河北沧州市2017年中考数学模拟试卷(九)及答案

合集下载

河北省2017年中考数学试题含答案

河北省2017年中考数学试题含答案

河北省2017年中考数学试题及答案
一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列运算结果为正数的是()
5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()
A.①B.②C.③D.④6.如图为张小亮的答卷,他的得分应是()
A.100分B.80分C.60分D.40分
&
11.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()
12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()
14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是()
A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大 D.无法判断
A.1.4 B.1.1 C.0.8 D.0.5
二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)
]
答案:一、选择题
一、填空题
17.100 18. 560 19. ;2或-1 .
三、解答题。

2017年河北沧州市中考数学模拟试卷(十)含答案

2017年河北沧州市中考数学模拟试卷(十)含答案

2017年河北沧州市中考数学模拟试卷(十)(时间:120分 满分:120分)一、选择题(本大题共8小题,每题3分,共24分) 1.绝对值等于9的数是( ) A .9B .﹣9C .9或﹣9D .2、如果不等式组⎩⎪⎨⎪⎧ x >ax <2 恰有3个整数解,则 a 的取值范围是( ).A 、a ≤-1B 、a <-1C 、-2≤a <-1D 、-2<a ≤-13、 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A 、10πB 、15πC 、20πD 、30π 4.对于非零实数m ,下列式子运算正确的是( )A .(m 3)2=m 9B .m 3•m 2=m 6C .m 2+m 3=m 5D .m ﹣2÷m ﹣6=m 45.如图,是由五个相同正方体组成的甲、乙两个几何体,它们的三视图中一致的( )A .主视图B .左视图C .俯视图D .三视图6.如图:二次函数2y ax bx c =++的图象所示,下列结论中:①abc >0; ②2a +b=0;③当m ≠1时,a +b >am 2+bm ;④a -b +c >0;⑤若ax 12+bx 1 =ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2,正确的个数为( ). A 、1个 B 、2个 C 、3个 D 、4个7.如图,AB 是⊙O 的直径,CD 是弦,∠BCD=50°,则∠ABD 的度数是( )A .20°B .25°C .40°D .50°8. 如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4,则四边形CODE 的周长( )A .4B .6C .8D .10二、填空题:(本大题共4小题,每小题3分,共12分) 9.分解因式:322a a a -+=_______ ___. 10、若关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围为_________ .11、如图,在平行四边形ABCD 中,E 是CD 上一点,DE :EC=1:3,连AE ,BE ,BD 且AE ,BD 交于F ,则S △DEF :S △EBF :S △ABF = .12、两个反比例函数k y x =(k >1)和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上, PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,BE ⊥x 轴于点E ,当点P 在ky x=的图象上运动时,以下结论:①BA 与DC 始终平行;②PA 与PB 始终相等;③四边形PAOB 的面积不会发生变化;④△OBA 的面积等于四边形ACEB 的面积. 其中一定正确的是__________(填写序号).三、解答题:(本大题共3小题,每小题10分,共30分,解答应写出文字说明,证明过程和演算步骤)13、0113tan 30(4)()2π--︒+--23441)211x x x x x x ++-+++÷=(2)先化简,再求值:(,其中14、如图,△ABC 内接于⊙O ,AD 是⊙O 直径,过点A 的切线与CB 的延长线交于点E .(1)求证:EA 2=EB•EC ; (2)若EA=AC ,,AE=12,求⊙O 的半径.15、如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)四、解答题:(本大题共3小题,每小题8分,共24分,解答应写出文字说明,证明过程和演算步骤)16、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B (﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.17、已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F。

河北省沧州市中考数学一模试卷

河北省沧州市中考数学一模试卷

河北省沧州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·揭西模拟) ﹣的倒数是()A . ﹣5B . 5C . ﹣D .2. (2分)下列何者是0.000 815的科学记号()A . 8.15×10-3B . 8.15×10-4C . 815×10-3D . 815×10-63. (2分)下列图形,是轴对称图形,又是中心对称图形的是()A . 等边三角形B . 扇形C . 等腰梯形D . 矩形4. (2分) (2019九上·哈尔滨月考) 如图,在中,,将绕点逆时针旋转得到,其中点与点是对应点,且点在同一条直线上;则的长为()A .B .C .D .5. (2分)(2020·萧山模拟) 某个几何体的三视图如图所示,则该几何体可能是()A .B .C .D .6. (2分) (2019八下·莘县期中) 如图,ABCD的对角线AC,BD交于点O,AC⊥AB,AB= ,且AC:BD=2:3,那么AC的长为()A . 2B .C . 3D . 47. (2分)(2018·遵义) 如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A . y=﹣B . y=﹣C . y=﹣D . y=8. (2分) (2019八下·如皋期中) 如图,矩形ABCD的对角线AC=8 cm, ,则AB的长为()A . cmB . 2cmC . 4cmD . cm9. (2分) (2020八下·奉化期末) 已知反比例函数y=﹣的图象上有两点A(x1 , y1),B(x2 , y2),且x1<x2<0,则y1 , y2的大小关系为()A . y1<y2B . y1>y2C . y1=y2D . 无法确定10. (2分)如图, O为Rt△ABC内切圆, ∠C=90°, AO延长线交BC于D点,若AC=4, CD=1,则⊙O半径为()A .B .C .D .二、填空题 (共7题;共8分)11. (1分)若a、b为实数,且b= +4,则a+b=________.12. (2分) (2019七下·东台期中) 如图,∠ABC+∠C+∠CDE=360°,直线FG分别交AB、DE于点F、G.若∠1=120°,则∠2=________°.13. (1分)(2017·邵阳模拟) 已知甲组数据的平均数为甲,乙组数据的平均数为乙,且甲=乙,而甲组数据的方差为S2甲=1.25,乙组数据的方差为S2乙=3,则________较稳定.14. (1分) (2020七下·玉州期末) 若关于x的不等式组有解,且关于x的方程有非负整数解,则符合条件的所有整数k的积为________.15. (1分)(2019·利辛模拟) 如图,矩形ABC0中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处。

