大学概率论论文
概率论在生活中的应用 毕业论文
学号:1001114119概率论在生活中的应用学院名称:数学与信息科学学院专业名称:数学与应用数学年级班别: 10级二班姓名:指导教师:2014年3月概率论在生活中的应用摘要概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。
加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析,解决实际生活的问题,在数学活动中获得生活经验。
这是当前数学课程改革的大势所趋。
加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。
人类认识到随机现象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论来实践才是重中之重。
学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。
(宋体,小四,1.5倍行距)关键词随机现象;条件概率;极限定理;古典概率The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment.Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability前 言概率论与我的生活息息相关。
概率论总结论文
概率论总结论文第一篇:概率论总结论文概率论与数理统计在生活中的应用摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。
生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。
数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。
关键字:概率、保险、彩票、统计、数据、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。
随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。
目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。
本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。
一、彩票问题“下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。
买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑!一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,英国已有超过90%的成年人购买过这种彩票,并且也真的有数以百计的人成为百万富翁。
如今在世界各地都流行着类似的游戏,在我国各省各市也发行了各种福利彩票、体育彩票,各地充满诱惑的广告满天飞,而报纸、电视上关于中大奖的幸运儿的报道也热闹非凡,因此吸引了不计其数的人踊跃购买。
概率论论文10篇完美版
《概率论论文》概率论论文(一):《概率论与数理统计》论文摘要概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。
纵观其发展史,在实际生活中具有很强的应用好处。
正是有了前人的努力,才有了现代的概率论体系。
本文将从概率论的研究好处、定义,以及发展历程进行叙述。
概率论的发展与起源1.1概率论的定义概率论是研究随机现象数量规律的数学分支。
随机现象是相对于决定性现象而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。
每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。
随机现象的实现和对它的观察称为随机试验。
随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。
事件的概率则是衡量该事件发生的可能性的量度。
虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。
例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。
大数定律和中心极限定律就是描述和论证这些规律的。
在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。
例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。
随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。
