2018-2019年北师大版九年级数学上册教案:1.3 正方形的性质与判定

合集下载

北师大版九年级数学上册教案1.3正方形的性质与判定

北师大版九年级数学上册教案1.3正方形的性质与判定

1.3正方形的性质与判定第1课时正方形的性质教学目标1.了解正方形的有关概念,理解并掌握正方形的性质定理;(重点)2.会利用正方形的性质进行相关的计算和证明.(难点)教学过程一、情景导入如图(1)所示,把可以活动的矩形框架ABCD的BC边平行移动,使矩形的邻边AD,DC相等,观察这时矩形ABCD的形状.如图(2)所示,把可以活动的菱形框架ABCD的∠A变为直角,观察这时菱形ABCD的形状.图(1)中图形的变化可判断矩形ABCD→特殊的四边形是什么四边形?图(2)中图形变化可判断菱形ABCD→特殊的四边形是什么四边形?经过观察,你发现既是矩形又是菱形的图形是什么四边形?引入正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形是正方形.注意:正方形既是特殊的矩形,又是特殊的菱形,即:有一组邻边相等的矩形是正方形或有一个角是直角的菱形是正方形.二、合作探究探究点一:正方形的性质如图,四边形ABCD是正方形,对角线AC与BD相交于点O,AO=2,求正方形的周长与面积.解:∵四边形ABCD是正方形,∴AC⊥BD,OA=OD=2.在Rt△AOD中,由勾股定理,得AD=OA2+OD2=22+22=8.∴正方形的周长为4AD=48=82,面积为AD2=(8)2=8.方法总结:结合勾股定理,充分利用正方形的四边相等、四角相等、对角线相等且互相垂直平分的性质,是解决与正方形有关的题目的关键.探究点二:正方形的性质的应用【类型一】利用正方形的性质求角度四边形是等边三角形,求∠BEC的大小.解析:等边△ADE可以在正方形的内部,也可以在正方形的外部,因此本题分两种情况.解:当等边△ADE在正方形ABCD外部时,如图①,AB=AE,∠BAE=90°+60°=150°.∴∠AEB=15°.同理可得∠DEC=15°.∴∠BEC=60°-15°-15°=30°;当等边△ADE在正方形ABCD内部时,如图②,AB=AE,∠BAE=90°-60°=30°,∴∠AEB=75°.同理可得∠DEC=75°.∴∠BEC=360°-75°-75°-60°=150°.综上所述,∠BEC的大小为30°或150°.易错提醒:因为等边△ADE与正方形ABCD有一条公共边,所以边相等.本题分两种情况:等边△ADE在正方形的外部或在正方形的内部.【类型二】利用正方形的性质求线段长AC为对角线,AE平分∠BAC,EF⊥AC,求BE的长.解析:线段BE是Rt△ABE的一边,但由于AE未知,不能直接用勾股定理求BE,由条件可证△ABE≌△AFE,问题转化为求EF的长,结合已知条件易获解.解:∵四边形ABCD为正方形,∴∠B=90°,∠ACB=45°,AB=BC=1cm.∵EF⊥AC,∴∠EFA=∠EFC=90°.又∵∠ECF=45°,∴△EFC是等腰直角三角形,∴EF=FC.∵∠BAE=∠FAE,∠B=∠EFA=90°,AE=AE,∴△ABE≌△AFE,∴AB=AF=1cm,BE=EF.∴FC=BE.在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法总结:正方形被对角线分成4个等腰直角三角形,因此在正方形中解决问题时常用到等腰三角形的性质与直角三角形的性质.【类型三】利用正方形的性质证明线段相等如图,已知过正方形ABCD的对角线BD上一点P,作PE⊥BC于点E,PF⊥CD于点F,求证:AP=EF.解析:由PE⊥BC,PF⊥CD知四边形PECF为矩形,故有EF=PC,这时只需说明AP=CP,由正方形对角线互相垂直平分可知AP=CP.证明:连接AC,PC,如图.∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.方法总结:(1)在正方形中,常利用对角线互相垂直平分证明线段相等;(2)无论是正方形还是矩形,经常连接对角线,这样可以使分散的条件集中.三、板书设计正方形⎩⎪⎨⎪⎧正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形正方形的性质⎩⎨⎧四个角都是直角四条边都相等对角线相等且互相垂直平分教学反思经历正方形有关性质的探索过程,把握正方形既是矩形又是菱形这一特性来学习本节课内容.在观察中寻求新知,在探究中发展推理能力,逐步掌握说理的基本方法。