河北沧州市2017年中考数学模拟试卷(八)及答案

河北沧州市2017年中考数学模拟试卷(八)及答案

2017年河北沧州市中考数学模拟试卷(八)一、选择题(共14小题,每小题3分,满分42分)1.|﹣3|的相反数是()A.3 B.﹣3 C.D.﹣2.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>06.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小8.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.80°或100°C.100°D.160°或20°9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是()A.B.C.D.10.某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0C.y=0.12x,0≤x≤500D.y=60﹣0.12x,0≤x≤50011.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.1612.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1013.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个14.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点D作CD⊥x轴,垂足为D,且OA=AD,则以下结论:=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④方程2x2﹣2x﹣k=0①S△ADB有解.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)15.分解因式:a2b﹣4ab=.16.分式方程的解是.17.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是.18.如图,在四边形ABCD中,E,F分别是AB,AD的中点,若EF=2,BC=5,CD=3,则点D到直线BC的距离为.19.如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n﹣1P n=2n﹣1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为.三、解答题(共7小题,满分63分)20.(7分)计算:(3﹣π)0﹣(﹣)﹣1+×4sin60°.21.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有8万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22.(7分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).23.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O 上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.24.如图,反比例函数y=(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.25.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;(2)结合图②,通过观察、测量、猜想:,并证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图③),若AC=8,BD=6,直接写出的值.26.已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.参考答案一、选择题(共14小题,每小题3分,满分42分)1.B.2.D.3.D.4.A.5.B.6.D.7.D.8.B.9.B.10.D.11.C.12.C.13.B.14.C.二、填空题(共5小题,每小题3分,满分15分)15.ab(a﹣4).16.3.17.(1﹣10%)(1+x)2=1.18..19.n2,n2).三、解答题(共7小题,满分63分)20.解:原式=1﹣(﹣3)+2×4×=4+12=16.21.1000人;54°;(3)100.(4)5.28(万人),22.解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=,∴BE=CE•cot30°=12×=12.在Rt△BDE中,由∠DBE=45°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.4.答:楼房CD的高度约为32.4m.23.(1)证明:连结O B、O D、OC,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,∴∠ODB=90°,∵∠BMC=∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三角形,∴∠ABC=60°∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;(2)解:BE+CF的值是为定值.作DH⊥AB于H,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DH=DN,∠HDN=120°,∵∠EDF=120°,∴∠HDE=∠NDF,在△DHE和△DNF中,,∴△DHE≌△DNF,∴HE=NF,∴BE+CF=BH﹣EH+CN+NF=BH+CN,在Rt△DHB中,∵∠DBH=60°,∴BH=BD,同理可得CN=OC,∴BE+CF=OB+OC=BC,∵BD=OB•cos30°=,∴BC=2,∴BE+CF的值是定值,为.24.解:(1)据题意得:点A(1,k)与点B(﹣k,﹣1)关于原点对称,∴k=1,∴A(1,1),B(﹣1,﹣1),∴反比例函数和正比例函数的解析式分别为y=,y=x;(2)∵一次函数y=x+b的图象过点(x1,y1)、(x2,y2),∴,②﹣①得,y2﹣y1=x2﹣x1,∵|x1﹣x2|•|y1﹣y2|=5,∴|x1﹣x2|=|y1﹣y2|=,由得x2+bx﹣1=0,解得,x1=,x2=,∴|x1﹣x2|=|﹣|=||=,解得b=±1.25.(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP,∠BOC=∠BOG=90°,∵PF⊥BG,∠PFB=90°,∴∠GBO=90°﹣∠BGO,∠EPO=90°﹣∠BGO,∴∠GBO=∠EPO,在△BOG和△POE中,∴△BOG≌△POE(ASA);(2)解:猜想=.证明:如图2,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OC B.∵∠OBC=∠OCB=45°,∴∠NBP=∠NP B.∴NB=NP.∵∠MBN=90°﹣∠BMN,∠NPE=90°﹣∠BMN,∴∠MBN=∠NPE,在△BMN和△PEN中,∴△BMN≌△PEN(ASA),∴BM=PE.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,∴△BPF≌△MPF(ASA).∴BF=MF.即BF=BM.∴BF=PE.即=;故答案为;(3)如图3,过P作PM∥AC交BG于点M,交BO于点N,∴∠BPN =∠ACB =α,∠PNE =∠BOC =90°,在Rt △BOC 中,OC =AC =4,OB =BD =3,∴tan ∠ACB ==由(2)同理可得:BF =BM ,∠MBN =∠EPN ,∵∠BNM =∠PNE =90°,∴△BMN ∽△PEN .∴.在Rt △BNP 中,tan ∠ACB ==,∴=tan ∠ACB =.即=.∴=×=.26.解:(1)将点A 的坐标(﹣1,0),点C 的坐标(0,﹣3)代入抛物线解析式得:,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)得:0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,故B点坐标为:(3,0),设直线BC的解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣3,∵B(3,0),C(0,﹣3),∴BO=OC=3,∴∠ABC=45°;(3)过点P作PD⊥x轴于点D,∵∠ACB=∠PAB,∠ABC=∠PBA,∴△ABP∽△CBA,∴=,∵BO=OC=3,∴BC=3,∵A(﹣1,0),B(3,0),∴AB=4,∴=,解得:BP=,由题意可得:PD∥OC,∴DB=DP=,∴OD=3﹣=,则P(,﹣).。

2017年河北省沧州市泊头市德才学校中考数学模拟试卷及答案

2017年河北省沧州市泊头市德才学校中考数学模拟试卷及答案

2017年河北省沧州市泊头市德才学校中考数学模拟试卷一、选择题:1.(3分)如果收入15元记作+15元,那么支出20元记作()元.A.+5 B.+20 C.﹣5 D.﹣202.(3分)下列计算中正确的是()A.2x3﹣x3=2 B.x3•x2=x6C.x2+x3=x5D.x3÷x=x23.(3分)正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形 D.平行四边形4.(3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣5.(3分)在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是()A. B. C. D.6.(3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对7.(3分)下列各式一定是二次根式的是()A. B.C.D.8.(3分)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.9.(3分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.410.(3分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.211.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b 的大小关系是()A.b<﹣a<﹣b<a B.b<﹣b<﹣a<a C.b<﹣a<a<﹣b D.﹣a<﹣b<b<a 12.(3分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.13.(3分)点A(﹣3,﹣4)到原点的距离为()A.3 B.4 C.5 D.714.(3分)y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根15.(3分)如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB 16.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是()A.①②③B.①③④C.①②③⑤D.①③⑤二、填空题:17.(3分)一个正数的平方根有,它们的和为.18.(3分)分解因式:a2b﹣6ab2+9b3=.三、计算题:19.﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)20.4+(﹣2)2×2﹣(﹣36)÷4.四、解答题:21.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=50°,求∠EBC的度数?22.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.23.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x >0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.24.为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H 的仰角为30°,那么主楼GH高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7,=1.7)25.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E 分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.2017年河北省沧州市泊头市德才学校中考数学模拟试卷参考答案与试题解析一、选择题:1.(3分)如果收入15元记作+15元,那么支出20元记作()元.A.+5 B.+20 C.﹣5 D.﹣20【解答】解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作﹣20元.故选D.2.(3分)下列计算中正确的是()A.2x3﹣x3=2 B.x3•x2=x6C.x2+x3=x5D.x3÷x=x2【解答】解:A、2x3﹣x3=x3,故此选项错误;B、x3•x2=x5,故此选项错误;C、x2+x3,无法计算,故此选项错误;D、x3÷x=x2,正确.故选:D.3.(3分)正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形 D.平行四边形【解答】解:正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.4.(3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣【解答】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,∵关于x的方程+=3的解为正数,∴﹣2m+9>0,解得:m<,当x=3时,x==3,解得:m=,故m的取值范围是:m<且m≠.故选:B.5.(3分)在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是()A. B. C. D.【解答】解:x<0时,y=﹣x,x>0时,y=x.故选:A.6.(3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.7.(3分)下列各式一定是二次根式的是()A. B.C.D.【解答】解:A、二次根式无意义,故A错误;B、是三次根式,故B错误;C、被开方数是正数,故C正确;D、当b=0或a、b异号时,根式无意义,故D错误.故选:C.8.(3分)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.9.(3分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,=BC•EF=×5×2=5,∴S△BCE故选C.10.(3分)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.11.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b 的大小关系是()A.b<﹣a<﹣b<a B.b<﹣b<﹣a<a C.b<﹣a<a<﹣b D.﹣a<﹣b<b<a 【解答】解:设a=1,b=﹣2,则﹣a=﹣1,﹣b=2,因为﹣2<﹣1<1<2,所以b<﹣a<a<﹣b.故选:C.12.(3分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【解答】解:根据题意,得.故选:C.13.(3分)点A(﹣3,﹣4)到原点的距离为()A.3 B.4 C.5 D.7【解答】解:∵点A的坐标为(﹣3,﹣4)到原点O的距离:OA==5,故选C14.(3分)y=x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根【解答】解:∵y=x+1是关于x的一次函数,∴≠0,∴k﹣1>0,解得k>1,又一元二次方程kx2+2x+1=0的判别式△=4﹣4k,∴△<0,∴一元二次方程kx2+2x+1=0无实数根,故选A.15.(3分)如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB【解答】解:∵∠A=∠A∴当∠B=∠C或∠ADC=∠AEB或AD:AC=AE:AB时,△ABE和△ACD相似.故选C.16.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是()A.①②③B.①③④C.①②③⑤D.①③⑤【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2+b×(﹣)+c=0,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴b+b+c<0,即3b+2c<0,故④错误;∵x=﹣1时,函数值最大,∴a﹣b+c>m2a﹣mb+c(m≠﹣1),∴a﹣b>m(am﹣b),所以⑤正确;故选D.二、填空题:17.(3分)一个正数的平方根有两个,它们的和为0.【解答】解:一个正数的平方根有两个,它们的和为0,故答案为:两个,0.18.(3分)分解因式:a2b﹣6ab2+9b3=b(a﹣3b)2.【解答】解:原式=b(a2﹣6ab+9b2)=b(a﹣3b)2.故答案为:b(a﹣3b)2三、计算题:19.﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)【解答】解:原式=﹣10+2﹣24=﹣34+2=﹣32.20.4+(﹣2)2×2﹣(﹣36)÷4.【解答】解:原式=4+4×2﹣(﹣9)=4+8+9=21.四、解答题:21.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.22.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.【解答】解:△AEF是等腰三角形.理由如下:∵AD平分∠BAC,∴∠BAD=∠CAD.又∵EG∥AD,∴∠E=∠CAD,∠EFA=∠BAD,∴∠E=∠EFA,∴AE=AF,∴△AEF是等腰三角形.23.甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x >0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.【解答】解;(1)甲商场写出y关于x的函数解析式y1=0.85x,乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50 (x>200),y2=x (0≤x≤200);(2)由y1>y2,得0.85x>0.75x+50,x>500,当x>500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,x=500时,到两家商场去购物花费一样;由y1<y2,得0.85x<0.75x+500,x<500,当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.24.为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H 的仰角为30°,那么主楼GH高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7,=1.7)【解答】解:(1)∵修建的斜坡BE的坡角(即∠BEF)为36°,∴∠BEF=36°,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=BD=15,DF=15≈25.98,EF==≈21.43故:DE=DF﹣EF=4(米);(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=AD=×30=15,PA=AD•cos30°=×30=15,在矩形DPGM中,MG=DP=15,DM=PG=15+27,在Rt△DMH中,HM=D M•tan30°=×(15+27)=15+9,GH=HM+MG=15+15+9≈45米.答:建筑物GH高约为45米.25.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E 分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.【解答】解:(1)在直线y=﹣x+2中,令y=0可得0=﹣x+2,解得x=2,令x=0可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∵EF∥x轴,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,又AF•AB=×4=,∴AF•AB=AG2,即=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∵EG∥x轴,∴∠GFA=∠BAO=60°,又G点不能在抛物线的对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,∴E点坐标为(0,),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x﹣2)2,把E点坐标代入可得=4a,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+.。