在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。
浅析概率论在生活中的应用毕业论文(一)
浅析概率论在生活中的应用毕业论文(一)概率论作为一门研究随机事件概率规律的学科,不仅在理论研究中有着广泛的应用,也逐渐渗透到我们的日常生活中,无论是从商业、医疗、技术等方面,都得到了广泛应用。
本文就从以下几个方面简要探讨概率论在生活中的应用。
1. 保险行业保险行业一直是概率统计学的应用领域之一。
在保险业中,保险公司要根据统计数据和概率论的知识对客户进行风险分析并制定相应的保险方案。
比如,在车险中,保险公司会根据客户的性别、年龄、车型等信息计算出客户的出险概率,从而制定出相应的保险费用。
这种保险费用制定方式不仅使保险公司能够更加科学地进行风险评估,降低了客户的保险成本,也使得保险公司更加准确地控制保险赔付率,保证了公司的盈利能力。
2. 医学概率论在医学领域中应用广泛。
例如在病人诊断中,一系列试验和检查结果需要根据概率理论进行分析和判断。
医学研究还涉及到新药的测试。
在这种情况下,概率统计学的方法被用来评估患者使用新药的风险,以及新药的作用和副作用。
此外,在流行病学中,概率统计学方法被用来分析疾病的传播和预测未来的疫情。
3. 投资股票交易也是概率论的应用领域之一。
投资者需要了解股票价格变动的概率规律,并且基于概率统计学方法进行分析和预测未来股票价格的趋势。
这需要投资者利用历史数据和统计模型来模拟和预测股票价格。
这种预测方法具有一定的误差,但也给投资者提供了一定的参考信息。
4. 体育竞技体育竞技也是概率论的应用领域。
在足球比赛中,根据球队近期表现、场地、天气等因素,可以利用概率理论来预测哪个球队有更大的获胜概率。
此外,在比赛中,也需要根据概率理论来决定是否采用进攻或者防守策略等。
总结而言,概率论在我们的生活中扮演着重要的角色。
可以帮助我们做出明智的决策,减少我们所面临的风险,并提升我们的成功概率。
因此,概率论的知识对于每个人来说都是十分必要的。
概率论课程小论文
概率论与数理统计课程设计关于正态分布的几点讨论经过一个学期的学习,我对概率论有了更为深刻地理解,高中阶段的概率只是简单的古典概型和几何概型,而这个学期,我们对概率论有了进一步的认识,接触了泊松分布、贝努力分布、超几何分布、正态分布等等。
纵观全书,我感觉到正态分布在概率论这门课程中有很高的地位,而且正态分布在我们的日常生活中也有着非常广泛的应用,进而我也对正态分布产生了浓厚的兴趣。
所以在课程设计中,我想讨论一下正态分布的有关问题。
一、正太分布的由来、发展及重要性正态分布是最重要的一种概率分布。
正态分布概念是由德国的数学家和天文学家德莫佛于1733年首次提出的,但由于德国数学家高斯率先将其应用于天文学家研究,故正态分布又叫高斯分布。
在随机变量的各种分布中,正态分布占有特殊重要的地位,在高斯以后,人们又发现在实际问题中,许多随机变量都近似服从正态分布。
20世纪前半期,概率论研究的中心课题之一就是寻求独立随机变量和的极限分布式正态分布的条件。
因此,把这一方面的定理统称为中心极限定理。
较一般的中心极限定理表明:若被研究的随机变量是大量独立随机变量的和,其中每一个随机变量对于总和只起微小作用,则可以认为这个随机变量近似于正态分布。
这就揭示了正太分布的重要性。
因为现实中许多随机变量都具有上述性质,例如测量误差、射击弹着点的横坐标、人的身高等都是由大量随机因素综合影响的结果,因而是近似服从正态分布的。
数理统计中有常用的三大分布占有极重要的地位,分别是2χ分布,t 分布和F 分布,这三大分布都与正态分布有着密切的关系,由此更能看出正态分布的重要性。
二、正态分布的含义正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N (μ,σ2)。
服从正态分布的随机变量的概率规律为:取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大分布越分散。
数学系概率论数理统计毕业论文
数学系概率论数理统计毕业论文概率论与数理统计是所有高等院校的理工、经济管理、金融类专业本科阶段开设的一门必修数学课程。
下文是店铺为大家整理的关于数学系概率论数理统计毕业论文的范文,欢迎大家阅读参考!数学系概率论数理统计毕业论文篇1概率论与数理统计教学浅谈摘要:随着本科院校近年来不断扩大招生规模,在一定程度上影响了生源质量。
与此同时,普通高等院校在精简课程方面也做了较大调整。
在此新形势下,作为一名的教师,针对普通高等院校概率论与数理统计课程的教学改革提出相关见解,认为目前普通高等院校,尤其是一些偏应用型的工科院校,在概率论与数理统计课程的教学中,不应该死守教师满堂讲解的教学模式,而是应该提供给学生应用的机会,设立教学实验课;教学中应突出实际应用,与数学建模相揉合,以达到更好的教学以及学习效果。
