一种基于梯度和零交叉点的图像边缘检测新方法_英文_

合集下载

图像处理中的边缘检测算法分析与优化

图像处理中的边缘检测算法分析与优化

图像处理中的边缘检测算法分析与优化随着数字图像处理技术的不断发展,边缘检测在计算机视觉、模式识别和图像分割等领域中扮演着重要的角色。

边缘是图像中灰度变化较大的区域,通过检测边缘,我们可以提取图像的形状和结构信息,从而实现图像分析和理解。

本文将对常用的图像处理边缘检测算法进行分析,并探讨优化策略。

一、边缘检测算法概述1.1 Sobel算法Sobel算法是一种基于梯度的边缘检测算法,它通过计算图像梯度的大小和方向来确定边缘位置。

Sobel算法具有计算简单、鲁棒性较高的优点,但对噪声比较敏感,在图像边缘不够明显或存在噪声时容易引入误检。

1.2 Canny算法Canny算法是一种经典的边缘检测算法,它通过多个步骤来实现高效的边缘检测。

首先,通过高斯滤波器对图像进行平滑处理,以减少噪声的影响。

然后,计算图像的梯度幅值和方向,并进行非极大值抑制,以精确地定位边缘。

最后,通过滞后阈值法来进行边缘的连接和细化。

Canny算法具有良好的边缘定位能力和抗噪能力,在实际应用中被广泛使用。

1.3 Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算子,它通过计算图像的二阶导数来检测图像中的边缘。

Laplacian算子具有对灰度变化较大的边缘敏感的优点,但对噪声比较敏感,容易产生边缘断裂和误检。

为了提高Laplacian算子的效果,常常与高斯滤波器结合使用,以减少噪声的干扰。

二、边缘检测算法优化2.1 参数选择在边缘检测算法中,参数的选择对于最终的结果具有重要的影响。

例如,对于Canny算法来说,高斯滤波器的大小和标准差的选择直接影响到边缘的平滑程度和定位精度。

因此,在优化边缘检测算法时,需要根据具体的应用场景和图像特点选择合适的参数。

2.2 非极大值抑制非极大值抑制是Canny算法中的一种重要步骤,用于精确地定位边缘位置。

然而,在进行非极大值抑制时,会产生边缘断裂和不连续的问题。

为了解决这个问题,可以考虑使用像素邻域信息进行插值,从而减少边缘的断裂,并得到更连续的边缘。

一种改进的Canny边缘检测方法

一种改进的Canny边缘检测方法

一种改进的Canny边缘检测方法邱春婷;刘红彦;齐静【摘要】传统Canny边缘算子通过像素点的梯度幅值是否大于梯度方向两侧的像素的梯度幅度值来判定边缘。

针对传统Canny边缘算子的判断边缘的方法,分析Canny边缘算子在边缘检测时容易出现边缘点的漏检而造成边缘不连接现象,结合Harris检测算法改进Canny边缘算子来连接断开的边缘并提高检测准确率。

实验结果表明,改进的算法检测边缘连接性好并具有更好的检测准确度。

%In the classical Canny edge detector ,a pixel is labeled as an edge if its gradient magnitude is lar-ger than those of pixels at both sides in the gradient direction .T he defining edges in this manner causing some obvious missing edges are analyzed .Combined with Harris algorithm ,an improved Canny scheme is then proposed to detect the connected edges and improve the detection accuracy .The experiments show that the edges detected by the improved algorithm are more successive and the detecting results are more accurate .【期刊名称】《纺织高校基础科学学报》【年(卷),期】2014(000)003【总页数】5页(P380-384)【关键词】图像处理;边缘检测;Canny边缘算子;非极大值抑制;边缘连接【作者】邱春婷;刘红彦;齐静【作者单位】西安工程大学服装与艺术设计学院,陕西西安710048;西安工程大学服装与艺术设计学院,陕西西安710048;西安工程大学服装与艺术设计学院,陕西西安710048【正文语种】中文【中图分类】TP391.41图像边缘包含丰富的视觉信息,在基于图像的目标识别和计算机视觉中,边缘检测是至关重要的.边缘是图像灰度变化剧烈的点的集合,边缘检测算法是用来检测边缘像素的局部图像处理方法[1],在过去的几十年里,各种边缘检测方法被提出.根据像素点的灰度变化剧烈程度,可以利用一阶或二阶导数来检测边缘点.传统边缘检测算法主要研究图像的灰度变化信息,典型的利用一阶微分的边缘检测算法有Roberts算子、Prewitt算子和Sobel算子等,利用二阶微分算子的有Laplacian 算子和LOG算子等[2-5],Marr和Hildreth提出利用图像高斯拉普拉斯零交叉检测边缘[6],Haralick通过图像局部灰度值匹配多项式函数并寻找多项式二阶偏导数的零交叉点检测边缘[1].这些微分算子算法通过设定适当的阈值从图像中提取边缘,实现简单方便,具有较好的实时性;但微分算子对图像噪声较敏感,这些算法噪声鲁棒性差,边缘检测精度低[7],因而限制了在实际中的应用.为了提高边缘检测算法性能,1986年Canny提出了基于最优化方法的经典Canny边缘检测算法[8].但同时Canny边缘算子也存在一些不足,其中一个缺点是边缘在交叉点处的不连接性,即交叉点及其邻域处不能检测边缘.针对Canny 边缘算子的不足,一系列的改进算法被提出[9-12].本文结合Harris角点检测算法将交叉点处的断开边缘进行重新连接来改进Canny检测算法.1 Canny算法1986年,Canny在提出经典的Canny边缘检测算法的同时,也提出了评价边缘检测性能的3条准则[8]:(1)信噪比原则,应检测到所有边缘,并且没有伪响应.也就是说检测概率最大化,虚警概率最小化,使得输出图像信噪比尽可能大;(2)定位精度原则,已检测的边缘应与真实边缘尽可能接近,即检测的边缘点距真实边缘中心最近;(3)单边缘响应原则,对于真实边缘点,检测算法应该返回一个点,即应最大程度地抑制虚假边缘响应.1.1 Canny边缘算子基本算法Canny边缘利用泛函求导证明高斯函数一阶导数是以上3条准则的一个最佳的近似.Canny边缘算子[8]算法流程:(1)梯度幅值和梯度方向的计算 Canny边缘算子利用高斯函数对图像进行平滑来计算图像梯度,并获得相应的梯度幅度映射和梯度方向映射.(2)非极大值抑制为了使边缘定位更准确,需要细化边缘,按照梯度幅值和梯度方向保留梯度幅值的局部极大值点,即非极大值抑制.若像素点的梯度幅值大于沿梯度方向的像素两侧的梯度幅值,则判定该像素点为候选边缘点,(3)双阈值处理 Canny边缘算子采用双阈值处理从候选边缘集合中检测得到最终边缘图像.1.2 Canny边缘检测算法分析Canny边缘算子满足边缘检测的3条准则,但在图像边缘交叉点附近可能会造成边缘的断裂现象.这是由图像普通边缘点处灰度变化一致而在交叉点附近图像灰度变化是各向异性的特点[13]所决定的.图1 交叉点处非极大值抑制造成边缘丢失示意图如图1所示,Canny边缘算子对图1(a)作边缘检测得到图1(d)所示最终边缘结果.由图1可以看出,Canny边缘算子在图像边缘交叉点处出现断裂现象.尽管在漏检边缘点处图像灰度梯度幅值大于两侧的像素梯度幅值,但该方向与梯度方向不一致[14].由于交叉点处图像灰度变化是各向异性的[13],如图1(b)所示,灰度变化方向不能用梯度方向来准确表示,此时沿梯度方向作非极大值抑制处理就会将真实边缘点剔除,如图1(c)所示,最终使边缘图像在边缘交叉点附近造成不连接现象.2 改进的Canny算法传统Canny边缘算子检测边缘造成交叉点附近因漏检而造成边缘不连接现象,由图1(d)可以看出,漏检边缘点在交叉点与边缘末端连接部分,因此可以通过寻找交叉点来连接边缘末端部分,找回漏检边缘来改进Canny边缘检测算法. Harris检测算法[15]是经典的寻找图像交叉点的算法,它是对Moravec算子[16]的改进,其基本思想是由图像的一阶导数估算出自相关度量,得到像素点的局部相关矩阵,即若相关矩阵M的两个特征值都较大,则此时像素点判定为交叉点.Harris算法是一种非常有效的图像交叉点提取算法,提取的交叉点均匀合理,且算法稳定,利用Harris检测算法对图1(a)检测得到的交叉点如图2(a)所示,利用Harris算法检测交叉点对非极大值抑制后及双阈值后的边缘像素进行连接.