自己写的单片机矩阵键盘显示程序及仿真

合集下载

单片机矩阵键盘程序

单片机矩阵键盘程序

#include <reg51.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned intuchar dis_buf; //显示缓存uchar temp;uchar key; //键顺序吗void delay0(uchar x); //x*0.14MSsbit LCD_RW = P2^5;sbit LCD_RS = P2^6;sbit LCD_EN = P2^7;uchar cdis1[16] = {" KEY NUMBER "};uchar cdis2[16] = {" KEY-CODE: H "};#define delayNOP(); {_nop_();_nop_();_nop_();_nop_();};/* 延时子程序*/void delay(uchar x){ uchar j;while((x--)!=0){ for(j=0;j<125;j++){;}}}/* */ /*检查LCD忙状态*/ /*lcd_busy为1时,忙,等待。

lcd-busy为0时,闲,可写指令与数据*/ /* */bit lcd_busy(){bit result;LCD_RS = 0;LCD_RW = 1;LCD_EN = 1;delayNOP();result = (bit)(P0&0x80);LCD_EN = 0;return(result);}/*******************************************************************//* *//*写指令数据到LCD */ /*RS=L,RW=L,E=高脉冲,D0-D7=指令码。

*/ /* *//*******************************************************************/void lcd_wcmd(uchar cmd){while(lcd_busy());LCD_RS = 0;LCD_RW = 0;LCD_EN = 0;_nop_();_nop_();P0 = cmd;delayNOP();LCD_EN = 1;delayNOP();LCD_EN = 0;}/* *//*写显示数据到LCD */ /*RS=H,RW=L,E=高脉冲,D0-D7=数据。

基于单片机的矩阵键盘操作实验

基于单片机的矩阵键盘操作实验

实验十二基于单片机的矩阵键盘操作实验12.1 实验目的1. 掌握单片机AT89C52与矩阵键盘的接口技术。

2. 用protues实现该接口的电路设计和程序设计,并进行实时交互仿真。

3. AT89C52单片机对4×4矩阵键盘进行动态扫描,当按完一次键盘时,可将相应按键值(0-F)实时显示在数码管上。

12.2 PROTUES电路设计单片机与矩阵键盘的接口电路原理图如图12-1所示。

图12-1 单片机与矩阵键盘的接口电路原理图12.3 实验内容键盘分编码键盘和非编码键盘。

键盘上闭合键的识别由专用的硬件编码器实现,并产生键编码号或键值的称为编码键盘,如计算机键盘。

在单片机组成的各种系统中,用的最多的是非编码键盘,也有用到编码键盘的。

1.从PROTUES库中选取元器件① AT89C52:单片机;② RES:电阻;③ 7SEG-MPX2-CC-BLUE:七段共阴绿色数码管;④ CAP/CAP-ELEC:电容、电解电容;⑤ CRYSTAL:晶振;⑥ BUTTON:按键。

2.放置元器件3.放置电源和地(终端)4.连线5.元器件属性设置6.电气检测12.4 程序设计1. 流程图矩阵键盘操作程序流程图如图12-2所示。

图12-2 矩阵键盘操作程序流程图2.源程序设计C程序设计:#include<reg52.h>#define uint unsigned int#define uchar unsigned charsbit we1=P1^0;uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0};uchar num,temp,num1;void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}uchar keyscan();void display(uchar aa);void main(){num=17;while(1){display(keyscan());}}void display(uchar aa){P2=table[aa-1];we1=0;}uchar keyscan(){P3=0xfe;temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){case 0xee:num=1;break;case 0xde:num=2;break;case 0xbe:num=3;break;case 0x7e:num=4;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}P3=0xfd;temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){case 0xed:num=5;break;case 0xdd:num=6;break;case 0xbd:num=7;break;case 0x7d:num=8;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}P3=0xfb;temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){case 0xeb:num=9;break;case 0xdb:num=10;break;case 0xbb:num=11;break;case 0x7b:num=12;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}P3=0xf7;temp=P3;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=P3;temp=temp&0xf0;while(temp!=0xf0){temp=P3;switch(temp){case 0xe7:num=13;break;case 0xd7:num=14;break;case 0xb7:num=15;break;case 0x77:num=16;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}return num;}12.5 PROTUES仿真矩阵键盘仿真图如图12-3所示。

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

单片机矩阵键盘实验实验报告一、实验目的本次实验的目的是掌握原理和方法,利用单片机识别矩阵键盘并编程实现键码转换功能,控制LED点亮显示。

二、实验原理矩阵键盘是一种由多路单向控制器输入行选择信号与列选择信号连接而形成的一一对应矩阵排列结构。

它广泛应用于电子游戏机、办公自动化设备、医疗仪器、家电控制及书籍检索机器等方面。

本次实验采用的矩阵键盘是一个4 x 4矩阵,用4段数码管显示按键编码,每个按键都可以输入一个代码,矩阵键盘连接单片机,实现一个软件算法来识别键码转化。

从而将键盘中的按键的按下信号转换成程序能够识别的代码,置于相应的输出结果中,控制LED点亮,从而可以实现矩阵键盘按键的转换功能。

三、实验方法1.硬件搭建:矩阵键盘(4行4列)与单片机(Atmel AT89C51)相连,选择引脚连接,并将数码管和LED与单片机相连以实现显示和点亮的功能。

2.程序设计:先建立控制体系,利用中断服务子程序识别和码值转换,利用中断服务子程序实现从按键的按下信号转换为程序能够识别的代码,然后将该代码段编写到单片机程序中,每次按下矩阵键盘按键后单片机给出相应的按键编码输出,用数码管显示,控制LED点亮。

四、实验结果经过实验,成功实现了矩阵键盘与单片机之间的连接,编写了中断服务子程序,完成了按键编码输出与LED点亮的功能。

实验完成后,数码管显示各种按键的编码,同时LED会点亮。

本次实验介绍了矩阵键盘的原理,论述了键码转换的程序设计步骤,并实验完成矩阵键盘与单片机的连接,实现用LED点亮以及数码管显示按键的编码。

通过本次实验,受益匪浅,使我对使用单片机编写算法与程序有了更深入的认识,同时丰富了课堂学习的内容,也使我更加热爱自己所学的专业。

(整理)自己写的单片机矩阵键盘显示程序及仿真

(整理)自己写的单片机矩阵键盘显示程序及仿真

Protues 电路连接图如下所示:PS:矩阵键盘说明——4×4矩阵从左到右依次编码为1,,3,4,5,6,7,8,9,10,11,12,13,14,15,16 按下某一按键,Led数码管就会显示相应的数字。