关键词:概率论与数理统计教学实验SAS软件揉合数学建模概率论与数理统计是工科院校的重要课程,但是由于课程自身的特点决定了学生在学习过程中常常会感觉概念太抽象,理解起来相当费劲。
如果不能很好地理解概念,那么后续学习就很可能会出现一系列的问题。
大多数的时候,在处理习题以及在考试中就会出现很多不必要的错误,根源在于没有很好地理解概念,思维没有得到相应地拓展。
教师在整个教学环节,包括课前备课中必须要思考的,包括如何安排教学,使得学生在学习过程中,能够愿意学习这门课程,能够接受该课程的理论体系。
通过近十年来对概率论与数理统计课程的教学,笔者认为可以从以下几个方面来把握。
1 建立良好开端概率论与数理统计作为一门数学学科,会让大多数学生在心理上产生莫名的抵触。
在以前的教学过程中,遇到过一些学生,自己认为数学就是很难,很难,太抽象,从开始上课就觉得自己肯定学不好。
很显然,这并不是一个好预兆。
我们都知道,兴趣是最好的老师。
一件事情难或者易,都是和做这件事情的人的主观意愿有很大关系。
如果愿意去做,有兴趣,那么难题会变得简单。
同样,如果不愿意去做,迫于外界压力不得不去做,即使是很简单的问题,也不见得就会得到圆满的解决。
大学概率论-正态分布及标准化 论文
题目:浅谈正态分布及其标准化院系:卓越学院班级:经管班姓名:郭佳妮学号:15031206目录一.浅谈正态分布 (3)1.正态分布的概率密度函数 (3)数学期望 (4)方差 (4)2.正态分布的分布函数 (5)3.正态分布的性质 (6)二.正态分布的标准化 (7)一.浅谈正态分布如果影响该事件的因素有无穷多个,而每个因素的影响又是无穷小,那么这个事件就服从正态分布例如:测量某零件的尺寸时,由于温度、湿度等众多因素的微小影响,使得测量结果出现误差,这种误差就服从正态分布大误差出现的概率很小,经常出现的误差概率就高,就象一条钟型曲线,即正态分布曲线从这条曲线可以看出正态分布曲线关于x=μ对称,并在x=μ取到最大值1.正态分布的概率密度函数记作X~N(μ,σ^2)数学期望μ为正态分布的E(x),即为数学期望,又称为均值在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。
是最基本的数学特征之一。
它反映随机变量平均取值的大小。
E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)性质设C为一个常数,X和Y是两个随机变量。
以下是数学期望的重要性质:1.E(C)=C2.E(CX)=CE(X)证明方差σ^2为正态分布的方差,(variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
性质1.设C是常数,则D(C)=02.设X是随机变量,C是常数,则有3.D(X+C)=D(X)3.D(X+C)=E((X+C-E(X+C))^2)=E((X-E(X))^2)=D(X)2.正态分布的分布函数f(x)为x=A事件的概率,即为p(x=a)F(x)为x在区间(-∞,a)上的概率介绍F(x)3.正态分布的性质关于x=μ对称,在任意h>0时都有P{μ-h<x<μ}=P{μ<x<μ+h}当x=μ时取到最大值F(μ)=1/√(2π)σ代入即可4.标准正态分布正态分布的特殊情况,当期望值μ=0,即曲线图象对称轴为Y轴,标准差σ^2=1条件下的正态分布,记为N(0,1)。
哈工大概率论小论文
浅析足球分组过程中的概率问题最近参与组织了一次足球赛事,其中的抽签环节引起了我的一些思考。
足球比赛一般分为联赛和杯赛两种形式,其中联赛规则下,一支球队要与其他所有球队一一进行比赛,所以一个联赛中的两支球队A队和B队相遇是必然事件。
而杯赛中,不管是分组淘汰制还是单轮淘汰制都需要抽签决定对手,也就是说在一个杯赛中A队与B队相遇是随机事件,这就涉及到了概率问题。
下面我就对杯赛中两队相遇在不同淘汰规则下的概率简单谈一谈。
一、单轮淘汰制(假定32支球队参加)1.比赛规则:每轮球队两两进行比赛,单场淘汰,胜者进入到下一轮比赛,每轮比赛对手皆由抽签产生。
2.概率计算:首轮相遇的概率为1/31;第二轮相遇概率为(1/15)*两队晋级第二轮概率;第三轮概率为(1/7)*两队晋级到第三轮的概率;第四轮概率为(1/3)*两队晋级到第四轮概率;第五轮也就是决赛相遇概率为两队同时进决赛概率。
3.计算结果(假定所有比赛中双方获胜概率都为50%):第一轮相遇1/31,第二轮1/62,第三轮1/124,第四轮1/248,第五轮1/496。
由于被淘汰而不会相遇的概率是:15/16。
二、小组淘汰制(假定32支球队参加)1. 比赛规则:先进行小组抽签,每小组四支球队,小组前两名出线进行单轮淘汰。
2. 概率计算:小组赛相遇概率为1/31,第一轮淘汰赛相遇概率为(1/15)*两队分别小组第一、第二出线概率,第二轮淘汰赛相遇概率为(1/7)*两队晋级第二轮淘汰赛概率,半决赛相遇的概率为两队进半决赛的概率*1/3,决赛两队必相遇,所以相遇概率为进决赛概率。
