大学物理下第16章习题详解

合集下载

大学物理第16章麦克斯韦方程组和电磁辐射

大学物理第16章麦克斯韦方程组和电磁辐射

位移电流 全电流安培环路定理
稳恒磁场中,安培环路定理 H dl I j ds
l s
S1
L
-
S2
+ + + +
(以 L 为边做任意曲面 S ) H dl j ds I
L S1
I
H dl j ds 0
第16章 麦克斯韦方程组和电 磁辐射
本章主要内容
§16.1 Maxwell电磁场方程组
§16.2 电磁波和电磁辐射 §16.4 电磁波的性质 §16.5 电磁波的能量 §16.6 电磁波的动量 光压
第16章 麦克斯韦方程组和电磁辐射
电现象/磁现象
电场/磁场(稳恒态)
我国:周朝(BC8世)/战国(BC4-3世) 西方:BC6世/ AD15世末
B
2
计算得
r dQ H 2 2 π R dt
Q
0 r dQ
2 π R dt
2
代入数据计算得
Q
I d 1.1 A
B 1.1110 T
5
Ic
R
P *r
Ic
例2. 一平行板电容器的两极板都是圆形板,面积为S,其上 的电荷随时间变化,变化率为 q q sint
m
求: 1)电容器中位移电流密度的大小。
麦克斯韦18311879英国物理学家1865年麦克斯韦在总结前人工作的基础上提出完整的电磁场理论他的主要贡献是提出了有旋电场和位移电流两个假设从而预言了电磁波的存在并计算出电磁波的速度即光1888年赫兹的实验证实了他的预言麦克斯韦理论奠定了经典电动力学的基础为无线电技术和现代电子通讯技术发展开辟了广阔前景

《大学物理》习题册题目及答案第16单元 机械波

《大学物理》习题册题目及答案第16单元 机械波

第16单元 机械波(一)学号 姓名 专业、班级 课程班序号一 选择题[ C ]1.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后 (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前[ A ]2. 一横波沿绳子传播时的波动方程为)104cos(05.0t x y ππ-= (SI),则(A) 其波长为0.5 m (B) 波速为5 m ⋅s -1(C) 波速为25 m ⋅s -1 (D)频率为2 Hz[ C ]3. 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。

设t = T /4时刻的波形如图所示,则该波的表达式为: (A) )/(cos u x t A y -=ω (B) ]2/)/([cos πω+-=u x t A y (C) )/(cos u x t A y +=ω (D) ])/([cos πω++=u x t A y[ D ]4. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。

若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A) 0点的初位相为00=ϕ(B) 1点的初位相为 21πϕ-=(C) 2点的初位相为 πϕ=2(D) 3点的初位相为 23πϕ-=[ D ]5. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能。

(B) 它的势能转换成动能。

(C) 它从相邻的一段质元获得能量其能量逐渐增大。

(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。

二 填空题1.频率为100Hz 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的相位差为52π. 2. 一简谐波沿x 轴正向传播。

1x 和2x 两点处的振动曲线分别如图(a)和(b)所示。

大学物理 第16章量子力学基本原理-例题及练习题

大学物理 第16章量子力学基本原理-例题及练习题
2( 2k + 1) ( k = 0,1,2......)
∴ n = 2,6,10...... 时概率密度最大
nhπ 6 × 10 = =1时 (3) n=1时: E = =1 2mL L
2 2 2 2 2 −38
A 例题3 例题3 设粒子沿 x 方向运动,其波函数为 ψ ( x ) = 方向运动, 1 + ix
( n = 1,2,3,...)
E n=4
p2 E = 2m p= nπh nh 2 mE = = a 2a
n=3 n=2 n=1
h 2a λ= = p n
二者是一致的。 二者是一致的。
( n = 1, 2, 3,...)
o a
x
例题2 粒子质量为m, 在宽度为L的一维无限 的一维无限深势 例题2 P516例1:粒子质量为m, 在宽度为 的一维无限深势 中运动,试求( 粒子在0 阱中运动,试求(1)粒子在0≤x≤L/4区间出现的概率。并 ≤ / 区间出现的概率。 求粒子处于n=1 状态的概率。 在哪些量子态上, 求粒子处于 1和n=∞状态的概率。(2)在哪些量子态上, 状态的概率 (2)在哪些量子态上 L/4处的概率密度最大?(3)求n=1时粒子的能量 补充 。 /4处的概率密度最大 (3)求 =1时粒子的能量(补充 处的概率密度最大? =1时粒子的能量 补充)。 2 nπ x 由题得: 解:(1) 由题得: 概率密度 |ψ | = sin
2 2 2 2 0
2
2
2
2
0
0
k
0
2
2
2 k
0
k
k
k
0
h ∴λ = = p
hc 2E m c + E
2 k 0