Keil C51 程序如下:有点不足望改进。

O(∩_∩)O谢谢!!!////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #include <reg51.h>#define uchar unsigned char //宏的定义变量类型uchar 代替unsigned char#define uint unsigned int //宏的定义变量类型uint 代替unsigned intuchar dis_buf; //显示缓存uchar temp;uchar l,h,j; //定义行列void delay0(uchar x); //x*0.14MS// 此表为LED 的字模0 1 2 3 4 5 6 78 9uchar code LED7Code[] = {0xc0,0xf9,~0x5B,~0x4F,~0x66,~0x6D,~0x7D,~0x07,~0x7F,~0x6F};/************************************************************** ** 延时子程序** * *************************************************************/void delay(uchar x){ uchar j;while((x--)!=0) //CPU执行x*12次,x=10{ for(j=0;j<50;j++){;}}}/************************************************************* * * * 键扫描子程序(4*4的矩阵) P1.4 P1.5 P1.6 P1.7为行** P1.0 P1.1 P1.2 P1.3为列** * *************************************************************/void keyscan(void){ temp=0;P1=0xF0; //高四位输入行为高电平列为低电delay(3); //延时temp=P1; //读P1口temp=temp&0xF0;//屏蔽低四位temp=~((temp>>4)|0xF0); //高四位取反无键按下取反应为0xf0if(temp==1) //0001 [1,1] 被拉低h=1;else if(temp==2) //0010[2,1] 被拉低h=2;else if(temp==4) //0100[3,1] 被拉低h=3;else if(temp==8) //1000[4,1] 被拉低h=4;dis_buf = h;dis_buf = (dis_buf<<4) & 0xf0; //行信息现存在第四位delay(10);P1=0x0F; //低四位输入列为高电平行为低电平delay(3); //延时temp=P1; //读P1口temp=temp&0x0F; //屏蔽高四位temp=~(temp|0xF0); //取反if(temp==1) //1列被拉低l=1;else if(temp==2) //2列被拉低l=2;else if(temp==4) //3列被拉低l=3;else if(temp==8) //4列被拉低l=4;l= l & 0x0f;delay(3);dis_buf= l | dis_buf;}/************************************************************** **判断键是否按下** **************************************************************/void keydown(void){P2=0xF0; //显示00P3=0xf0;//将高4位全部置1 低四位全部置0if(P1!=0xF0) //判断按键是否按下如果按钮按下会拉低P1其中的一个端口{keyscan(); //调用按键扫描程序}}void display( ){j=50;while(j){P2= 0x80;P0= LED7Code[0];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display1( ){j=50;while(j){P2= 0x80;P0= LED7Code[2];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display2( ){j=50;while(j){P2= 0x80;P0= LED7Code[3];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display3( ){j=50;while(j){P2= 0x80;P0= LED7Code[4];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display4( ){j=50;while(j){P2= 0x80;P0= LED7Code[5];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display5( ){j=50;while(j){P2= 0x80;P0= LED7Code[6];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}/************************************************************* * * * 主程序* * * *************************************************************/ void main(){P0=0xc0;delay(20); //延时while(1){ keydown(); //调用按键判断检测程序switch( dis_buf){case 0x11 : P2=0x80; P0= LED7Code[1]; break;case 0x12 : P2=0x80; P0= LED7Code[2]; break;case 0x13 : P2=0x80; P0= LED7Code[3]; break;case 0x14 : P2=0x80; P0= LED7Code[4]; break;case 0x21 : P2=0x80; P0= LED7Code[5]; break;case 0x22 : P2=0x80; P0= LED7Code[6]; break;case 0x23 : P2=0x80; P0= LED7Code[7]; break;case 0x24 : P2=0x80; P0= LED7Code[8]; break;case 0x31 : P2=0x80; P0= LED7Code[9]; break;case 0x32 : display();break;case 0x33 : P2 = LED7Code[1]; P0= LED7Code[1]; break;case 0x34 : display1(); break;case 0x41 : display2(); break;case 0x42 : display3();; break;case 0x43 : display4();; break;case 0x44 : display5();; break;}delay(250);}}//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////。

单片机实验报告——矩阵键盘数码管显示

单片机实验报告——矩阵键盘数码管显示

单片机实验报告信息处理实验实验二矩阵键盘专业:电气工程及其自动化指导老师:***组员:明洪开张鸿伟张谦赵智奇学号:152703117 \152703115\152703118\152703114室温:18 ℃日期:2017 年10 月25日矩阵键盘一、实验内容1、编写程序,做到在键盘上每按一个键(0-F)用数码管将该建对应的名字显示出来。

按其它键没有结果。

二、实验目的1、学习独立式按键的查询识别方法。

2、非编码矩阵键盘的行反转法识别方法。

3、掌握键盘接口的基本特点,了解独立键盘和矩阵键盘的应用方法。

4、掌握键盘接口的硬件设计方法,软件程序设计和贴士排错能力。

5、掌握利用Keil51软件对程序进行编译。

6、会根据实际功能,正确选择单片机功能接线,编制正确程序。

对实验结果能做出分析和解释,能写出符合规格的实验报告。

三、实验原理1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。

2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。

3、识别键的闭合,通常采用行扫描法和行反转法。

行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。

行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。

然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。

这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。

由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。

自己写的单片机矩阵键盘显示程序及仿真

自己写的单片机矩阵键盘显示程序及仿真

Protues 电路连接图如下所示:PS:矩阵键盘说明——4×4矩阵从左到右依次编码为1,,3,4,5,6,7,8,9,10,11,12,13,14,15,16按下某一按键,Led数码管就会显示相应的数字。