3. 计算结果(假定所有比赛中双方获胜概率都为50%):小组赛1/31,第一轮淘汰赛1/248,第二轮淘汰赛1/496,半决赛1/992,决赛1/1984,由于被淘汰不会相遇的概率为1905/1984。
三、总结分析以上两种赛制是目前所有赛制的基础,不过目前各大杯赛如:世界杯、欧冠、各大洲的杯赛等等都会加入各种抽签规则。
概率论与数理统计论文
概率论与数理统计论文•相关推荐概率论与数理统计论文(精选16篇)在学习、工作生活中,大家最不陌生的就是论文了吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。
那么,怎么去写论文呢?下面是小编为大家收集的概率论与数理统计论文,欢迎阅读,希望大家能够喜欢。
概率论与数理统计论文篇1摘要:在现实世界中,随着科学的发展,数学在生活中的应用越来越广,无处不在。
而概率统作为数学的一个重要分支,同样也在发挥着越来越广泛的用处。
概率统计正广泛地应用到各行各业:买保险、排队问题、患遗传病、天气预报、经济预测、交通管理、医疗诊断等问题,成为我们认识世界、了解世界和改造世界的工具,它与我们的实际生活更是息息相关,密不可分。
关键词:概率论,概率论的发展与应用正文一、概率论的起源说起概率论起源的故事,就要提到法国的两个数学家。
一个叫做帕斯卡,一个叫做费马。
帕斯卡是17世纪有名的“神童”数学家。
费马是一位业余的大数学家,许多故事都与他有关。
1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。
这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。
赌了半天,A赢了4局,B赢了3局,时间很晚了,他们都不想再赌下去了。
那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。
于是他写信给的好友费马,两人讨论结果,取得了一致的意见:赌友应得64金币的。
通过这次讨论,开始形成了概率论当中一个重要的概念——数学期望。
这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。
讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。
二、概率论的发展概率论的应用在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。
概率论 结业论文
概率论与数理统计与生活的紧密联系在大二上学期,我们接触到了《概率论与数理统计》这门课程。
可以说这门课程给人的第一感觉就是与生活息息相关,统计的思想可谓来源于生活,服务与生活。
而作为来自黑龙江的新课改考生,高中时我们就对概率初级有了一定的了解,因而在学科开始时感到熟悉又轻松,不觉地有些懈怠。
随着课程的推进,知识量的增多,深度的加深,蓦地发现其实“概率论”这东西并不是简单地算算概率、求求方差而已的数学计算,而是一门大学问——来源生活、高于生活的学问。
概率论与数理统计的发展对于其历史,高中时代便听说其来源不仅来自生活,而且很有意思,竟是与赌博有很深的渊源。
因此说概率论来源于生活这是一点都不假的。
据资料记载,概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢 m 局就算赢,全部赌本就归谁。
但是当其中一个人赢了 a (a<m)局,另一个人赢了 b(b<m)局的时候,赌博中止。
问:赌本应该如何分法才合理?三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。
而后,瑞士数学家伯努利作为是概率论成为数学的一个分支的奠基人之一,建立了概率论中第一个极限定理——伯努利大数定律,阐明了事件发生的频率稳定于它的概率。
随后,棣莫弗和拉普拉斯又导出了第二个基本极限定理的原始形势,将概率论发展向一个新的高潮。
19世纪末,俄国数学家切比雪夫、马尔科夫、李雅普诺夫等人用分析法建立了大数定律及中心极限定理的一般形式,科学的解释了为什么在生活中遇到的许多随机变量都近似的服从于正态分布。
20世纪初,由于大量的实际问题需要,爱因斯坦、维纳和列为等对布朗在显微镜下观察到的划分微粒的无规则运动进行开创性的理论分析,提出了布朗运动数学模型;爱尔兰等人则在电话流中研究了泊松过程,成为排队论的首创者;至今,对于随机过程的研究以及与其他新兴学科的交叉而形成的边缘学科的研究仍在继续。
论文-概率论论文
论文-概率论论文标题:概率论在实际应用中的研究摘要:概率论是数学中的重要分支,广泛应用于科学、工程、金融等领域。
本论文旨在探讨概率论在实际应用中的研究,包括统计推断、风险评估、模式识别等方面。
通过详细分析概率论在各个领域的应用案例,揭示其在实际问题中的作用和价值,并提出未来研究的方向和挑战。
引言:概率论是描述随机事件发生概率的数学分支,它在现实生活中的应用越来越广泛。
通过概率论的方法,我们能够对随机事件进行建模和分析,从而为决策提供有力支持。