河北省2017年中考数学模拟试卷(含解析)

河北省2017年中考数学模拟试卷(含解析)

2017年河北省中考数学一模试卷一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=23.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.86.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣329.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab211.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.2212.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.315.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.2017年河北省中考数学一模试卷参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形不是中心对称图形,不是轴对称图形,故A选项错误;B、此图形是中心对称图形,也是轴对称图形,故B选项错误;C、此图形是中心对称图形,不是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=2【考点】零指数幂.【分析】根据绝对值的规律,及实数的四则运算、乘法运算.【解答】解:A、﹣2+|﹣2|=﹣2+2=0,故A正确;B、20÷3=,故B错误;C、42=16,故C错误;D、2÷3×=,故D错误.故选A.3.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【考点】点的坐标.【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.5.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.8【考点】三角形中位线定理.【分析】已知DE是△ABC的中位线,BC=8,根据中位线定理即可求得DE的长.【解答】解:∵DE是△ABC的中位线,BC=8,∴DE=BC=4,故选B.6.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:23μg=23÷1000000g=0.000 023g=2.3×10﹣5g.故选:C.7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差【考点】统计量的选择.【分析】由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义分析.【解答】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,故选:A.8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣32【考点】代数式求值.【分析】先求得代数式﹣2a+3b的值,然后将所求代数式变形为3(﹣2a+3b)+2,最后将﹣2a+3b的值整体代入求解即可.【解答】解:∵﹣2a+3b+8=18,∴﹣2a+3b=10.原式=3(﹣2a+3b)+2=3×10+2=32.故选:C.9.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高(1﹣)x=儿子在水中的身高(1﹣)y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,故选:D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【考点】算术平方根.【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解: ==××=a•b•b=ab2.故选D.11.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.22【考点】矩形的性质;翻折变换(折叠问题).【分析】首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【解答】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选D.12.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径【考点】作图—复杂作图;勾股定理的逆定理;圆周角定理.【分析】由作图痕迹可以看出AB是直径,∠ACB是直径所对的圆周角,即可作出判断.【解答】解:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a为半径画弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.故选:B.13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.3【考点】等边三角形的性质.【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【解答】解:延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故选:C.15.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出=,再由角平分线性质即可得出结论.【解答】解:∵DE∥AB,∴=,∵AD为△ABC的角平分线,∴=;故选:B.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B 的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是x≤0.5且x≠﹣1 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,让被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得:1﹣2x≥0,1+x≠0,解得:x≤0.5且x≠﹣1.故答案为:x≤0.5且x≠﹣1.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=90°.【考点】平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于a2,第n个三角形的面积等于.【考点】相似三角形的判定与性质.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,然后判定出△ACD是等边三角形,同理可得被分成的第二个、第三个…第n个三角形都是等边三角形,再根据后一个等边三角形的边长是前一个等边三角形的边长的一半求出第n个三角形的边长,然后根据等边三角形的面积公式求解即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AD,∵∠A=60°,∴△ACD是等边三角形,同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,∵CD是AB的中线,EF是DB的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,∴第一个三角形的面积为a2,第二个等边三角形的边长EF=DB=a,…第n个等边三角形的边长为a,所以,第n个三角形的面积=×a×(•a)=.故答案为a2,.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【考点】整式的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)根据题意列出关系式,化简得到结果,验证即可.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.【考点】全等三角形的判定与性质.【分析】根据AB∥CD,得到∠B=∠C,推出△ABE≌△CDF,根据全等三角形的性质即可得到结论.【解答】解:添加条件为:∠A=∠D,理由:∵AB∥CD,∴∠B=∠C,在△ABE与△CDF中,,∴△ABE≌△CDF,∴AE=DF.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2).∴,解得:,∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2,∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=3,PC×1+PC×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.【考点】列表法与树状图法;根的判别式.【分析】(1)用列表法易得(a,b)所有情况;(2)看使关于x的一元二次方程x2﹣ax+2b=0有实数根的情况占总情况的多少即可.【解答】解:(1)(a,b)对应的表格为:1 2 3ab1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)4 (4,1)(4,2)(4,3)(2)∵方程x2﹣ax+2b=0有实数根,∴△=a2﹣8b≥0.∴使a2﹣8b≥0的(a,b)有(3,1),(4,1),(4,2),∴.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【考点】切线的判定.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【解答】(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意列出方程组求解;(2)①据题意得,y=﹣50n+16500,②利用不等式求出n的范围,又因为y=﹣50x+16500是减函数,所以n取37,y取最大值;(3)据题意得,y=150+n,即y=(m﹣50)n+16500,分三种情况讨论,①当30<m<50时,y随n的增大而减小,②m=50时,m﹣50=0,y=16500,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,解得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机部,则y=150+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (n≥36);②∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)根据题意,得:y=150+n=(m﹣50)n+16500,其中,36≤n≤80,①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤80的整数时,均获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点(2,2)的坐标代入抛物线解析式,即可求得m的值;(2)求出B、C、E点的坐标,进而求得△BCE的面积;(3)根据轴对称以及两点之间线段最短的性质,可知点B、C关于对称轴x=1对称,连接EC与对称轴的交点即为所求的H点,如答图1所示;(4)本问需分两种情况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾的等式,故此种情形不存在.【解答】解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,。