Keil C51 程序如下:有点不足望改进。

O(∩_∩)O谢谢!!!/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////#include <reg51.h>#define uchar unsigned char //宏的定义变量类型 uchar 代替 unsigned char#define uint unsigned int //宏的定义变量类型 uint 代替 unsigned intuchar dis_buf; //显示缓存uchar temp;uchar l,h,j; //定义行列void delay0(uchar x); //x*0.14MS// 此表为 LED 的字模 0 1 2 3 4 5 6 78 9uchar code LED7Code[] = {0xc0,0xf9,~0x5B,~0x4F,~0x66,~0x6D,~0x7D,~0x07,~0x7F,~0x6F};/************************************************************* * ** 延时子程序 ** **************************************************************/void delay(uchar x){ uchar j;while((x--)!=0) //CPU执行x*12次,x=10{ for(j=0;j<50;j++){;}}}/************************************************************* * * * 键扫描子程序 (4*4的矩阵) P1.4 P1.5 P1.6 P1.7为行 * * P1.0 P1.1 P1.2 P1.3为列 ** * *************************************************************/void keyscan(void){ temp=0;P1=0xF0; //高四位输入行为高电平列为低电delay(3); //延时temp=P1; //读P1口temp=temp&0xF0;//屏蔽低四位temp=~((temp>>4)|0xF0); //高四位取反无键按下取反应为0xf0if(temp==1) //0001 [1,1] 被拉低h=1;else if(temp==2) //0010[2,1] 被拉低h=2;else if(temp==4) //0100[3,1] 被拉低h=3;else if(temp==8) //1000[4,1] 被拉低h=4;dis_buf = h;dis_buf = (dis_buf<<4) & 0xf0; //行信息现存在第四位delay(10);P1=0x0F; //低四位输入列为高电平行为低电平delay(3); //延时temp=P1; //读P1口temp=temp&0x0F; //屏蔽高四位temp=~(temp|0xF0); //取反if(temp==1) //1列被拉低l=1;else if(temp==2) //2列被拉低l=2;else if(temp==4) //3列被拉低l=3;else if(temp==8) //4列被拉低l=4;l= l & 0x0f;delay(3);dis_buf= l | dis_buf;}/************************************************************** **判断键是否按下 ** **************************************************************/void keydown(void){P2=0xF0; //显示00P3=0xf0;//将高4位全部置1 低四位全部置0if(P1!=0xF0) //判断按键是否按下如果按钮按下会拉低P1其中的一个端口{keyscan(); //调用按键扫描程序}}void display( ){j=50;while(j){P2= 0x80;P0= LED7Code[0];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display1( ){j=50;while(j){P2= 0x80;P0= LED7Code[2];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display2( ){j=50;while(j){P2= 0x80;P0= LED7Code[3];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display3( ){j=50;while(j){P2= 0x80;P0= LED7Code[4];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display4( ){j=50;while(j){P2= 0x80;P0= LED7Code[5];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;} }void display5( ){j=50;while(j){P2= 0x80;P0= LED7Code[6];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}/************************************************************** ** 主程序 ** **************************************************************/ void main(){P0=0xc0;delay(20); //延时while(1){ keydown(); //调用按键判断检测程序switch( dis_buf){case 0x11 : P2=0x80; P0= LED7Code[1]; break;case 0x12 : P2=0x80; P0= LED7Code[2]; break;case 0x13 : P2=0x80; P0= LED7Code[3]; break;case 0x14 : P2=0x80; P0= LED7Code[4]; break;case 0x21 : P2=0x80; P0= LED7Code[5]; break;case 0x22 : P2=0x80; P0= LED7Code[6]; break;case 0x23 : P2=0x80; P0= LED7Code[7]; break;case 0x24 : P2=0x80; P0= LED7Code[8]; break;case 0x31 : P2=0x80; P0= LED7Code[9]; break;case 0x32 : display();break;case 0x33 : P2 = LED7Code[1]; P0= LED7Code[1]; break;case 0x34 : display1(); break;case 0x41 : display2(); break;case 0x42 : display3();; break;case 0x43 : display4();; break;case 0x44 : display5();; break;}delay(250);}}/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////(注:本资料素材和资料部分来自网络,仅供参考。

单片机-4x4个矩阵按键控制数码管显示数字程序

单片机-4x4个矩阵按键控制数码管显示数字程序

单⽚机-4x4个矩阵按键控制数码管显⽰数字程序1 #include "8051.h"2 typedef unsigned char u8;3 typedef unsigned int u16;4 u8 smgduan[]= {5/*0 1 2 3 4 5 6 7 */60x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07,7/*8 9 A B C D E F */80x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71};910// P0⼝为数码管的位选的8位输⼊引脚11// P0 = 0x00;121314void Delayms(u16 ms);15void shumaguan(u8 n);16void DigDisplay();17void KeyTest();18void smg(u8 n, u8 m);19void key_4x4();2021void main()22 {23while(1)24 {25 key_4x4();26 }27 }2829// 不精确的延时函数30void Delayms(u16 ms)31 {32 unsigned int i, j;33for(i = ms; i > 0; i--)34for(j = 110; j > 0; j--);35return;36 }3738// 数码管根据74HC138译码器选择对应的段(选择哪个数码管显⽰)39void shumaguan(u8 n)40 {41switch(n)42 {43case0:44 LSA = 0;LSB = 0;LSC = 0;break;45case1:46 LSA = 1;LSB = 0;LSC = 0;break;47case2:48 LSA = 0;LSB = 1;LSC = 0;break;49case3:50 LSA = 1;LSB = 1;LSC = 0;break;51case4:52 LSA = 0;LSB = 0;LSC = 1;break;53case5:54 LSA = 1;LSB = 0;LSC = 1;break;55case6:56 LSA = 0;LSB = 1;LSC = 1;break;57case7:58 LSA = 1;LSB = 1;LSC = 1;break;59 }60 }6162// 数码管显⽰数字,并以⼗进制递增63void DigDisplay()64 {65 u8 i1 = 0;66 u8 i2 = 0;67 u8 i3 = 0;68 u8 i4 = 0;69 u8 i5 = 0;70 u8 i6 = 0;71 u8 i7 = 0;72 u8 i8 = 0;7374757677for (i8 = 0; i8 < 10; i8++)78for (i7 = 0; i7 < 10; i7++)79for (i6 = 0; i6 < 10; i7++)80for (i5 = 0; i5 < 10; i5++)81for (i4 = 0; i4 < 10; i4++)82for (i3 = 0; i3 < 10; i3++)83for (i2 = 0; i2 < 10; i2++)84for (i1 = 0; i1 < 10; i1++)85 {86 u16 cnt = 10;87while (cnt--)88 {89 shumaguan(0); //选中第⼀个数码管90 P0 = smgduan[i1]; //给他送⼀个数字91 Delayms(1); //稍微延时⼀下下92 shumaguan(1); //然后切换到第⼆个数码管。