大学物理下(毛峰版)课后习题答案ch16+光的偏振+习题及答案

大学物理下(毛峰版)课后习题答案ch16+光的偏振+习题及答案

第16章 光的偏振 习题解答1.自然光、线偏光和部分偏振光有何区别?用哪些方法可以获得线偏振光?如何使用检偏器检验光的偏振状态?解:自然光、线偏光和部分偏振光偏振态不同;可以通过偏振片、自然光以布儒斯特角入射到两种各相同性介质分界面上产生反射和折射、双折射晶体的双折射等方法来获得线偏振光。

2.自然光是否一定不是单色光?线偏振光是否一定是单色光?解:自然光不能说一定不是单色光.因为它只强调存在大量的、各个方向的光矢量,并未要求各方向光矢量的频率不一样.线偏振光也不一定是单色光.因为它只要求光的振动方向同一,并未要求各光矢的频率相同.3.一束光入射到两种透明介质的分界面上时,发现只有透射光而无反射光,这束光是怎样入射的?其偏振状态如何?解:这束光是以布儒斯特角入射的.其偏振态为平行入射面的线偏振光.4.什么是寻常光线和非常光线? 什么是光轴、主平面和主截面?寻常光线和非常光线的振动方向和各自的主平面有何关系?解:当一束平行自然光正入射到双折射晶体的一个表面上,在另一表面有两束光出射,其中一束遵从折射定律,称为寻常光线(o 光),另外一束不遵从折射定律,称为非常光线(e 光);当光在双折射晶体中沿一特殊方向传播时,o 光和e 光不分开,它们在该方向具有相同的传播速度,这个特殊的方向称为晶体的光轴;光线在晶体表面上入射,此界面的法线与晶体的光轴所构成的平面称为主截面;光轴与晶体内任一折射光线所构成的平面称为该光线的主平面;o 光的光振动方向垂直于o 光的主平面,e 光的光振动方向在e 光的主平面内。

5.在单轴晶体中,e 光是否总是以e n c /的速率传播?哪个方向以0/n c 的速率传播? 答:e 光沿不同方向传播速率不等,并不是以e n c /的速率传播.沿光轴方向以0/n c 的速率传播.6.用一束线偏振光照射双折射晶体,此时能否观察到双折射现象?解:能观察到双折射现象。

7.投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行,然后使检偏器绕入射光的传播方向转过30°、45°、60°,试问在上述三种情况下,透过检偏器后光的强度是0I 的几倍?解:由马吕斯定律有0o 2018330cos 2I I I == 0ο2024145cos 2I I I == 0ο2038160cos 2I I I ==所以透过检偏器后光的强度分别是0I 的83,41,81倍. 8.在两块偏振化方向相互垂直的偏振片1P 和3P 之间插入另一块偏振片2P ,1P 和2P 的夹角为α,光强为0I 的自然光垂直入射1P ,求通过3P 的透射光强I 。

昆明理工大学物理习题集(下)第十六章元答案

昆明理工大学物理习题集(下)第十六章元答案

昆明理工大学物理习题集(下)第十六章元答案第十六章量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A )频率高的光子易显示波动性(B )个别光子产生的效果以显示粒子性(C )光的衍射说明光具有粒子性(D )光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A )入射光的频率(B )入射光的强度(C )金属的逸出功(D )入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比(B )与入射光的强度成正比(C )与入射光的频率成线性关系(D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同(B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同(D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加(B )逸出的光电子初动能增大(C )光电效应的红限频率增大(D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B )1ν<2ν (C )1ν=2ν (D )不能确定8. 当照射光的波长从4000?变到3000?时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。