北师大版九年级数学上册教案:1.3 正方形的性质与判定

北师大版九年级数学上册教案:1.3 正方形的性质与判定

1.3 正方形的性质与判定第1课时正方形的性质1.在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,并能运用正方形的性质进行证明与计算.(重难点)2.进一步了解平行四边形、矩形、菱形及正方形之间的相互关系,并形成文本信息与图形信息相互转化的能力.阅读教材P20~21,完成下列问题:(一)知识探究1.有________相等并且有一个角是________的__________叫做正方形.2.正方形既是________又是________,它既具有________的性质,又有________的性质.3.正方形的________相等,都是________,________相等.4.正方形的对角线________________________.(二)自学反馈正方形的性质:1.边:________都相等且________.2.角:四个角都是________.3.对角线:两条对角线互相________且________,并且每一条对角线平分________.4.正方形既是________图形,又是________图形,正方形有________对称轴.活动1 小组讨论例如图,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间有怎样的关系?请说明理由.解:BE=DF,且BE⊥DF.理由如下:如图,延长BE交DF于点M.∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°(正方形的四条边都相等,四个角都是直角).∴∠DCF=180°-∠BCE=180°-90°=90°.∴∠BCE=∠DCF.又∵CE=CF,∴△BCE≌△DCF.∴BE=DF,∵∠DCF=90°,∴∠CDF+∠F=90°.∴∠CBE+∠F=90°.∴∠BMF=90°.∴BE⊥DF.本题是通过证明△BCE≌△DCF来得到BE与DF之间的关系,证明三角形全等是解决这一类型问题的常用做法.活动2 跟踪训练1.菱形,矩形,正方形都具有的性质是( )A.对角线相等且互相平分 B.对角线相等且互相垂直平分C.对角线互相平分 D.四条边相等,四个角相等2.正方形面积为36,则对角线的长为( )3.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .174.如图,延长正方形ABCD 的边BC 至E ,使CE =AC ,连接AE 交CD 于F ,则∠AFC =________°.5.如图,正方形ABCD 的对角线AC 、BD 交于点O ,∠OCF =∠OBE.求证:OE =OF.活动3 课堂小结正方形的性质⎩⎪⎨⎪⎧边:正方形的四条边都相等且对边平行.角:正方形的四个角都是直角.对角线:正方形的两条对角线互相垂直平分且相等,每一条对角线平分一组对角.对称:既是轴对称图形,又是中心对称图形,它有四条对称轴,其对角线交点为对称中心.【预习导学】(一)知识探究1.一组邻边 直角 平行四边形 2.矩形 菱形 矩形 菱形3.四个角 直角 四条边 4.相等且互相垂直平分(二)自学反馈1.四条边 对边平行 2.直角 3.垂直平分 相等 一组对角4.中心对称 轴对称 四条【合作探究】活动2 跟踪训练1.C 2.B 3.C 4.112.55.证明:∵四边形ABCD 是正方形,∴AC ⊥BD ,OB =OC.∴∠AOB =∠BOC =90°.又∵∠OBE =∠OCF,∴△OBE ≌△OCF.∴OE =OF.第2课时 正方形的判定1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题.(重难点)2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断.阅读教材P22~24,完成下列问题:(一)知识探究1.对角线相等的________是正方形.2.对角线垂直的________是正方形.3.有一个是直角的________是正方形.(二)自学反馈1.已知四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .∠D =90°B .AB =CDC .AD =BC D .BC =CD2.下列命题正确的是( )A .两条对角线相等的菱形是正方形B .对角线与一边的夹角是45°的四边形是正方形C .两邻角相等,且有一角是直角的四边形是正方形D .对角线相等且互相垂直的四边形是正方形3.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB ∥CD ,AB =CDB .AD ∥BC ,∠A =∠CC .AO =BO =CO =DO ,AC ⊥BDD .AO =CO ,BO =DO ,AB =BC4.如图,将一张矩形纸片ABCD 折叠,使AB 落在AD 边上,然后打开,折痕为AE ,顶点B 的落点为F.则四边形ABEF 是________形.活动1 小组讨论例 如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE.求证:四边形BECF 是正方形.证明:∵BF ∥CE ,CF ∥BE ,∴四边形BECF 是平行四边形.∵四边形ABCD 是矩形,∴∠ABC =90°,∠DCB =90°.又∵BE 平分∠ABC ,CE 平分∠DCB ,∴∠EBC =12∠ABC =45°,∠ECB =12∠DCB =45°. ∴∠EBC =∠ECB.∴EB =EC.∴平行四边形BECF 是菱形.在△EBC 中,∵∠EBC =45°,∠ECB =45°,∴∠BEC =90°.∴菱形BECF 是正方形.掌握平行四边形、矩形、菱形成为正方形所需要的条件是解决这类问题的关键.活动2 跟踪训练1.如图,在△ABC 中,∠ABC =90°,BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB ,垂足分别为E 、F ,求证:四边形BEDF 是正方形.2.如图,E 、F 、G 、H 分别是正方形ABCD 四条边上的点,AE =BF =CG =DH ,四边形EFGH 是什么图形?证明你的结论.3.如图所示,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点,求证:四边形EFGH 是平行四边形.活动3 课堂小结1.对角线相等的菱形是正方形;2.对角线垂直的矩形是正方形;3.有一个角是直角的菱形是正方形.【预习导学】(一)知识探究1.菱形 2.矩形 3.菱形(二)自学反馈1.D 2.A 3.C 4.正方【合作探究】活动2 跟踪训练1.证明:∵∠ABC =90°,DE ⊥BC ,DF ⊥AB ,∴四边形BEDF 是矩形.∵BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB ,∴DE =DF.∴四边形BEDF 是正方形.2.四边形EFGH 是正方形.证明:∵四边形ABCD 是正方形,∴AB =BC =CD =DA.∵AE =BF =CG =DH ,∴HA =EB =FC =GD.∵∠A =∠B =∠C =∠D =90°,∴Rt △AEH ≌Rt △BFE ≌Rt △CGF ≌Rt △DHG.∴HE =EF =FG =GH.∴四边形EFGH 是菱形.又∠AHE =∠BEF ,∠AHE +∠AEH =90°,∴∠BEF +∠AEH =90°.∴∠HEF =90°.∴四边形EFGH 是正方形.3.证明:连接BD.∵点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点,∴EF 是△BCD 的中位线,GH 是△ABD 的中位线.∴EF ∥BD ,EF =12BD ,GH ∥BD ,GH =12BD.∴EF ∥GH ,EF =GH.∴四边形EFGH 是平行四边形.。

北师大版数学九年级上册1.3正方形的性质与判定(第一课时)教学设计

北师大版数学九年级上册1.3正方形的性质与判定(第一课时)教学设计
在教学过程中,教师要关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,教师应注重启发式教学,引导学生主动探究、积极思考,使学生在轻松愉快的氛围中学习数学。
二、学情分析
九年级学生在经过前两年的数学学习后,已经具备了一定的几何图形认知基础和逻辑思维能力。在本章节学习正方形的性质与判定前,学生已经掌握了矩形、菱形的基本性质和判定方法,这为学习正方形打下了良好的基础。然而,正方形作为一种特殊的矩形和菱形,其性质和判定方法具有一定的特殊性,学生在理解上可能存在一定难度。此外,学生在解决实际问题时,可能会遇到将理论知识与实际情境相结合的挑战。ቤተ መጻሕፍቲ ባይዱ此,在教学过程中,教师应关注以下几点:
1.充分调动学生的已有知识经验,引导他们发现正方形与矩形、菱形的联系与区别,降低学习难度。
2.注重培养学生的空间想象力,通过实际操作、观察和思考,提高学生对正方形性质的理解。
3.针对学生个体差异,给予个性化指导,使每位学生都能在原有基础上得到提高。
4.创设丰富的教学情境,激发学生的学习兴趣,鼓励他们积极思考、主动探究,提高解决问题的能力。
注意事项:
1.作业量适中,难度由浅入深,以培养学生的自信心和挑战意识。
2.鼓励学生独立完成作业,培养其自主学习能力。
3.注重作业反馈,及时发现并纠正学生的错误,提高学生的学习效果。
4.针对不同学生的个体差异,适当调整作业难度和类型,使每位学生都能在作业中收获成长。
三、教学重难点和教学设想
(一)教学重难点
1.重点:正方形的定义、性质、判定方法及其在实际问题中的应用。
2.难点:正方形性质的理解与运用,特别是正方形与矩形、菱形性质的异同;正方形判定方法的灵活运用。
(二)教学设想

北师大版九年级数学上册1.3正方形的性质与判定优秀教学案例

北师大版九年级数学上册1.3正方形的性质与判定优秀教学案例
2.利用多媒体课件和实物模型,帮助学生直观地理解正方形的性质,提高他们的空间想象力。
3.设计一系列实践活动,让学生亲自动手操作,加深对正方形性质的理解,培养他们的动手能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使他们认识到数学在生活中的重要性,激发他们学习数学的积极性。
2.培养学生团队合作精神,使他们学会与他人交流、分享和合作,提高他们的团队协作能力。
3.教师对学生的学习情况进行总结和评价,及时发现问题并进行针对性的指导,促进学生的全面发展。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示正方形的家具、建筑物等生活实例,引导学生关注正方形在生活中的应用。
2.提出问题:“你们知道正方形有哪些特点吗?”激发学生对正方形性质的思考。
3.引导学生回顾之前学过的矩形、菱形的性质,为新课的学习做好铺垫。
2.问题导向:引导学生思考正方形的性质和判定方法,激发学生的思考兴趣,培养他们的数学思维能力。通过问题驱动的教学方法,让学生自主ห้องสมุดไป่ตู้现正方形的性质,提高他们的学习效果。
3.小组合作:将学生分成小组,鼓励他们相互讨论、交流,共同探索正方形的性质和判定方法。通过小组活动,培养学生的团队合作精神和动手能力,提高他们的学习兴趣和动力。
3.培养学生独立思考和解决问题的能力,使他们学会面对困难时保持积极的心态,勇于挑战。
三、教学策略
(一)情景创设
1.通过生活实例引入正方形的概念,如展示正方形的家具、建筑物等,让学生感受到正方形在生活中的应用。
2.利用多媒体课件展示正方形的性质和判定方法,引导学生直观地理解正方形的特点。
3.创设问题情境,如给出一个四边形,让学生判断它是否为正方形,激发学生的思考兴趣。