基于以上的分析,本文提出的改进Canny算法步骤如下:(1)利用高斯函数对图像进行平滑来计算图像梯度,并获得相应的梯度幅度映射和梯度方向映射.二维高斯核函数其中(x,y)为直角坐标系中坐标;σ为高斯函数尺度因子.利用二位高斯核函数对图像I(x,y)进行卷积并分别求x轴和y轴的偏导数则图像每个像素的梯度幅值Mgrad(x,y)及所对应的梯度方向α(x,y)分别为(2)利用非极大值抑制和双阈值来抑制虚假边缘.为了使边缘定位更准确,需要细化边缘,按照梯度幅值和梯度方向保留梯度幅值的局部极大值点,即非极大值抑制.若像素点的梯度幅值大于沿梯度方向的像素两侧的梯度幅值,则判定该像素点为候选边缘点,如图3所示.假定梯度方向如图3所示,则梯度方向两侧的像素梯度幅度值可由邻点像素线性插值得到:图3 非极大值抑制示意图当且仅当该像素点梯度幅值大于μ1(x,y)和μ2(x,y)时,将该点标记为候选边缘点,根据类似方法可以得到所有候选边缘点,记为集合.双阈值处理中采用高低阈值,高阈值Th的设置主要按照边缘强度的直方图分布经验设定.而低阈值按照经验一般取成Tl=0.4Th.在集合中候选边缘的归一化梯度幅值超过高阈值的像素被判决为边缘点,称作强边缘像素.在集合中归一化梯度幅值介于高低阈值之间的像素点是待选边缘点.当且仅当它们按照4或8邻域在集合中连通到某个强边缘像素时才被判定为边缘像素,最后经形态学细化处理得到最终边缘图像.图4 边缘连接结果(3)利用上述提出的边缘连接算法对步骤(1)得到的边缘像素点进行连接,得到最终的边缘映射图.若有一边缘像素点Ei是某一条边缘线的起点或终点,则判定它周围领域(如5×5)内是否存在其边缘线的另一个端点或者其它边缘轮廓线的像素点:① 若存在其边缘线的另一个端点,则把两个端点间的梯度值大的像素点连接起来(宽度为一个像素).如图4(b)和(c)所示,Canny算法在对边缘线1进行连接时存在一个缺口,而本文算法可以把边缘线1完整连接.若存在另一条边缘轮廓线的像素点,则利用Harris算法判定交叉点的位置;② 若交叉点在另一边缘轮廓线上,则把边缘像素点Ei和交叉点之间梯度值大的像素点连接起来.如图4(c)所示,本文算法可以很好地把边缘线2连接起来,而Canny算法的连接结果如图4(b)所示.若交叉点不在另一条边缘线上,如图1(a)检测到的交叉点,则把边缘像素点Ei与交叉点之间梯度值大的像素点连接起来,图1(a)的边缘连接结果如图2(b)所示.3 结果与分析为评估所提出算法的性能,分别将传统Canny边缘算子和本文提出的Canny边缘算子改进算法应用于积木图像和Camera图像的边缘检测,其检测结果如图5~6所示.由图5和图6结果可以看出,传统Canny边缘检测虽然检测结果较好,但却存在许多边缘不连接点,如图5(b)和图6(b)中‘O’标记处.而改进后的Canny边缘算子在继承传统Canny边缘算子良好检测性能的同时也检测出Canny 边缘算子漏检边缘,检测边缘连接性好,检测性能优于传统Canny算法.图5 积木图像边缘检测结果图6 Camera图像边缘检测结果图像普通边缘点处灰度变化是一致的而在交叉点附近图像灰度变化是各向异性的,因此利用传统Canny边缘算子检测边缘图像在某些边缘交叉点附近会造成断裂现象,Harris交叉点检测算法可以准确且稳定地检测交叉点.通过检测交叉点附近邻域是否有边缘像素点,对边缘像素点和交叉点间进行边缘连接来寻找漏检边缘像素,本文提出的Canny边缘算子的改进算法会得到更加完整的边缘.4 结束语传统Canny边缘检测算法利用二维高斯核函数一阶偏导数对边缘检测算法的3个准则进行最佳近似,边缘检测性能较好,但会造成交叉点附近边缘点的漏检现象.本文提出Canny算子的改进算法,结合Canny算法和Harris算法对交叉点附近边缘进行连接,具有优于传统Canny算子的性能.【相关文献】[1] RAFAEL C G,RICHARD E W.Digital image processing[M].3rd ed.Boston:Addison -Wesley,1992:282-315;567-608.[2] HARALICK R.Digital step edges from zero crossing of second directional derivatives [J].IEEE Trans on Pattern A-nalysis and Machine Intelligence,1984,6(1):58-68. [3] ZIOU D,TABBONE S.Edge detection techniques——An overview[J].International Journal of Pattern Recognition and Image Analysis,1998,8(3):537-559.[4] RAJAB M,WOOLFSON M,MORGAN S P.Application of region-based segmentation and neural network edge detection to skin lesions[J].Computerized Medical Imaging and Graphics,2004,28(1):61-68.[5]PELLEGRINO F,VANZELLA W.Edge detection revisited[J].IEEE Trans on Systems,Man and Cybernetics,2004,34(2):1500-1518.[6] MARR D,HILDRETH E.Theory of edge detection[J].Proceedings of the Royal Society of London(Series B):Biological Sciences,1980,207(2):187-217.[7] MILAN S,VACLAV H.图像处理、分析与机器视觉[M].2版.北京:人民邮电出版社,2002:39-72.[8] CANNY J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.[9]吕哲,王福利,常玉清.一种改进的Canny边缘检测算法[J].东北大学学报:自然科学版,2007,28(12):1681-1684.[10]余洪山,王耀南.一种改进型Canny边缘检测算法[J].计算机工程与应用,2004,20(2):27-29.[11]王娜,李霞.一种新的改进Canny边缘检测算法[J].深圳大学学报:理工版,2013,22(2):149-153.[12]薛丽霞,李涛,王佐成.一种自适应的Canny边缘检测算法[J].计算机应用研究,2010,27(9):43-48.[13]章为川,水鹏郎.利用各向异性高斯方向导数相关矩阵的角点检测[J].西安交通大学学报,2012,46(11):91-98.[14] DING L,GOSHTASBY A.On the Canny edge detector[J].Pattern Recognition,2001,34(2):721-725.[15] HARRIS C,STEPHENS M.A combined corner and edge detector[C]//Proc 4th Alvey Vision Conf,Manchester:U-niversity of Sheflield Printing Office,1988:147-151.[16] MORAVEC H P.Toward automatic visual obstacle avoidance[C]//5th International Joint Conference on Artificial Intelligence,San Francisco:Morgan Kaufmunn Publishers Inc,1977:584.。