本论文将重点介绍概率论在统计推断、风险评估和模式识别等方面的应用,并探讨其在实际问题中的作用。
主体:1.统计推断:概率论是统计学中最重要的工具之一。
通过概率论的方法,我们可以对现有数据进行分析,从而推断出总体的未知特征。
例如,通过对抽样数据进行统计推断,我们可以估计总体的均值、方差等参数,并对总体的区间估计进行评估。
此外,概率论还可以用于假设检验,判断不同样本之间是否存在显著差异。
2.风险评估:概率论在风险评估领域的应用十分重要。
通过对风险事件进行概率建模和分析,我们可以评估风险事件发生的可能性和影响程度。
这种风险评估的方法被广泛应用于金融、保险、项目管理等领域。
例如,在金融领域,我们可以使用概率论来评估投资组合的风险和收益,并进行资产配置的决策。
3.模式识别:概率论在模式识别中的应用也十分重要。
模式识别是指通过对数据的建模和分类,识别出数据中的特定模式。
概率论为模式识别提供了一种强大的工具。
例如,在图像识别中,我们可以使用概率论的方法来建立分类模型,并通过概率计算判断图像属于某一类别的可能性。
结论:本论文对概率论在实际应用中的研究进行了综述。
通过在统计推断、风险评估和模式识别等方面的应用案例分析,我们可以看到概率论在各个领域中的作用和价值。
然而,概率论在实际应用中仍面临一些挑战,如大样本问题、高维问题等。
未来,我们需要继续研究概率论在实际问题中的应用,并探索解决这些挑战的方法。
概率论论文-用概率论知识解决实际问题 -
用概率论知识解决实际问题概率论是一门与生活联系紧密的学科, 它的起源与赌博有关,随着科学的发展,人们注意到社会科学与自然科学中许多随机现象与机会游戏之间十分相似,如人口统计、误差分析、产品检验、质量控制等,从而机会游戏起源的概率论被应用到这些领域中。
下面看两个用概率论解决实际问题的例子:一、合理配置维修工人问题 设有同类型仪器300台,他们的工作是相互独立的,且发生故障的概率均为0.01.一台仪器发生了故障,一个工人可以排除。
(1)问至少配置多少个维修工人,才能保证仪器发生故障但不能及时排除的概率小于0.01? 解:仪器发生故障不能及时排除事件用A 表示,设配置x 个维修工人,则A 等价于事件“同时发生故障的仪器数>x ”由于300台仪器在同一时间内是否正常工作可看成是300重的伯努利试验,成功(发生故障)的概率p=0.01,故(A P =)(3001300k x k P∑+==k k x k k C -+=∑3003001300)99.0()01.0(, 因为n 很大,p 很小,且λ=np=300×0.01=3,超几何分布可近似为泊松分布, )(A P ≈∑∑∞+=-+=-≈1330013!3!3x k k x k k k e k e 由次式应有∑∞+=-13!3x k k k e < 0.01 查表知∑∞=-83!3k k k e =0.01191 , ∑∞=-93!3k k k e =0.00380 于是x+1=9, x=8故只需配8个维修工人就可达到要求(2)若一个人包干20台仪器,求仪器发生故障而不能及时排除的概率。
解:设仪器发生故障而不能及时排除的事件为B,则B 等价于事件“在20台仪器中,同一时间发生故障的仪器数>1”。
由于20台仪器在同一时间内是否发生故障可看成是20重的伯努利试验,成功(发生故障)的概率p=0.01.故k k k k k C k PB P -==∑∑==202022020220)99.0()01.0()()( 01752.0!2.0!2.022.02022.0=≈≈∑∑∞=-=-k k k k k e k e本题中,我们可以看出,当一个人包干20台仪器的维修任务时,仪器发生故障而不能及时维修的概率大于0.01;而8个工人共同负责300台仪器的维修任务时(平均每人37.5台),仪器发生故障而不能及时排除的概率却小于0.01,故一个人单干不如8个工人合作好。
概率论论文模板(1)
概率论论文模板(1)概率论与数理统计课程论文课程名称:概率论与数理统计院系:计算机科学与信息工程学院学生姓名:张磊学号: 14031110129 专业班级:网络工程(一)班指导教师:张庆丰目录.摘要,,,,,,,,,,,,,,,,,,,,,,,,,3一、对概率论与数理统计的认识,,,,,41.1概率论的起源和发展,,,,,,,,,,,,,,,,,,4 1.2数理统计的起源和发展,,,,,,,,,,,,,41.3两者的结合,,,,,,,,,,,,,,,,,,,,,,4二、生活实例与其数学解析,,,,,,,,,,,,,42.1对于彩票行业的应用,,,,,,,,,,,,,,,52.2对于进货问题的应用,,,,,,,,,,,,,,,,62.3在防范金融风险中的应用,,,,,,,,,,,,,,62.4.小概率原理在工业生产中的应用,,,,,,,,7三、收获与致谢,,,,,,,,,,,,,,,,,,,,,,7四、参考文献,,,,,,,,,,,,,,,,,,,,,8概率论与数理统计的认识与应用摘要:概率论是对随机现象的统计规律进行演绎归纳的一门科学,是从数量上研究随机现象的客观规律的一门数学科学。
