用导数求最值,即得结果. 【详解】(1)由题意得2311||40640||8040800O A O A ''=-⨯+⨯∴= ||||||8040120AB O A O B ''∴=+=+=米(2)设总造价为()f x 万元,21||8016040O O '=⨯=,设||O E x '=, 32131()(1606)[160(80)],(040)800240f x k x x k x x =+-+--<<3221336()(160),()()0208008080080f x k x x f x k x x x '∴=+-∴=-=∴=(0舍去)当020x <<时,()0f x '<;当2040x <<时,()0f x '>,因此当20x 时,()f x 取最小值,答:当20O E '=米时,桥墩CD 与EF 的总造价最低.【点睛】本题考查实际成本问题、利用导数求最值,考查基本分析求解能力,属中档题.18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【解析】 【分析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长;(2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标.【详解】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F 由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2,根据题意可得01x ≠.∵点A 上,且在第一象限,212AF F F ⊥ ∴A ⎛ ⎝∴(Q Q ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫ ⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+ ∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d ==⨯⨯⨯=⋅∴95d =∴113439x y -+=①∵2211143x y +=②∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据2S =是解答本题的关键. 19.(),()f x y g x ==与()(,)h x kx b k b =+∈R()f x .(1()22()g x x x D =-+=∞-∞+,,,求h (x )的表达式;(2 ln ,()()(0) g k x h kx k D x x ==-=+∞,,,,求(3()2242() (48 () 4 3 2g x x h x t t x t t =-=--+, ,求证:n m -【答案】(1)()2h x x =;(2)[]0,3k ∈;(3)证明详见解析 【解析】 【分析】(1)求得()f x 与()g x 的公共点,并求得过该点的公切线方程,由此求得()h x 的表达式.(2)先由()()0h x g x -≥,求得k 的一个取值范围,再由()()0f x h x -≥,求得k 的另一个取值范围,从而求得k 的取值范围.(3)先由()()f x h x ≥,求得t 的取值范围,由方程()()0g x h x -=的两个根,求得n m -的表达式,利用导数证得不等式成立.【详解】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立.令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =. 故()2h x x =.(2)令()()()()()1ln 0F x h x g x k x x x =-=-->,()01F =. 又()1x F x k x-'=⋅. 若k 0<,则()F x 在0,1上递增,在1,上递减,则()()10F x F ≤=,即()()0h x g x -≤,不符合题意.当0k =时,()()()()()0,F x h x g x h x g x =-==,符合题意. 当0k >时, ()F x 在0,1上递减,在1,上递增,则()()10F x F ≥=,即(h ,符合题意. 由(()1f x kx k +--()()2110x k x k =-+++≥当x =1<-时,()211y x k x k =-+++在0,为增函数,因为10+<,故存在()00,x ∈+∞,使()()0f x h x -<,不符合题意. 当102k x +==,即1k =-时,()()20f x h x x -=≥,符合题意. 当102k x +=>,即1k >-时,则需()()21410kk ∆=+-+≤,解得13k -<≤. 综上所述,k 的取值范围是[]0,3k ∈.(3)因为()423422243248x x t t x t tx -≥--+≥-对任意[,][x m n ∈⊂恒成立,()423422432x x tt x t t -≥--+对任意[,][x m n ∈⊂恒成立,等价于()222()2320x t xtx t -++-≥对任意[,][x m n ∈⊂恒成立.故222320x tx t ++-≥对任意[,][x m n ∈⊂恒成立 令22()232M x x tx t =++-,当201t <<,2880,11t t ∆=-+>-<-<,此时1n m t -≤<<, 当212t ≤≤,2880t ∆=-+≤,但()234248432x t t x t t -≥--+对任意的[,][x m n ∈⊂恒成立.等价于()()()2322443420x t t x t t --++-≤对任意的[,][x m n ∈⊂恒成立.()()()2322443420x t t x t t --++-=的两根为12,x x ,则4231212328,4t t x x t t x x --+=-⋅=,所以12=n m x x --==.令[]2,1,2t λλ=∈,则n m -=[])51,2∈,()()()23103331P λλλλλ'=-+=--,所以λλ递减,()()max 17P P λ==. 所以(【点睛】本小题主要考查利用的导数求切线方程,考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想方法,属于难题.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2-”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由, 【答案】(1)1(2)21,134,2n n n a n -=⎧=⎨⋅≥⎩(3)01λ<<【解析】 【分析】(1)根据定义得+11n n n S S a λ+-=,再根据和项与通项关系化简得11n n a a λ++=,最后根据数列不为零数列得结果;(2)根据定义得111222+1+1()3n n n n S S S S -=-,根据平方差公式化简得+1=4n n S S ,求得n S ,即得n a ; (3)根据定义得111333+11n n n SS a λ+-=,利用立方差公式化简得两个方程,再根据方程解的个数确定参数满足的条件,解得结果【详解】(1)+111111101n n n n n n S S a a a a a λλλ++++-=∴==∴≡∴=/(2)11221100n n n n n a S S S S ++>∴>∴->111222)n n S S -(n n S S ∴1124n n n n S S S -∴∴= 11S a ==4n -1224434,2n n n n a n ---∴=-=⋅≥21,134,2n n n a n -=⎧∴=⎨⋅≥⎩(3)假设存在三个不同的数列{}n a 为"3"λ-数列.111113333333+11+1+1()()n n n n n n n S S a S S S S λλ+-=∴-=- 1133+1n nS S ∴=或11221123333333+1+1+1()()n n n n n n SS S S S S λ-=+++1n n S S ∴=或22113333333+1+1(1)(1)(2)0n n n n S S S S λλλ-+-++=∵对于给定的λ,存在三个不同的数列{}n a 为"3"λ-数列,且0n a ≥1,10,2n n a n =⎧∴=⎨≥⎩或()22113333333+1+1(1)(1)(2)01n n n nS S S S λλλλ-+-++=≠有两个不等的正根.