北师大版-数学-九年级上册-1.3 正方形的性质与判定 教案

北师大版-数学-九年级上册-1.3 正方形的性质与判定 教案

正方形的性质与判定一、教学目标知识与技能1、理解正方形的概念,了解正方形与平行四边形、菱形、矩形的关系.2、掌握正方形的有关性质.3、能运用正方形的性质解决有关计算和证明问题.过程与方法1、通过观察、实验、归纳、类比获得数学猜想,发展学生的合情推理能力,进一步提高学生逻辑思维能力.2、通过四边形从属关系的教学,渗透集合思想.情感态度与价值观1、经历探索正方形有关性质和四边形成为正方形的条件过程,培养学生动手操作的能力、主动探究的习惯和合作交流的意识.2、通过理解特殊的平行四边形之间的内在联系,培养学生辩证观点.二、教学重难点教学重点:正方形的定义和性质教学难点:四边形成为正方形的条件教学关键:正方形与平行四边形、菱形、矩形的关系三、教学方法教学方法:探究法教学手段:多媒体辅助教学几何模型四、教学流程导入新知我们已学习了矩形、菱形,它们都是特殊的平行四边形.1、让学生根据所准备的模型分别叙述矩形、菱形的定义及其性质.2、平行四边形,矩形,菱形的内在联系.根据小学学过的正方形的知识,你能说出正方形的意义吗?四条边都相等,四个角都是直角的四边形是正方形.有一组邻边相等,有一个角是直角的平行四边形叫做正方形.探究新知正方形的性质根据上述关系可知,正方形既是特殊的矩形、又是特殊的菱形,更是的特殊的平行四边形,你能说出正方形的性质吗?从边、角、对角线等方面考虑.边:对边平行、四条边都相等角:四个角都是直角对角线:对角线相等,互相垂直平分,每条对角线平分一组对角性质1:正方形的四条边都相等,四个角都是直角.性质2:正方形的两条对角线相等且互相垂直平分,每条对角线平分一组对角.正方形是中心对称图形吗?如是,对称中心在哪里?正方形是轴对称图形吗?如是,它有几条对称轴?对称性:正方形是中心对称图形;同时还是轴对称图形,它有四条对称轴(两条对角线,两组对边的中垂线.),对称轴通过对称中心.如图正方形具有平行四边形、矩形、菱形的一切性质.应用迁移例1:如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE 与DF之间又怎样的关系?请说明理由.解:(1)∵四边形ABCD是正方形.∴BC=DC,∠BCE=90°(正方形的四条边都相等,四个角都是直角).∴∠DCF=180°-∠BCE=180°-90°=90°.∴∠BCE=∠DCF.又∵CE=CF.∴△BCE≌△DCF.∴BE=DF.(2)延长BE交DE于点M,(如图1-19).∵△BCE≌△DCF.∴∠CBE=∠CDF.∵∠DCF=90°.∴∠CDF+∠F=90°.∴∠CBE+∠F=90°.∴∠BMF=90°∴BE⊥DF.小试牛刀如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD和EFGH都是正方形.求证:△ABF≌△DAE.证明:∵四边形EFGH是正方形,∴∠AFB=∠DEA=900,且∠ABF+∠BAF=900,又∵∠BAF+∠DAE=900,∴∠ABF=∠DAE.又∵AB=DA,∴△ABF≌△DAE(AAS).整理反思通过这节课的学习,我们有哪些收获?课后作业课本习题.。

北师大初中九年级数学上册《正方形的性质与判定》教案

北师大初中九年级数学上册《正方形的性质与判定》教案

正方形的性质与判定第一课时学习目标1、知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算.2、经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法.3、理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.教学重点:掌握正方形的判定条件.教学难点:合理恰当地利用特殊平行四边形的判定进行有关的论证和计算.学习过程第一步:课堂引入1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.问题:什么样的四边形是正方形?正方形定义:有一组邻边相等,............并且有一个角是直角.......的平行四边形叫做正方形.2.【问题】正方形有什么性质?由正方形的定义得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以,正方形具有矩形的性质,同时又具有菱形的性质.正方形性质定理1:正方形的四个角都是,四条边都。

正方形性质定理2:正方形的两条对角线相等并且。

第二步:应用举例例1 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.例2 .已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:(1)EA=AF;(2)EA⊥AF.第三步:随堂练习1.⑴正方形的四条边____ __,四个角___ ____,两条对角线____ _______ ____.⑵正方形的两条对角线把正方形分成四个全等的__________________⑶正方形的边长为6,则面积为__________⑷正方形的对角线长为6,则面积为__________2.如右图,E 为正方形ABCD 边AB 上的一点,已知EC=30, EB=10,则正方形ABCD 的面积为_______________,对角线为______ ____.3.如右图,E 为正方形ABCD 内一点,且△EBC 是等边三角形, 求∠EAD 与∠ECD 的度数.知识再现:⑴对边平行 边⑵ 四边相等⑶ 四个角都是直角 角正方形 ⑷对角线相等互相垂直 对角线互相平分 B E平分一组对角第二课时教学目标:4、知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算.5、经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法.6、理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.教学重点:掌握正方形的判定条件.教学难点:合理恰当地利用特殊平行四边形的判定进行有关的论证和计算.教学过程:一、创设问题情景,引入新课我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请填入下图中.通过填写让学生形象地看到正方形是特殊的矩形,也是特殊的菱形,还是特殊的平行四边形;而正方形、矩形、菱形都是平行四边形;矩形、菱形都是特殊的平行四边形.1、怎样判断一个四边形是矩形?2、怎样判断一个四边形是菱形?3、怎样判断一个四边形是平行四边形?4、怎样判断一个平行四边形是矩形、菱形?议一议:你有什么方法判定一个四边形是正方形?二、讲授新课1.探索正方形的判定条件:学生活动:四人一组进行讨论研究,老师巡回其间,进行引导、质疑、解惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形的基本方法.(1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且有一组邻边相等,那么就可以判定这个平行四边形是正方形;(2)先判定一个四边形是矩形,再判定这个矩形是菱形,那么这个四边形是正方形;(3)先判定四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形.后两种判定均要用到矩形和菱形的判定定理.矩形和菱形的判定定理是判定正方形的基础.这三个方法还可写成:有一个角是直角,且有一组邻边相等的四边形是正方形;有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.上述三种判定条件是判定四边形是正方形的一般方法,可当作判定定理用,但由于判定平行四边形、矩形、菱形的方法各异,所给出的条件各不相同,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用时要仔细辨别后才可以作出判断2.正方形判定条件的应用【例1】判断下列命题是真命题还是假命题?并说明理由.(1)四条边相等且四个角也相等的四边形是正方形;(2)四个角相等且对角线互相垂直的四边形是正方形;(3)对角线互相垂直平分的四边形是正方形;(4)对角线互相垂直且相等的四边形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形.三、随堂练习教材P24通过练习进一步巩固正方形的判定方法的应用.四、课时小结师生共同总结,归纳得出正方形的判定方法,同时展示下图,通过直观感受进一步加深理解正方形判定方法的应用.五、课后作业习题1.8的1-3题.。