河北省沧州市中考数学模拟试卷含答案解析

河北省沧州市中考数学模拟试卷含答案解析

河北省沧州市中考数学模拟试卷(3月份)一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项符合题目要求.1.下面哪个式子可以用来验证小明的计算3﹣(﹣1)=4是否正确?()A.4﹣(﹣1) B.4+(﹣1)C.4×(﹣1)D.4÷(﹣1)2.下列运算正确的是()A.a3+a2=a5B.3a2﹣a2=22C.a3•a2=a5D.a6÷a3=a23.下了四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列各式中,能用平方差公因式分解的是()A.x2+x B.x2+8x+16 C.x2+4 D.x2﹣15.如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm26.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40° B.35°C.30°D.45°7.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠BOD=15°30′,则下列结论中不正确的是()A.∠AOF=45° B.∠BOD=∠AOCC.∠BOD的余角等于75°30′D.∠AOD与∠BOD互为补角9.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变11.如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1ml=1cm3)()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下12.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠113.如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A.B.C.D.14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.15.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用含a、b的式子表示)()A.(a+b)2B.(a﹣b)2C.2ab D.ab二、填空题:本大题共4小题,每小题3分,共12分,把答案写在题中横线上.17.计算﹣2sin45°的结果是.18.若(x﹣1)2=2,则代数式x2﹣2x+5的值为.19.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为.20.如图,所有正三角形的一边都与x轴平行,一顶点在y轴正半轴上,顶点依次用A1,A2,A3,A4…表示,坐标原点O到边A1A2,A4 A5,A7A8…的距离依次是1,2,3,…,从内到外,正三角形的边长依次为2,4,6,…,则A23的坐标是.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.现规定=a﹣b+c﹣d,试计算,其中x=2,y=1.22.如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?24.如图是根据某市国民经济和社会发展统计公报中的相关数据绘制的两幅统计图(不完整).根据图中信息解答下列问题:(1)该市私人轿车拥有量约是多少万辆?(精确到1万辆)(2)请补全折线统计图.(3)经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为1.6L的轿车,若一年行驶的路程为1万千米,则这一年该轿车的碳排放量约为2.7万吨,从该市随机抽取400辆私人轿车,不同排量的轿车数量统计如下表:排量(L)小于1.6 1.6 1.8 大于1.8轿车数量(辆)60 200 80 60按照上述的统计数据,通过计算估计:该市仅排量为1.6L的私人轿车(假定每辆车平均一年行驶的路程都为1万千米)的碳排放总量为多少万吨?25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,直接写出AM的长.26.在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.河北省沧州市中考数学模拟试卷(3月份)参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项符合题目要求.1.下面哪个式子可以用来验证小明的计算3﹣(﹣1)=4是否正确?()A.4﹣(﹣1) B.4+(﹣1)C.4×(﹣1)D.4÷(﹣1)【考点】有理数的减法.【分析】根据被减数、减数、差三者之间的关系解答.【解答】解:可以用4+(﹣1)验证.故选B.【点评】本题主要考查了有理数的减法,熟记被减数=差+减数是解题的关键.2.下列运算正确的是()A.a3+a2=a5B.3a2﹣a2=22C.a3•a2=a5D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法,可判断A,C;根据合并同类项,可判断B;根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、合并同类项系数相加字母部分不变,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.下了四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形,故正确;C、是轴对称图形,不是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列各式中,能用平方差公因式分解的是()A.x2+x B.x2+8x+16 C.x2+4 D.x2﹣1【考点】因式分解-运用公式法.【分析】直接利用公式法以及提取公因式法分解因式进而得出答案.【解答】解:A、x2+x=x(x+1),是提取公因式法分解因式,故此选项错误;B、x2+8x+16=(x+4)2,是公式法分解因式,故此选项错误;C、x2+4,无法分解因式,故此选项错误;D、x2﹣1=(x+1)(x﹣1),能用平方差公因式分解,故此选项正确.故选:D.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.5.如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm2【考点】由三视图判断几何体;圆柱的计算.【分析】首先判断出该几何体,然后计算其面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2×3π=6π,故选C.【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.6.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40° B.35°C.30°D.45°【考点】切线的性质.【分析】连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD 为切线,利用切线与圆的关系即可得出结果.【解答】解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选:C.【点评】本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.7.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【考点】实数大小比较.【专题】计算题.【分析】将a,b,c变形后,根据分母大的反而小比较大小即可.【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选A.【点评】此题考查了实数比较大小,将a,b,c进行适当的变形是解本题的关键.8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠BOD=15°30′,则下列结论中不正确的是()A.∠AOF=45° B.∠BOD=∠AOCC.∠BOD的余角等于75°30′D.∠AOD与∠BOD互为补角【考点】垂线;余角和补角;对顶角、邻补角.【分析】根据垂线的定义和角平分线得出A正确;根据对顶角相等得出B正确;求出∠BOD的余角得出C不正确;根据邻补角关系得出D正确.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵OF平分∠AOE,∴∠AOF=∠AOE=45°,∴A正确;夜∠BOD和∠AOC是对顶角,∴∠BOD=∠AOC,∴B正确;∵∠BOD的余角=90°﹣15°30′=74°30′,∴C不正确;∵∠AOD+∠BOD=180°,∴∠AOD和∠BOD互为补角,∴D正确;故选:C.【点评】本题考查了垂线、余角以及对顶角、邻补角的定义;熟练掌握角的互余和互补关系是解题的关键.9.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变【考点】动点问题的函数图象.【专题】数形结合.【分析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图象得反比例解析式为y=;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得CE=3,CF=3,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以EF=10,而EM=5;由于EC•CF=x×y;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值.【解答】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF 都是直角三角形;观察反比例函数图象得x=3,y=3,则反比例解析式为y=;A、当x=3时,y=3,即BC=CD=3,所以CE=BC=3,CF=CD=3,C点与M点重合,则EC=EM,所以A选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以EC=,EF=10,EM=5,所以B选项错误;C、因为EC•CF=x•y=2×xy=18,所以,EC•CF为定值,所以C选项错误;D、因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.故选D.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.11.如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1ml=1cm3)()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下【考点】一元一次不等式的应用.【专题】操作型.【分析】先求出剩余容量,然后分别除以3和4,就可知道球的体积范围.【解答】解:300﹣180=120,120÷3=40,120÷4=30故选:C.【点评】特别注意水没满与满的状态.12.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式和一元二次方程的定义可得4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,∴△≥0且k≠1,∴△=4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,∴k≥且k≠1,故选:D.