()22113333333+1+1(1)(1)(2)01n n n n S S SS λλλλ-+-++=≠可转化为()2133333+1+12133(1)(2)(1)01n n nnS S S S λλλλ-++-+=≠,不妨设()1310n n S x x S +⎛⎫=> ⎪⎝⎭,则()3233(1)(2)(1)01x x λλλλ-+++-=≠有两个不等正根,设()()3233(1)(2)(1)01f x x x λλλλ=-+++-=≠.① 当1λ<时,32323(2)4(1)004λλλ∆=+-->⇒<<,即01λ<<,此时()3010f λ=-<,33(2)02(1)x λλ+=->-对,满足题意.② 当1λ>时,32323(2)4(1)004λλλ∆=+-->⇒<<,即1λ<<()3010f λ=->,33(2)02(1)x λλ+=-<-对,此情况有两个不等负根,不满足题意舍去.综上,01λ<<【点睛】本题考查数列新定义、由和项求通项、一元二次方程实根分步,考查综合分析求解能力,属难题.数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -. (1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵1M -.【答案】(1)22a b =⎧⎨=⎩;(2)121 5512 55M -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 【解析】 【分析】(1)根据变换写出具体的矩阵关系式,然后进行矩阵的计算可得出实数,a b 的值; (2)设出逆矩阵,由定义得到方程,即可求解.【详解】(1)∵平面上点()2,1A -在矩阵 11 a M b ⎡⎤=⎢⎥-⎣⎦对应的变换作用下得到点()3,4B -∴ 1 2 31 14a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦∴21324a b -=⎧⎨--=-⎩,解得22a b =⎧⎨=⎩(2)设1m n Mc d -⎡⎤=⎢⎥⎣⎦,则12 2 1 0=2 20 1m c n d MM m c n d -++⎡⎤⎡⎤=⎢⎥⎢⎥-+-+⎣⎦⎣⎦∴21202021m c n d m c n d +=⎧⎪+=⎪⎨-+=⎪⎪-+=⎩,解得251515m n c ⎧=⎪⎪⎪=-⎪⎨⎪=⎪∴1M -【点睛】本题考查矩阵变换的应用,考查逆矩阵的求法,解题时要认真审题,属于基础题.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<). (1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标. 【答案】(1)1242ρρ==,(2))4π【解析】 【分析】(1)将A,B 点坐标代入即得结果;(2)联立直线与圆极坐标方程,解得结果. 【详解】(1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,11cos2,43πρρ=∴=,因为点B 为直线6πθ=上,故其直角坐标方程为3y x =, 又4sin ρθ=对应的圆的直角坐标方程为:2240x y y +-=,由22340y x x y y ⎧=⎪⎨⎪+-=⎩解得00x y ==⎧⎨⎩或1x y ⎧=⎪⎨=⎪⎩ 对应的点为())0,0,,故对应的极径为20ρ=或22ρ=.(2)cos 2,4sin ,4sin cos 2,sin 21ρθρθθθθ==∴=∴=,5[0,2),,44ππθπθ∈∴=, 当4πθ=时ρ= 当5πθ=时0ρ=-<,舍;即所求交点坐标为当),4π【点睛】本题考查极坐标方程及其交点,考查基本分析求解能力,属基础题.C .[:不等式选讲]23.设x 2|1|||4x x ++≤. 【分析】根据绝对值定义化为三个方程组,解得结果 【详解】1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦【点睛】本题考查分类讨论解含绝对值不等式,考查基本分析求解能力,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD=5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值. 【答案】(1)15(2)239 【解析】 【分析】(1)建立空间直角坐标系,利用向量数量积求直线向量夹角,即得结果;(2)先求两个平面法向量,根据向量数量积求法向量夹角,最后根据二面角与向量夹角关系得结果.详解】(1)连,COBC CD BO OD CO BD ==∴⊥以,,OB OC OA 为,,x y z 轴建立空间直角坐标系,则(0,0,2),(1,0,0),(0,2,0),(1,0,0)(0,1,1)A B C D E -∴15(1,0,2),(1,1,1)cos ,1553AB DE AB DE ∴=-=∴<>==-2020年高考(江苏卷)从而直线AB 与DE所成角的余弦值为15(2)设平面DEC 一个法向量为1(,,),n x y z =11200(1,2,0),00x y n DC DC x y z n DE ⎧+=⋅=⎧⎪=∴⎨⎨++=⋅=⎪⎩⎩ 令112,1(2,1,1)y x z n =∴=-=∴=-设平面DEF 一个法向量为2111(,,),n x y z =11221117100171(,,0),4244200x y n DF DF DB BF DB BC n DE x y z ⎧⎧+=⋅=⎪⎪=+=+=∴⎨⎨⋅=⎪⎩⎪++=⎩ 令111272,5(2,7,5)y x z n =-∴==∴=-cos ∴因此【点睛】本题考查利用向量求线线角与二面角,考查基本分析求解能力,属中档题.25.个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2; (2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示) .【答案】(1)112212716,,332727p q p q ====;;(2)()111222+33n n n n p q p q --+=+ 【解析】【分析】(1)直接根据操作,根据古典概型概率公式可得结果;(2)根据操作,依次求n n p q ,,即得递推关系,构造等比数列求得2n n p q +,最后根据数学期望公式求结果.【详解】(1)11131232,333333p q ⨯⨯====⨯⨯,2020年高考(江苏卷)211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯, 211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯. (2)1111131212++333339n n n n n p p q p q ----⨯⨯=⨯⨯=⨯⨯, 111112*********+(1)+33333393n n n n n n q p q p q q -----⨯⨯+⨯⨯=⨯⨯+--⨯=-⨯⨯⨯, 因此112122+333n n n n p q p q --+=+, 从而11111212(2+),21(2+1)333n n n n n n n n p q p q p q p q ----+=+∴+-=-, 即1111121(2+1),2133n n n n n n p q p q p q -+-=-∴+=+. 又n X 的分布列为。

2020年江苏高考数学试题及答案

2020年江苏高考数学试题及答案

2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