边缘检测中英文翻译

边缘检测中英文翻译

Digital Image Processing and Edge DetectionDigital Image ProcessingInterest in digital image processing methods stems from two principal application areas: improvement of pictorial information for human interpretation; and processing of image data for storage, transmission, and representation for autonomous machine perception.An image may be defined as a two-dimensional function, f(x,y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point. When x, y, and the amplitude values of f are all finite, discrete quantities, we call the image a digital image. The field of digital image processing refers to processing digital images by means of a digital computer. Note that a digital image is composed of a finite number of elements, each of which has a particular location and value. These elements are referred to as picture elements, image elements, pels, and pixels. Pixel is the term most widely used to denote the elements of a digital image.Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in human perception. However, unlike humans, who are limited to the visual band of the electromagnetic (EM) spectrum, imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate on images generated by sources that humans are not accustomed to associating with images. These include ultrasound, electron microscopy, and computer generated images. Thus, digital image processing encompasses a wide and varied field of applications.There is no general agreement among authors regarding where image processing stops and other related areas, such as image analysis and computer vision, start. Sometimes a distinction is made by defining image processing as a discipline in which both the input and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition,even the trivial task of computing the average intensity of an image (which yields a single number) would not be considered an image processing operation. On the other hand, there are fields such as computer vision whose ultimate goal is to use computers to emulate human vision, including learning and being able to make inferences and take actions based on visual inputs. This area itself is a branch of artificial intelligence(AI) whose objective is to emulate human intelligence. The field of AI is in its earliest stages of infancy in terms of development, with progress having been much slower than originally anticipated. The area of image analysis (also called image understanding) is in between image processing and computer vision.There are no clearcut boundaries in the continuum from image processing at one end to computer vision at the other. However, one useful paradigm is to consider three types of computerized processes in this continuum: low, mid, and highlevel processes. Low-level processes involve primitive operations such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-level process is characterized by the fact that both its inputs and outputs are images. Mid-level processing on images involves tasks such as segmentation (partitioning an image into regions or objects), description of those objects to reduce them to a form suitable for computer processing, and classification (recognition) of individual objects. A midlevel process is characterized by the fact that its inputs generally are images, but its outputs are attributes extracted from those images (e.g., edges, contours, and the identity of individual objects). Finally, higherlevel processing involves “making sense” of an ensemble of recognize d objects, as in image analysis, and, at the far end of the continuum, performing the cognitive functions normally associated with vision.Based on the preceding comments, we see that a logical place of overlap between image processing and image analysis is the area of recognition of individual regions or objects in an image. Thus, what we call in this book digital image processing encompasses processes whose inputs and outputs are images and, in addition, encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts, consider the area of automated analysis of text. The processes of acquiring an image of the area containing the text, preprocessing that image, extracting (segmenting) the individual characters, describing the characters in a form suitable for computer processing, and recognizing those individual characters are in the scope of what we call digital image processing in this book. Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision, depending on the level of complexity implied by the statement “making sense.” As will become evident shortly, digital image processing, as we have defined it, is used successfully in a broad range of areas of exceptional social and economic value.The areas of application of digital image processing are so varied that some formof organization is desirable in attempting to capture the breadth of this field. One of the simplest ways to develop a basic understanding of the extent of image processing applications is to categorize images according to their source (e.g., visual, X-ray, and so on). The principal energy source for images in use today is the electromagnetic energy spectrum. Other important sources of energy include acoustic, ultrasonic, and electronic (in the form of electron beams used in electron microscopy). Synthetic images, used for modeling and visualization, are generated by computer. In this section we discuss briefly how images are generated in these various categories and the areas in which they are applied.Images based on radiation from the EM spectrum are the most familiar, especially images in the X-ray and visual bands of the spectrum. Electromagnetic waves can be conceptualized as propagating sinusoidal waves of varying wavelengths, or they can be thought of as a stream of massless particles, each traveling in a wavelike pattern and moving at the speed of light. Each massless particle contains a certain amount (or bundle) of energy. Each bundle of energy is called a photon. If spectral bands are grouped according to energy per photon, we obtain the spectrum shown in fig. below, ranging from gamma rays (highest energy) at one end to radio waves (lowest energy) at the other. The bands are shown shaded to convey the fact that bands of the EM spectrum are not distinct but rather transition smoothly from one to the other.Fig1Image acquisition is the first process. Note that acquisition could be as simple as being given an image that is already in digital form. Generally, the image acquisition stage involves preprocessing, such as scaling.Image enhancement is among the simplest and most appealing areas of digital image processing. Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or simply to highlight certain features of interest in an image.A familiar example of enhancement is when we increase the contrast of an imagebecause “it looks better.” It is important to keep in mind that enhancement is a very subjective area of image processing. Image restoration is an area that also deals with improving the appearance of an image. However, unlike enhancement, which is subjective, image restoration is objective, in the sense that restoration techniques tend to be based on mathematical or probabilistic models of image degradation. Enhancement, on the other hand, is based on human subjective preferences regarding what constitutes a “good” en hancement result.Color image processing is an area that has been gaining in importance because of the significant increase in the use of digital images over the Internet. It covers a number of fundamental concepts in color models and basic color processing in a digital domain. Color is used also in later chapters as the basis for extracting features of interest in an image.Wavelets are the foundation for representing images in various degrees of resolution. In particular, this material is used in this book for image data compression and for pyramidal representation, in which images are subdivided successively into smaller regions.F ig2Compression, as the name implies, deals with techniques for reducing the storage required to save an image, or the bandwidth required to transmi it.Although storagetechnology has improved significantly over the past decade, the same cannot be said for transmission capacity. This is true particularly in uses of the Internet, which are characterized by significant pictorial content. Image compression is familiar (perhaps inadvertently) to most users of computers in the form of image file extensions, such as the jpg file extension used in the JPEG (Joint Photographic Experts Group) image compression standard.Morphological processing deals with tools for extracting image components that are useful in the representation and description of shape. The material in this chapter begins a transition from processes that output images to processes that output image attributes.Segmentation procedures partition an image into its constituent parts or objects. In general, autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged segmentation procedure brings the process a long way toward successful solution of imaging problems that require objects to be identified individually. On the other hand, weak or erratic segmentation algorithms almost always guarantee eventual failure. In general, the more accurate the segmentation, the more likely recognition is to succeed.Representation and description almost always follow the output of a segmentation stage, which usually is raw pixel data, constituting either the boundary of a region (i.e., the set of pixels separating one image region from another) or all the points in the region itself. In either case, converting the data to a form suitable for computer processing is necessary. The first decision that must be made is whether the data should be represented as a boundary or as a complete region. Boundary representation is appropriate when the focus is on external shape characteristics, such as corners and inflections. Regional representation is appropriate when the focus is on internal properties, such as texture or skeletal shape. In some applications, these representations complement each other. Choosing a representation is only part of the solution for transforming raw data into a form suitable for subsequent computer processing. A method must also be specified for describing the data so that features of interest are highlighted. Description, also called feature selection, deals with extracting attributes that result in some quantitative information of interest or are basic for differentiating one class of objects from another.Recognition is the pro cess that assigns a label (e.g., “vehicle”) to an object based on its descriptors. As detailed before, we conclude our coverage of digital imageprocessing with the development of methods for recognition of individual objects.So far we have said nothing about the need for prior knowledge or about the interaction between the knowledge base and the processing modules in Fig2 above. Knowledge about a problem domain is coded into an image processing system in the form of a knowledge database. This knowledge may be as simple as detailing regions of an image where the information of interest is known to be located, thus limiting the search that has to be conducted in seeking that information. The knowledge base also can be quite complex, such as an interrelated list of all major possible defects in a materials inspection problem or an image database containing high-resolution satellite images of a region in connection with change-detection applications. In addition to guiding the operation of each processing module, the knowledge base also controls the interaction between modules. This distinction is made in Fig2 above by the use of double-headed arrows between the processing modules and the knowledge base, as opposed to single-headed arrows linking the processing modules.Edge detectionEdge detection is a terminology in image processing and computer vision, particularly in the areas of feature detection and feature extraction, to refer to algorithms which aim at identifying points in a digital image at which the image brightness changes sharply or more formally has discontinuities.Although point and line detection certainly are important in any discussion on segmentation,edge dectection is by far the most common approach for detecting meaningful discounties in gray level.Although certain literature has considered the detection of ideal step edges, the edges obtained from natural images are usually not at all ideal step edges. Instead they are normally affected by one or several of the following effects:1.focal b lur caused by a finite depth-of-field and finite point spread function; 2.penumbral blur caused by shadows created by light sources of non-zero radius; 3.shading at a smooth object edge; 4.local specularities or interreflections in the vicinity of object edges.A typical edge might for instance be the border between a block of red color and a block of yellow. In contrast a line (as can be extracted by a ridge detector) can be a small number of pixels of a different color on an otherwise unchanging background. For a line, there may therefore usually be one edge on each side of the line.To illustrate why edge detection is not a trivial task, let us consider the problemof detecting edges in the following one-dimensional signal. Here, we may intuitively say that there should be an edge between the 4th and 5th pixels.If the intensity difference were smaller between the 4th and the 5th pixels and if the intensity differences between the adjacent neighbouring pixels were higher, it would not be as easy to say that there should be an edge in the corresponding region. Moreover, one could argue that this case is one in which there are several edges.Hence, to firmly state a specific threshold on how large the intensity change between two neighbouring pixels must be for us to say that there should be an edge between these pixels is not always a simple problem. Indeed, this is one of the reasons why edge detection may be a non-trivial problem unless the objects in the scene are particularly simple and the illumination conditions can be well controlled.There are many methods for edge detection, but most of them can be grouped into two categories,search-based and zero-crossing based. The search-based methods detect edges by first computing a measure of edge strength, usually a first-order derivative expression such as the gradient magnitude, and then searching for local directional maxima of the gradient magnitude using a computed estimate of the local orientation of the edge, usually the gradient direction. The zero-crossing based methods search for zero crossings in a second-order derivative expression computed from the image in order to find edges, usually the zero-crossings of the Laplacian or the zero-crossings of a non-linear differential expression, as will be described in the section on differential edge detection following below. As a pre-processing step to edge detection, a smoothing stage, typically Gaussian smoothing, is almost always applied (see also noise reduction).The edge detection methods that have been published mainly differ in the types of smoothing filters that are applied and the way the measures of edge strength are computed. As many edge detection methods rely on the computation of image gradients, they also differ in the types of filters used for computing gradient estimates in the x- and y-directions.Once we have computed a measure of edge strength (typically the gradient magnitude), the next stage is to apply a threshold, to decide whether edges are present or not at an image point. The lower the threshold, the more edges will be detected, and the result will be increasingly susceptible to noise, and also to picking outirrelevant features from the image. Conversely a high threshold may miss subtle edges, or result in fragmented edges.If the edge thresholding is applied to just the gradient magnitude image, the resulting edges will in general be thick and some type of edge thinning post-processing is necessary. For edges detected with non-maximum suppression however, the edge curves are thin by definition and the edge pixels can be linked into edge polygon by an edge linking (edge tracking) procedure. On a discrete grid, the non-maximum suppression stage can be implemented by estimating the gradient direction using first-order derivatives, then rounding off the gradient direction to multiples of 45 degrees, and finally comparing the values of the gradient magnitude in the estimated gradient direction.A commonly used approach to handle the problem of appropriate thresholds for thresholding is by using thresholding with hysteresis. This method uses multiple thresholds to find edges. We begin by using the upper threshold to find the start of an edge. Once we have a start point, we then trace the path of the edge through the image pixel by pixel, marking an edge whenever we are above the lower threshold. We stop marking our edge only when the value falls below our lower threshold. This approach makes the assumption that edges are likely to be in continuous curves, and allows us to follow a faint section of an edge we have previously seen, without meaning that every noisy pixel in the image is marked down as an edge. Still, however, we have the problem of choosing appropriate thresholding parameters, and suitable thresholding values may vary over the image.Some edge-detection operators are instead based upon second-order derivatives of the intensity. This essentially captures the rate of change in the intensity gradient. Thus, in the ideal continuous case, detection of zero-crossings in the second derivative captures local maxima in the gradient.We can come to a conclusion that,to be classified as a meaningful edge point,the transition in gray level associated with that point has to be significantly stronger than the background at that point.Since we are dealing with local computations,the method of choice to determine whether a value is “significant” or not id to use a threshold.Thus we define a point in an image as being as being an edge point if its two-dimensional first-order derivative is greater than a specified criterion of connectedness is by definition an edge.The term edge segment generally is used if the edge is short in relation to the dimensions of the image.A key problem insegmentation is to assemble edge segments into longer edges.An alternate definition if we elect to use the second-derivative is simply to define the edge ponits in an image as the zero crossings of its second derivative.The definition of an edge in this case is the same as above.It is important to note that these definitions do not guarantee success in finding edge in an image.They simply give us a formalism to look for them.First-order derivatives in an image are computed using the gradient.Second-order derivatives are obtained using the Laplacian.数字图像处理与边缘检测数字图像处理数字图像处理方法的研究源于两个主要应用领域:其一是改进图像信息以便于人们分析;其二是为使机器自动理解而对图像数据进行存储、传输及显示。