【点评】本题主要考查了根的判别式以及一元二次方程的定义的知识,解答本题的关键是掌握一元二次方程有实数根,则△≥0,此题难度不大.13.如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A.B.C.D.【考点】概率公式;折线统计图.【专题】图表型.【分析】先求出3天中空气质量指数的所有情况,再求出有一天空气质量优良的情况,根据概率公式求解即可.【解答】解:∵由图可知,当1号到达时,停留的日子为1、2、3号,此时为(86,25,57),3天空气质量均为优;当2号到达时,停留的日子为2、3、4号,此时为(25,57,143),2天空气质量为优;当3号到达时,停留的日子为3、4、5号,此时为(57,143,220),1天空气质量为优;当4号到达时,停留的日子为4、5、6号,此时为(143,220,160),空气质量为污染;当5号到达时,停留的日子为5、6、7号,此时为(220,160,40),1天空气质量为优;当6号到达时,停留的日子为6、7、8号,此时为(160,40,217),1天空气质量为优;当7号到达时,停留的日子为7、8、9号,此时为(40,217,160),1天空气质量为优;当8号到达时,停留的日子为8、9、10号,此时为(217,160,121),空气质量为污染∴此人在该市停留期间有且仅有1天空气质量优良的概率==.故选:C.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,【考点】正多边形和圆;弧长的计算.【专题】压轴题.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用含a、b的式子表示)()A.(a+b)2B.(a﹣b)2C.2ab D.ab【考点】整式的混合运算.【分析】用大正方形的面积减去4个小正方形的面积即可.【解答】解:()2﹣4×()2=﹣==ab,故选D.【点评】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.二、填空题:本大题共4小题,每小题3分,共12分,把答案写在题中横线上.17.计算﹣2sin45°的结果是.【考点】实数的运算;特殊角的三角函数值.【分析】利用二次根式的性质以及特殊角的三角函数值求出即可.【解答】解:﹣2sin45°=2﹣2×=.故答案为:.【点评】此题主要考查了实数运算等知识,正确掌握相关性质是解题关键.18.若(x﹣1)2=2,则代数式x2﹣2x+5的值为6.【考点】完全平方公式.【分析】根据完全平方公式展开,先求出x2﹣2x的值,然后再加上5计算即可.【解答】解:∵(x﹣1)2=2,∴x2﹣2x+1=2,∴x2﹣2x=1,两边都加上5,得x2﹣2x+5=1+5=6.故答案为:6.【点评】本题考查了完全平方公式,熟记公式是解题的关键,利用“整体代入”的思想使计算更加简便.19.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为6﹣2.【考点】正多边形和圆.【分析】如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,求得△ABC的高和底即可求出阴影部分的面积.【解答】解:如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,∴BF=OB=2,∴△BFO的高为;,CD=2(2﹣)=4﹣2,∴BC=(2﹣4+2)=﹣1,∴阴影部分的面积=4S△ABC=4×()•=6﹣2.故答案为:6﹣2.【点评】本题考查了正多边形和圆,三角形的面积,解题的关键是知道阴影部分的面积等于4个三角形的面积.20.如图,所有正三角形的一边都与x轴平行,一顶点在y轴正半轴上,顶点依次用A1,A2,A3,A4…表示,坐标原点O到边A1A2,A4 A5,A7A8…的距离依次是1,2,3,…,从内到外,正三角形的边长依次为2,4,6,…,则A23的坐标是(8,﹣8).【考点】规律型:点的坐标.【分析】根据每一个三角形有三个顶点确定出A23所在的三角形,再求出相应的三角形的边长以及A23的纵坐标的长度,即可得解.【解答】解:∵23÷3=7…2,∴A23是第8个等边三角形的第2个顶点,第8个等边三角形边长为2×8=16,∴点A23的横坐标为×16=8,∵边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,∴点A23的纵坐标为﹣8,∴点A23的坐标为(8,﹣8).故答案为:(8,﹣8).【点评】此题考查点的坐标变化规律,主要利用了等边三角形的性质,确定出点A23所在三角形是解题的关键.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.现规定=a﹣b+c﹣d,试计算,其中x=2,y=1.【考点】整式的混合运算—化简求值.【专题】新定义;整式.【分析】原式利用题中的新定义化简,将x与y的值代入计算即可求出值.【解答】解:原式=(xy﹣3x2)﹣(﹣2xy)﹣2x2﹣(﹣5+xy)=xy﹣3x2+2xy﹣2x2+5﹣xy=﹣5x2+2xy+5,当x=2,y=1时,原式=﹣20+4+5=﹣11.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.【考点】平行四边形的性质;坐标与图形性质;平移的性质.【分析】(1)利用中心对称图形的性质得出C,D两点坐标;(2)利用平行四边形的性质以及结合平移的性质得出即可;(3)利用S ABCD的可以转化为边长为;5和4的矩形面积,进而求出即可.【解答】解:(1)∵四边形ABCD是平行四边形,∴四边形ABCD关于O中心对称,∵A(﹣4,2),B(﹣1,﹣2),∴C(4,﹣2),D(1,2);(2)线段AB到线段CD的变换过程是:绕点O旋转180°;(3)由(1)得:A到y轴距离为:4,D到y轴距离为:1,A到x轴距离为:2,B到x轴距离为:2,∴S ABCD的可以转化为边长为;5和4的矩形面积,∴S ABCD=5×4=20.【点评】此题主要考查了平行四边形的性质以及中心对称图形的性质,根据题意得出S ABCD的可以转化为矩形面积是解题关键.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【考点】二次函数的应用.【专题】应用题.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则y=﹣x2+30x(0<x<40);(2)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.【点评】此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.24.如图是根据某市国民经济和社会发展统计公报中的相关数据绘制的两幅统计图(不完整).根据图中信息解答下列问题:(1)该市私人轿车拥有量约是多少万辆?(精确到1万辆)(2)请补全折线统计图.(3)经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为1.6L的轿车,若一年行驶的路程为1万千米,则这一年该轿车的碳排放量约为2.7万吨,从该市随机抽取400辆私人轿车,不同排量的轿车数量统计如下表:排量(L)小于1.6 1.6 1.8 大于1.8轿车数量(辆)60 200 80 60按照上述的统计数据,通过计算估计:该市仅排量为1.6L的私人轿车(假定每辆车平均一年行驶的路程都为1万千米)的碳排放总量为多少万吨?【考点】折线统计图;条形统计图.【分析】(1)设该市私人轿车拥有量为x万辆,根据拥有量=拥有量×(1+的增长率)列出方程,解方程可得;(2)设增长率为m,根据拥有量×(1+增长率)=拥有量,列方程求解即可;(3)根据20私人轿车总量由14年1.6L的私人轿车占私人轿车拥有量的比例可得排量为1.6L的私人轿车数,再计算碳排放总量.【解答】解:(1)设该市私人轿车拥有量为x万辆,根据题意,得:(1+30%)x=108,解得:x=83,答:该市私人轿车拥有量约是83万辆;(2)设增长率为m,则60(1+m)=69,解得:m=0.15=15%,补全统计图如下图所示:(3)1.6L私人轿车的拥有量为:108×(200÷400)=54(万辆),所以该市仅排量为1.6L的私人轿车的碳排放总量为:540000×2.7=1458000(万吨),答:该市仅排量为1.6L的私人轿车的碳排放总量为1458000万吨.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,直接写出AM的长.【考点】二次函数综合题.【分析】(1)该抛物线的解析式中只有两个待定系数,只需将A、B两点坐标代入即可得解.(2)首先根据平移条件表示出移动后的函数解析式,从而用m表示出该函数的顶点坐标,将其代入直线AB、AC的解析式中,即可确定P在△ABC内时m的取值范围.(3)先在OA上取点N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,显然在y轴的正负半轴上都有一个符合条件的M点;以y轴正半轴上的点M为例,先证△ABN、△AMB相似,然后通过相关比例线段求出AM的长.【解答】解:(1)将A(0,﹣6)、B(﹣2,0)代入抛物线y=x2+bx+c中,得:,解得.∴抛物线的解析式:y=x2﹣2x﹣6=(x﹣2)2﹣8,顶点D(2,﹣8);(2)由题意,新抛物线的解析式可表示为:y=(x﹣2+1)2﹣8+m,即:y=(x﹣2+1)2﹣8+m.它的顶点坐标P(1,m﹣8).由(1)的抛物线解析式可得:C(4,0).∴直线AB:y=﹣3x﹣6;直线AC:y=x﹣6.当点P在直线AB上时,﹣3﹣6=m﹣8,解得:m=﹣1;当点P在直线AC上时,﹣6=m﹣8,解得:m=;又∵m>0,∴当点P在△ABC内时,0<m<.(3)由A(0,﹣6)、C(6,0)得:OA=OC=6,且△OAC是等腰直角三角形.如图,在OA上取ON=OB=2,则∠ONB=∠ACB=45°.∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,即∠NBA=∠OMB.如图,在△ABN、△AM1B中,∠BAN=∠M1AB,∠ABN=∠AM1B,∴△ABN∽△AM1B,得:AB2=AN•AM1;由勾股定理,得AB2=(﹣2)2+(﹣6)2=40,又∵AN=OA﹣ON=6﹣2=4,∴AM1=40÷4=10,OM1=AM1﹣OA=10﹣6=4OM2=OM1=4AM2=OA﹣OM2=6﹣4=2.综上所述,AM的长为4或2.【点评】考查了二次函数综合题,曲线上点的坐标与方程的关系,平移的性质,二次函数的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质,勾股定理.26.在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.【考点】四边形综合题.【专题】压轴题.【分析】(1)①根据OA=4,OC=2,可得点B的坐标;②利用相似三角形的判定和性质得出点的坐标;(2)根据平行四边形的性质,且分点在线段EF的延长线和线段上两种情况进行分析解答.【解答】解:(1)∵OA=4,OC=2,∴点B的坐标为(4,2);②如图1,过点P作PD⊥OA,垂足为点D,∵BQ:BP=1:2,点B关于PQ的对称点为B1,∴B1Q:B1P=1:2,∵∠PDB1=∠PB1Q=∠B1AQ=90°,∴∠PB1D=∠B1QA,∴△PB1D∽△B1QA,∴,∴B1A=1,∴OB1=3,即点B1(3,0);(2)∵四边形OABC为平行四边形,OA=4,OC=2,且OC⊥AC,∴∠OAC=30°,∴点C(1,),。