大学物理下册第三版课后答案16电磁感应

大学物理下册第三版课后答案16电磁感应

习题16GG 上传16-1.如图所示,金属圆环半径为R ,位于磁感应强度为B的均匀磁场中,圆环平面与磁场方向垂直。

当圆环以恒定速度v在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端a 、b 间的电势差。

解:(1)由法拉第电磁感应定律i d dtεΦ=-,考虑到圆环内的磁通量不变,所以,环中的感应电动势0i ε=; (2)利用:()aab bv B dl ε=⨯⋅⎰,有:22ab Bv R Bv R ε=⋅=。

【注:相同电动势的两个电源并联,并联后等效电源电动势不变】16-2.如图所示,长直导线中通有电流A I 0.5=,在与其相距cm 5.0=d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4=l ,宽cm 0.2=a 。

不计线圈自感,若线圈以速度cm/s 0.3=v 沿垂直于长导线的方向向右 运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。

首先用0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B rμπ=, 则矩形线圈内的磁通量为:00ln22x axI I l x al dr r xμμππ++Φ=⋅=⎰, 由i d Nd t εΦ=-,有:011()2i N I l d xx a x dtμεπ=--⋅+ ∴当x d =时,有:041.92102()i N I l a v V d a μεπ-==⨯+。

解法二:利用动生电动势公式解决。

由0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B rμπ=, 考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11NB l v ε=, 远端部分:22NB lv ε=,则:12εεε=-=00411() 1.921022()N I N I al v l v V d d a d d a μμππ--==⨯++。

16-3.如图所示,长直导线中通有电流强度为I 的电流,长为l 的金属棒ab 与长直导线共面且垂直于导线放置,其a 端离导线为d ,并以速度v平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a 、U b 的电势大小。

大学物理第16章气体动理论

大学物理第16章气体动理论

f v
d N vv f dv v d v N N
d Nv
d N v 速率分布函数 ——速 f v 率在v 附近,单位速 N d v 率区间的分子数占总
分子书的百分比。 v
dv
平衡态—— 麦克斯韦速 率分布函数
2018/10/7
m f v 4 e 2kT
1、质点——位置 x y z ——单原子
i =3 平动自由度 位置x y z 2、刚性

0
细杆 y
——双原子 方向 (常温)
i =5
3、刚体
x
弹性物体+ 振动自由度 高温时分子类似于弹性体 要考虑振动自由度
2018/10/7
(3 平动+2 转动) 位置 x y z 方向 ——多原子 自转角度 (常温)
F
I F t
气体对容器壁的压强
2018/10/7
F I P S S t
DUT 余 虹 5
v i ~ v i dv i v i 第i 组: 速度 近似认为都是
二、P 与微观量 的关系 分子按速度区间分组
V N
Ni 分子数N i ,分子数密度 ni V 考察这组分子给面元A的冲量
2018/10/7
U 总 N 0 i 总 kT 2 kN0 R
i U RT 2
DUT 余 虹
i U RT 2
理想气体的内能是 温度的单值函数!
12
例题 理想气体系统由氧气组成,压强P =1 atm,温度T = 27oC。 求(1)单位体积内的分子数;(2)分子的平均 平动动能 和平均转动动能;(3)单位体积中的内能。
0 0

大学物理学下册(赵近芳)第16章习题解答

大学物理学下册(赵近芳)第16章习题解答

习题1616.1选择题(1) 由实验得知,原子核的半径R近似地与质量数A的立方根成正比,R=R0A1/3(R0是常数),由此得出:[ ]A.各原子核的密度是相同的B.在各种不同元素的原子核内,核子间隔不同C.质子和中子的质量,体积近似相等D.质子数和中子数的比例在各种不同元素的原子核内近似相等[答案:A ](2) 放射性同位素有天然的和人工的两类,其中[ ]A.天然的轻、重核都有,人工的多为轻核B.天然的多为重核,人工的轻、重核皆有C.天然的多为轻核,人工的可任意选择;D.人工的多为重核,天然的可任意选择[答案:B ](3) 下述说法不正确的是:[ ]A.核力具有饱和性;B.核力与电荷有关;C.核力是短程力;D.核力是强作用力。