北师大版九年级数学上册1.3正方形的性质与判定教学设计

北师大版九年级数学上册1.3正方形的性质与判定教学设计
在学生做题过程中,我会关注他们的解题思路和方法,及时给予反馈。针对学生的错误,我会耐心指导,帮助他们找到问题所在,并引导他们正确解决问题。
(五)总结归纳,500字
在课堂接近尾声时,我会带领学生回顾本节课所学的内容,总结正方形的性质和判定方法。通过提问、解答的方式,让学生巩固所学知识,提高他们的实际应用能力。
3.正方形的判定方法有哪些?它们在实际问题中的应用是怎样的?
小组讨论过程中,学生可以互相提问、解答,共同探讨正方形的性质和判定方法。我会巡回指导,关注每个小组的讨论情况,适时给予提示和引导。
(四)课堂练习,500字
在小组讨论之后,我会设计一些具有代表性的课堂练习题,让学生运用所学的正方形性质和判定方法解决问题。这些题目将涵盖正方形的基本性质、判定方法以及在实际问题中的应用。
-判断以下图形中哪些是正方形,并说明理由。
-计算给定正方形的对角线、面积和周长。
-利用正方形的性质解决简单的几何问题。
2.实践应用题:结合生活实际,设计一些需要运用正方形知识解决的问题,让学生在实践中学会运用所学知识。例如:
-设计一个正方形花园,给出其边长,计算花园的面积。
-估算一下学校操场上正方形草坪的面积,并给出估算方法。
3.通过小组讨论、合作探究等方式,让学生在交流与合作中学习,提高他们的沟通能力和团队协作能力。
4.教学过程中,注重启发式教学,引导学生主动探究,培养他们的自主学习能力。
(三)情感态度与价值观
1.培养学生对几何图形的审美意识,使他们认识到数学中的美,激发他们学习数学的兴趣。
2.让学生体会到正方形在实际生活中的广泛应用,增强他们的应用意识,培养学以致用的精神。
5.归纳总结,巩固提高:在课程结束时,带领学生回顾本节课所学的内容,总结正方形的性质和判定方法,并进行巩固练习,提高学生的实际应用能力。

北师大版九年级数学上册优秀教学案例:1.3正方形的性质与判定

北师大版九年级数学上册优秀教学案例:1.3正方形的性质与判定
3.设计小组合作任务,让学生在实践中运用正方形的性质和判定方法,提高他们的实际操作能力。
(四)反思与评价
1.教师引导学生对所学知识进行反思,帮助他们巩固记忆,形成知识体系。
2.学生进行自我评价,培养他们自我监控、自我调整的能力。
3.教师对学生的学习过程和结果进行评价,关注他们的成长,激发他们的学习动力。
北师大版九年级数学上册优秀教学案例:1.3正方形的性质与判定
一、案例背景
本节课的教学内容是北师大版九年级数学上册的1.3节——正方形的性质与判定。在学习了矩形、菱形的基础上,正方形作为特殊的四边形,具有独特的性质和判定方法。它不仅是四边相等的四边形,还有更多的特性等待学生去发现。
在教学过程中,我以“探索正方形的性质与判定”为主题,引导学生通过观察、操作、思考、交流等途径,发现正方形的性质,并能运用这些性质解决问题。在教学设计上,我注重学生的参与和动手实践,力求让每一个学生都能在活动中体验到学习的乐趣,提高他们的数学素养。
(五)作业小结
1.设计具有针对性的作业,让学生在实践中运用所学知识,提高他们的应用能力。
2.引导学生对作业过程中遇到的问题进行思考,培养他们解决问题的能力。
3.教师对学生的作业情况进行评价,及时反馈,指导他们改进学习方法。
4.鼓励学生进行自我反思,培养他们自主学习、自我调整的能力。
五、案例亮点
1.生活情境的创设:本节课以日常生活中的正方形物体为例,如瓷砖、骰子等,引导学生关注正方形的存在,激发他们的学习兴趣。这种生活情境的创设,使得学生能够更加直观地理解正方形的特征,提高了他们的学习积极性。
三、教学策略
(一)情景创设
1.生活情境:以日常生活中的正方形物体为例,如瓷砖、骰子等,引导学生关注正方形的存在,激发他们的学习兴趣。

北师大版九年级数学13正方形的性质与判定教案

北师大版九年级数学13正方形的性质与判定教案

教案:北师大版九年级数学13正方形的性质与判定一、教学内容本堂课的教学内容为正方形的性质与判定。

学生通过本节课的学习,将了解正方形的定义和特征,并能够利用正方形的性质判断给定的图形是否为正方形。

二、教学目标1.知识目标:了解正方形的定义和特征,能够应用正方形的性质判断图形是否为正方形。

2.技能目标:培养学生观察并归纳总结的能力,以及运用已学知识判断问题的能力。

3.情感目标:培养学生对数学的兴趣,增强学生解决问题的自信心。

三、教学重难点1.教学重点:正方形的定义和特征,以及判断给定图形是否为正方形的方法。

2.教学难点:帮助学生归纳总结正方形的特征,理解并应用正方形的性质进行判断。

四、教学准备1.教师准备:教材、黑板、白板笔、图形卡片。

2.学生准备:准备纸和笔。

五、教学过程Step 1 自由探究1.教师出示一些较为复杂的图形,并让学生观察和讨论,看是否能够找出其中的正方形。

2.学生观察并尝试寻找,教师帮助引导学生观察正方形的特征,如四条边相等且四个角都是直角等。

3.学生将可能的正方形标出来,并与同桌讨论。

4.教师随机选择一组学生发言,让他们将找到的正方形标出来,并说明自己的观察。

Step 2 归纳总结1.教师引导学生回顾所找到的正方形图形,并将其特征进行总结,强调正方形的定义:四边相等,四个角都是直角。

2.教师将正方形的定义写在黑板上,学生将其抄写在笔记本上。

3.学生自主提问并与同桌讨论:只有边相等和角为直角,是否就能判断为正方形?4.教师引导学生思考,并通过举例说明:对角线相等,是否能判断为正方形?引导学生进行思考和讨论,并总结规律。