河北省2017年中考数学真题试题(含扫描答案)

河北省2017年中考数学真题试题(含扫描答案)

2017年河北中考数学试卷第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列运算结果为正数的是( ) A .2(3)−B .32−÷C .0(2017)⨯−D .23−2.把0.0813写成10na ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1B .2−C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( )A .23n mB .23m nC .32m nD .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( ) A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A .北偏东55︒B .北偏西55︒C .北偏东35︒D .北偏西35︒11.如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的( )12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+−=B .004446++= C .34446++= D .14446−÷+=13.若321x x −=−( )11x +−,则( )中的数是( ) A .1−B .2−C .3−D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =−+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为m .18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3−−= ;若{}22min (1),1x x −=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分. 22.发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123−++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP BQ =;(2)当43BQ =时,求QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =−与x 轴交于点D ,直线33988y x =−−与x 轴及直线5x =−分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =−++(k 为常数),且得到了表中的数据.(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .。

2017年河北省中考数学试卷及答案(最新word版)(K12教育文档)

2017年河北省中考数学试卷及答案(最新word版)(K12教育文档)

(完整版)2017年河北省中考数学试卷及答案(最新word版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017年河北省中考数学试卷及答案(最新word版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017年河北省中考数学试卷及答案(最新word版)(word版可编辑修改)的全部内容。

2017年河北省中考数学试卷及答案第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1。

下列运算结果为正数的是()A.2(3)- B.32-÷C.0(2017)⨯- D.23-2。

把0.0813写成10na⨯(110a≤<,n为整数)的形式,则a为( )A.1B.2-C.0.813D.8.133.用量角器测量MON∠的度数,操作正确的是( )4.23222333mn⨯⨯⨯=+++个个……( )A.23nm B。

23mnC。

32mnD.23mn5。

图1—1和图1-2中所有的小正方形都全等,将图1—1的正方形放在图1-2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A.① B.② C.③ D.④6。

图2为张小亮的答卷,他的得分应是()A.100分 B.80分 C.60分 D.40分7。

若ABC∆的每条边长增加各自的10%得'''A B C∆,则'B∠的姓名得分填空(每小题20分,共100分)① -1的绝对值是 .② 2的倒数是 .③ -2的相反数是 .④ 1的立方根是 .⑤ -1和7的平均数是 .张小亮?1-2213图3①②③④图1-1 图1-2图4A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.图3是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9.求证:菱形的两条对角线互相垂直.已知:如图4,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( ) A .③→②→①→④ B .③→④→①→②C .①→②→④→③D .①→④→③→②10。

(完整word版)2017年河北省中考数学试卷及答案(word版)资料,推荐文档

(完整word版)2017年河北省中考数学试卷及答案(word版)资料,推荐文档

2017年河北省初中毕业生中考数学试卷及答案第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( )A.2(3)- B.32-÷C.0(2017)⨯- D.23-2.把0.0813写成10na⨯(110a≤<,n为整数)的形式,则a为( )A.1B.2-C.0.813D.8.133.用量角器测量MON∠的度数,操作正确的是( c )4.23222333mn⨯⨯⨯=+++6474814243个个……( b )A.23nmB.23mnC.32mnD.23mn5.图1-1和图1-2中所有的小正方形都全等,将图1-1的正方形放在图1-2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A.① B.②C.③ D.④6.图2为张小亮的答卷,他的得分应是( )A.100分B.80分 C.60分 D.40分7.若ABC∆的每条边长增加各自的10%得'''A B C∆,则'B∠的度数与其对应角B∠的度数相比( )A.增加了10% B.减少了10%C.增加了(110%)+ D.没有改变8.图3是由相同的小正方体木块粘在一起的几何体,它的主视图是( )姓名得分填空(每小题20分,共100分)① -1的绝对值是 .② 2的倒数是 .③ -2的相反数是 .④ 1的立方根是 .⑤ -1和7的平均数是 .张小亮?1-2213图3①②③④图1-1 图1-2图 4乙组12户家庭用水量统计图9.求证:菱形的两条对角线互相垂直.已知:如图4,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形, ④∴AB AD =. 证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图5,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A.北偏东55︒ B.北偏西55︒ C.北偏东35︒ D.北偏西35︒11.图6是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确...的( )12.图7是国际数学日当天淇淇和嘉嘉的微信对话,根据对话 内容,下列选项错误..的是( ) A .4446+-= B .004446++= C .34446++= D .14446-÷+=13.若321x x -=-( )11x +-,则( )中的数是( ) A .1- B .2- C .3- D .任意实数 14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统C B A D611C 9131010图6B 10 10A 8 15D北 东图535°图7嘉嘉,咱俩玩一个数学游戏,好吗?好啊!玩什么游戏?在4 4 4=6等号的左边添加合适的数学运算符号,使等式成立.淇淇淇淇嘉嘉比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大 B.甲、乙两组相同 C .乙组比甲组大 D .无法判断15.如图9,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图10所示.按下列步骤操作: 将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(共78分) 二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.如图11,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM=AC ,BN=BC ,测得MN=200 m ,则A ,B 间的距离为 m用水量(吨) 4 5 6 9 户数4521xy1 2 3 4 5 12 3 4 5 O xy1 2 3 4 5 12 3 4 5 O xy 1 2 3 4 5 12 3 4 5 O xy 1 2 3 4 5 12 3 4 5 O 图9xy· · O11 A(Q) FE D C N M B(K) 图10图8 ·18.如图12,依据尺规作图的痕迹,计算∠a = °19.对于实数p ,q ,我们用符号}{q p , m in 表示p ,q 两数中较小的数,如}{12 1m in =,. 因此,}{=--3 2min ,; 若}{1 )1(m in 22=-x ,x ,则=x . 三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB=2,BC=1,如图13所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图13中数轴上点C 的右边,且CO=28,求p .21.(本小题满分9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记.0.分..图14是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.图12ABCD68°α┓┛┏ 图11AB C MN A BC21 图13(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.(本小题满分9分)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)()2222232101++++-的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3除的余数是几呢?请写出理由.23.(本小题满分9分)如图15,AB=16,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270°后得到扇形COD,AP,BQ 分别切优弧CD ⌒ 于点P ,Q ,且点P,Q 在AB 异侧,连接OP. (1)求证:AP=BQ ;(2)当BQ=34时,求Q D ⌒ 的长(结果保留π);(3)若△APO 的外心在扇形COD 的内部,求OC 的取值范围.1 1 345 32 345 积分 1号 2号 03号 5号4号 图14学生编号· ·ABCDP PQ24.(本小题满分10分)如图16,直角坐标系xOy 中,A(0,5),直线x =-5与x 轴交于点D ,直线83983--=x y 与x 轴及直线x =-5分别交于点C ,E.点B ,E 关于x 轴对称,连接AB. (1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+四边形,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复验算,发现S S AOC ≠Δ,请通过计算解释他的想法错在哪里.图1625.(本小题满分11分)平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ . (1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).B APCD Q备用图图17ABCDP Q26.(本小题满分12分)某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据. (1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .。