[答案:B ](4) 原子核自旋角动量的确切含义应该是:[ ]A.核子自旋角动量和电子自旋角动量的矢量和;B.由于核于没有轨道角动量,故核自旋角动量意义与电子的相同;C.核子自旋角动量和轨道角动量的矢量和;D.原子总自旋角动量扣除电子自旋角动量的结果。

[答案:C ](5) 欲使238U发生裂变,入射中子应为[ ]A.热中子;B.快中子;C.热中子和快中子;D.任意速度的中子。

[答案:B ]16.2填空题(1) 原子核发生 衰变时,其电子是从转化为时放出的。

[答案:中子; 质子](2) 基本粒子之间主要存在着下列三种相互作用:__________、__________、__________.[答案:强相互作用; 电磁相互作用; 弱相互作用](3) 基本粒子之间的强相互作用只是发生在__________________________之间,强相互作用是通过交换_____________________来实现的.1。

大学物理下答案习题16分解

大学物理下答案习题16分解

大学物理下答案习题16分解习题16 选择题(1)用一定频率的单色光照射在某种金属上,测出其光电流I与电势差U的关系曲线如题图中实线所示.然后在光强度I 不变的条件下增大照射光的频率,测出其光电流的曲线用虚线表示.符合题意的图是:[]I I U O O I U I U O O U 题图[答案:D。

光强度I?不变,光的频率v增大,光子数N?减少,则逸出光电子数Ne减少,饱和光电流Ie减少;光的频率v增大,爱因斯坦光电效应方程12m?m?hv?A2知初动能增大,则遏止电压增加。

] (2) 康普顿散射的主要特点是:[](A) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关.(B) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与散射体性质有关.(C) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关.(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同.这都与散射体的性质无关.[答案:D。

] (3)假定氢原子原是静止的,质量为×10-27 kg,则氢原子从n = 3 的激发状态直接通过辐射跃迁到基态时的反冲速度大约是[](A) 4 m/s.(B) 10 m/s .(C) 100 m/s .(D) 400 m/s .[答案:A。

动量守恒-m?+h/? ?10?34??1078??RH(?2)??? 4m/s] ?10?279 (4) 关于不确定关系?px?x?,有以下几种理解:2(a) 粒子的动量不可能确定.(b) 粒子的坐标不可能确定.(c) 粒子的动量和坐标不可能同时准确地确定.(d) 不确定关系不仅适用于电子和光子,也适用于其它粒子.其中正确的是:[] 1 (A) (a),(b).(B) (c),(d).(C) (a),(d).(D) (b),(d).[答案:B。

] (5) 直接证实了电子自旋存在的最早的实验之一是[](A) 康普顿散射实验.(B) 卢瑟福散射实验.(C) 戴维孙-革末实验.(D) 斯特恩-革拉赫实验.[答案: D 。