学科@网4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:锥体的体积13V Sh=,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...1.已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=▲ .2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲ .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲ .4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲ .5.函数()f x 的定义域为 ▲ .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . 8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b -=>>的右焦点(,0)F c 到一条渐近,则其离心率的值是 ▲ . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x xx π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩-则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .[来源学科11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=(1)求cos2α的值; (2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x =.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.[2,+∞) 6.310 7.π6-8.2 9.2 10.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分. 解:(1)因为,,所以. 因为,所以, 因此,. (2)因为为锐角,所以.4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈又因为,所以, 因此.因为,所以,因此,.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 5cos()αβ+=-225sin()1cos ()αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y ==. 因此,点P 的坐标为. ②因为三角形OAB ,所以1 2AB OP ⋅=AB =. 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为.综上,直线l的方程为y =+19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点. (2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)由条件知:.因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立,即11,1d 3,32d 5,73d 9,得. 112(,)n n n a n d b -=-=112|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即,即当时,d 满足.因为,则,从而,,对均成立.因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值().①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当x >0时,,所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.75[,]32111(1),n n n a b n d b b q -=+-=1111|1|2,3,,(1())n b n d b q b n m -+--≤=+2,3,,1n m =+1111211n n q q b d b n n ---≤≤--q ∈112n m q q -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+2,3,,1n m =+12{}1n q n ---1{}1n q n --2,3,,1n m =+2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n mq q ≤≤1() 20n n n n q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21x f x x =-ln 21(0(n )l 22)xf x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内...................作答...若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求BC 的长. B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值. 23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A.[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC.因为PC与圆O相切,所以OC⊥PC.又因为PC=OC=2,所以OP.又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.B.[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A,det()221310=⨯-⨯=≠A,所以A可逆,从而1-A2312-⎡⎤=⎢⎥-⎣⎦.(2)设P(x,y),则233121xy⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311xy-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A,因此,点P的坐标为(3,–1).C.[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:因为曲线C的极坐标方程为=4cosρθ,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为πsin()26ρθ-=,则直线l过A(4,0),倾斜角为π6,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos6AB ==因此,直线l 被曲线C 截得的弦长为 D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz . 因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅.因此,异面直线BP 与AC 1所成角的余弦值为20.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.学科¥网 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置. 因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+. 当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。

(精校版)2020年江苏卷数学高考试题文档版(含答案)

(精校版)2020年江苏卷数学高考试题文档版(含答案)
(3)设点 M 在椭圆 E 上,记 △OAB 与 △MAB 的面积分别为 S1,S2,若 S2 = 3S1 ,求点 M 的坐标. 19.(本小题满分 16 分)
已知关于 x 的函数 y = f (x), y = g(x) 与 h(x) = kx + b(k,b R) 在区间 D 上恒有 f (x) h(x) g(x) .
绝密★启用前
2020 年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 注意事项
考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。本卷满分为 160 分,考试时间为 120 分钟。
考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题11.设{an}是公差为 d 的等差数列,{bn}是公比为 q 的等比数列.已知数列{an+bn}的前 n 项和
Sn = n2 − n + 2n −1(n N+ ) ,则 d+q 的值是 ▲ .
12.已知 5x2 y2 + y4 = 1(x, y R) ,则 x2 + y2 的最小值是 ▲ .
置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式:
柱体的体积V = Sh ,其中 S 是柱体的底面积, h 是柱体的高. 一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答.题.卡.相.应.位.置.上..