单片机的矩阵键盘程序

单片机的矩阵键盘程序

#include<reg52.h>#define uint unsigned int#define uchar unsigned charuchar code table[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82 ,0xF8,0x80,0x90,0xff};//数码管段选sbit shu1=P3^0;//数码管位选sbit shu2=P3^1;//数码管位选uchar num;void delay(uint z)//延时函数{uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}uchar keyscan();//键盘扫描函数void main(){num=17;while(1){keyscan(); //键盘扫描if(num==17)//如果没有键按下{P2=table[10]; //数码管什么也不显示}else//有键按下{shu1=1;//打开数码管P2=table[(num-1)/10]; // 显示十位delay(7);//延时显示shu1=0;//关闭数码管shu2=1; //打开数码管P2=table[(num-1)%10]; // 显示个位delay(7);//延时显示shu2=0; //关闭数码管}}}uchar keyscan()//键盘扫描{P1=0xfe;while(P1!=0xfe) //第一行有键按下{delay(5);//延时消抖while(P1!=0xfe)//确实有键按下{switch(P1)//检测是哪个键按下{case 0xee:num=1;break;case 0xde:num=2;break;case 0xbe:num=3;break;case 0x7e:num=4;break;}while(P1!=0xfe);//松手检测}P1=0xfd;while(P1!=0xfd)//第二行有键按下{delay(5);//延时消抖while(P1!=0xfd)//确实有键按下{switch(P1)//检测是哪个键按下{case 0xed:num=5;break;case 0xdd:num=6;break;case 0xbd:num=7;break;case 0x7d:num=8;break;}while(P1!=0xfd) ;//松手检测}P1=0xfb;while(P1!=0xfb)//第三行有键按下{delay(5);//延时消抖while(P1!=0xfb)//确实有键按下{switch(P1)//检测是哪个键按下{case 0xeb:num=9;break;case 0xdb:num=10;break;case 0xbb:num=11;break;case 0x7b:num=12;break;}while(P1!=0xfb);//松手检测}}P1=0xf7;while(P1!=0xf7)//第四行有键按下{delay(5);//延时消抖while(P1!=0xf7)//确实有键按下{switch(P1)//检测是哪个键按下{case 0xe7:num=13;break;case 0xd7:num=14;break;case 0xb7:num=15;break;case 0x77:num=16;break;}while(P1!=0xf7);//松手检测}}return num;}。

51单片机的矩阵按键扫描的设计C语言程序

51单片机的矩阵按键扫描的设计C语言程序

51单片机的矩阵按键扫描的设计C语言程序以下为一个基于51单片机的矩阵按键扫描的设计C语言程序:```c#include <reg51.h>//定义端口连接到矩阵键盘sbit col1 = P2^0;sbit col2 = P2^1;sbit col3 = P2^2;sbit row1 = P2^3;sbit row2 = P2^4;sbit row3 = P2^5;sbit row4 = P2^6;//声明按键函数char read_keypad(;void maiwhile (1)char key = read_keypad(; // 读取按键值//根据按键值进行相应操作switch(key)case '1'://第一行第一列按键逻辑//在此处添加相应的代码break;case '2'://第一行第二列按键逻辑//在此处添加相应的代码break;//继续处理其他按键//...default://未识别到按键break;}}//按键扫描函数char read_keypacol1 = 0; col2 = 1; col3 = 1; // 激活第一列if (row1 == 0) { // 第一行第一列按键被按下while (row1 == 0); //等待按键释放return '1'; // 返回按键值}if (row2 == 0) { // 第二行第一列按键被按下while (row2 == 0); //等待按键释放return '4'; // 返回按键值}if (row3 == 0) { // 第三行第一列按键被按下while (row3 == 0); //等待按键释放return '7'; // 返回按键值}if (row4 == 0) { // 第四行第一列按键被按下while (row4 == 0); //等待按键释放return '*'; // 返回按键值}col1 = 1; col2 = 0; col3 = 1; // 激活第二列//处理第二列的按键逻辑//...col1 = 1; col2 = 1; col3 = 0; // 激活第三列//处理第三列的按键逻辑//...return '\0'; // 返回空字符表示未检测到按键```以上代码中,我们使用51单片机的P2端口连接到矩阵键盘的列和行,通过扫描不同的列和检测行的状态来判断按键是否被按下。

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

单片机矩阵键盘实验实验报告
实验名称:单片机矩阵键盘实验
实验目的:掌握单片机矩阵键盘的原理和应用,能够使用单片机按键输入
实验内容:利用Keil C51软件,采用AT89C51单片机实现一个4x4的矩阵键盘,当按下任何一个按键时,将相应的键值传输到液晶显示屏上进行显示。

实验步骤:
1、搭建实验电路,将矩阵键盘与单片机相连,连接好电源正负极,然后将电路焊接成一个完整的矩阵键盘输入电路。

2、打开Keil C51软件,新建一个单片机应用工程,然后编写代码。

3、通过代码实现对矩阵键盘输入的扫描功能,当按下任何一个按键时,将相应的键值传输到液晶显示屏上进行显示。

4、编译代码,生成HEX文件,下载HEX文件到单片机中,将单片机与电源相连,然后就可以测试了。

5、测试完成后,根据测试结果修改代码,重新编译生成HEX 文件,然后下载到单片机中进行验证。

实验结果:
经过测试,实验结果良好,能够准确地输入按键的值,显示在液晶屏上。

实验感想:
通过这次实验,我深深地认识到了矩阵键盘技术的重要性以及应用价值,同时也更加深入了解单片机的工作原理和应用技术,这对我的学习和工作都有很好的帮助。

单片机4x4矩阵式键盘的设计与仿真Word版

单片机4x4矩阵式键盘的设计与仿真Word版

课程设计报告(单片机原理和应用)题目名称 4x4矩阵式键盘专业班级学生姓名学号指导教师4x4矩阵式键盘的设计与仿真1、设计原理:1.1 矩阵式键盘工作原理矩阵式键盘使用于按键数量较多的场合,它由行线与列线组成,按键位于行、列的交叉点上,行、列线分别列接到按键开关的两端。