概率论的理论基础基于数理统计与分析。
如今,概率论已经广泛应用于自然科学、社会科学、工程技术、工农业生产等诸多领域。
成为近代经济管理、科学研究、工业生产等方面的重要工具。
总之,概率论与数理统计已经和我们的生活息息相关,也成为我们大学课程里面不可或缺的一门基础课。
关键词:概率论、数理统计、随机现象、演绎归纳、一、概率论与数理统计的起源和发展1.1概率论起源与发展概率论的研究始于意大利文艺复兴时期,当时赌博盛行,而且赌法复杂,赌注量大,一些职业赌徒,为求增加获胜机会,迫切需要计算取胜的思路,研究不输的方法,十七世纪中叶,帕斯卡和当时一流的数学家费尔马一起,研究了德·美黑提出的关于骰子赌博的问题,这就是概率论的萌芽。
概率论毕业论文:概率论起源_毕业论文范文_
概率论毕业论文:概率论起源概率论是一门应用非常广泛的学科。
在数学史上,它的产生是以帕斯卡和费马在1654 年的七封通信为标志的。
由于这些信件中所解决的问题多是与赌博有关的点数问题,因此人们总是把概率论的产生归功于赌博这项机遇游戏。
但考古学发现告诉我们,赌博游戏早在文明初期就已经存在了,迄今已有几千年的历史,而概率论从诞生至今不过三百余年,这说明赌博并不是概率论产生的决定性条件。
在从赌博出现到概率论产生之间的这段“空白”期,必定还有一些十分关键的因素正在孕育之中。
那么这些因素是什么? 换句话说,需要具备哪些先决条件,概率论才能得以形成?一独立随机过程的出现对概率论而言,两个最主要的概念就是独立性和随机性[1 ] 。
概率论是从研究古典概型开始的,它所涉及的研究对象是大量的独立随机过程。
通过对这些过程中出现的问题的解决,概率理论体系才逐渐地建立起来。
因此要考察概率论的产生条件,我们首先应当对独立随机过程的产生有充分的了解。
事实上,这种过程的雏形早在原始社会就已经存在了,那时的占卜师们使用动物的趾骨作为占卜工具,将一个或多个趾骨投掷出去,趾骨落地后的不同形状指示神对人事的不同意见。
由于投掷趾骨这个过程所产生的结果具有不可预测性,而每次投掷的结果也互不影响,这与我们今天投掷骰子的基本原理相当,因此趾骨可以被看作是骰子的雏形。
但是由于趾骨形状的规则性较差,各种结果出现的机率不完全相同(即不具备等可能性) ,所以趾骨产生的随机过程还不是我们今天意义上的独立随机过程。
加之趾骨作为一种占卜工具,其本身具有神圣的地位,普通人不可能轻易使用,这也在某种程度上阻碍了人们对随机过程的认识。
随着社会的进步和文明的发展,骰子变得越来越普遍,不仅数量增多,规则性也日益精良,此时它已不再是一件神圣的器具而逐渐成为普通大众的日常用具。
从原理上看,只要一枚骰子是质地均匀的,它就可以产生一系列标准的独立随机过程。
这些过程具备良好的性质(独立性、随机性、等可能性) ,是进行概率研究的理想对象。
概率论研究方法毕业论文
概率论研究方法毕业论文概论:概率论作为数学的一个分支,研究的是随机现象的规律性和统计规律。
概率论研究方法是概率论研究过程中所运用的方法,旨在帮助研究者进行科学地、系统地研究和分析概率论问题。
一、概率论研究方法的基本原理1.随机试验与样本空间:概率论研究方法首先要建立合适的数学模型,用来描述相应随机现象。
随机试验是概率论研究的基本方法之一,通过随机试验来研究事件的概率。
样本空间是随机试验中所有可能的结果的集合,对于每个结果都可以进行概率分析。
2.事件与概率:事件是样本空间的子集,是随机试验中我们关心的某些结果的集合。
事件的概率是衡量这个事件发生可能性大小的数值,它是从样本空间到实数集合的映射,满足一些基本性质,如非负性、规范化等。
3.概率公理与概率计算:概率公理是概率论的基础,包括可数可加性、非负性、规范性等。
通过概率计算方法,我们可以根据已知信息计算出事件的概率。
二、概率论研究方法的具体应用1.概率分布:概率分布是描述随机变量取值的概率规律的函数。
常见的概率分布有离散型概率分布和连续型概率分布。
概率分布的研究方法包括概率密度函数、累积分布函数、期望、方差等统计性质的计算和分析。
2.随机变量的分类与性质:随机变量是在一次随机试验中依赖于试验结果而取不同值的变量。
根据随机变量的性质和取值范围的不同,可以分为离散型随机变量和连续型随机变量。
对不同类型的随机变量进行分类和性质的研究是概率论研究方法的重要内容。
3.多维概率分析:多维概率分析研究的是多个随机变量之间的相互关系。
通过多维概率分析可以研究多个随机变量的联合分布、边缘分布、条件分布等。
多维概率分析在金融、统计建模等领域有广泛应用。
三、概率论研究方法的实例以投掷硬币为例,说明概率论研究方法的应用过程:1.确定样本空间:投掷硬币一次的结果可能为正面或反面,所以样本空间为S={正,反}。
2.确定事件与概率:事件可以是“出现正面”和“出现反面”,对应的概率分别为P(正)=0.5和P(反)=0.5。
论文题目:概率论在生活中的