Step 3 知识点讲解1.教师讲解正方形的性质:正方形的对角线相等,并通过示意图进行说明。

2.学生通过观察和讨论,将正方形的对角线相等这一性质归纳总结,并记录在笔记本上。

Step 4 练习巩固1.教师出示一些图形,让学生根据正方形的性质判断其是否为正方形。

2.学生分组进行讨论,并将判断结果写在纸上。

2019年北师大版九年级上册数学教案:1.3正方形的性质与判定

2019年北师大版九年级上册数学教案:1.3正方形的性质与判定
-正方形相关计算:掌握正方形对角线长、面积的计算方法,并能解决实际问题。
举例解释:
-通过实际操作或动画演示,让学生直观感受正方形的特点,如使用直角尺验证四个角都是直角。
-通过练习题,如给定一个矩形或菱形,让学生判定在什么条件下它可以成为正方形。
2.教学难点
-正方形性质的深入理解:学生往往能记住正方形的性质,但难以深入理解这些性质之间的内在联系。
2019年北师大版九年级上册数学教案:1.3正方形的性质与判定
一、教学内容
本节课选自2019年北师大版九年级上册数学教材第一章第三节“正方形的性质与判定”。教学内容主要包括以下两个方面:
1.正方形的性质:平行四边形的性质与判定、矩形的性质、菱形的性质以及正方形的独特性质,如四条边相等、四个角都是直角等。
5.激发学生创新思维:鼓励学生在探索正方形性质与判定的过程中,提出新观点、新方法,培养学生的创新意识和能力。
三、教学难点与重点
1.教学重点
-正方形性质的理解与应用:理解正方形作为平行四边形、矩形、菱形的特殊性质,如四边相等、四个角为直角等,并能将这些性质应用于解决实际问题。
-正方形判定的方法:掌握有一组邻边相等的矩形、有一个角是直角的菱形、对角线互相垂直平分且相等的四边形是正方形的判定方法,并能准确运用。
2.提升学生空间想象能力:通过观察、操作正方形模型,使学生能够形象地理解正方形的特征,培养空间想象力和几何直观。
3.增强学生数学运算能力:让学生掌握正方形的相关计算方法,如对角线长、面积等,并能运用这些方法解决实际问题。
4.培养学生团队合作意识:在小组讨论和分享中,培养学生与他人合作、交流的能力,提高解决问题的效率。
-对于判定的灵活运用,可以通过多变的练习题,让学生在不同的情境下练习正方形的判定,如在一个复杂的图形中识别出正方形。

北师大版九年级数学上册1.3节正方形的性质与判定教学设计

北师大版九年级数学上册1.3节正方形的性质与判定教学设计
4.创新作业:
-结合生活实际,设计一个与正方形有关的艺术图案,要求美观、富有创意。
-请同学们思考:正方形在生活中还有哪些应用?请举例说明。
作业要求:
1.请同学们按时完成作业,保持字迹清晰,书写规范。
2.基础作业要求所有同学必须完成,提高作业和拓展作业可根据自己的实际情况选择完成。
3.作业完成后,要进行自我检查,确保答案正确,如有疑问,及时向同学或老师请教。
(三)情感态度与价值观
1.使学生感受到数学与生活的紧密联系,体会数学在实际生活中的应用价值。
2.培养学生勇于探究、积极思考的良好学习习惯,增强学生解决问题的自信心。
3.培养学生的审美观念,让学生在欣赏正方形的美感中,体会数学的简洁与和谐。
4.培养学生的集体荣誉感,让学生在团队协作中,学会尊重他人、关爱他人,共同为集体的发展贡献力量。
-设计意图:让学生感知数学与生活的联系,为后续性质的学习做好铺垫。
2.新课导入:在学生已有知识基础上,引导学生自主探究正方形的性质,如四边相等、四角为直角等,并通过数学证明来强化理解。
-设计意图:培养学生的探究精神和几何直观能力,提高逻辑推理能力。
3.性质应用:通过典型例题,让学生运用正方形的性质解决实际问题,如求正方形的周长、面积等,并引导学生总结解题规律。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.学生互评练习题,分享解题思路和经验。
4.教师针对学生的练习情况进行点评,强调解题方法和技巧。
(五)总结归纳
1.教师引导学生回顾本节课所学的正方形性质、判定方法及应用。
2.学生用自己的话总结正方形的性质和判定方法,加深理解。
3.教师强调正方形在实际生活中的应用,激发学生的学习兴趣。

北师大版数学九年级上册教学设计:1.3正方形的性质与判定

北师大版数学九年级上册教学设计:1.3正方形的性质与判定
4.培养学生严谨的学习态度,让学生明白数学是一门严谨的学科,培养良好的学习习惯。
二、学情分析
九年级的学生已经具备了一定的几何图形认知和逻辑思维能力。在学习本章节之前,他们已经掌握了矩形、菱形的性质和应用,能够识别和运用这些图形的判定方法。在此基础上,学生对正方形的性质和判定方法的学习将更为顺利。然而,正方形作为特殊的矩形和菱形,其性质的理解和判定方法的运用对学生来说仍有一定难度。因此,在教学过程中,应注重以下几点:
4.能够运用正方形的性质解决实际问题,如计算正方形的面积、周长等。
(二)过程与方法
1.培养学生观察图形、发现性质的能力,让学生在实际操作中感受正方形的特征。
2.引导学生通过画图、测量、计算等方法,探索正方形的性质,培养学生的动手操作能力。
3.引导学生运用已学的矩形、菱形知识,推导正方形的性质,培养学生知识迁移和逻辑思维能力。
4.教师通过生活实例,如正方形瓷砖、正方形桌面等,让学生感受正方形在实际生活中的应用,激发学生的学习兴趣。
(二)讲授新知
1.教师引导学生通过画图、测量、计算等方法,探索正方形的性质。
a.正方形的四条边相等。
b.正方形的四个角都是直角。
c.正方形的对角线互相垂直平分,且相等。
d.正方形既是矩形,也是菱形。
3.教师对本节课的知识点进行梳理,强调重点和难点,提醒学生课后加强练习。
4.布置课后作业,巩固所学知识,提高学生的应用能力。
五、作业布置
为了巩固本节课所学的正方形性质与判定方法,以及提高学生的应用能力,特布置以下作业:
1.必做题:
(1)完成课本第18页的练习题1、2、3,并认真核对答案,对错题进行订正。
4.通过解决实际问题,培养学生运用正方形性质解决问题的能力,提高学生的应用意识。

北师大版九年级数学上册1.3.1正方形的性质与判定教学设计

北师大版九年级数学上册1.3.1正方形的性质与判定教学设计
(三)学生小组讨论
1.教学活动设计:学生分成小组,针对以下问题进行讨论:
(1)正方形的性质有哪些?
(2)如何判定一个图形是正方形?
(3)正方形与矩形、菱形之间的联系与区别是什么?
2.学生反馈:学生通过小组讨论,进一步巩固正方形的性质与判定方法,形成系统的知识体系。
3.教师指导:在学生讨论过程中,教师巡回指导,解答学生的疑问,确保讨论的有效性。
(3)教师点评:教师对学生的解答进行点,指出错误原因,引导学生正确解题。
(五)总结归纳
1.教学活动设计:教师引导学生回顾本节课所学内容,总结正方形的性质、判定方法以及与其他图形的联系与区别。
2.学生反馈:学生积极发言,分享自己的学习心得,总结本节课的重点和难点。
3.教师总结:教师对学生的总结进行补充,强调正方形性质与判定的关键点,并对本节课的学习进行评价。
4.设计多样化的练习题,帮助学生巩固所学知识,形成系统的知识体系。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养他们热爱数学、主动学习的情感态度。
2.培养学生的团队协作意识,使他们学会与他人合作、交流,共同解决问题。
3.通过探索正方形的性质和判定方法,培养学生勇于探索、敢于质疑的科学精神。
三、教学重难点和教学设想
(一)教学重难点
1.重点:正方形的性质及判定方法。
2.难点:正方形与其他图形(如矩形、菱形)性质的联系与区别。
(二)教学设想
1.引入新课:通过展示生活中的正方形实例,如正方形瓷砖、桌面等,引导学生观察、思考正方形的特点,激发学生的兴趣,为新课的学习做好铺垫。
2.新课教学:
(1)探究正方形的性质:组织学生分组讨论,从边、角、对角线等方面观察正方形的特征,引导学生总结出正方形的性质。在此过程中,教师适时给予提示和引导,确保学生能够准确掌握正方形的性质。