行线通过上拉电阻接到+5V上。

无键按下时,行线处于低电平状态,而当有按键按下时,行线电平状态将由与此行线相连的列线电平一样为高电平。

这是识别矩阵键盘按键是否被按下的关键所在。

一个4x4的行列可以构成一个16按键的键盘。

本次以扫描法来识别按键。

在扫描法中分两步处理按键,首先是判断有无键按下,让所有的列线置高电平,检查各行线电平是否有变化,如行线有一个为高,则有键按下。

当判断有键按下时,使列线依次变低,其余各列为高电平,读行线,进而判断出具体哪个键被按下。

下表为7段共阴极段码表:显示字符共阴极段码显示字符共阴极段码“0”3FH“8”7FH“1”06H“9”6FH“2”5BH“A”77H“3”4FH“b”7CH“4”66H“C”39H“5”6DH“d”5EH“6”7DH“E”79H“7”07H“F”71H“灭“00H1.2 实验环境Keil uVision3proteus 71.3 功能设计描述由4x4组成16个按钮矩阵式键盘按键成功会在7段LED显示该按键的键号1.4 主要知识点Keil uVision3的使用及调试proteus 7的使用及调试键盘接口、LED 显示接口、模拟电路的相关知识开始有键按下吗?延时50ms确定有键按下吗?确定按键位置返回键释放了吗?键值→p2N NNYY Y2、实现及编程2.1程序框图2.2电路原理图2.3程序内容4x4行列式键盘识别7段数码管输出2.4 汇编源程序LINE EQU 30HROW EQU 31HVAL EQU 32HORG 00HSTART: MOV DPTR,#TABLE ;段码表首地址MOV P2,#00H ;数码管显示初始化LSCAN: MOV P3,#0F0H ;电平,行线置低电平L1: JNB P3.0,L2 ;逐行扫描LCALL DELAY50ms ;调用延时,消除抖动JNB P3.0,L2MOV LINE,#00H ;存行号LJMP RSCANL2: JNB P3.1,L3LCALL DELAY50msJNB P3.1,L3MOV LINE,#01HLJMP RSCANL3: JNB P3.2,L4LCALL DELAY50msJNB P3.2,L4MOV LINE,#02HLJMP RSCANL4: JNB P3.3,L1LCALL DELAY50msJNB P3.3,L1MOV LINE,#03HRSCAN: MOV P3,#0FH ; 列线置低电平,行线置高电平C1: JNB P3.4,C2 ;逐列扫描MOV ROW,#00H ;存列号LJMP CALCUC2: JNB P3.5,C3MOV ROW,#01HLJMP CALCUC3: JNB P3.6,C4MOV ROW,#02HLJMP CALCUC4: JNB P3.7,C1MOV ROW,#03HCALCU: MOV A,LINE ;根据行号和列号计算键值MOV B,#04HMUL AB ;A与B相乘后,高位赋给B,低位赋给AADD A,ROWMOV VAL,A ;存键值MOVC A,@A+DPTR ;要据键值查段码MOV P2,A ;输出段码显示LJMP LSCANDELAY50ms: MOV R6,#3DH ;延时50ms子程序Lop: MOV R7,#0FFHDJNZ R7,$DJNZ R6,LopRETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H ; 共阴极LED段码表DB 7FH,6FH,77H,7CH,39H,5EH,79H,71HEND3、调试及测试3.1调试通过按下4x4行列式键盘的按键,并在7段led显示所按下的键值,如按下F后显示如下图:3.2出现的问题及解决当在选7段显示数码管时,由于不知道哪个类型是共阴极的,所以就随便选了一个,以至于在运行的时候数码管没有显示,后给换了另一个类型的,即可。

单片机矩阵键盘及Protues仿真

单片机矩阵键盘及Protues仿真

单片机4*4 矩阵键盘程序及Protues仿真1、截图如下2、键盘及显示程序#include<reg52.h>#define uchar unsigned char#define uint unsigned int#define key P1sbitledle二P3P;sbitlede二P3X;void delay(uint z)// 延迟函数{uintx,y;for(x=z;x>0;x--)for(y=112;y>0;y--);}uchar code table[]={〃显示数据编码0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x76,0x79,0x38,0x3f,0};//#include<keyboard.h>uchar keyboa rd 1 ()//带返回值的子程序:键盘扫描的子程序{uchartemp,num;key=0xfe;// 扫描要经过四个过程段,0xfe,0xfd,0xfb,0xf,temp=key;// 读取P3 口的信心temp=temp&0xf0;// 位与,为下面的判断提供条件while(temp!=0xf0)// 判断P3 口(即键盘)有无被按下,若是,于OxfO,否则等于{下delay(5);// 延时再做一次判断,消抖、防抖动temp=key;temp=temp&0xf0;while(temp!=0xf0){// 确定有按键被按下,进入判断阶段,以判断那一个键被按switch(temp){case 0xee:num=1;break;case 0xde:num=2;break;case 0xbe:num=3;break;case 0x7e:num=4;则temp 不等temp=key;b「eak 」wh=e((DmpHoxfo)//建®>s〉w s鼬薄薄建斗〉淫CD m pH ox f o s 漠K i M w h =e ^^“w n^“H wt ^p 3口」w曲專>s宀CDmpHkewCD m p A e mP QO O x s s k ey Hxfd八CDmpHkewCD m p A e m p QO o x swhi-e((DmpHoxfo)宀 de-ay (5)-CDmpHkewCDm p A e m p QO o x s whi-e((DmpHoxfo)aempHkey 八swifchaemp)宀caseOxecknumGbreakcase oxdcknum6 breakcaseoxbcknumHdbreakcase 0X 72n u m H o?b「eak 」whi-e((DmpHoxfo)oempHkewtemp=temp&0xf0;}}}key=0xfb;temp=key;temp=temp&0xf0;while(temp!=0xf0){delay(5);temp=key;temp=temp&0xf0;while(temp!=0xf0){temp=key;switch(temp){case 0xeb:num=9;break;}case 0xdb:num=10;break;case 0xbb:num=11;break;case 0x7b:num=12;break;}while(temp!=0xf0){temp=key;temp=temp&0xf0;}} key=0xf7; temp=key; temp=temp&0xf0; while(temp!=0xf0){delay (5); temp=key;temp=temp&0xf0;while(temp!=0xf0){temp=key;switch(temp){case 0xe7: num=13; break; case 0xd7: num=14;break;case 0xb7: num=15; break;case 0x7e:num=16;break;}while(temp!=0xf0){temp=key;temp=temp&0xf0;}}}return num;// 返回值,}void main(){lede=0; ledle=1;while (1){P2=table[keyboard1()];//P2=table[4];delay(5);}}。