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)

2020年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A Y 中元素的个数为_______. 【答案】5 【解析】试题分析:{123}{245}{12345}5A B ==U U ,,,,,,,,,个元素 考点:集合运算2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6考点:平均数3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______. 5 【解析】试题分析:22|||34|5||5||5z i z z =+=⇒=⇒=考点:复数的模4.根据如图所示的伪代码,可知输出的结果S 为________.【答案】7 【解析】试题分析:第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =S ←1 I ←1While I <10 S ←S +2 I ←I +3 End While Print S(第4题图)考点:循环结构流程图5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 【答案】5.6考点:古典概型概率6.已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-(R n m ∈,), n m -的值为______. 【答案】3- 【解析】试题分析:由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 考点:向量相等7.不等式224xx-<的解集为________.【答案】(1,2).- 【解析】试题分析:由题意得:2212x x x -<⇒-<<,解集为(1,2).- 考点:解指数不等式与一元二次不等式 8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3 【解析】试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式9. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

2020年江苏高考数学试题及答案

2020年江苏高考数学试题及答案

2020年江苏高考数学试题及答案数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,2},{0,2,3}A B =-=,则AB =▲ .2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是▲ . 3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是▲ .4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲ . 5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是▲ .6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是▲ .7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则()8f -的值是▲ . 8.已知2sin ()4απ+=23,则sin 2α的值是▲ .9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是▲ cm.10.将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 ▲ .11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是▲ . 12.已知22451(,)x y y x y +=∈R ,则22x y +的最小值是▲ .13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC=+-(m 为常数),则CD 的长度是▲ .14.在平面直角坐标系xOy 中,已知3(0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是▲ .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.(本小题满分14分)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米. (1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点)..桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0),问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标. 19.(本小题满分16分)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围; (3)若()422342() 2() (48 () 4 3 0)2 2f x x x g x x h x t t x t t t =-=-=--+<≤,,,[] , 2,2D m n =⊆-⎡⎣,求证:7n m -≤. 20.(本小题满分16分)已知数列{}()n a n ∈*N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k kk n n n S S a λ++-=成立,则称此数列为“λ~k ”数列.(1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a 是“3~23”数列,且0n a >,求数列{}n a 的通项公式; (3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ~3”数列,且0n a ≥?若存在,求λ的取值范围;若不存在,说明理由.数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{0,2} 2.3 3.24.195.3-6.327.4- 8.139.1232π- 10.524x π=-11.412.4513.185或014.105二、解答题15.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .16.本小题主要考查正弦定理、余弦定理、同角三角函数关系、两角和与差的三角函数等基础知识,考查运算求解能力.满分14分.解:(1)在ABC △中,因为3,2,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得292232cos455b =+-⨯⨯︒=, 所以5b =.在ABC △中,由正弦定理sin sin b cB C=, 得52=sin 45sin C︒, 所以5sin .5C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故225cos 1sin ,5C C =-=则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以23sin 1cos 5ADC ADC ∠=-∠=,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯. 17.本小题主要考查函数的性质、用导数求最值、解方程等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)设1111,,,AA BB CD EF 都与MN 垂直,1111,,,A B D F 是相应垂足. 