北师大版九年级数学上册教学设计:1.3正方形的性质与判定

北师大版九年级数学上册教学设计:1.3正方形的性质与判定
4.教师设计一道综合性的题目,要求学生运用正方形的性质解决实际问题,培养学生的应用能力。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学的正方形性质、判定方法以及在实际问题中的应用。
2.学生分享自己在学习过程中的收获和感悟,教师给予鼓励和评价。
3.教师对本节课的重点、难点进行梳理,强调正方形性质与判定的联系和区别。
在教学过程中,教师要注重启发式教学,引导学生主动探究、积极思考,提高学生的数学素养。同时,关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。
二、学情分析
九年级学生在前两年的数学学习中,已经掌握了四边形的基本概念和性质,具备了一定的几何图形识别和分析能力。在此基础上,本章关于正方形的性质与判定的学习,对学生来说既是挑战,也是提升。学生在此阶段,思维逐渐从具体形象转向抽象逻辑,具备一定的推理和论证能力。但个体差异仍然明显,部分学生对几何图形的理解和运用能力较弱,需要教师在教学过程中给予关注和引导。此外,学生在学习方法上,已具备一定的自主学习、合作交流和总结反思的能力,教师应充分调动学生的主观能动性,引导他们通过观察、思考、实践,深入理解正方形的性质与判定方法,提高几何图形的解题能力。
6.课后作业,拓展提升
设计分层作业,针对不同水平的学生,布置难易适度的练习题。同时,鼓励学生进行课后拓展,如查找生活中含有正方形的物品,并运用所学知识进行解释。
7.教学评价,关注个体差异
在教学过程中,教师要注意观察学生的学习表现,关注个体差异。通过课堂提问、课后作业、小测验等方式,全面评价学生的学习效果,及时给予反馈,指导学生调整学习方法。
3.拓展题:
(1)查找相关资料,了解正方形在古代建筑、艺术等方面的应用。
(2)思考正方形性质在生活中的实际应用,如设计图案、制作工艺品等,并将思考结果以书面形式提交。