单片机驱动4X4矩阵式键盘输入程序

单片机驱动4X4矩阵式键盘输入程序

单片机驱动4X4矩阵式键盘输入程序用AT89S51单片机的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。

实现键盘输入的识别。

我将给大家提供c和汇编两个版本的4X4矩阵式键盘输入程序。

如果网页上不清楚点此处下载本键盘输入程序源代码汇编语言源程序:KEYBUF EQU 30HORG 00HSTART: MOV KEYBUF,#2WAIT:MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY1LCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY1MOV A,P3ANL A,#0FHCJNE A,#0EH,NK1MOV KEYBUF,#0LJMP DK1NK1: CJNE A,#0DH,NK2 MOV KEYBUF,#1 LJMP DK1NK2: CJNE A,#0BH,NK3 MOV KEYBUF,#2 LJMP DK1NK3: CJNE A,#07H,NK4 MOV KEYBUF,#3 LJMP DK1NK4: NOPDK1:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ADK1A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK1ANOKEY1:MOV P3,#0FFHCLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY2LCALL DELY10MS MOV A,P3ANL A,#0FHJZ NOKEY2MOV A,P3ANL A,#0FHCJNE A,#0EH,NK5 MOV KEYBUF,#4 LJMP DK2NK5: CJNE A,#0DH,NK6 MOV KEYBUF,#5 LJMP DK2NK6: CJNE A,#0BH,NK7 MOV KEYBUF,#6 LJMP DK2NK7: CJNE A,#07H,NK8 MOV KEYBUF,#7 LJMP DK2NK8: NOPDK2:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ADK2A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK2ANOKEY2:MOV P3,#0FFHCLR P3.6ANL A,#0FHXRL A,#0FHJZ NOKEY3LCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY3MOV A,P3ANL A,#0FHCJNE A,#0EH,NK9MOV KEYBUF,#8LJMP DK3NK9: CJNE A,#0DH,NK10 MOV KEYBUF,#9LJMP DK3NK10: CJNE A,#0BH,NK11 MOV KEYBUF,#10LJMP DK3NK11: CJNE A,#07H,NK12 MOV KEYBUF,#11LJMP DK3NK12: NOPDK3:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTRMOV P0,ADK3A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK3ANOKEY3:MOV P3,#0FFHCLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY4LCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY4MOV A,P3ANL A,#0FHCJNE A,#0EH,NK13MOV KEYBUF,#12LJMP DK4NK13: CJNE A,#0DH,NK14 MOV KEYBUF,#13LJMP DK4NK14: CJNE A,#0BH,NK15 MOV KEYBUF,#14LJMP DK4NK15: CJNE A,#07H,NK16 MOV KEYBUF,#15LJMP DK4NK16: NOPDK4:MOV A,KEYBUFMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ADK4A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK4ANOKEY4:LJMP WAITDELY10MS:MOV R6,#10D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH,39H,5EH,79H,71HENDC语言源程序:#includeunsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};unsigned char temp;unsigned char key;unsigned char i,j;//我的程序没有注释,不过很简单。

单片机实验报告矩阵键盘控制点阵的显示

单片机实验报告矩阵键盘控制点阵的显示

实验报告实验名称:矩阵键盘控制点阵的显示专业班级:控制科学与工程学号:s2******* 学生姓名:李佛垚指导教师:李晓林、李丽宏、牛昱光2013年1月18日目录一、实验目的 (1)二、实验内容 (1)(一)扫描矩阵键盘读出键值。

(1)(二)数码管显示键号。

(1)(三)点阵显示不同按键需要输出的信息。

(根据需要可以修改)。

(1)三、实验设备及配套软件 (1)四、实验原理 (2)五、实验电路及功能说明 (2)(一)STC89C52RC单片机主要性能 (2)(二)矩阵键盘 (4)1.连接线路图 (4)2.矩阵键盘说明: (4)(三)点阵 (5)1.连接线路图 (5)2.8x8点阵LED等效电路连接图: (5)3.显示原理说明: (6)(四)数码管 (6)1.数码管连接线路图 (6)2.动态显示原理 (6)(五)XT100最小系统原理图 (7)(六)实验结果分析 (8)1.实物图 (8)2.结果分析 (8)六、软件设计流程图 (8)(一)程序说明 (8)(二)流程图 (9)1.主程序流程图 (9)2.键盘扫描程序流程图 (10)(三)程序 (11)七、实验中的问题与心得 (16)一、实验目的一般任何一个适用的系统都少不了键盘和显示这两个部分,键盘为使用者设定功能提供操作平台;显示反映出使用者设定功能的状态。

在传统的设计中,一般都是把键盘模块和显示模块分开设计,这样结构清晰,软件设计简单,当I/O口不够用时,通常通过扩展I/O的方法来解决问题。

以上做法有优点但同时也暴露了一个问题,它们都需要通过增加芯片来扩展I/O口。

当硬件成本要求苛刻的情况下,这种设计理念就很难适应其要求,而本设计采用显示模块和键盘模块共用端口的方法,分时显示和按键扫描,很好的解决了这一矛盾。

二、实验内容利用XT100开发板中的STC89C52单片机的P0口和P2口的分时复用以及单片机执行速度快和人的视觉反应有限的原理,通过对同一I/O端口分时作为键盘电路的输入端口和数码管以及点阵显示电路的输出及控制端口来实现I/O端口的公用。