文献研究: 文献研究:通过 研究方法: 在中国期刊网查 阅有关资料, 阅有关资料,在 图书馆及网上查 阅相关资料, 阅相关资料,为 本文的研究提供 理论支持和方法 指导。 指导。
概率论的定义
概率论
概率论的起源于发展 概率论在生活中的应用
主 要 内 容
小概率事件的定义 小概率原理
小概率事件
日常生活 中小概率 事件举例
彩票 医学 商业 个人生活 工厂生产 灾难预测 其它方面Leabharlann 小概率事件: 小概率事件:
看似不起眼的小概率事件, 看似不起眼的小概率事件,往往 会对生活造成很大的影响,我们 会对生活造成很大的影响, 要努力学好它, 要努力学好它,把它更好地应用 于实际生活。 于实际生活。尽量避免看似不起 眼的小概率事件带来的不便。 眼的小概率事件带来的不便。
应用: 应用:
把理论应用于实际, 把理论应用于实际,让知识更好的 指导生活, 指导生活,学以致用才是学习的目 标。
选题目的:
概率论与我们的生活是密切联系, 概率论与我们的生活是密切联系, 概率论来源于生活, 概率论来源于生活,同时有服务 于生活,尤其是小概率原理。 于生活,尤其是小概率原理。小 概率原理是概率论中一个虽简单 但却颇有实用意义的原理, 但却颇有实用意义的原理,充分 的理解并掌握小概率事件原理, 的理解并掌握小概率事件原理, 尽量避免不起眼的不利小概率事 件给生活带来的不便。 件给生活带来的不便。同时初步 理解学以致用的过程。 理解学以致用的过程。
论文题目: 论文题目:概率论在生活 中的应用— 中的应用 以小概率事件为
例
关键词 创新点 研究方法
主要内容 选题目的 结论
关键词: 关键词:
关键词
概率论: 概率论:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分在概率论与数理统计中的应用
摘要: 大二概率论课程结课了,在这门课上我学到了一些关于概率论和数理统计的许多知
识。
这些知识既可以对我的专业方面有很大的指导作用、强化了我相关的数理逻辑
能力。
课后,在兴趣的激励下,我从课本、习题以及相关网络资源中找到了更多关
于概率论与数理统计的知识。
现通过这篇论文对我学习过程中的体会,并结合以往
的数学知识(重点在微积分部分)
关键词:概率论与数理统计 其他数学知识 微积分
概率论与数理统计是研究随机现象统计规律的一门数学学科,已在包括控制、通信、生物、物理、力学、金融、社会科学、以及其他工程技术科学等诸多领域中获得了广泛的应用。
学习和掌握概率论与数理统计的基本理论和基本方法并将应用于科学研究的和工程实际中,是社会发展对高素质人才培养提出的必然要求。
----概率论与数理统计(前言) 一般认为, 概率论源于赌博问题, 创立于 1654年7 月29 日 。
考古证实骰子古而有之, 那么为何直到17 世纪概率论才诞生? 历史表明概率论的诞生和发展需要先进的数学技术和理性的思考。
众所周知, 概率论的大厦是建筑在微积分的地基之上的, 如在函数关系的对应下, 随机事件先是被简化为集合, 继之被简化为实数, 随着样本空间被简化为数集, 概率相应地由集函数约化为实函数. 以函数的观点衡量分布函数F(x),F(x)的性质是十分良好的: 单调有界、 可积、 几乎处处连续、 几乎处处可导. 因之, 微积分中有关函数的种种思想方法可以通畅无阻地进入概率论领域. 随机变量的数字特征、 概率密度与分布函数的关系、 连续型随机变量的计算等, 显然借鉴或搬运了微积分的现有成果. 又如概率论中运用微积分的基础 ) ) ) 极限论的地方也非常多, 诸如分布函数的性质、大数定律、 中心极限定理等. 总之, 微积分的思想方法渗透到了概率论的各个方面, 换言之, 没有微积分的推动, 就没有概率论的公理化与系统化, 概率论就难以形成一门独立的学科. 微积分与概率论的亲缘关系, 决定了概率论的确定论的特征. 但是作为微积分的一门后继课程, 概率论并非按微积分中的思维方法发展下去,而是另辟蹊径, 其发展路径与微积分大相径庭, 最终成为了随机数学的典型代表, 具备了与微积分相当的地位. 更因其非线性、 反因果的非理性特征, 显得比经典的微积分更具有时代精神. 而作为确定性数学典型代表的微积分对概率论的发展具有很大作用, 因此讨论微积分在概率论中的地位, 探究概率论与微积分的联系及方法的相互应用作用巨大。
这里以一些实例从一个侧面体现概率论与微积分的联系, 与此同时给出了求解形如dx e c bx ax k jx ix )(22)(++-+∞
∞-⎰++。
1.概率论中的微积分解题方法
1.1 微分法
某些随机事件的概率有依赖于1个变量的特点(比如依赖于时间变量等).该概率作为1个未知函数,有类比于通过微分方程确定未知函数的途径。
从局部性质(增量研究)入手,由微分的方法可求出所需的概率。
例 1某机器在△t 时间内因故障而停止的概率为a △t +o(△t)(a 为正常数).如果机器在不 重叠的时间内停止的各个事件彼此独立,如在时刻t 0机器在工作着. 试求此机器由时刻t 0到t 0+t 这段时间内不停工作的概率.