大学物理习题答案16

大学物理习题答案16

第十六章 电磁场P177.16.1 一条铜棒长为L = 0.5m ,水平放置,可绕距离A 端为L /5处和棒垂直的轴OO'在水平面内旋转,每秒转动一周.铜棒置于竖直向上的匀强磁场中,如图所示,磁感应强度B = 1.0×10-4T .求铜棒两端A 、B 的电势差,何端电势高.[解答]设想一个半径为R 的金属棒绕一端做匀速圆周运动,角速度为ω,经过时间d t 后转过的角度为d θ = ωd t ,扫过的面积为d S = R 2d θ/2,切割的磁通量为d Φ = B d S = BR 2d θ/2,动生电动势的大小为ε = d Φ/d t = ωBR 2/2.根据右手螺旋法则,圆周上端点的电势高.AO 和BO 段的动生电动势大小分别为22()2550AO B LBL ωωε==, 22416()2550BOB LBL ωωε==. 由于BO > AO ,所以B 端的电势比A 端更高,A 和B 端的电势差为2310BO AOBL ωεεε=-=242332π 1.010(0.5)1010BL ω-⨯⨯⨯=== 4.71×10-4(V). [讨论]如果棒上两点到O 的距离分别为L 和l ,则两点间的电势差为222()(2)222B L l Bl B L Ll ωωωε++=-=.16.2 一长直载流导线电流强度为I ,铜棒AB 长为L ,A 端与直导线的距离为x A ,AB 与直导线的夹角为θ,以水平速度v 向右运动.求AB 棒的动生电动势为多少,何端电势高?[解答]在棒上长为l 处取一线元d l ,在垂直于速度方向上的长度为 d l ⊥ = d l cos θ;线元到直线之间的距离为r = x A + l sin θ,直线电流在线元处产生的磁感应强度为图16.1图16.2002π2π(sin )A IIB rx l μμθ==+.由于B ,v 和d l ⊥相互垂直,线元上动生电动势的大小为0cos d d d 2π(sin )A Iv lBv l x l μθεθ⊥==+,棒的动生电动势为00cos d 2πsin LAIv lx l μθεθ=+⎰00cos d(sin )2πsin sin LA A Iv x l x l μθθθθ+=+⎰ 0sin cot ln2πA AIvx L x μθθ+=,A 端的电势高.[讨论](1)当θ→π/2时,cot θ = cos θ/sin θ→0,所以ε→0,就是说:当棒不切割磁力线时,棒中不产生电动势.(2)当θ→0时,由于sin sin sin lnln(1)A A A Ax L L L x x x θθθ+=+→,所以02πAIvLx με→,这就是棒垂直割磁力线时所产生电动势.16.3 如图所示,平行导轨上放置一金属杆AB ,质量为m ,长为L .在导轨上的一端接有电阻R .匀强磁场B 垂直导轨平面向里.当AB 杆以初速度v 0向运动时,求:(1)AB 杆能够移动的距离;(2)在移动过程中电阻R 上放出的焦耳热为多少? [分析]当杆运动时会产生动生电动势,在电路中形成电流;这时杆又变成通电导体,所受的安培力与速度方向相反,所以杆将做减速运动.随着杆的速度变小,动生电动势也会变小,因而电流也会变小,所受的安培力也会变小,所以杆做加速度不断减小的减速运动,最后缓慢地停下来.[解答](1)方法一:速度法.设杆运动时间t 时的速度为v ,则动生电动势为ε = BLv ,电流为I = ε/R ,所受的安培力为F = -ILB = -εLB/R = -(BL )2v/R ,负号表示力的方向与速度方向相反.取速度的方向为正,根据牛顿第二定律F = ma 得速度的微分方程为BA图16.32()d d BL v v m R t-=,即: 2d ()d v B L t v m R=-积分得方程的通解为21()ln BL v t C mR=-+.根据初始条件,当t = 0时,v = v 0,可得常量C 1 = ln v 0.方程的特解为20()exp[]BL v v t mR=-.由于v = d x /d t ,可得位移的微分方程20()d exp[]d BL x v t t mR=-,方程的通解为20()exp[]d BL x v t t mR =-⎰2022()exp[]()mRv BL t C BL mR-=-+, 当t = 0时,x = 0,所以常量为022()mRv C BL =. 方程的特解为202(){1exp[]}()mRv BL x t BL mR=--. 当时间t 趋于无穷大时,杆运动的距离为2()mRv x BL =. 方法二:冲量定理.根据安培力的公式可得F = -(BL )2v/R ,负号表示安培力与速度的方向相反.因此2()d d BL x F t R-=,根据冲量定理得d 0tF t mv=-⎰,即:杆所受的冲量等于杆的动量的变化量.积分后可得02()mv Rx BL =. (2)方法一:焦耳定律.杆在移动过程中产生的焦耳热元为222()d d d d BLv Q I R t t t R R ε===220()2()exp[]d BLv BL t t R mR=-整个运动过程中产生的焦耳热为2200()2()exp[]d BLv BL Q t t R mR ∞=-⎰222002()exp[]22mv mv BL t mR ∞-=-=, 即:焦耳热是杆的动能转化而来的.方法二:动能定理.由于I = ε/R ,其中ε = BLv = BL d x /d t ,而安培力为F = -ILB ,负号表示安培力的方向与杆运动的方向相反.