单片机 矩阵键盘实验 实验报告

单片机 矩阵键盘实验 实验报告

实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。

按其它键退出。

2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。

可定义“A”键为“+”键,“B”键为“=”键。

二、实验目的1、学习独立式按键的查询识别方法。

2、非编码矩阵键盘的行反转法识别方法。

三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。

2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。

3、识别键的闭合,通常采用行扫描法和行反转法。

行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。

行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。

然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。

这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。

由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。

行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。

单片机矩阵按键实训报告

单片机矩阵按键实训报告

一、实训目的1. 理解矩阵键盘的工作原理和电路设计。

2. 掌握矩阵键盘的编程方法,实现按键的检测和响应。

3. 培养实际动手能力和团队协作能力。

二、实训内容1. 矩阵键盘电路设计2. 矩阵键盘编程3. 矩阵键盘应用实例三、实训环境1. 单片机开发板:51单片机开发板2. 矩阵键盘:4x4矩阵键盘3. 编程软件:Keil uVision54. 仿真软件:Proteus四、实训过程1. 矩阵键盘电路设计矩阵键盘由行线和列线组成,通过行列交叉连接的按键阵列实现按键功能。

在4x4矩阵键盘设计中,共有4条行线和4条列线,共16个按键。

电路设计如下:(1)行线连接:将单片机的P1.0至P1.3端口作为行线输出,用于控制行线电平。

(2)列线连接:将单片机的P2.0至P2.3端口作为列线输入,用于检测按键状态。

(3)按键连接:将16个按键分别连接到行线和列线交叉处。

2. 矩阵键盘编程(1)初始化:设置P1端口为输出模式,P2端口为输入模式。

(2)按键检测:通过逐行扫描的方式检测按键状态。

首先将P1端口的所有行线设置为低电平,然后逐行检查P2端口列线的状态,如果某列线为低电平,则表示该行对应列的按键被按下。

(3)消抖处理:为了避免按键抖动引起的误读,需要进行消抖处理。

通常采用软件消抖方法,即在检测到按键按下后,延时一段时间(如10ms)再次检测按键状态,如果按键仍然被按下,则确认按键操作有效。

(4)按键处理:根据检测到的按键,执行相应的操作。

例如,当按键按下时,在LCD1602显示屏上显示对应的按键值。

3. 矩阵键盘应用实例以LCD1602显示屏为例,实现按键与显示内容的关联。

(1)LCD1602显示屏初始化:设置LCD1602的显示模式、光标位置等。

(2)按键扫描:按照上述方法检测按键状态。

(3)按键处理:根据按键值,在LCD1602显示屏上显示对应的字符。

五、实训结果1. 成功设计并实现了4x4矩阵键盘电路。

2. 编写了矩阵键盘的检测和响应程序,实现了按键的检测和消抖处理。

(实验四)单片机矩阵键盘检测和液晶仿真实验

(实验四)单片机矩阵键盘检测和液晶仿真实验

实验四单片机矩阵键盘检测和液晶仿真实验(4学时)一、实验任务利用51单片机实现4X4矩阵键盘和LCD1602液晶显示人机交互系统,编程实现:(1)按键扫描(1、2、……9、A、B、C、D、E、F)和LCD1602显示按键的键号,格式为:KEYNUM+按键号;(2)LCD1602的第一行显示加1功能,初始数字为980,显示位置自己确定,每次按下某一个按键,数字加1,范围为15---20;二、实验目的1、掌握仿真软件Proteus和单片机联调的方法;2、掌握矩阵键盘扫描检测的原理,并且编程实现键盘按键的检测;3、掌握LCD1602液晶显示的原理,并且编程实现LCD1602的显示功能;4、掌握利用单片机实现键盘检测和液晶显示的功能组合,并掌握独立编程控制的能力。

三、实验设备电脑、Proteus软件、Keil软件四、实验原理(一)矩阵键盘扫描检测原理按照按键结构原理可分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关等;另一类是无触点开关按键,如电气式按键、磁感应按键等。

在单片机应用系统中,通过按键实现控制功能和数据输入是非常普遍的。

在所需按键数量不多时,系统常采用独立式按键。

独立式按键是指每个按键单独占有一根I/O口线,且其工作状态不会影响其他I/O口线的工作状态。

这种按键的电路配置灵活,软件结构简单。

不过在实际应用中,由于不同的系统对按键的要求不同,因此,对按键程序的设计要考虑全面,以便更好地完成按键所设定的功能。

在按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式,如图4.1所示。

在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。

这样一个端口(如P1口)就可以构成4×4=16个按键,比直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就可以构成20键的键盘,而直接用端口线则只能多出1键(共9键)。