由条件知,当40O'B =时, 31140640160,800BB =-⨯+⨯=则1160AA =. 由21160,40O'A =得80.O'A = 所以8040120AB O'A O'B =+=+=(米).(2)以O 为原点,OO'为y 轴建立平面直角坐标系xOy (如图所示). 设2(,),(0,40),F x y x ∈则3216,800y x x =-+ 3211601606800EF y x x =-=+-.因为80,CE =所以80O'C x =-. 设1(80,),D x y -则211(80),40y x =- 所以22111160160(80)4.4040CD y x x x =-=--=-+ 记桥墩CD 和EF 的总造价为()f x ,则3232131()=(1606)(4)80024013(160)(040).80080f x k x x k x x k x x x +-+-+=-+<<2333()=(160)(20)80040800k f x k x x x x '-+=-, 令()=0f x ',得20.x =所以当20x =时,()f x 取得最小值.答:(1)桥AB 的长度为120米;(2)当O'E 为20米时,桥墩CD 和EF 的总造价最低.18.本小题主要考查直线方程、椭圆方程、椭圆的几何性质、直线与椭圆的位置关系、向量数量积等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分16分.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x yE +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍.由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)由条件()()()f x h x g x ≥≥,得222 2x x kx b x x +≥+≥-+, 取0x =,得00b ≥≥,所以0b =.由22x x kx +≥,得2 2 ()0x k x +-≥,此式对一切(,)x ∈-∞+∞恒成立, 所以22 0()k -≤,则2k =,此时222x x x ≥-+恒成立, 所以()2h x x =.(2) 1 ln ,()()()()0,h g x k x x x x -=--∈+∞.令() 1ln u x x x =--,则1()1,u'x x=-令()=0u'x ,得1x =.所以min () 0(1)u x u ==.则1ln x x -≥恒成立, 所以当且仅当0k ≥时,()()f x g x ≥恒成立.另一方面,()()f x h x ≥恒成立,即21x x kx k -+≥-恒成立, 也即2()1 1 +0x k x k -++≥恒成立.因为0k ≥,对称轴为102kx +=>, 所以2141)0(()k k +-+≤,解得13k -≤≤. 因此,k 的取值范围是0 3.k ≤≤ (3)①当12t ≤由()()g x h x ≤,得2342484()32x t t x t t -≤--+,整理得4223328()0.()4t t x t t x ----+≤*令3242=()(328),t t t t ∆----则642=538t t t ∆-++. 记64253()1),28(t t t t t ϕ-++=≤≤则53222062(31)(3())06t t t t t t 't ϕ-+=--<=恒成立,所以()t ϕ在[1,2]上是减函数,则(2)()(1)t ϕϕϕ≤≤,即2()7t ϕ≤≤. 所以不等式()*有解,设解为12x x x ≤≤, 因此217n m x x ∆-≤-= ②当01t <<时,432()()11 34241f h t t t t ---=+---.设432 = 342(41)t t t t v t +---,322 ()=1212444(1)(31),v't t t t t t +--=+- 令()0v t '=,得3t =. 当3(0t ∈,时,()0v t '<,()v t 是减函数;当(1)3t ∈时,()0v t '>,()v t 是增函数. (0)1v =-,(1)0v =,则当01t <<时,()0v t <.(或证:2()(1)(31)(1)0v t t t t =++-<.) 则(1)(1)0f h ---<,因此1()m n -∉,.因为22m n ⊆[][-,,],所以217n m -< ③当20t <时,因为()f x ,()g x 均为偶函数,因此7n m -≤ 综上所述,7n m -≤20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)因为等差数列{}n a 是“λ~1”数列,则11n n n S S a λ++-=,即11n n a a λ++=, 也即1(1)0n a λ+-=,此式对一切正整数n 均成立.若1λ≠,则10n a +=恒成立,故320a a -=,而211a a -=-, 这与{}n a 是等差数列矛盾.所以1λ=.(此时,任意首项为1的等差数列都是“1~1”数列) (2)因为数列*{}()n a n ∈N 3”数列, 1133n n n S S a ++-=1133n n n n S S S S ++- 因为0n a >,所以10n n S S +>>113113n n n nS S S S ++=-. 1n n n S b S +=,则23113n n b b -=-221(1)(1)(1)3n n n b b b -=->. 解得2n b =12n n S S +=,也即14n nS S +=, 所以数列{}n S 是公比为4的等比数列.因为111S a ==,所以14n n S -=.则21(1),34(2).n n n a n -=⎧=⎨⨯≥⎩(3)设各项非负的数列*{}()n a n ∈N 为“~3λ”数列, 则11133311n n n SS aλ++-=33311n n n n S S S S ++=-因为0n a ≥,而11a =,所以10n n S S +≥>,则31311=1n n n nS SS S λ++--.令31=n nn S S c +,则3311( 1)n n n c c c λ-=-≥,即333(1)(1)( 1)n n n c c c λ-=-≥.(*) ①若0λ≤或=1λ,则(*)只有一解为=1n c ,即符合条件的数列{}n a 只有一个. (此数列为1,0,0,0,…)②若1λ>,则(*)化为3232(1)(1)01n n nc c c λλ+-++=-, 因为1n c ≥,所以3232101n nc c λλ+++>-,则(*)只有一解为=1n c , 即符合条件的数列{}n a 只有一个.(此数列为1,0,0,0,…)③若01λ<<,则3232101nnc c λλ+++=-的两根分别在(0,1)与(1,+∞)内, 则方程(*)有两个大于或等于1的解:其中一个为1,另一个大于1(记此解为t ). 所以1n n S S +=或31n n S t S +=.由于数列{}n S 从任何一项求其后一项均有两种不同结果,所以这样的数列{}n S 有无数多个,则对应的{}n a 有无数多个.综上所述,能存在三个各项非负的数列{}n a 为“~3λ”数列,λ的取值范围是01λ<<.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选..定其中两小题,并在相应的答题区域内作答....................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换](本小题满分10分)平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -. (1)求实数a ,b 的值; (2)求矩阵M 的逆矩阵1-M .B .