因此焦耳热元为d Q = I 2R d t = I εd t = IBL d x = -F d x .负号表示安培力做负功.根据动能定理,磁场的安培力对杆所做的功等于杆的动能的增量,因此安培力在杆的整个运动过程中所做的功为201d (0)2W F x mv =-=--⎰, 所以产生的焦耳热为212Q W mv ==. [小结]在求杆的运动距离时,用冲量定理可避免解微分方程.在求焦耳热时用动能定理可避免积分运算.16.4 如图所示,质量为m 、长度为L 的金属棒AB 从静止开始沿倾斜的绝缘框架滑下.磁感应强度B 的方向竖直向上(忽略棒AB 与框架之间的摩擦),求棒AB 的动生电动势.若棒AB 沿光滑的金属框架滑下,设金属棒与金属框组成的回路的电阻R 为常量,棒AB 的动生电动势又为多少?[解答](1)棒的加速度为a = g sin θ,经过时间t ,棒的速度为v = at = (g sin θ)t ,而切割磁力线的速度为v ⊥ = v cos θ,所以棒的动生电动势为ε = BLv ⊥ = BLg (sin θcos θ)t = BLg (sin2θ)t /2.(2)设棒运动时间t 时的速度为v ,则动生电动势为图16.4ε = BLv cos θ,电流为I = ε/R ,所受的安培力的大小为F = ILB = εLB/R = (BL )2v cos θ/R ,其方向水平向右.安培力沿着斜面向上的分量为F' = F cos θ,其方向与速度的方向相反.取速度的方向为正,根据牛顿第二定律ΣF = ma 得速度的微分方程为2(cos )d sin d BL v vmg m R tθθ-=,即 2d d sin (cos )mRt v mgR BL vθθ=-, 方程可化为222d[sin (cos )]d (cos )sin (cos )mR mgR BL v t BL mgR BL vθθθθθ--=-. 积分得方程的通解为22ln[sin (cos )](cos )mR t mgR BL v C BL θθθ-=-+.根据初始条件,当t = 0时,v = 0,可得常量2ln(sin )(cos )mRC mgR BL θθ=, 方程的特解为22[sin (cos )]ln (cos )sin mR mgR BL v t BL mgR θθθθ--=, 棒的速度为22sin (cos ){1exp[]}(cos )mgR BL v t BL mRθθθ=--, 动生电动势为cos BLv εθ=2(cos )tan {1exp[]}mgR BL t BL mRθθ=--. [讨论]当时间t 趋于无穷大时,最终速度为2sin (cos )mgR v BL θθ=,最终电动势为tan mgRBL εθ=, 最终电流为tan mgI BLθ=. 另外,棒最终做匀速运动,重力做功的功率等于感生电流做功的功率,重力做功的功率为P = mg sin θv ,感生电流做功的功率为222(cos )BLv P I R R Rεθ===, 两式联立也可得2sin (cos )mgR v BL θθ=,由此可以求出最终电动势和电流.[注意]只有当物体做匀速运动时,重力所做的功才等于电流所做的功,否则,重力还有一部分功转换成物体的动能.16.5 电磁涡流制动器是一个电导率为ζ,厚度为t 的圆盘,此盘绕通过其中心的垂直轴旋转,且有一覆盖小面积为a 2的均匀磁场B 垂直于圆盘,小面积离轴r (r >>a ).当圆盘角速度为ω时,试证此圆盘受到一阻碍其转动的磁力矩,其大小近似地表达为M ≈B 2a 2r 2ωζt .[解答]电导率是电阻率的倒数ζ = 1/ρ.不妨将圆盘与磁场相对的部分当成长、宽和高分别为a 、a 和t 的小导体,其横截面积为S = at ,电流将从横截面中流过,长度为a ,因此其电阻为1l R S tρσ==. 宽为a 的边扫过磁场中,速度大小为v = r ω,产生的感生电动势为ε = Bav = Bar ω,圆盘其他部分的电阻远小于小导体的电阻,因此通过小导体的电流强度为I ≈ε/R = Bar ωζt ,所受的安培力为F = IaB ≈B 2a 2r ωζt ,其方向与速度方向相反.产生的磁力矩为M = Fr ≈B 2a 2r 2ωζt .其方向与角速度的方向相反.16.6 如图,有一弯成θ角的金属架COD 放在磁场中,磁感应强度B 的方向垂直于金图16.5t属架COD 所在平面,一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v 向右滑动,v 与MN 垂直,设t = 0时,x = 0,求下列两情形,框架内的感应电动势εi .(1)磁场分布均匀,且B 不随时间改变; (2)非均匀的交变磁场B = Kx cos ωt . [解答](1)经过时间t ,导体杆运动的距离为X = vt ,杆的有效长度为l = X tan θ = v (tan θ)t , 动生电动势为εi = Blv = Bv 2(tan θ)t . (2)导体杆在t 时刻运动到X 处,在三角形中取一个面积元 d S = y d x , 由于y = x tan θ,所以d S = x tan θd x ,通过该面元的磁通量为d Φ = B d S = K cos ωt tan θx 2d x ,通过三角形的磁通量为20tan cos d XK t x x Φθω=⎰31tan cos 3K tX θω=331tan cos 3Kv t t θω=,感应电动势为d d i t Φε=-323tan (3cos sin )3kv t t t t θωωω=--,即: 32tan (sin 3cos )3i kv t t t t θεωωω=-.