最新北师大版2018-2019学年九年级数学上册《正方形的性质与判定》教学设计-优质课教案

最新北师大版2018-2019学年九年级数学上册《正方形的性质与判定》教学设计-优质课教案

1.3 正方形的性质与判定第1课时【教学目标】了解正方形的有关概念,理解并掌握正方形的性质定理.【教学重难点】重点:探索正方形的性质定理.难点:掌握正方形的性质的应用方法,把握正方形既是矩形又是菱形这一特性来学习本节课内容. 【教学过程】一、探究导入【显示投影片】显示内容:展示生活中有关正方形的图片,幻灯片 (多幅).【活动方略】教师活动:操作投影仪,边展示图片,边提出下面的问题:1.同学们观察显示的图片后,有什么联想?正方形四条边有什么关系?四个角呢?正方形是矩形吗?是菱形吗?为什么?正方形具有哪些性质呢?学生活动:观察屏幕上所展示的生活中的正方形图片.进行联想.易知:1.正方形四条边都相等(小学已学过);正方形四个角都是直角(小学学过).实验活动:教师拿出矩形按左图折叠.然后展开,让学生发现:只要矩形一组邻边相等,这样的矩形就是正方形;同样,教师拿出活动菱形框架,运动中让学生发现:只要菱形有一个内角为90°,这样的特殊菱形也是正方形.教师活动:组织学生联想正方形还具有哪些性质,板书画出一个正方形,如下图:学生活动:观察、联想到它是矩形,所以具有矩形的所有性质;它又是菱形,所以它又具有菱形的一切性质,归纳如下:正方形定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.正方形性质:(1)边的性质:对边平行,四条边都相等.(2)角的性质:四个角都是直角.(3)对角线的性质:两条对角线互相垂直平分且相等,每条对角线平分一组对角.(4)对称性:是轴对称图形,有四条对称轴.【设计意图】采用合作交流、发现、归纳的方式来解决重点问题,突破难点.二、探究新知【课堂演练】(投影显示)演练题1:如图,已知四边形ABCD是正方形,对角线AC与BD相交于0,MN//AB,且分别与OA、OB相交于M、N.求证:(1)BM=CN; (2)BM⊥CN.分析:本题是证明BM=CN,根据正方形性质,可以证明BM、CN所在ΔBOM与ΔCON是否全等.(2)在(1)的基础上完成,欲证BM⊥CN.只需证∠5 + ∠CMG= 90°就可以了.【活动方略】教师活动:操作投影仪.组织学生演练,巡视,关注“学困生”;等待大部分学生练习做完之后,再请两位学生上台演示,交流.学生活动:课堂演练,相互讨论,解决演练题的问题.证明:(1) ∵四边形ABCD 是正方形,∴∠COB=∠BOM= 90°, OC=OB.∵MN//AB ,∴∠1=∠2, ∠ABO= ∠3,又∵∠1= ∠ABO= 45°,∴∠ 2=∠3,∴OM =ON ,∴ΔCON ≌ΔBOM,∴BM=CN.(2)由(1)知ΔBOM ≌ΔCON,∴∠4= ∠5,∵∠4+∠BMO=90°,∴∠5+∠BMC=90° , ∴∠CGM=90°, ∴BM ⊥CN.演练题2:如图,正方形ABCD 中,点E 在AD 边上,且AE= AD ,F 为AB 的中点,求证: ΔCEF 是直角三角形.分析:本题要证∠EFC= 90°,从已知条件分析可以得到只要利用勾股定理逆定理,就可以解决问题.这里应用到正方形性质.【活动方略】教师活动:用投影仪显示演练题2,组织学生应用正方形和勾股定理逆定理分析,并请同学上讲台分析思路,板演.学生活动:先独立分析,找到证明思路是利用勾股定理的逆定理解决问题.证明:设AB = 4a ,在正方形ABCD 中,DC=BC=4a ,AF=FB = 2a ,AE=a ,DE=3a.∵∠B=∠A=∠D=90°,由勾股定理得:EF2 +CF2= (AE2 +AF2) + (CB2 +BF2)= (a2 + 4a2) + (16a2+4a2)=25a2,41CE2=CD2+DE2= (4a)2 + (3a)2=25a2,∴EF2 +CF2=CE2.由勾股定理的逆定理可知ΔCEF是直角三角形.【设计意图】补充两道关于正方形性质应用的演练题,提高学生的应用能力.三、范例点击例:已知:如图,四边形ABCD是正方形,矩形 PECF的顶点P在正方形ABCD的对角线BD上,E 在BC上,F 在 CD 上,连接 AC、AP、PC、EF,若EC= 4,CF=3,求 PA的长.分析:本题运用矩形对角线相等的性质可得EF=PC,运用正方形的性质可得AP=PC,进而可得AP=EF.因此,只要求出EF的值即可.解:∵四边形PECF是矩形,∴PC=EF.在 RtΔEFC中,EC=4,CF=3, ∴EF='∴PC=5. ∵四边形ABCD是正方形,∴ BD⊥AC且BD平分AC,即BD是AC的垂直平分线. ∵点P 在BD 上,∴PA=PC=5.【方法归纳】与矩形对角线有关的计算问题,主要运用矩形的对角线相等和正方形的对角线的性质,借助第三条线段作“媒介”求线段的长.四、巩固练习教材P21随堂练习五、课堂小结本节课应掌握:正方形的概念:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.正方形的性质正方形的四个角都是直角,四条边相等.正方形的对角线相等且互相垂直平分.正方形既是轴对称图形,也是中心对称图形.六、布置作业教材P22习题1.7第1、2、3题第2课时【教学目标】1.知道正方形的判定方法,会运用平行四边形、矩形、菱形、正方形的判定条件进行有关的论证和计算.2.经历探究正方形判定条件的过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法.3.理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.【教学重难点】重点:掌握正方形的判定条件.难点:合理恰当地利用特殊平行四边形的判定进行有关的论证和计算.【教学过程】―、创设情境,引入新课我们学习了平行四边形、矩形、菱形、正方形,那么思考一下,它们之间有怎样的包含关系?请填入下图中.通过填写让学生形象地看到正方形是特殊的矩形,也是特殊的菱形,还是特殊的平行四边形;而正方形、矩形、菱形都是平行四边形;矩形、菱形都是特殊的平行四边形.1.怎样判断一个四边形是平行四边形?2.怎样判断一个四边形是矩形?3.怎样判断一个四边形是菱形?4.怎样判断一个平行四边形是矩形、菱形?议一议:你有什么方法判定一个四边形是正方形?二、探究新知1.探索正方形的判定条件:学生活动:四人一组进行讨论研究,老师巡回其间,进行引导、质疑、解惑,通过分析与讨论,师生共同总结出判定一个四边形是正方形的基本方法.(1)直接用正方形的定义判定,即先判定一个四边形是平行四边形,若这个平行四边形有一个角是直角,并且有一组邻边相等,那么就可以判定这个平行四边形是正方形;(2)先判定一个四边形是矩形,再判定这个矩形是菱形,那么这个四边形是正方形;(3)先判定四边形是菱形,再判定这个菱形是矩形,那么这个四边形是正方形.后两种判定均要用到矩形和菱形的判定定理.矩形和菱形的判定定理是判定正方形的基础.这三个方法还可写成:有一个角是直角,且有一组邻边相等的四边形是正方形;有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.上述三种判定条件是判定四边形是正方形的一般方法,可当作判定定理用,但由于判定平行四边形、矩形、菱形的方法各异,所给出的条件各不相同,所以判定一个四边形是不是正方形的具体条件也相应可作变化,在应用时要仔细辨别后才可以作出判断.2.正方形判定条件的应用例1:判断下列命题是真命题还是假命题?并说明理由.(1)四条边相等且四个角也相等的四边形是正方形;⑵四个角相等且对角线互相垂直的四边形是正方形;(3)对角线互相垂直平分的四边形是正方形;(4)对角线互相垂直且相等的四边形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形.师生共析:是真命题,因为四条边相等的四边形是菱形,又四个角相等,根据四边形内角和定理知每个角为90°,所以由有一个角是直角的菱形是正方形可以判定此命题是真命题.⑵真命题,由四个角相等可知每个角都是直角,是矩形,由对角线互相垂直可判定这个矩形是菱形,所以根据是既是矩形又是菱形的四边形是正方形,可判定其为真.(3)假命题,对角线平分的四边形是平行四边形,对角线垂直的四边形是菱形,所以它不一定是正方形. 如下图①,满足AO=CO ,BO=DO 且AC ⊥BD 但四边形ABCD 不是正方形.(4)假命题,它可能是任意四边形.如上图②,AC ⊥BD 且AC=BD ,但四边形ABCD 不是正方形.(5)真命题.方法一:对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,对角线垂直的平行四边形是菱形,所以是矩形又是菱形的四边形是正方形.可判定其为真.方法三:由对角线互相垂直平分可知是菱形,由对角线平分且相等可知是矩形,而既是菱形又是矩形的四边形就是正方形.总结:通过辨析,掌握判定正方形的各种方法和思路,从题中所给各种不同条件出发,寻找命题成立的判定依据,以便灵活应用.例2:如图,E 、F 分别在正方形ABCD 的边BC 、 CD 上,且∠AFE= 45°,试说明EF=BE+DF.师生共析:要证EF=BE+DF,如果能将DF 移到EB 延长线或将BE 移到FD延长线上,然后就能证明两线段长度相等。

北师大版九年级数学上册:1.3 正方形的性质和判定 教案1

北师大版九年级数学上册:1.3 正方形的性质和判定  教案1

北师大版数学九年级上第一章第三节正方形的性质与判定(二)中点四边形教学目标(一)教学知识点1.能进一步理解掌握矩形、菱形、正方形的性质定理、判定定理.2.进一步体会证明的必要性以及计算与证明在解决问题中的作用.(二)能力训练要求1.经历探索、猜想、证明的过程,进一步发展推理论证能力.2.进一步体会证明的必要性以及计算与证明在解决问题中的作用.3.体会证明过程中所运用的归纳概括以及转化等数学思想方法.(三)情感与价值观要求1.通过知识的迁移、类比、转化,激发学生探索新知识的积极性和主动性.2.体会数学与生活的联系.教学重点:中点四边形形状的判定教学难点:特殊四边形——矩形、菱形、正方形的性质定理和判定定理的灵活应用.教学方法:直观演示讨论——交流教学过程:一、巧设现实情境,引入新课通过前几节内容的学习,我们进一步理解了平行四边形及特殊平行四边形的性质定理和判定定理.这节课我们来应用它们证明和计算一些题.复习:三角形中位线的定义和性质设计意图:温故而知新。

使学生能够把三角形的性质转化到四边形性质的探索证明中。

二、讲授新课1、探究一如果要在一块如图所示的白铁皮上裁出一块平行四边形的白铁皮,并且使四个顶点分别落在原白铁皮的四条边上,可以如何裁?学生活动:由学生独立思考完成,写出证明过程,并在全班交流结论:顺次连结四边形的各边中点所组成的四边形叫做中点四边形。