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,)6B ρ在圆:4sin C ρθ=上(其中0ρ≥,02θ≤<π).(1)求1ρ,2ρ的值;(2)求出直线l 与圆C 的公共点的极坐标. C .[选修4-5:不等式选讲](本小题满分10分)设x ∈R ,解不等式2|1|||4x x ++<.【必做题】第22题、第23题,每题10分,共计20分.请在答.题卡指定区域......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在三棱锥A —BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值. 23.(本小题满分10分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1,q 1和p 2,q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4-2:矩阵与变换]本小题主要考查矩阵的运算、逆矩阵等基础知识,考查运算求解能力.满分10分. 解:(1)因为123=114a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦,所以213,24,a b -=⎧⎨--=-⎩解得2a b ==,所以2112⎡⎤=⎢⎥-⎣⎦M . (2)因为2112⎡⎤=⎢⎥-⎣⎦ M ,det 221150=⨯-⨯-=≠()()M ,所以M 可逆,从而121551255-⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ - M.B .[选修4-4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)由1cos 23ρπ=,得14ρ=;24sin 26ρπ==,又(0,0)(即(0,6π))也在圆C 上,因此22ρ=或0.(2)由cos 2,4sin ,ρθρθ=⎧⎨=⎩得4sin cos 2θθ=,所以sin21θ=.因为0ρ≥,0 2θ≤<π,所以4θπ=,=22ρ. 所以公共点的极坐标为(22,)4π.C .[选修4-5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x >0时,原不等式可化为224x x ++<,解得203x <<; 当10x -≤≤时,原不等式可化为224x x +-<,解得10x -≤≤; 当1x <-时,原不等式可化为224x x ---<,解得 2 1x -<<-. 综上,原不等式的解集为2|2}3{x x -<<.22.【必做题】本小题主要考查空间向量、异面直线所成角和二面角等基础知识,考查空间想象能力和运算求解能力.满分10分.解:(1)连结OC ,因为CB =CD ,O 为BD 中点,所以CO ⊥B D . 又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥O C .以{}OB OC OA ,,为基底,建立空间直角坐标系O –xyz . 因为BD =2,5CB CD ==,AO =2,所以B (1,0,0),D (–1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 则AB =(1,0,–2),DE =(1,1,1),所以|||102|15||15||||53cos AB DE AB DE AB DE +-=⋅⋅==<>⨯,.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,14BF BC =,BC =(–1,2,0). 所以111(,,0)442BF BC ==-. 又20,0DB =(,), 故71(,,0)42DF DB BF =+=.设1111()x y z =,,n 为平面DEF 的一个法向量, 则1100,DE DF ⎧⎪⎨⎪⎩⋅=⋅=,n n 即111110710,42x y z x y +⎧+=⎪+=⎪⎨⎩, 取12x =,得1–7y =,15z =,所以1(275)n =-,,. 设2222()x y z =,,n 为平面DEC 的一个法向量,又DC =(1,2,0), 则2200,DE DC ⎧⎪⎨⎪⎩⋅=⋅=,n n 即22222020,x y z x y ++=+=⎧⎨⎩,取22x =,得2–1y =,2–1z =,所以2(211)n =--,,. 故2112|||475|13|||||co |13786s θ+-⋅===⋅⨯n n n n .所以22391cos s n 13i θθ=-=.23.【必做题】本小题主要考查随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)113111133C C 1C C 3p =⋅=,113211133C C 2C C 3q =⋅=,11113121211111*********C C C C 1270(1)C C C C 3927p p q p q p q =⋅⋅+⋅⋅+⋅--=+=,1111111133222112211111111111133333333C C C C C C C C ()(1)C C C C C C C C q p q p q =⋅⋅+⋅+⋅⋅+⋅⋅--11216=9327q -+=.(2)当2n ≥时,1111312111111111113333C C C C 120(1)C C C C 39n n n n n n n p p q p q p q ------=⋅⋅+⋅⋅+⋅--=+,①111111113322211211111111111133333333C C C C C C C C ()(1)C C C C C C C C n n n n n q p q p q ----=⋅⋅+⋅+⋅⋅+⋅⋅--112=93n q --+,②2⨯+①②,得()1111124121222399333n n n n n n n p q p q q p q -----+=+-+=++. 从而1112(211)3n n n n p q p q ---+-+=,又111312p q -+=,所以11112()1()3331n nn n p q -+++==,*n ∈N .③由②,有1313()595n n q q --=--,又135115q -=,所以1113()1595n n q -=-+,*n ∈N . 由③,有13111()210111()()33925n n n n n p q =+=-+-+[],*n ∈N . 故311111()()109235n n n n p q --=--+,*n ∈N . n X 的概率分布则*1()0(1)121(),3n n n n n n E X p q q p n =⨯--+⨯+⨯=+∈N .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2020年普通高等学校招生全国统一考试数学(江苏卷)参考公式:若事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率为()(1)k k n kn nP k C p p-=-一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个选项中,恰有一项....是符合题目要求的.1.下列函数中,周期为π2的是()A.sin2xy=B.sin2y x=C.cos4xy=D.cos4y x=2.已知全集U=Z,{}1012A=-,,,,{}2B x x x==,则UA B为()A.{}12-,B.{}10-,C.{}01,D.{}12,3.在平面直角坐标系xOy中,双曲线的中心在坐标原点,焦点在y轴上,一条渐近线的方程为20x y-=,则它的离心率为()B.2D.24.