图像识别中的边缘检测方法综述(六)

图像识别中的边缘检测方法综述(六)

图像识别中的边缘检测方法综述一、引言在计算机视觉领域中,图像识别是一个重要的研究方向。

而边缘检测作为图像处理的基本技术,对于图像识别起着至关重要的作用。

本文将综述目前常用的边缘检测方法,并对其原理和应用进行分析。

二、基于梯度的边缘检测方法1. Sobel算子Sobel算子是一种常用的基于梯度的边缘检测算法。

它利用滤波器对图像进行卷积操作,通过计算每个像素点的梯度值来确定图像中的边缘。

Sobel算子的优点是计算简单快速,但对于噪声敏感。

2. Prewitt算子Prewitt算子也是一种基于梯度的边缘检测算法。

与Sobel算子类似,Prewitt算子同样利用滤波器对图像进行卷积操作,通过计算像素点的梯度值来检测边缘。

Prewitt算子与Sobel算子相比,在计算效果上略有差异,但在挑选合适的算子时能够取得良好的边缘检测效果。

三、基于图像强度变化的边缘检测方法1. Canny边缘检测Canny边缘检测是一种经典的基于图像强度变化的边缘检测算法。

它通过多次滤波和非极大值抑制来提取出图像中的边缘。

Canny边缘检测算法能够有效地抑制噪声,同时还能够精确地检测出边缘。

2. Roberts算子Roberts算子是一种简单而有效的基于图像强度变化的边缘检测算法。

它利用两个2×2的模板对图像进行卷积运算,通过计算像素点之间的差异来检测边缘。

尽管Roberts算子在计算速度上具有优势,但其对噪声较为敏感,因此常与其他滤波算法结合使用。

四、基于模板匹配的边缘检测方法1. Laplacian算子Laplacian算子是一种基于模板匹配的边缘检测算法。

它通过对图像进行二阶微分来检测边缘。

Laplacian算子对噪声不敏感,能够检测出较细微的边缘,但在实际应用中往往需要与其他算子结合使用。

2. Marr-Hildreth算法Marr-Hildreth算法是一种基于模板匹配的边缘检测算法。

它利用高斯滤波器对图像进行平滑处理,然后通过拉普拉斯算子检测图像边缘。

一种新的基于Laplacian算子的边缘检测方法

一种新的基于Laplacian算子的边缘检测方法
任 文 杰 秦春 霞 王 欣 贺 长 伟 , , ,
( . 东大 学 信 息科 学与 工程 学 院 , 东 济 南 2 0 0 ;. 东建 筑大 学 理 学院 , 东 济 南 2 0 0 ) 1山 山 510 2 山 山 5 1 1
摘 要 : a lc n算子是二阶微分 算子 , L pai a 利用 边缘点处二 阶导 函数 出现零 交叉 的原 理检测 边缘 , 灰度突 变敏感 , 位精 度高 , 对 定 但抗 噪性 差。
2 S h o fS ine h n o gJa z uUnvri . co l cec ,S a d n in h iest o y,Jn n2 0 0 ,C ia ) ia 5 11 hn
Ab t a t La lca p r t ri e o d d rv t e o e a o ,wh c a e e tt e e g y t ez r - r s i g sr c : p a in o e a o a s c n e i a i p r t r s v i h c n d t c h d e b h e o c o s n s i h e o d d rv tv . Th a l ca p r t r c n d t c h n e st b u t c a g n e e t r n t e s c n e ia ie e L p a i n o e a o a e e t t e i t n iy a r p h n e a d g t b te
本文基于 L pai alca n算子 的边缘检测模 型, 采用最 大/ 最小 中值滤波器 , 提出一 种新 的边缘 检测方法 。实验结果表 明该方法具有保 护边缘和平
滑噪声的优点 , 缘检测效果理想。 边

sobel算子、x方向边缘梯度

sobel算子、x方向边缘梯度

sobel算子、x方向边缘梯度Sobel算子是一种常用的边缘检测算法,用于提取图像中的边缘信息。

其中,x方向边缘梯度是Sobel算子在水平方向上的运算结果。

本文将介绍Sobel算子的原理及其在图像处理中的应用。

一、Sobel算子原理Sobel算子是一种离散的差分算子,通过计算图像中每个像素点的梯度值来检测边缘。

它利用了图像在边缘处的灰度值变化较大的特点,通过对图像进行卷积运算,得到图像中各个像素点的边缘梯度信息。

Sobel算子主要分为水平方向和垂直方向两个算子,分别用于检测图像中的水平和垂直边缘。

以x方向边缘梯度为例,x方向的Sobel算子模板如下:-1 0 1-2 0 2-1 0 1对于图像中的每个像素点,将其与周围的8个像素点进行卷积运算,即将每个像素点与模板进行乘积求和,得到该像素点的梯度值。

其中,模板中的九个元素分别与对应的像素点进行乘积,再将乘积结果相加,即可得到该像素点的梯度值。

二、Sobel算子在边缘检测中的应用Sobel算子广泛应用于图像边缘检测领域。

通过计算图像中每个像素点的梯度值,可以提取出图像中的边缘信息,从而实现图像的轮廓提取、物体识别等任务。

在实际应用中,一般先将彩色图像转换为灰度图像,然后使用Sobel算子对灰度图像进行卷积运算,得到图像中各个像素点的梯度值。

通过设定一个合适的阈值,就可以将梯度值大于阈值的像素点标记为边缘点,从而实现对图像中边缘的检测。

Sobel算子在边缘检测中有以下几个特点:1. 简单高效:Sobel算子是一种线性滤波算法,计算速度较快,适用于实时性要求较高的场景。

2. 方向性强:Sobel算子通过分别计算x方向和y方向的梯度值,可以区分出边缘的方向。

这对于一些需要检测特定方向边缘的任务非常有用,比如车道线检测。

3. 对噪声较敏感:由于Sobel算子是一种线性滤波算法,对噪声比较敏感。

在实际应用中,为了提高边缘检测的准确性,通常会在使用Sobel算子前对图像进行平滑处理,以减少噪声的影响。

图像边沿检测(Imageedgedetection)

图像边沿检测(Imageedgedetection)

图像边沿检测(Imageedgedetection)最近在做⼀个项⽬,涉及到边沿检测。

边缘检测,设计到两个问题两个重要问题:(1)整体图像训练和预测;(2)多尺度,多层次的特征学习。

计算边缘检测的历史⾮常丰富,重点介绍⼀些具有实践意义的代表性作品。

⼴义上讲,可以分为⼏类,例如:I早期的开创性⽅法,例如Sobel探测器,零交叉和⼴泛采⽤的Canny探测器。

II驱动的⽅法:通过精⼼的⼿动设计得出功能之上的信息论,例如统计边缘,Pb和gPb; III:基于学习的⽅法仍然依赖于⼈类设计的特征,例如BEL,多尺度,Sketch Tokens和结构化边缘。

另外,最近出现了使⽤卷积神经⽹络的开发浪潮,该浪潮强调⾃动分层层次特征学习的重要性,包括N4-Fields,Deep-Contour ,DeepEdge和CSCNN。

在深度学习取得爆炸性发展之前,结构化边缘⽅法(通常缩写为SE)成为最著名的边缘检测系统之⼀,这要归功于其在BSD500数据集上的最新性能。

(例如F分数为.746)及其每秒2.5帧的实际有效速度。

最近的基于CNN的⽅法已证明有希望的F分数性能优于SE。

但是,这些基于CNN的⽅法在F分数性能和速度⽅⾯仍有很⼤的改进空间-⽬前,做出预测的时间范围从⼏秒钟到⼏⼩时(甚⾄使⽤现代GPU时)。

在这⾥,介绍⼀个端到端边缘检测系统(Holistically-Nested Edge Detection),即整体嵌套边缘检测(HED),该系统可以⾃动学习丰富的层次结构类型,这对于要接近⼈类⾃然解决歧义的能⼒⾄关重要图像边缘和对象边界检测。

使⽤术语“整体”是因为HED尽管未明确建模结构化输出,但旨在以图像到图像的⽅式训练和预测边缘。

通过“嵌套”,强调了作为侧⾯输出⽣成的继承的和渐进完善的边缘图-我们打算表明做出每个预测的路径对于这些边缘图都是相同的,⽽连续的边缘图则更加简洁。

这种对层次特征的综合学习与以前的多尺度⽅法不同,在先前的多尺度⽅法中,尺度空间边缘场既不是⾃动学习的,也不是层次连接的。

图像边缘检测算法英文文献翻译中英文翻译

图像边缘检测算法英文文献翻译中英文翻译

image edge examination algorithmAbstractDigital image processing took a relative quite young discipline, is following the computer technology rapid development, day by day obtains the widespread edge took the image one kind of basic characteristic, in the pattern recognition, the image division, the image intensification as well as the image compression and so on in the domain has a more widespread edge detection method many and varied, in which based on brightness algorithm, is studies the time to be most long, the theory develops the maturest method, it mainly is through some difference operator, calculates its gradient based on image brightness the change, thus examines the edge, mainly has Robert, Laplacian, Sobel, Canny, operators and so on LOG。