由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。

基于单片机控制的矩阵键盘显示系统设计

基于单片机控制的矩阵键盘显示系统设计

基于单片机控制的矩阵键盘显示系统设计矩阵键盘是一种常见的输入设备,用于将用户的按键操作转换成数字信号,以便与其他电子设备进行交互。

基于单片机的矩阵键盘显示系统设计实现了对键盘输入的读取,并通过显示器将按键信息进行显示。

下面将对该系统的设计进行详细介绍。

1.系统概述本系统主要由矩阵键盘、单片机、显示器组成。

矩阵键盘采用常见的4行4列的布局,每个按键都与单片机的输入引脚相连接。

单片机负责读取输入引脚的状态,并根据不同的按键进行不同的处理。

而显示器则用于显示按键输入的结果。

2.硬件设计2.1矩阵键盘矩阵键盘采用4行4列的布局,每个按键都与单片机的输入引脚相连接。

为了实现多按键同时按下的检测,采用按键矩阵的方式进行连接。

在按键矩阵中,每个按键与四个不同的引脚相连接,分别代表行和列。

单片机通过轮询的方式读取每个行和列的引脚状态,从而实现对按键状态的检测。

2.2单片机单片机作为系统的核心控制器,负责读取矩阵键盘的输入信号,并对按键进行处理。

单片机需要配置相应的IO引脚作为输入引脚,并进行轮询式的读取。

当按键按下时,单片机会通过扫描算法检测到按键的位置,并将按键的信息存储到相应的缓存区。

2.3显示器显示器用于显示按键输入的结果。

可以采用常见的数码管、LCD屏幕或者LED矩阵作为显示设备。

单片机通过输出引脚将按键信息传递给显示器,显示器根据这些信息进行相应的显示操作。

3.软件设计3.1初始化在系统启动时,单片机需要进行相应的初始化工作。

主要包括配置口线方向、扫描算法的设置、中断使能等。

3.2扫描算法为了检测按键的位置,需要采用合适的扫描算法。

常用的有逐行扫描、逐列扫描和矩阵扫描等。

逐行扫描的方法是先给每一行输出低电平,然后通过检测每一列的引脚状态来确定按键位置。

逐列扫描的方法与之类似,只是输出低电平的对象从行变为列。

矩阵扫描方法是同时扫描行和列,通过检测相交的引脚状态来确定按键位置。

在实际应用中,可以根据具体需求选择合适的扫描算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Protues 电路连接图如下所示:
PS:矩阵键盘说明——4×4矩阵从左到右依次编码为1,,3,4,5,6,7,8,9,10,11,12,13,14,15,16 按下某一按键,Led数码管就会显示相应的数字。

Keil C51 程序如下:有点不足望改进。

O(∩_∩)O谢谢!!!
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #include <reg51.h>
#define uchar unsigned char //宏的定义变量类型uchar 代替unsigned char
#define uint unsigned int //宏的定义变量类型uint 代替unsigned int
uchar dis_buf; //显示缓存
uchar temp;
uchar l,h,j; //定义行列
void delay0(uchar x); //x*0.14MS
// 此表为LED 的字模0 1 2 3 4 5 6 7
8 9
uchar code LED7Code[] = {0xc0,0xf9,~0x5B,~0x4F,~0x66,~0x6D,~0x7D,~0x07,~0x7F,~0x6F};
/*************************************************************
* *
* 延时子程序*
* * *************************************************************/
void delay(uchar x)
{ uchar j;
while((x--)!=0) //CPU执行x*12次,x=10
{ for(j=0;j<50;j++)
{;}
}
}
/************************************************************* * * * 键扫描子程序(4*4的矩阵) P1.4 P1.5 P1.6 P1.7为行*
* P1.0 P1.1 P1.2 P1.3为列*
* * *************************************************************/
void keyscan(void)
{ temp=0;
P1=0xF0; //高四位输入行为高电平列为低电
delay(3); //延时
temp=P1; //读P1口
temp=temp&0xF0;
//屏蔽低四位
temp=~((temp>>4)|0xF0); //高四位取反无键按下取反应为0xf0
if(temp==1) //0001 [1,1] 被拉低
h=1;
else if(temp==2) //0010[2,1] 被拉低
h=2;
else if(temp==4) //0100[3,1] 被拉低
h=3;
else if(temp==8) //1000[4,1] 被拉低
h=4;
dis_buf = h;
dis_buf = (dis_buf<<4) & 0xf0; //行信息现存在第四位
delay(10);
P1=0x0F; //低四位输入列为高电平行为低电平
delay(3); //延时
temp=P1; //读P1口
temp=temp&0x0F; //屏蔽高四位
temp=~(temp|0xF0); //取反
if(temp==1) //1列被拉低
l=1;
else if(temp==2) //2列被拉低
l=2;
else if(temp==4) //3列被拉低
l=3;
else if(temp==8) //4列被拉低
l=4;
l= l & 0x0f;
delay(3);
dis_buf= l | dis_buf;
}
/*************************************************************
* *
*判断键是否按下*
* *
*************************************************************/
void keydown(void)
{
P2=0xF0; //显示00
P3=0xf0;
//将高4位全部置1 低四位全部置0
if(P1!=0xF0) //判断按键是否按下如果按钮按下会拉低P1其中的一个端口{
keyscan(); //调用按键扫描程序
}
}
void display( )
{
j=50;
while(j)
{
P2= 0x80;P0= LED7Code[0];
delay(50);
P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}
}
void display1( )
{
j=50;
while(j)
{
P2= 0x80;P0= LED7Code[2];
delay(50);
P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}
}
void display2( )
{
j=50;
while(j)
{
P2= 0x80;P0= LED7Code[3];
delay(50);
P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}
}
void display3( )
{
j=50;
while(j)
{
P2= 0x80;P0= LED7Code[4];
delay(50);
P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}
}
void display4( )
{
j=50;
while(j)
{
P2= 0x80;P0= LED7Code[5];
delay(50);
P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}
}
void display5( )
{
j=50;
while(j)
{
P2= 0x80;P0= LED7Code[6];
delay(50);
P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}
}
/*************************************************************
* *
* 主程序*
* *
*************************************************************/
void main()
{
P0=0xc0;
delay(20); //延时
while(1)
{ keydown(); //调用按键判断检测程序
switch( dis_buf)
{
case 0x11 : P2=0x80; P0= LED7Code[1]; break;
case 0x12 : P2=0x80; P0= LED7Code[2]; break;
case 0x13 : P2=0x80; P0= LED7Code[3]; break;
case 0x14 : P2=0x80; P0= LED7Code[4]; break;
case 0x21 : P2=0x80; P0= LED7Code[5]; break;
case 0x22 : P2=0x80; P0= LED7Code[6]; break;
case 0x23 : P2=0x80; P0= LED7Code[7]; break;
case 0x24 : P2=0x80; P0= LED7Code[8]; break;
case 0x31 : P2=0x80; P0= LED7Code[9]; break;
case 0x32 : display();break;
case 0x33 : P2 = LED7Code[1]; P0= LED7Code[1]; break;
case 0x34 : display1(); break;
case 0x41 : display2(); break;
case 0x42 : display3();; break;
case 0x43 : display4();; break;
case 0x44 : display5();; break;
}
delay(250);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////。

相关文档
最新文档