河北省沧州市东光县2017年中考数学一模试卷及参考答案

河北省沧州市东光县2017年中考数学一模试卷及参考答案

(1)
发现:
△CMP和△BPA是否相似,若相似给出证明,若不相似说明理由; (2)
思考:
线段AM是否存在最小值?若存在求出这个最小值,若不存在,说明理由; (3)
探究:
当△ABP≌△ADN时,求BP的值是多少? 26. 如图,已知抛物线y=﹣x2+2x经过原点O,且与直线y=x﹣2交于B,C两点.
在实数范围内有意义,则实数x的取值范围是( )
A . x≥﹣1 B . x>2 C . x≠2 D . x≥﹣1且x≠2 5. 如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标 轴的垂线与两坐标轴围成的矩形的周长是( )
A . 5 B . 7.5 C . 10 D . 25 6. 如图,在平行四边形ABCD中,对角线AC⊥BD,且AC=8,BD=6,DH⊥AB于H,则AH等于( )
(1) 请求出“希望班”全班人数; (2) 请把折线统计图补充完整; (3) 欢欢和乐乐参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率. 24. 在一条笔直的公路的同侧依次排列着A,C,B三个村庄,某天甲、乙两车分别从A,B两地出发,沿这条公路匀速 行驶至C地停止,从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的
三、 解答题
20. 计算:
(1)
﹣10﹣1+
﹣5sin30°+(3.14﹣π)0
(2) 已知m2﹣5=3m,求代数式2m2﹣6m﹣1的值.
21. 已知直线l1∥l2∥l3 , 等腰直角△ABC的三个顶点A,B,C分别在l1 , l2 , l3上,若∠ACB=90°,l1 , l2的距离为1 ,l2 , l3的距离为3,求:

2017年河北省中考数学试卷-答案

2017年河北省中考数学试卷-答案

河北省2017年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题1.【答案】A【解析】239=(-);3322-÷=-;020170⨯=(-);231-=-,所以运算结果为正数的是2(3)-,故选A 。

【考点】实数的运算。

2.【答案】D 【解析】由于110a ≤<,所以8.13a =,故选D 。

【考点】用科学记数法表示数时a 的值的确定。

3.【答案】C【解析】测量时要注意角的一边要与量角器的0刻度线对齐,量角器的中心点要与角的顶点对齐,选项A ,B ,D 中量角器的中心点没有与角的顶点对齐,所以正确的为C ,故选C 。

【考点】用量角器测量角的大小。

4.【答案】B【解析】乘方是乘法的简单写法,乘法是加法的简单写法,m 个2相乘等于2m ,n 个3相加等于3n ,所以原式化为23mn ,故选B 。

【考点】有理数的乘方与乘法运算。

5.【答案】C【解析】本题采用代入验证法分别将小正方形放到①,②,③,④位置上进行判断,只有放到③的位置上时,才能与原来的7个小正方形组成中心对称图形,故选C 。

【提示】轴对称图形是指沿图形内某直线折叠直线两旁的部分能够完全重合,中心对称图形是指绕图形内某点旋转180°后能与自身重合的图形,能确定出对称轴的图形为轴对称图形,能确定出对称中心的为中心对称图形。

【考点】中心对称图形的识别。

6.【答案】B【解析】-1的绝对值是1;2的倒数是;-2的相反数是12;1的立方根是1;-1和7的平均数是3,所以张小亮同学答对了4道题,应得80分,故选B 。

【考点】实数的绝对值、倒数、相反数、立方根、平均数。

7.【答案】D【解析】由△ABC 的每条边长都增加10%得△A B C '''知△ABC ∽△A B C ''',相似三角形对应角的角度不会发生变化,故选D 。

【考点】相似三角形的判定和性质。

8.【答案】A【解析】题中几何体的主视图是,故选A 。

河北省2017年中考数学真题试题(含扫描答案)

河北省2017年中考数学真题试题(含扫描答案)

2017年河北中考数学试卷第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列运算结果为正数的是( ) A .2(3)−B .32−÷C .0(2017)⨯−D .23−2.把0.0813写成10na ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1B .2−C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( )A .23n mB .23m nC .32m nD .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( ) A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A .北偏东55︒B .北偏西55︒C .北偏东35︒D .北偏西35︒11.如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的( )12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+−=B .004446++= C .34446++= D .14446−÷+=13.若321x x −=−( )11x +−,则( )中的数是( ) A .1−B .2−C .3−D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =−+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为m .18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3−−= ;若{}22min (1),1x x −=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分. 22.发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123−++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数.23.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点O ,B 重合),将OC 绕点O 逆时针旋转270︒后得到扇形COD ,AP ,BQ 分别切优弧CD 于点P ,Q ,且点P ,Q 在AB 异侧,连接OP .(1)求证:AP BQ =;(2)当43BQ =时,求QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =−与x 轴交于点D ,直线33988y x =−−与x 轴及直线5x =−分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =−++(k 为常数),且得到了表中的数据.(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .。