解: 在机器工作稳定的情况下,所求概率应该只与时间区间[t 0,t 0+t]的长短有关,而与起点 t 0无关。
故所求概率只是t 的函数,记为P(t).由于对P(t)的整体性状的信息认识不足,只是局部地知道机器在充分小的△t 时间内因故障停车的概率为a △t+ o(△t) ,可以先去考查P(t)在局部范围的增量变化特征。
明显地,机器在[t 0,t 0+t+△t]内不停,当且仅当在[t 0,t 0+t ] 及[t 0+t,t 0+t+△t]2段时间内都不停时才成立。
利用这2个事件的独立性可得
P(t +△t) = P(t)P(△t)=P(t)[1-a △t-o(△t)]
P(t+△t)-P(t)=-a P(t)△t-P(t)o(△t)
P(t+△t)-P(t)=-a P(t)△t -P(t)o(1)注意到P(t)的有界性,令△ty=0, 得到
dP(t)/dt=-aP(t),这就是未知概率P(t)所应满足的微分方程. 解此方P(t)=Ce -at ,其中C 为
任意常数.由假定在时刻t 0机器在工作, 此即是初始条件P(0)=1,于是可求出c = 1,故得
P(t)=e-
at 1 2 逐项微分法
根据变量数学期望与方差的定义, 利用随机变量的概率分布或分布密度的特点, 可以用逐项微分法求出随机变量的数学期望与方差. 对于概率分布或分布密度含有参数的随机变量, 也可应用逐项微分法求出其数学期望与方差.
设离散型随机变量 N 的概率分布为P(N=a i ) =Pi , i = 1, 2,…,n ,满足 0≤Pi ≤1,其中Pi 含有参数( i = 1, 2, ,, n ) ,在求数学期望E(N)时,可通过对Σpi=1两边关于参数求导以达到目的. 而在求方差 D(N)时,可对E(N)=a ( a 是上面求出之值)
两边再对参数求导得 E(N 2) , 再由 D(N)=E(N 2) -[E(N)]2得出结果.
例 2设随机变量 N~P(K),求E(N)与D(N)。
分析: 先将λλe
k k k =∑∞=0!两边对λ求导后, 再将其变形可得 λλλe k k k k =∑∞=0!
, 于是由式( 1) 便可得E(N)=λ;又对式(1)两边关于K 求导后再变形可求得E(N 2),最后由D(N)=E(N 2)-[E
(N)]2可求得D(N).( 求解过程略) .
对于连续型的情况可以类似求解.
1.3 幂级数法
例 3设随机变量 N 服从参数为(r,p)的负二项分布(r\1,0<p<1),即P{N=m}=
r m r r m r m q p C -∞=--∑11
,m=r,r+1,…,q=1-p,求E(N).
分析:其计算过程用到公式r m r m r m r x C x -∞=+∑=-1)1(1, 该公式是由∑∞==-r m m x x 11(0<x<1)连续逐项求导r 次后得到的.事实上E(N)=r/p
1.4 特殊函数法Gamma 函数与Beta 函数在概率论中有着广泛的应用,借助Gamma 函数,概
率论中有重要的Γ分布和x 2分布.
例 4设随机变量N1,N2,…,Nn 相互独立,且服从参数为K 的指数分布,N=∑=n
i N n 1
1 求证 E 1
-n n ]1[=N λ 证明: 令 y = N1+N2+…+Nn,由于Ni(i=1,2,…,n ) 服从参数为k 的指数分布, 即服从 Gamma 分布
Γ( 1, K ) , 又它们相互独立, 由Γ分布的可加性知 N1+N2+…+Nn ~ Γ( n , K ) , 所以 E[N 1]=E[Nn N N n +++...21]=E[y n ]=⎰∞---=Γ011)(λλλn n y n n
dy e y n y n 由此可见, 微积分是
学习概率论的基础, 所以, 犹如以上几例经常遇到用微积分的基本方法去解决一些概率问题. 而下面将从以下几个方面说明微积分中一些不太好解决的问题可以很方便地用概率的方法去解决.
分析表明, 数学技术是概率论发展的保证 。
概率论的发展虽源于多种因素, 但总脱离不了先进的数学技术 。
现今概率论又作为数学技术来推动其他学科的发展 。
作为科学探索的特色方法, 概率推理的显著功效已引起相关理论研究和应用研究的爆炸性增长。
概率思想是统计学的理论基础, 是物理学、遗传学和信息论的重要工具, 是金融学 、 地球科学 、 神经学、人工智能和通讯网络等学科的常用方法。
概率论愈来愈大的影响已引起科学家愈来愈高的重视, 概率思想的研究已成为数学家和数学史家关注的热点之一 。
而微积分与概率论的关系也将会越来越紧密,开发微积分在概率论与数理统计方面的应用也将越来越受到大家的重视。
参考文献
[1]杨静,徐传胜.数学技术与概率论的发展[J].太原理工大学学报(社会科学版),2008,01:49-54.
[2]王大胄.例谈概率论与微积分的联系及相互间的应用[J].沈阳工程学院学报(自然科学版),2008,03:283-286.。