First as a whole introduced digital image processing and the edge detection survey, has enumerated several kind of at present commonly used edge detection technology and the algorithm, and selects two kinds to use Visual the C language programming realization, through withdraws the image result to two algorithms the comparison, the research discusses their good and bad points.ForewordIn image processing, as a basic characteristic, the edge of the image, which is widely used in the recognition, segmentation,intensification and compress of the image, is often applied to high-level are many kinds of ways to detect the edge. Anyway, there are two main techniques: one is classic method based on the gray grade of every pixel; the other one is based on wavelet and its multi-scale characteristic. The first method, which is got the longest research,get the edge according to the variety of the pixel gray. The main techniques are Robert, Laplace, Sobel, Canny and LOG algorithm.The second method, which is based on wavelet transform, utilizes the Lipschitz exponent characterization of the noise and singular signal and then achieve the goal of removing noise and distilling the real edge lines. In recent years, a new kind of detection method, which based on the phase information of the pixel, is developed. We need hypothesize nothing about images in advance. The edge is easy to find in frequency domain. It’s a reliable method.In chapter one, we give an overview of the image edge. And in chapter two, some classic detection algorithms are introduced. The cause of positional error is analyzed, and then discussed a more precision method in edge orientation. In chapter three, wavelet theory is introduced. The detection methods based on sampling wavelet transform, which can extract maim edge of the image effectively, and non-sampling wavelet transform, which can remain the optimum spatial information, are recommended respectively. In the last chapter of this thesis, the algorithm based on phase information is introduced. Using the log Gabor wavelet, two-dimension filter is constructed, many kinds of edges are detected, including Mach Band, which indicates it is a outstanding and bio-simulation method。

图像处理中各种边缘检测的微分算子简单比较(Sobel,Robert, Prewitt,Laplacian,Canny)

图像处理中各种边缘检测的微分算子简单比较(Sobel,Robert, Prewitt,Laplacian,Canny)
delete iGradY;
for(i=0;i<iHeight;i++)
delete []*(iExtent+i);
delete iExtent;
}
void Canny::GaussionSmooth()
{
int i,j,k; //循环变量
int iWindowSize; //记录模板大小的变量
int iHalfLen; //模板大小的一半
下面算法是基于的算法不可能直接运行,只是我把Canny的具体实现步骤写了出来,若需用还要自己写。
该算子具体实现方法:
// anny.cpp: implementation of the Canny class.
//
//////////////////////////////////////////////////////////////////////
dTemp[i]=new double[iWidth];
//获得模板长度和模板的各个权值
MakeGauss(&pdKernel,&iWindowSize);
//得到模板的一半长度
iHalfLen=iWindowSize/2;
//对图像对水方向根据模板进行平滑
for(i=0;i<iHeight;i++)
//对原图象进行滤波
GaussionSmooth();
//计算X,Y方向上的方向导数
DirGrad(iGradX,iGradY);
//计算梯度的幅度
GradExtent(iGradX,iGradY,iExtent);
//应用non-maximum抑制
NonMaxSuppress(iExtent,iGradX,iGradY,iEdgePoint);

边缘检测 常用 算法

边缘检测 常用 算法

边缘检测是计算机视觉和图像处理中的一项重要任务,它用于识别图像中物体的边界或不同区域之间的边缘。

边缘检测算法通过检测图像中像素强度的快速变化来工作。

以下是一些常用的边缘检测算法:Sobel算子:Sobel边缘检测算法是一种基于一阶导数的离散微分算子,它结合了高斯平滑和微分求导。

Sobel算子对噪声具有平滑作用,提供较为精确的边缘方向信息,但边缘定位精度不够高。

当对精度要求不是很高时,是一种较为常用的边缘检测方法。

Prewitt算子:Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用。

其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。

Canny算子:Canny边缘检测算法是John F. Canny于1986年开发出来的一个多级边缘检测算法。

Canny的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:好的检测- 算法能够尽可能多地标识出图像中的实际边缘,漏检真实边缘的情况和误检非边缘轮廓的情况都最少。

Laplacian算子:Laplacian算子是一种二阶导数算子,具有旋转不变性,可以满足不同走向的图像边缘锐化要求。

通常其算子的系数之和需要为零。

由于拉普拉斯算子对噪声比较敏感,所以图像一般先经过平滑处理,因为平滑处理会用到拉普拉斯算子,所以通常将平滑处理的过程和拉普拉斯锐化处理的过程合并在一起做,此时平滑处理的滤波器又称为掩模。

Roberts算子:Roberts算子又称为交叉微分算法,它是基于2x2的邻域计算差分的方法。

Roberts算子采用对角线方向相邻两像素之差近似梯度幅值检测边缘。

这些算法各有优缺点,选择哪种算法取决于具体的应用场景和需求。

例如,Canny算子通常被认为是边缘检测的最优算法,但它在计算上可能比Sobel或Prewitt算子更复杂。

图像处理中的图像边缘检测与边缘增强算法研究

图像处理中的图像边缘检测与边缘增强算法研究

图像处理中的图像边缘检测与边缘增强算法研究图像边缘检测与边缘增强算法研究随着人工智能和计算机视觉的发展,图像处理在各个领域的应用日益广泛。

而图像边缘检测与边缘增强算法就是其中重要的一部分。

本文将就这一主题展开探讨。

一、边缘检测的意义与难点边缘是图像中物体与背景交界处的强度变化,对于了解物体的形状和轮廓非常重要。

因此,图像边缘检测的主要目的就是提取出图像中的边缘信息。

但是,由于图像中存在噪声和复杂的纹理等因素,边缘检测变得困难。

在图像边缘检测中,常用的方法有基于梯度的方法和基于模板的方法。

基于梯度的方法通过计算像素点的梯度来检测边缘,而基于模板的方法则是通过将图像与一些特殊模板进行卷积计算来寻找边缘。

这两种方法各有优缺点,根据实际需要选择相应的方法进行边缘检测。

二、经典的边缘检测算法1. Sobel算子Sobel算子是一种基于梯度的边缘检测算法,它利用一组3x3的模板分别计算水平和垂直方向上的梯度值,然后将两个方向上的梯度值进行加权平均得到最终的边缘强度。

Sobel算子简单有效,能够检测到明显的边缘,但对于边缘较细的物体可能存在一定误差。

2. Canny边缘检测算法Canny边缘检测算法是一种基于概率的边缘检测算法,它通过将图像进行多次平滑处理、计算梯度、非极大值抑制和双阈值处理等步骤,最终得到图像的边缘信息。

Canny算法可以有效地抑制噪声,并能检测出较细的边缘,是目前应用最广泛的边缘检测算法之一。

三、边缘增强的方法与技术边缘增强是通过一系列处理方法,使得图像中的边缘更加鲜明和清晰。

常用的边缘增强方法有直观增强、直方图均衡化、锐化等。

直观增强是最简单的一种边缘增强方法,通过调整图像的对比度和亮度来使边缘更加突出。

直方图均衡化则是通过将像素灰度分布均匀化来增强图像的边缘信息,进而提高图像的质量和视觉效果。

而锐化则是通过增强图像的高频成分来提升图像的边缘信息。

四、图像边缘检测与边缘增强的应用领域图像边缘检测与边缘增强广泛应用于图像处理、模式识别、计算机视觉等领域。

图像处理中的边缘检测技术研究

图像处理中的边缘检测技术研究

图像处理中的边缘检测技术研究图像处理技术在现代社会中得到了广泛应用。

而边缘检测作为图像处理的重要环节之一,对于图像的分析和识别具有重要意义。

在本文中,我们将探讨边缘检测技术的研究现状、应用场景以及未来发展方向。

一、研究现状边缘检测技术是图像处理的基础,它通过寻找图像中灰度值变化比较大的区域来确定边缘的位置。

目前,边缘检测技术已经取得了很大的进展,主要包括基于梯度的方法、基于模板的方法以及基于机器学习的方法。

基于梯度的方法是最常用的边缘检测技术之一,它通过计算图像灰度值的变化率来确定边缘的位置。

Sobel算子和Canny算子是常用的基于梯度的方法,它们可以有效地检测出图像中的边缘并消除噪声。

基于模板的方法是另一种常用的边缘检测技术,它通过定义一些特定的模板来寻找图像中的边缘。

例如,拉普拉斯算子和LoG算子都是基于模板的方法,它们可以在不同尺度下检测出图像中的边缘。

基于机器学习的方法是近年来边缘检测技术的发展方向之一,它通过训练大量的图像样本来学习模型,然后利用学习到的模型来检测图像中的边缘。

深度学习技术在这一领域取得了显著的成就,例如卷积神经网络(CNN)可以对图像进行端到端的处理,从而实现更加准确的边缘检测。

二、应用场景边缘检测技术在图像处理领域有着广泛的应用场景。

首先,边缘检测技术在计算机视觉中起着重要的作用,它可以帮助机器识别和理解图像中的物体和结构。

例如,在自动驾驶中,边缘检测可以帮助车辆判断道路的位置和边界,从而实现精准的行驶。

其次,边缘检测技术在医学图像处理中也有广泛的应用。

医学图像中包含了丰富的信息,如X光片、CT扫描和MRI图像等,边缘检测可以提取出图像中各种组织和器官的边缘信息,帮助医生进行疾病的诊断和治疗。

此外,边缘检测技术还应用于图像分割、图像增强以及计算机图形学等领域。

在图像分割中,边缘检测可以将图像分割为不同的区域,从而实现图像的目标区域提取;在图像增强中,边缘检测可以提高图像的清晰度和对比度,使其更加逼真;在计算机图形学中,边缘检测可以帮助渲染引擎更加真实地渲染出场景中的物体边缘。