[注意]公式B = Kx cos ωt 中的x 是场点到O 点的距离,不一定是杆运动的距离,为了区别两个距离,杆的距离用X 表示.16.7 如图所示的回路,磁感应强度B 垂直于回路平面向里,磁通量按下述规律变化Φ = 3t 2 + 2t + 1,式中Φ的单位为毫韦伯,t 的单位为秒.求:(1)在t = 2s 时回路中的感生电动势为多少? (2)电阻上的电流方向如何?[解答](1)将磁通量的单位化为韦伯得 Φ = (3t 2 + 2t + 1)/103,感生电动势大小为ε = |d Φ/d t | = 2(3t + 1)/103.t = 2s 时的感生电动势为1.4×10-2(V).(2)由于原磁场在增加,根据楞次定律,感应电流所产生的磁场的方向与原磁场的方向相反,所以在线圈中感生电流的方向是逆时针的,从电阻的左边流向右边.O图16.6图16.716.8 如图所示的两个同轴圆形导体线圈,小线圈在大线圈上面.两线圈的距离为x ,设x 远大于圆半径R .大线圈中通有电流I 时,若半径为r 的小线圈中的磁场可看作是均匀的,且以速率v = d x /d t 运动.求x = NR 时,小线圈中的感应电动势为多少?感应电流的方向如何?[解答]环电流在轴线上产生的磁感应强度为20223/22()IR B x R μ=+, 当x >>R 时,磁感应强度为2032IRB xμ≈.小线圈的面积为S = πr 2,通过的磁通量为2203π2IR r BS x μΦ=≈, 当小线圈运动时,感应电动势为22043πd d 2IR r vt xμΦε=-≈, 当x = NR 时,感应电动势为20423π2Ir vN Rμε≈. 感应电流的磁场与原磁场的方向相同,感应电流的方向与原电流的环绕方向相同.16.9 如图所示,匀强磁场B 与矩形导线回路的法线n 成θ = 60°角,B = kt (k 为大于零的常数).长为L 的导体杆AB 以匀速v 向右平动,求回路中t 时刻的感应电动势的大小和方向(设t = 0时,x = 0).[解答]经过时间t ,导体杆运动的距离为 x = vt , 扫过的面积为 S = Lx = Lvt ,通过此面积的磁通量为Φ = B ·S = BS cos θ = Lvkt 2/2. 感应电动势的大小为ε = d Φ/d t = Lvkt .由于回路中磁通量在增加,而感应电流的磁通量阻碍原磁通量增加,其磁场与原磁场的方向相反,所以感应电动势的方向是顺时针的.16.10 长为b ,宽为a 的矩形线圈ABCD 与无限长直截流导线共面,且线圈的长边平行于长直导线,线圈以速度v 向右平动,t 时刻基AD 边距离长直导线为x ;且长直导线中的电流按I = I 0cos ωt 规律随时间变化,如图所示.求回路中的电动势ε.[解答]电流I 在r 处产生的磁感应强度为图16.8图16.902πIB rμ=,穿过面积元d S = b d r 的磁通量为0d d d 2πIbB S r rμΦ==,穿过矩形线圈ABCD 的磁通量为001d ln()2π2πx axIbIb x a r r xμμΦ++==⎰, 回路中的电动势为d d t Φε=-0d 11d [ln()()]2πd d b x a I x I x t x a x tμ+=-+-+ 00cos [ln()sin ]2π()I bx a av tt x x x a μωωω+=++. 显然,第一项是由于磁场变化产生的感生电动势,第二项是由于线圈运动产生的动生电动势. *16.11 如图,一个矩形的金属线框,边长分别为a和b (b 足够长).金属线框的质量为m ,自感系数为L ,忽略电阻.线框的长边与x 轴平行,它以速度v 0沿x 轴的方向从磁场外进入磁感应强度为B 0的均匀磁场中,B 0的方向垂直矩形线框平面.求矩形线框在磁场中速度与时间的关系式v = v (t )和沿x 轴方向移动的距离与时间的关系式x = x (t ).[解答]由于b 边很长,所以线框只有右边在做切割磁力线的运动.当线框速度为v 时,产生的动生电动势为ε = B 0av .当线框中的电流为i 时,产生的自感电动势的大小为d d L i Ltε=. 根据欧姆定律得ε + εL = iR ,由于不计电阻,所以有0d 0d iB av Lt+=. ① 右边所受的力为F = iaB 0,根据牛顿第二定律得0d d v iaB mt=, 微分得图16.10图16.11202d d d d i vaB m t t=, ②联立①和②式得微分方程2202()d 0d aB v v t mL+=, 这是简谐振动的微分方程,其通解为v A B =+.当t = 0时,v = v 0,所以A = v 0.加速度a t = d v /dt )A B =-+,当t = 0时,a t = 0,所以B = 0.速度方程为0v v =. 由于v = d x /d t ,所以0d d x v t v t ==⎰⎰00v C =+. 当t = 0时,x = 0,所以C = 0,所以位移方程为0x v =.16.12 如图所示的圆面积内,匀强磁场B 的方向垂直于圆面积向里,圆半径R = 12cm ,d B /d t = 10-2T·s -1.求图中a 、b 、c 三点的涡旋电场为多少(b 为圆心)?设ab = 10cm ,bc = 15cm . [解答](1)当点在磁场之中时,以b 为圆心,以r 为半径作一圆形环中,其周长为C = 2πr ,面积为S = πr 2.取环路的逆时针方向为正,根据右手螺旋法则,面积的法向方向垂直纸面向外。