依次连接任意四边形各边的中点可以得到一个平行四边形。

方法小结:证明“中点四边形”作辅助线的方法是连接对角线,然后利用三角形的中位线定理找“中点四边形”各边与原四边形对角线的关系,从而得出结论。

设计意图:利用中位线的知识进行证明,体会数学中利用知识的迁移学习新知的过程。

每位学生先进行独立思考,全员参与,经过全班展示进行纠错,进一步发展推理论证的能力。

2、探究二如果四边形ABCD为特殊的四边形,那么它的中点四边形会有什么变化呢?列举一二进行证明。

利用几何画板辅助教学,更形象直观的展示四边形形状的变化过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 正方形的性质与判定
第1课时正方形的性质
1.在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,并能运用正方形的性质进行证明与计算.(重难点)
2.进一步了解平行四边形、矩形、菱形及正方形之间的相互关系,并形成文本信息与图形信息相互转化的能力.
阅读教材P20~21,完成下列问题:
(一)知识探究
1.有________相等并且有一个角是________的__________叫做正方形.
2.正方形既是________又是________,它既具有________的性质,又有________的性质.
3.正方形的________相等,都是________,________相等.
4.正方形的对角线________________________.
(二)自学反馈
正方形的性质:
1.边:________都相等且________.
2.角:四个角都是________.
3.对角线:两条对角线互相________且________,并且每一条对角线平分________.
4.正方形既是________图形,又是________图形,正方形有________对称轴.
活动1 小组讨论
例如图,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间有怎样的关系?
请说明理由.
解:BE=DF,且BE⊥DF.理由如下:
如图,延长BE交DF于点M.
∵四边形ABCD是正方形,
∴BC=DC,∠BCE=90°(正方形的四条边都相等,四个角都是直角).
∴∠DCF=180°-∠BCE=180°-90°=90°.
∴∠BCE=∠DCF.
又∵CE=CF,∴△BCE≌△DCF.
∴BE=DF,
∵∠DCF=90°,∴∠CDF+∠F=90°.
∴∠CBE+∠F=90°.
∴∠BMF=90°.
∴BE⊥DF.
本题是通过证明△BCE≌△DCF来得到BE与DF之间的关系,证明三角形全等是解决这一类型问题的常用做法.
活动2 跟踪训练
1.菱形,矩形,正方形都具有的性质是( )
A.对角线相等且互相平分 B.对角线相等且互相垂直平分
C.对角线互相平分 D.四条边相等,四个角相等
2.正方形面积为36,则对角线的长为( )
A.6 B.6 2 C.9 D.9 2
3.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )
A .14
B .15
C .16
D .
17
4.如图,延长正方形ABCD 的边BC 至E ,使CE =AC ,连接AE 交CD 于F ,则∠AFC =________°
.
5.如图,正方形ABCD 的对角线AC 、BD 交于点O ,∠OCF =∠OBE.求证:OE =
OF.
活动3 课堂小结
正方形的性质⎩⎪⎨⎪⎧边:正方形的四条边都相等且对边平行.
角:正方形的四个角都是直角.对角线:正方形的两条对角线互相垂直平分且相等,每一条对角线平分一组对角.对称:既是轴对称图形,又是中心对称图形,它有四条对称轴,其对角线交点为对称中心.
【预习导学】
(一)知识探究
1.一组邻边 直角 平行四边形 2.矩形 菱形 矩形 菱形
3.四个角 直角 四条边 4.相等且互相垂直平分
(二)自学反馈
1.四条边 对边平行 2.直角 3.垂直平分 相等 一组对角
4.中心对称 轴对称 四条
【合作探究】
活动2跟踪训练
1.C 2.B 3.C 4.112.5
5.证明:∵四边形ABCD是正方形,∴AC⊥BD,OB=OC.
∴∠AOB=∠BOC=90°.又∵∠OBE=∠OCF,∴△OBE≌△OCF.∴OE=OF.
第2课时正方形的判定
1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题.(重难点)
2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断.
阅读教材P22~24,完成下列问题:
(一)知识探究
1.对角线相等的________是正方形.
2.对角线垂直的________是正方形.
3.有一个是直角的________是正方形.
(二)自学反馈
1.已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )
A.∠D=90° B.AB=CD
C.AD=BC D.BC=CD
2.下列命题正确的是( )
A.两条对角线相等的菱形是正方形
B.对角线与一边的夹角是45°的四边形是正方形
C .两邻角相等,且有一角是直角的四边形是正方形
D .对角线相等且互相垂直的四边形是正方形
3.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )
A .AC =BD ,A
B ∥CD ,AB =CD
B .AD ∥B
C ,∠A =∠C
C .AO =BO =CO =DO ,AC ⊥BD
D .AO =CO ,BO =DO ,AB =BC
4.如图,将一张矩形纸片ABCD 折叠,使AB 落在AD 边上,然后打开,折痕为AE ,顶点B 的落点为F.则四边形ABEF 是________形.
活动1 小组讨论
例 如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE.求证:四边形BECF 是正方形.
证明:∵BF ∥CE ,CF ∥BE ,
∴四边形BECF 是平行四边形.
∵四边形ABCD 是矩形,
∴∠ABC =90°,∠DCB =90°.
又∵BE 平分∠ABC ,CE 平分∠DCB ,
∴∠EBC =12∠ABC =45°,∠ECB =12
∠DCB =45°. ∴∠EBC =∠ECB.
∴EB =EC.
∴平行四边形BECF是菱形.
在△EBC中,
∵∠EBC=45°,∠ECB=45°,
∴∠BEC=90°.
∴菱形BECF是正方形.
掌握平行四边形、矩形、菱形成为正方形所需要的条件是解决这类问题的关键.
活动2 跟踪训练
1.如图,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB,垂足分别为E、F,求证:四边形BEDF是正方形.
2.如图,E、F、G、H分别是正方形ABCD四条边上的点,AE=BF=CG=DH,四边形EFGH是什么图形?证明你的结论.
3.如图所示,点E,F,G,H分别是CD,BC,AB,DA的中点,求证:四边形EFGH是平行四边形.
活动3 课堂小结
1.对角线相等的菱形是正方形;
2.对角线垂直的矩形是正方形;
3.有一个角是直角的菱形是正方形.
【预习导学】
(一)知识探究
1.菱形 2.矩形 3.菱形
(二)自学反馈
1.D 2.A 3.C 4.正方
【合作探究】
活动2 跟踪训练
1.证明:∵∠ABC =90°,DE ⊥BC ,DF ⊥AB ,∴四边形BEDF 是矩形.∵BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB ,∴DE =DF.∴四边形BEDF 是正方形.
2.四边形EFGH 是正方形.证明:∵四边形ABCD 是正方形,∴AB =BC =CD =DA.∵AE =BF =CG =DH ,∴HA =EB =FC =GD.∵∠A =∠B =∠C =∠D =90°,∴Rt △AEH ≌Rt △BFE ≌Rt △CGF ≌Rt △DHG.∴HE =EF =FG =GH.∴四边形EFGH 是菱形.又∠AHE =∠BEF ,∠AHE +∠AEH =90°,∴∠BEF +∠AEH =90°.∴∠HEF =90°.∴四边形EFGH 是正方形.
3.证明:连接BD.∵点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点,∴EF 是△BCD 的中位线,GH 是△ABD 的中位线.∴
EF ∥BD ,EF =12BD ,GH ∥BD ,GH =12
BD.∴EF ∥GH ,EF =GH.∴四边形EFGH 是平行四边形.。

相关文档
最新文档