图像处理中的边缘增强算法研究

图像处理中的边缘增强算法研究

图像处理中的边缘增强算法研究摘要:图像边缘是图像中最重要的特征之一,它包含了图像中物体的边界和轮廓。

边缘增强算法是图像处理中常用的一种方法,旨在增强图像边缘的清晰度和对比度,从而提高图像的可视化效果和辨识度。

本文将研究并探讨几种图像处理中常用的边缘增强算法,包括Sobel算子、Prewitt算子、Canny算子和拉普拉斯算子。

1. 引言图像处理技术已经广泛应用于各个领域,如医学影像、计算机视觉和图像识别等。

图像边缘是图像中的重要特征之一,可用于物体定位、轮廓提取和图像分割等应用。

然而,由于图像受到噪声和模糊等因素的影响,边缘的清晰度和对比度可能被削弱。

因此,通过边缘增强算法来提高边缘的质量成为图像处理中的一个重要研究方向。

2. Sobel算子Sobel算子是一种基于局部区域像素灰度差分的边缘增强算法,它通过计算图像像素点的梯度信息来检测图像的边缘。

Sobel算子是一种简单且高效的算法,常用于平滑图像和边缘检测。

它利用一个3x3的卷积核对图像进行卷积操作,从而得到图像梯度的近似值。

Sobel算子能够提取出较为粗略的边缘,但在一些复杂的场景中可能会存在一定的误检和漏检问题。

3. Prewitt算子Prewitt算子与Sobel算子类似,同样是一种基于局部区域像素灰度差分的边缘增强算法。

Prewitt算子通过计算图像水平和垂直方向灰度差分的绝对值之和来实现边缘检测。

与Sobel算子不同的是,Prewitt算子采用了等权重的卷积核,可以更加有效地提取出图像的边缘信息。

然而,Prewitt算子也存在一定的误检和漏检问题,并且对噪声比较敏感。

4. Canny算子Canny算子是一种经典的边缘增强算法,具有良好的边缘检测效果和低误检率。

Canny算子首先通过计算图像的梯度幅值和方向来找到潜在的边缘点,然后根据两个阈值进行边缘的细化和连接。

Canny算子不仅能够提取出细节丰富的边缘,还能够抑制噪声和防止边缘断裂。

图像处理中的边缘检测算法及其应用

图像处理中的边缘检测算法及其应用

图像处理中的边缘检测算法及其应用一、引言图像处理是指利用计算机对数字图像进行编辑、处理和分析的过程,具有广泛的应用领域。

在图像处理中,边缘检测是一项最为基础的任务,其目的是通过识别图像区域中像素强度突变处的变化来提取出图像中的边缘信息。

本文将介绍边缘检测算法的基本原理及其应用。

二、基本原理边缘是图像中像素值发生跳变的位置,例如黑色区域与白色区域的交界处就可以看作是一条边缘。

边缘检测的主要任务是将这些边缘信息提取出来。

边缘检测算法一般可以分为基于梯度的算法和基于二阶导数的算法。

其中基于梯度的算法主要包括Sobel算子、Prewitt算子和Canny算子;而基于二阶导数的算法主要包括Laplacian算子、LoG(Laplacian of Gaussian)算子和DoG(Difference of Gaussian)算子。

1.Sobel算子Sobel算子是一种常用的边缘检测算法,是一种基于梯度的算法。

该算法在x方向和y方向上都使用了3x3的卷积核,它们分别是:Kx = |-2 0 2|-1 0 1-1 -2 -1Ky = | 0 0 0|1 2 1Sobel算子的实现可以通过以下步骤:①将输入图像转为灰度图像;②根据以上卷积核计算x方向和y方向的梯度;③根据以下公式计算梯度幅值和方向:G = sqrt(Gx^2 + Gy^2) (梯度幅值)θ = atan(Gy/Gx) (梯度方向)其中Gx和Gy分别为x方向和y方向上的梯度。

可以看到,Sobel算子比较简单,对噪声具有一定的抑制作用,但是在边缘细节处理上不够精细。

2.Prewitt算子Prewitt算子也是一种基于梯度的边缘检测算法。

其卷积核如下: -1 0 1-1 0 1-1 -1 -1Ky = | 0 0 0|1 1 1实现方法与Sobel算子类似。

3.Canny算子Canny算子是一种基于梯度的边缘检测算法,是目前应用最广泛的边缘检测算法之一。

log边缘检测方法的原理

log边缘检测方法的原理

log边缘检测方法的原理
1边缘检测原理
边缘检测是应用于图像处理中的一种技术,目的是在图像中检测出两个不同物体的边界部分,也就是边缘或轮廓的形状。

边缘检测可以用来对图像的对象进行分类和抽取,它也是很多其他图像处理技术的基础技术。

边缘检测常见的方法有Canny边缘检测(Canny edge
detection)和Sobel边缘检测(Sobel edge detection)。

它们都是基于运动和梯度变化来检测边缘的。

Canny边缘检测是以不同形式计算梯度来发现边缘的,而Sobel边缘检测是直接用梯度滤波器(如拉普拉斯滤波器)直接对图像进行滤波,然后从滤波后的图像中检测出边缘。

最近出现的一种新的边缘检测方法叫做Laplacian特征选择(Laplacian Feature Selection),也叫做LoG边缘检测(LoG Edge Detection)。

这种方法使用拉普拉斯算子(Laplacian Operator)来计算图像的梯度,然后将图像梯度变化曲线和梯度方向进行计算,来寻找边缘,实现边缘检测。

LoG边缘检测和之前的Canny和Sobel技术相比,准确度更高,速度更快,并且具有很好的鲁棒性,能够自动的抗噪,改善图像的噪声问题。

它在自然图像处理、医学图像处理等领域中都有广泛的应用。

LoG边缘检测的原理是,先通过计算二阶导数的幅值和极大值,然后在领域中进行局部匹配,以判断像素点是否为边缘点。

边缘检测是基于梯度方向、梯度幅值来完成的,通过比较梯度值的大小和方向,从而消除多余的噪声点,提高边缘检测的准确度,得到清晰的边缘检测结果。

因此,LoG边缘检测是一种准确、稳健、鲁棒性强的图像处理技术,在许多领域有广泛的应用。

图像边缘检测技术的实现及应用

图像边缘检测技术的实现及应用

图像边缘检测技术的实现及应用CRC编码原理、实现及性能研究RoboCup3D中通信模型的设计及其在仿真球队中的应用 ?图像边缘检测技术的实现及应用07月 30, 2008 - Posted by 若谷Edge is the most basic feature of images, so edge detection is an important content of image processing. In the past decades, the rapid development of the theory of wavelet has brought new theory and method for image processing. As wavelet transform has good local quality and multi-scale identity, it can satisfy the need of edge detection in multi-scales. Detecting edge using wavelet transform is recognized an efficient way.This thesis first introduces several current widely used edge detection algorithm such as Sobel, Roberts, Laplacian. The core idea of these algorithms is that the edge points correspond to the local maximal points of original image’s gray-level gradient. We perform all experiments based on these widely used edge detection algorithm under the Visual C++ environment, However, when there are noises in images, these algorithms are very sensitive to noises, and may detect noise points as marginal points, and the real edge may not be detected because of the noises’ interference. The general idea of edge detection using wavelet transform is: choose a kind of suitable wavelet function, use the function to transform images in multi-scale, detect the wavelet transform module local maximum and gain the image edge. We perform the experiments based on wavelet transform under the MATLAB environment, the results indicate that these methods are effective. Moreover, we analysis the advantages and shortcomings of these methods.human face detection is the base of human face recognition. At the last chapter the experiment results are used to confirm the different methods which are employed to test the edge detection results of the human face image. It discusses the possible factors, which makes the different results. Finally, it introduced the application of the edge detection in human face detection and recognition.KEY WORDS: edge detection,wavelet transform,human face recognition,human face detection目录摘要 IIABSTRACT III第一章绪论 41.1边缘与边缘检测 41.2边缘检测的研究背景及意义 11.3课题发展现状 31.4论文结构 5第二章经典的边缘检测方法及实现 72.1基于梯度的边缘检测方法 72.1.1Roberts算子 82.1.2Prewitt算子 82.1.3Sobel算子 82.1.4Kirsch算子 92.2拉普拉斯边缘检测算子 102.3高斯拉普拉斯边缘检测算子 112.4经典边缘检测算子的设计及实验结果分析比较 132.4.1经典的边缘检测算子的实现步骤 132.4.2经典算子的Visual C++实现及结果比较 15第三章小波变换的边缘检测方法及实现 173.1引言 173.2小波的来源 183.3小波变换简介 203.3.1小波变换定义 203.3.2连续的小波变换 203.3.3离散小波变换 203.3.4二维小波变换 213.4小波变换边缘检测的设计和实现 213.4.1小波变换边缘检测的优点 213.4.2小波变换模局部极大值边缘检测的原理和步骤 223.4.3小波边缘检测的实验结果比较 25第四章边缘检测在人脸识别中的应用 264.1生物识别技术 264.2人脸识别技术研究的背景及意义 264.3 人脸检测的程序实现界面 274.4 不同算法实现人脸检测及其结果分析 29第五章结论与展望 34参考文献 35致谢 37附录 38摘要边缘是图像最基本的特征,因而边缘检测是图像处理中的重要内容。