已知两条直线m n,,两个平面αβ,.给出下面四个命题:①m n ∥,m n αα⇒⊥⊥;②αβ∥,m α⊂,n m n β⊂⇒∥; ③m n ∥,m n αα⇒∥∥;④αβ∥,m n ∥,m n αβ⇒⊥⊥. 其中正确命题的序号是( ) A.①、③ B.②、④C.①、④ D.②、③5.函数[]()sin (π0)f x x x x =∈-,的单调递增区间是( )A.5ππ6⎡⎤--⎢⎥⎣⎦,B.5ππ66⎡⎤--⎢⎥⎣⎦, C.π03⎡⎤-⎢⎥⎣⎦,D.π06⎡⎤-⎢⎥⎣⎦,6.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )A.132323f f f ⎛⎫⎛⎫⎛⎫<< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B.231323f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C.213332f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.321233f f f ⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭7.若对于任意的实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为( )A.3 B.6 C.9 D.128.设2()lg 1f x a x ⎛⎫=+ ⎪-⎝⎭是奇函数,则使()0f x <的x 的取值范围是( ) A.(10)-,B.(01),C.(0)-∞,D.(0)(1)-∞+∞,,9.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为( ) A.3B.52C.2D.3210.在平面直角坐标系xOy 中,已知平面区域{}()100A x y x y x y =+,≤,且≥,≥,则平面区域{}()()B x y x y x y A =+-∈,,的面积为( ) A.2B.1C.12D.14二、填空题:本大题共6小题,每小题5分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.11.若1cos()5αβ+=,3cos()5αβ-=,则tan tan αβ=_____. 12.某校开设9门课程供学生选修,其中A B C ,,三门由于上课时间相同,至多选一门,学校规定,每位同学选修4门,共有_____种不同的选修方案.(用数值作答)13.已知函数3()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=_____.14.正三棱锥P ABC -的高为2,侧棱与底面ABC 成45角,则点A 到侧面PBC 的距离为_____.15.在平面直角坐标系xOy 中,已知ABC △的顶点(40)A -,和(40)C ,,顶点B 在椭圆221259x y +=上,则sin sin sin A C B+=_____. 16.某时钟的秒针端点A 到中心点O 的距离为5cm ,秒针均匀地绕点O 旋转,当时间0t =时,点A 与钟面上标12的点B 重合.将A B ,两点间的距离(cm)d 表示成(s)t 的函数,则d =_____,其中[]060t ∈,.三、解答题:本大题共5小题,共计70分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位): (1)5次预报中恰有2次准确的概率;(4分) (2)5次预报中至少有2次准确的概率;(4分)(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.(4分) 18.(本题满分12分)如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且11AE FC ==. (1)求证:1E B F D ,,,四点共面;(4分)(2)若点G 在BC 上,23BG =,点M 在1BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(4分)(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.(4分) 19.(本题满分14分)如图,在平面直角坐标系xOy 中,过y 轴正方向上一点C BAG HMDEF1B1A1D1C(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点.一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,. (1)若2OA OB =,求c 的值;(5分)(2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立?说明理由.(4分) 20.(本题满分16分)已知{}n a 是等差数列,{}n b 是公比为q 的等比数列,11a b =,221a b a =≠,记n S 为数列{}n b 的前n 项和.(1)若k m b a =(m k ,是大于2的正整数),求证:11(1)k S m a -=-;(4分) (2)若3i b a =(i 是某个正整数),求证:q 是整数,且数列{}n b 中的每一项都是数列{}n a 中的项;(8分)(3)是否存在这样的正数q ,使等比数列{}n b 中有三项成等差数列?若存在,写出一个q 的值,并加以说明;若不存在,请说明理由.(4分)21.(本题满分16分)已知a b c d ,,,是不全为零的实数,函数2()f x bx cx d =++,32()g x ax bx cx d =+++.方程()0f x =有实数根,且()0f x =的实数根都是(())0g f x =的根;反之,(())0g f x =的实数根都是()0f x =的根.(1)求d 的值;(3分)(2)若0a =,求c 的取值范围;(6分)(3)若1a =,(1)0f =,求c 的取值范围.(7分)2007年普通高等学校招生全国统一考试数 学(江苏卷)参考答案一、选择题:本题考查基本概念和基本运算.每小题5分,共计50分.1.D 2.A 3.A 4.C 5.D 6.B 7.B 8.A 9.C 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,共计30分. 11.12 12.75 13.32 14.5 15.5416.π10sin 60t三、解答题17.本小题主要考查概率的基本概念、互斥事件有一个发生及相互独立事件同时发生的概率的计算方法,考查运用概率知识解决实际问题的能力.满分12分. 解:(1)5次预报中恰有2次准确的概率为22522355(2)0.8(10.8)100.80.20.05P C -=⨯⨯-=⨯⨯≈.(2)5次预报中至少有2次准确的概率为551(0)(1)P P --005011515510.8(10.8)0.8(10.8)C C --=-⨯⨯--⨯⨯-10.000320.00640.99=--≈.(3)“5次预报中恰有2次准确,且其中第3次预报准确”的概率为1412340.80.8(10.8)40.80.20.02C -⨯⨯⨯-=⨯⨯≈.18.本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力.满分12分. 解法一:(1)如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1AE DN ==,12CF ND ==.因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形.从而EN AD ∥,1FD CN ∥. 又因为AD BC ∥,所以EN BC ∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥.因此,1E B F D ,,,四点共面.C BAG HMDEF 1B1A1D1CN(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,tan tan BM BG BGM BG CFB ==∠∠23132BC BGCF ==⨯=. 因为AE BM ∥,所以ABME 为平行四边形,从而AB EM ∥. 又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B .(3)如图,连结EH .因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH ,得EH BF ⊥. 于是EHM ∠是所求的二面角的平面角,即EHM θ=∠.因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB ==∠∠21BMBC CF ===+, tan EMMHθ== 解法二:(1)建立如图所示的坐标系,则(301)BE =,,,(032)BF =,,,1(333)BD =,,,所以1BD BE BF =+,故1BD ,BE ,BF 共面. 又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭,,, 而(032)BF =,,,由题设得23203GM BF z =-+=得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =,,, 又1(003)BB =,,,(030)BC =,,,所以10ME BB =,0ME BC =,从而1ME BB ⊥,ME BC ⊥.故ME ⊥平面11BCC B .(3)设向量(3)BP x y =,,⊥截面1EBFD ,于是BP BE ⊥,BP BF ⊥. 而(301)BE =,,,(032)BF =,,,得330BP BE x =+=,360BP BF y =+=,解得1x =-,2y =-,所以(123)BP =--,,. 又(300)BA =,,⊥平面11BCC B ,所以BP 和BA 的夹角等于θ或πθ-(θ为锐角).于是cos 14BP BA BP BAθ==. 故tan θ=19.本小题主要考查抛物线的基本性质、直线与抛物线的位置关系、向量的数量积、导数的应用、简易逻辑等基础知识和基本运算,考查分析问题、探索问题的能力.满分14分. 解:(1)设直线AB 的方程为y kx c =+,将该方程代入2y x =得20x kx c --=.令2()A a a ,,2()B b b ,,则ab c =-.因为2222OA OB ab a b c c =+=-+=,解得2c =, 或1c =-(舍去).故2c =.(2)由题意知2a b Q c +⎛⎫-⎪⎝⎭,,直线AQ 的斜率为22222AQ a c a ab k a a b a b a +-===+--. 又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,AQ 为该抛物线的切线. (3)(2)的逆命题成立,证明如下:设0()Q x c -,. 若AQ 为该抛物线的切线,则2AQ k a =, 又直线AQ 的斜率为2200AQa c a ab k a x a x +-==--,所以202a aba a x -=-,得202ax a ab =+,因0a ≠,有02a bx +=. 故点P 的横坐标为2a b+,即P 点是线段AB 的中点. 20.本小题主要考查等差、等比数列的有关知识,考查运用方程、分类讨论等思想方法进行分析、探索及论证问题的能力.满分16分.解:(1)设等差数列的公差为d ,则由题设得11a d a q +=,1(1)d a q =-,且1q ≠. 由k m b a =得111(1)k b qa m d -=+-,所以11(1)(1)kb q m d --=-,11111(1)(1)(1)(1)(1)111k k b q m a q m d S m a q q q ------====----.故等式成立.(2)(ⅰ)证明q 为整数:由3i b a =得211(1)b q a i d =+-,即2111(1)(1)a q a i a q =+--,移项得11(1)(1)(1)(1)a q q a i q +-=--.因110a b =≠,1q ≠,得2q i =-,故q 为整数. (ⅱ)证明数列{}n b 中的每一项都是数列{}n a 中的项: 设n b 是数列{}n b 中的任一项,只要讨论3n >的情形. 令111(1)n b qa k d -=+-,即1111(1)(1)n a q a k a q --=--,得1221121n n q k q q q q ---=+=++++-.因2q i =-,当1i =时,1q =-,22n q q q -+++为1-或0,则k 为1或2;而2i ≠,否则0q =,矛盾.当3i ≥时,q 为正整数,所以k 为正整数,从而n k b a =. 故数列{}n b 中的每一项都是数列{}n a 中的项.(3)取12q =,21b b q =,341b b q =. 33141112(1)11)2b b b q b b b ⎡⎤⎢⎥+=+=+==⎢⎥⎝⎭⎣⎦. 所以1b ,2b ,4b 成等差数列.21.本小题主要考查函数、方程、不等式的基本知识,考查综合运用分类讨论、等价转化等思想方法分析问题及推理论证的能力.满分16分.解:(1)设r 为方程的一个根,即()0f r =,则由题设得(())0g f r =.于是,(0)(())0g g f r ==,即(0)0g d ==.所以,0d =.(2)由题意及(1)知2()f x bx cx =+,32()g x ax bx cx =++. 由0a =得b c ,是不全为零的实数,且2()()g x bx cx x bx c =+=+,则[]22(())()()()()g f x x bx c bx bx c c x bx c b x bcx c =+++=+++. 方程()0f x =就是()0x bx c +=.①方程(())0g f x =就是22()()0x bx c b x bcx c +++=.②(ⅰ)当0c =时,0b ≠,方程①、②的根都为0x =,符合题意. (ⅱ)当0c ≠,0b =时,方程①、②的根都为0x =,符合题意. (ⅲ)当0c ≠,0b ≠时,方程①的根为10x =,2cx b=-,它们也都是方程②的根,但它们不是方程220b x bcx c ++=的实数根.由题意,方程220b x bcx c ++=无实数根,此方程根的判别式22()40bc b c ∆=-<,得04c <<.综上所述,所求c 的取值范围为[)04,.(3)由1a =,(1)0f =得b c =-,2()(1)f x bx cx cx x =+=-+,2(())()()()g f x f x f x cf x c ⎡⎤=-+⎣⎦.③由()0f x =可以推得(())0g f x =,知方程()0f x =的根一定是方程(())0g f x =的根. 当0c =时,符合题意.当0c ≠时,0b ≠,方程()0f x =的根不是方程2()()0f x cf x c -+= ④ 的根,因此,根据题意,方程④应无实数根.那么当2()40c c --<,即04c <<时,2()()0f x cf x c -+>,符合题意.当2()40c c --≥,即0c <或4c ≥时,由方程④得2()2c f x cx cx ±=-+=,即202c cx cx ±-+=,⑤则方程⑤应无实数根,所以有2()40c c--<且2()40c --<.当0c <时,只需220c --<,解得1603c <<,矛盾,舍去.当4c ≥时,只需220c -+<,解得1603c <<.因此,1643c <≤.综上所述,所求c 的取值范围为1603⎡⎫⎪⎢⎣⎭,.。

相关文档
最新文档