河北省沧州市中考数学一模试卷

河北省沧州市中考数学一模试卷

河北省沧州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·深圳模拟) 2017﹣1的计算结果是()A . ﹣2017B . 2016C .D .2. (2分)小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为()A . 0.8×10-7米B . 8×10-7米C . 8×10-8米D . 8×10-9米3. (2分)形状相同、大小相等的两个小木块放置于桌面,其俯视图如图所示,则其左视图是()A .B .C .D .4. (2分) (2015八下·深圳期中) 已知不等式组的解集是x>2,则a的取值范围是()A . a≤2B . a<2C . a=2D . a>25. (2分) (2018九上·萧山开学考) 如图,E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,F,G是垂足,若正方形ABCD周长为a,则EF+EG等于()A .B .C . aD . 2a6. (2分)(2016·新疆) 已知A(x1 , y1),B(x2 , y2)是反比例函数y= (k≠0)图象上的两个点,当x1<x2<0时,y1>y2 ,那么一次函数y=kx﹣k的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)有下列4个命题:①方程x2﹣(+)x+=0的两个根是与;②点P(x,y)坐标x,y 满足x2+y2+4x﹣2y+5=0,若P点在y=上,则k=﹣2;③在△ABC中,∠ACB=90°,CD⊥AB于D,若AD=4,BD=,则CD=3;④若实数b,c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大根x0满足﹣1<x0<0.其中真命题的个数为()A . 4B . 3C . 2D . 18. (2分)如图,矩形ABCD中,对角线AC、BD相交于点O,点E、F、G、H分别是AO、BO、CO、DO的中点,连接EF、FG、GH、EH,则下列说法不正确的是()A . △OEF和△OAB是位似图形B . △OEH和△OFG是位似图形C . △EFH和△ABD是位似图形D . △OHG和△OGF是位似图形9. (2分)(2017·宿州模拟) 某市举行中小学生器乐交流比赛,有45支队伍参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队伍成绩的()A . 中位数B . 平均数C . 最高分D . 方差10. (2分)(2017·兰州模拟) 同圆的内接正三角形与内接正方形的边长的比是()A .B .C .D .11. (2分) (2016九上·玄武期末) ⊙O的半径为1,同一平面内,若点P与圆心O的距离为1,则点P与⊙O 的位置关系是()A . 点P在⊙O外B . 点P在⊙O上C . 点P在⊙O内D . 无法确定12. (2分) (2018八上·南充期中) 如图,小明书上的三角形被墨迹遮挡了一部分,但他很快想到办法在作业本上画了一样的三角形,那么这两个三角形完全一样的依据是()A . AASB . ASAC . SSSD . SAS二、填空题: (共6题;共7分)13. (1分) (2017八上·云南月考) 若x2+bx+c=(x+5)(x-3),则点P(b,c)关于y轴对称点的坐标是________.14. (1分) (2017八下·无锡期中) 在四边形ABCD中,对角线AC⊥BD且AC=6、BD=8,E、F分别是边AB、CD的中点,则EF=________.15. (1分) (2016八下·周口期中) 当m= 时,代数式m2+2m﹣2的值是________.16. (2分) (2016八上·平谷期末) 如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB 于点E,若△BDE的周长是6,则AB=________,AC=________.17. (1分) (2018八下·邯郸开学考) 如图,在△ABC中,∠ACB=90°,AC=BC,点P是△ABC内的一点,且PB=1,PC=2,PA=3,则∠BPC=________°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年河北沧州市中考数学模拟试卷(九)一、选择题1.在数﹣2,﹣,1,3中,大小在﹣1和0之间的数是()A.﹣2 B.﹣C.1 D.32.用科学记数法表示的数3.61×108.它的原数是()A.36100000000 B.3610000000 C.361000000 D.361000003.下列计算正确的是()A.a2+a2=2a4B.a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+1 4.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30.则这组数据的众数与中位数分别是()A.30,27 B.30,29 C.29,30 D.30,286.6.计算(﹣)÷的结果为()A.B.C.D.7.从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.8.一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是()A.B.C.D.9.化简:(a+)(1﹣)的结果等于()A.a﹣2 B.a+2 C.D.10.如图,AB是⊙O的直径,CD是弦,∠BCD=50°,则∠ABD的度数是()A.20°B.25°C.40°D.50°11.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2016次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π12.周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处(A、B与塔的轴心共线)测得她看塔顶的仰角β为30°.她们又测出A、B两点的距离为30米.假设她们的眼睛离头顶都为10cm,则可计算出塔高约为(结果精确到0.01,参考数据:≈1.414,≈1.732)()A.36.21米B.37.71米C.40.98米D.42.48米13.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.14.如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是()A.B.C D.二、填空题(本大题共5小题,每小题3分,共15分)15.比较大小:1(填“<”或“>”或“=”).16.一次考试中,甲组12人的平均分数为70分,乙组8人的平均分数为80分,那么这两组20人的平均分为.17.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为.18.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.19.定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.写出y=﹣x2+3x﹣2函数的“旋转函数”.三、解答题(本题共7小题,共63分)20.(7分)计算:(3﹣π)0﹣(﹣)﹣1+×4sin60°.21.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?21.(7分)为了解学生课余活动情况,某班对参加A组:绘画;B组:书法;C组:舞蹈;D组:乐器;这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了如图两幅不完整的统计图,请根据图中提供信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形统计图补充完整,并计算扇形统计图中书法部分的圆心角的度数;(3)如果该校共有1000名学生参加这4个课外兴趣小组,而每位教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师.23.(9分)如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.(1)求证:AC是⊙O的切线;(2)求由弦C D、BD与弧BC所围成的阴影部分的面积.(结果保留π)25.(11分)问题情境:如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A,C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF,A D.探究展示:(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针方向旋转任意角度α,得到如图2的情形,图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.变式练习:(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图3,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接B D、AF,请判断线段BF、AD所在直线的位置关系,并证明你的判断.26.(13分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案一、选择题1.B.2.D3.C4.A5.B6.D7.C8.B9.B10.D 11.D12.C13.D14.C 二、填空题(本大题共5小题,每小题3分,共15分)15.<.16.317.3618.19.y=x2+3x+2三、解答题(本题共7小题,共63分)20.解:原式=1﹣(﹣3)+2×4×=4+12=16.21.解:设每个商品的定价是x元,由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=60.当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;当x=60时,进货180﹣10(60﹣52)=100个<180个,符合题意.答:当该商品每个定价为60元时,进货100个22.解:(1)根据题意得:=25(名),答:此次共调查了25名同学;(2)C组的人数是:25﹣6﹣12﹣5=2(人),补图如下:书法部分的圆心角的度数是:360°×=172.8°;(3)绘画需辅导教师1000×24%÷20=12(名);书法需辅导教师1000×÷20=24(名);舞蹈需辅导教师1000×÷20=4(名);乐器需辅导教师1000×÷20=10(名).23.(1)证明:根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC为半径,∴AC是⊙O的切线;(2)解:由(1)知,AC为⊙O的切线,∴OC⊥A C.∵AC∥BD,∴OC⊥B D.由垂径定理可知,MD=MB=BD=.在Rt△OBM中,∠COB=60°,OB===6.在△CDM与△OBM中,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM2).∴阴影部分的面积S阴影=S扇形BOC==6π(cm24.解:(1)①结论:BF=AD,BF⊥AD;理由:如图1中,延长BF交AD于H.∵△ABC是等腰直角三角形,∴AC=BC,∠ACB=90°,∵四边形CDEF是正方形,∴CD=CF,∠FCD=90°,∴∠BCF=∠ACD,在△BCF和△ACD中,,∴△BCF≌△ACD(SAS),∴BF=AD,∠CBF=∠CAD,又∵∠BFC=∠AFH,∠CBF+∠BFC=90°,∴∠CAD+∠AFH=90°,∴∠AHF=90°,∴BF⊥AD;∴BF=AD,BF⊥AD;②BF=AD,BF⊥AD仍然成立,证明:如图2中,∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∵四边形CDEF是正方形,∴CD=CF,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF,即∠BCF=∠ACD,在△BCF和△ACD中,,∴△BCF≌△ACD(SAS),∴BF=AD,∠CBF=∠CAD,又∵∠BHC=∠AHO,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD;(2)结论:BF⊥A D.证明:如图3中,∵四边形CDEF是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD∴∠ACB+∠ACF=∠FCD+∠ACF,即∠BCF=∠ACD,∵AC=4,BC=3,CD=,CF=1,∴==,∴△BCF∽△ACD,∴∠CBF=∠CAD,又∵∠BHC=∠AHO,∠CBH+∠BHC=90°∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD,25.解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AD×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).。

相关文档
最新文档