医学图像处理中的边缘检测方法与效果评估研究

医学图像处理中的边缘检测方法与效果评估研究

医学图像处理中的边缘检测方法与效果评估研究摘要:医学图像处理中的边缘检测是一项关键任务,旨在准确提取出医学图像中物体的边界。

本文将介绍一些常用的边缘检测方法,并对它们的效果进行评估。

引言:医学图像处理在现代医学领域中起着至关重要的作用,它可以帮助医生诊断疾病、制定治疗方案以及进行手术规划。

而边缘检测作为医学图像处理的基础,直接影响着后续的图像分析和处理结果。

因此,研究医学图像处理中的边缘检测方法及其效果评估具有重要的实际意义。

一、常用的边缘检测方法1. Roberts算子Roberts算子是一种经典的边缘检测方法,其基本原理是通过计算像素点与其相邻像素点的差值来检测边缘。

在医学图像中,Roberts算子能够较好地检测出边缘,但会产生较多的噪声点。

2. Sobel算子Sobel算子是一种常用的边缘检测算法,通过对图像进行卷积运算来计算像素点的梯度值,从而检测出边缘。

Sobel算子在医学图像处理中被广泛应用,并且在一定程度上能够减少噪声。

3. Canny边缘检测Canny边缘检测是一种基于图像梯度的边缘检测方法,其独特之处在于能够自适应地选择合适的阈值来检测边缘。

Canny边缘检测在医学图像处理中表现出较好的性能,能够提取出边缘的细节,并具有较低的噪声敏感度。

二、边缘检测效果评估方法1. ROC曲线ROC曲线是一种常用的边缘检测效果评估方法,它通过绘制真阳性率与假阳性率之间的关系曲线来评估边缘检测算法的性能。

在医学图像处理中,可以根据ROC曲线的形状和曲线下面积来对边缘检测算法进行评估。

2. F-measureF-measure是一种综合考虑精确率和召回率的评价指标,它可以综合评估边缘检测算法对边缘的准确度和完整性。

在医学图像处理中,可以通过计算F-measure值来评估边缘检测算法的效果。

3. 噪声敏感度噪声敏感度是评估边缘检测算法对噪声的敏感程度的指标。

在医学图像处理中,边缘检测算法应该对噪声具有一定的抑制能力,能够准确地提取出物体的边缘,并尽量排除噪声干扰。

HOG

HOG

Histograms of Oriented Gradients (HOG)理解和源码2010年6月1日丕子发表评论阅读评论2152 V iewsHOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检测的特征描述器。

这项技术是用来计算局部图像梯度的方向信息的统计值。

这种方法跟边缘方向直方图(edge orientation histograms)、尺度不变特征变换(scale-invariant feature transform descriptors)以及形状上下文方法( shape contexts)有很多相似之处,但与它们的不同点是:HOG描述器是在一个网格密集的大小统一的细胞单元(dense grid of uniformly spaced cells)上计算,而且为了提高性能,还采用了重叠的局部对比度归一化(overlapping local contrast normalization)技术。

这篇文章的作者Navneet Dalal和Bill Triggs是法国国家计算机技术和控制研究所French National Institute for Research in Computer Science and Control (INRIA)的研究员。

他们在这篇文章中首次提出了HOG方法。

这篇文章被发表在2005年的CVPR上。

他们主要是将这种方法应用在静态图像中的行人检测上,但在后来,他们也将其应用在电影和视频中的行人检测,以及静态图像中的车辆和常见动物的检测。

HOG描述器最重要的思想是:在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布很好地描述。

具体的实现方法是:首先将图像分成小的连通区域,我们把它叫细胞单元。

然后采集细胞单元中各像素点的梯度的或边缘的方向直方图。

最后把这些直方图组合起来就可以构成特征描述器。

sobel、prewitt、roberts边缘检测方法的原理

sobel、prewitt、roberts边缘检测方法的原理

sobel、prewitt、roberts边缘检测方法的原理边缘检测是一种图像处理技术,它可以识别图像中的结构和边界,为后续图像处理操作提供依据。

边缘检测技术主要有Sobel、Prewitt和Roberts三种。

本文将介绍这三种边缘检测方法的原理以及它们之间的区别。

Sobel边缘检测是由Ivan E.Sobel于1960年研发的一种边缘检测技术,它是根据图像中的灰度值变化来计算出一个像素的梯度,从而检测出图像的边缘。

Sobel算子是一种以一阶微分运算为基础的滤波算子,它采用一种双线性结构,可以检测图像中横向、竖向、水平和垂直等多种边缘。

Sobel算子能够有效地检测出图像中的轮廓线,并降低噪声的影响。

Prewitt边缘检测也是基于一阶微分运算,它是由JohnG.Prewitt于1970年研发的一种滤波算子。

它可以植入到一个3×3的矩阵中,将每个像素点处的灰度值变化量进行累加,从而检测出图像中的边缘。

Prewitt边缘检测的优点是能够获得图像中的更多细节,而且对噪声具有较强的抗干扰能力。

Roberts边缘检测也是由一阶微分运算为基础,是由Larry Roberts于1966年研发的一种边缘检测技术。

它采用3×3的矩阵,把相邻的像素点的灰度值变化量进行累加,以检测出图像的边缘,它同样也能够获得更多的细节,并且对噪声也有较强的抗干扰能力。

总结起来,Sobel、Prewitt和Roberts三种边缘检测方法都是基于一阶微分运算,它们的算法类似,从某种程度上来说,它们都是拿某一个像素点处的灰度值变化量与其周围像素点的灰度值变化量进行累加比较,来检测出图像中的边缘。

但是它们在具体运用算子上还是略有不同,Sobel算子采用双线性结构,能够检测图像中横向、竖向、水平和垂直等多种边缘;而Prewitt和Roberts边缘检测方法的算法都是采用一个3×3的矩阵,将相邻的像素点的灰度值变化量累加,从而检测出边缘。

Speeded-Up-Robust-Features-SURF算法全文翻译

Speeded-Up-Robust-Features-SURF算法全文翻译

Speeded-Up Robust Features (SURF)Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool摘要这篇文章提出了一种尺度和旋转不变的检测子和描述子,称为SURF(Speeded-Up Robust Features)。

SURF在可重复性、鉴别性和鲁棒性方面都接近甚至超过了以往的方案,同时计算和比较的速度更快。

这依赖于使用了积分图进行图像卷积、使用现有的最好的检测子和描述子〔特别是,基于Hessian矩阵方法的检测子,和基于分布的描述子〕、以及简化这些算法到了极致。

这些最终实现了新的检测、描述和匹配过程的结合。

本文包含对检测子和描述子的详细阐述,之后探究了一些关键参数的作用。

作为结论,我们用两个目标相反的应用测试了SURF的性能:摄像头校准〔图像配准的一个特列〕和目标识别。

我们的实验验证了SURF在电脑视觉广泛领域的实用性。

1.引言在两个图片中找到相似场景或目标的像素点一致性,这是许多电脑视觉应用中的一项任务。

图像配准,摄像头校准,目标识别,图像检索只是其中的一部分。

寻找离散像素点一致性的任务可以分为三步。

第一,选出兴趣点并分别标注在图像上,例如拐角、斑块和T型连接处。

兴趣点检测子最有价值的特性是可重复性。

可重复性说明的是检测子在不同视觉条件下找到相同真实兴趣点的能力。

然后,用特征向量描述兴趣点的邻域。

这个描述子应该有鉴别性,同时对噪声、位移、几何和光照变换具有鲁棒性。

最后,在不同的图片之间匹配特征向量。

这种匹配基于向量间的马氏或者欧氏距离。

描述子的维度对于计算时间有直接影响,对于快速兴趣点匹配,较小的维度是较好的。

然而,较小的特征向量维度也使得鉴别度低于高维特征向量。

我们的目标是开发新的检测子和描述子,相对于现有方案来说,计算速度更快,同时又不牺牲性能。

为了达成这一目标,我们必须在二者之间到达一个平衡,在保持精确性的前提下简化检测方案,在保持足够鉴别度的前提下减少描述子的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第27卷 第8期2006年8月仪器仪表学报Chinese Journal of Scient ific InstrumentVo l 27No 8A ug 2006New method for image edge detection basedon gradient and zero crossing*Zhao Zhig ang Wan Jiaona(I nf or mation E ngineer ing Colleg e of Qing dao Univ ers ity,Qing dao266071,China)Abstract A new method for image edg e detection is proposed based on local m ax imum o f the first derivativ e and zero cr ossing of the seco nd derivative.Although there are many traditional methods for edge detection,es pecially som e metho ds based o n zero crossings,mo st o f them are sensitive to no ise,so that the im ag e edge can 't be detected clear ly.T he pr opo sed algo rithm can avoid such disadvantages.This method calculates the first de r iv ative and finds out the local maximum,then calculates the seco nd derivativ e and g ets the zero cr ossing.After com paring the results,those points w ho se second der iv ative is zero crossing but first derivative is not local m ax im um are deleted,because maybe these edge po ints are pr oduced by noise.T he ex periment r esults show that this new method reaches no t only perfect edg e detection result but also good r obustness to noise.Key words image edg e detection gr adient zero cr ossing一种基于梯度和零交叉点的图像边缘检测新方法赵志刚 万娇娜(青岛大学信息工程学院 青岛 266071)摘要 本文提出了一种基于一阶导数局部极大值和二阶导数零交叉点的图像边缘检测方法。

许多传统的边缘检测方法,尤其是一些基于二阶导数零交叉点的方法,对于信号中的噪声比较敏感使得边缘信息不能完全准确地检测出来,而本方法可以较好地解决这些问题。

本文提出的算法是先计算出像素一阶导数的局部极大值以及二阶导数对应的零交叉点,将两者进行比较,删除那些二阶导数是零交叉点但一阶导数不是局部极大值的像素点,最后把剩下像素连接起来,即是图像边缘。

实验研究结果表明该方法具有良好的边缘检测效果和鲁棒性。

关键词 图像边缘检测 梯度 零交叉点中图分类号 T N391.41 文献标识码 A 国家标准学科分类代码 520.601 IntroductionEdge det ect ion is one of t he basic research t opics for long in the field of image processing.Because of the im port ance of edge det ect ion in modern research areas such as SAR image processing,medical image processing,et c. where it is being used ext ensively,it is a very act ive field of invest igat ion nowadays.Edge of an image is defined as a set of locally con nect ed picture elements(pixels)w hich are characterized by t heir rapid int ensit y variations.Generally,an edge is the boundary bet ween tw o regions w it h relat ively dist inct gray level properties[1-2].Since edg es carry import ant in formation,and t he edge has been widely used in solid ima ging,image segment at ion and patt ern recognition,edge det ect ion is an essential aspect in image analysis.In some t radit ional met hods,signal border is usually understood as the point where signal bounds,i.e.where*本文于2005年5月收到。

822 仪 器 仪 表 学 报第27卷the f irst derivat ive of the signal achieves local maxima [3]orthe second derivative at t he gradient direct ion which is also zero crossings.T his paper will show you a brand new method using both know ledge of gradient and zero crossings f or edge de t ect ion.2 The Theory of Some Traditional Edge Detec tion Methods and Knowledge RelatedIn the case of 1 D signal,t he edge det ect ion is based on the local maxima of 1 order derivat ive,and gradient is the measurement of the function changes.Similarly,the obvious change of image int ensity can be expressed by gra dient function.G radient is the 2 D equivalent form of 1 order derivative,defined as a vect or: G (x ,y)=G xG y= f x f y(1)wit h two import ant characterist ics:(1)T he direct ion of vect or G(x,y)is the direct ion of f(x,y)increasing most quickly;(2)T he amplit ude of gradient vector is|G (x ,y)|=G 2x+G 2y(2)and usually w e use absolute value t o approach t he sw ing ofgradient:|G (x ,y)|=|G x |+|G y |(3)or|G (x ,y)| max (|G x |,|G y |)(4)T hrough t he analysis of vect or,we know that t he direction of gradient can be defined as: a(x,y )=arct an (G y /G x )(5)Generally,we consider the pix els whose value of gra dient is local maxima as the edg e pixels.It is because the pixels at t he edge have rapid int ensit y variat ions.It means that the pix el can be det ect ed as an edge when the magni t ude of the f irst derivat ive is greater t han a given t hresh old.A ccording to the mathemat ic knowledge,w e know that local maxima of the first derivat ive means zero cross ings of t he second derivat ive.It means t hat the edge pix els have both max ima of t he first derivative and the second derivative zero crossings.T he relat ion among t he image funct ion,the first derivative and the second derivative areshown in F ig.1.T he second derivative is posit ive for the part of t he transition associated wit h t he dark side of t he edge,nega tive for t hat part of the transit ion associat ed with t he light side of the edge,and zero in areas of const ant gray level.It has a zero crossing at t he midpoint of a t ransit ion in gray level.T herefore,the pixel can be det ect ed as an edge at the zero crossing of it s second derivat ive,but this met hod is sensit ive to noise.F ig.1 T he R elatio n amo ng the Image F unctio n,the First Der ivative and the Seco nd Derivativ eSome previous classical algorithms are based on gra dient and local maxima,such as Sobel met hod,Prew it t met hod and Roberts met hod w hich find edges using their own approximation t o t he derivat ive,and ret urn edges at those point s where t he gradient of t he original image is maximum.However t hese methods can not get perfectible result s of t hose boundaries of curves.T hey are eff ect ivefor beeline boundary rat her t han curve boundary. Similarly,t here are also many algorithms based on second derivative and zero crossings for edge det ect ion,such as the LoG (laplacian of gaussian)met hod which finds edges by looking for zero crossings aft er filtering t he original image with a LoG filter,and the zero cross met h od w hich f inds edges by looking f or zero crossings aft er fil tering t he original image with a filt er you specify.Howev er,t hese met hods do have great effect on edge det ect ion,almost all of them are sensit ive t o noise.Which means that while t he image adds noise,t hese algorit hms may not get t he exact boundary of t he original image [3 4].3 The Thought of New Algorithm and Experi ment ResultsAccording to t he analysis above,a new method f or第8期Zhao Zhig ang et al:N ew method for imag e edge detection based on g radient and zer o cro ssing823edge detection based on bot h the gradient methods and thethought of zero crossings is present ed.So that it can notonly det ect t he edge but also have good robustness tonoise.T he algorithm for edge det ect ion has five st eps:(1)U se LoG f ilt er t ransact t he original image,namethe t ransacted image as G;(2)Compute the second derivat ive of pixels of G,andrecord t hose zero cross point s t hen record them as H.And the Gaussian gradient operator can be ex pressed byformula below:2G(x,y)=12!4x2+y2!2-2exp-x2+y22!2(6)we use it through st ep1and step2t o smooth the im age and calculat e t he second derivat ive in order t o find out the zero crossings.(3)Calculat e t he first derivat ive of pixels of G,and find those pixels whose value of the first derivative is lo cally maxima,compare them w it h given threshold and make those greater than t he threshold as H;(4)Compare H and H,delet e t hose point s whose second derivative are zero but first derivat ive is not locally maxima,t hen make the lef t points as the edg e named T.(5)Get t he f inal edge det ect ion output,and algorit hm is finished.In the same environment,w e use M atlab t o compile programs t o det ect the image edge and compare the result s of different algorit hms.We detect t he edge of a bacilli image which w e find from web based on the new met hod,and give the result s through some previous operat ors,such as Sobel,Lapla cian operator and so on.T he ex periment result s are shown in Fig.2.(a)is the original image of bacilli,(b)is the edge det ect ion result through Sobel operat or,(c)is the result of LoG operat or,(d)is the result of Robert s operat or,(e)is the result of Prewitt method,and(f)is the result based on our met hod.T hrough the experiment result s in Fig.2,we can see the effect of our new met hod is prett y good.For edge de t ect ion,it almost has the same ef fect as LoG operator, and has bet ter ef fect t han Sobel operat or,Robert s opera t or,and Prewitt met hod.Because we t ransact t he result f rom the zero cross point s of second derivat ive,delete those pixels might pro duced by noise,the new met hod in this paper has bet t er abilit y t o resist noise t han LoG operat or and ot her met hodsFig.2 Compariso n amo ng the Effects o f DifferentEdg e Detectio n M ethodsment ioned above,and can get distinct boundary of Image edge.4 ConclusionsIn this paper,a new method f or image edge det ect ion which is based on t he first derivat ive and zero crossings of second derivat ive knowledge is present ed.T hrough t he experiment result s,we can see t he effect of our new met hod is prett y good.Because we t ransact the result from the zero cross points of second derivat ive,delet e those pixels might produced by noise,t his approach has bet t er abilit y to resist noise.It has not only good effect for edge det ect ion,but also has bett er Robustness than other met hods mentioned in t his paper.A lso,this good met hod can be applied t o many fields of signal processing.References[1] M AR R D,HIL DR ET H E,T heor y of edge detection[J].Pr oc.Ro yal So c.Lo ndon,B,1980,(207):187217.[2] ZH AO ZH Q.A new appro ach to edge detectio n of SA Rimages[J].Jounal of Electro nics A nd Infor mat ion T echnolog y(in Chinese),2001,23(7):625630.824仪 器 仪 表 学 报第27卷[3] YA N G S B.Introduct ion of image edg e detection technolo gy.[J]J.W uhan Inst.Chem.T ech,2003,25(1):7376(in Chinese).[4] N IE XIA N GF.Imag e edg e detectio n based o n w avelettr ansfo rmation[J].China Cable T elev isio n,2004.作者简介赵志刚 男 1973年出生 博士 副教授 主要研究方向为小波分析 神经网络 图像与信号处理。

相关文档
最新文档