大学物理第16章习题解答

大学物理第16章习题解答

两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚
柱之间的距离 L 变小,则在 L 范围内干涉条纹的( )
(A) 数目减小,间距变大
(B) 数目减小,间距不变
(C) 数目不变,间距变小
(D) 数目增加,间距变小
题 16-3 图 分析与解 图(a)装置形成的劈尖等效图如图(b)所示.图中 d 为两滚柱的直径差, b 为两相邻明(或暗)条纹间距.因为 d 不变,当 L 变小时,θ 变大,L′、b 均变小.
2
Δ2 -Δ1 =(n -1)d =(k2 -k1 )λ 式中(k2 -k1 )可以理解为移过点 P 的条纹数(本题为 5).因此,对于这类问题,求解 光程差的变化量是解题的关键.
解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点 O,有
∆2 − ∆1 = (n2 − 1)d = 5λ
将有关数据代入可得
第 5 条暗环的半径为 3.0 ×10−3 m 。求透镜凸面的曲率半径和 k 的值。
解 第 k 个暗环的半径为
4
,
(1)
当 时,为中心的暗点,当 个暗环,对应于 ,其半径为
时,为第 1 条暗环,等等。第 k 个暗环之外的第 5
(2) 将以上两式平方后相除,得
, 将数值代入并求出 k 值,得
, . 将 k 值代入式(1),可求得透镜凸面的曲率半径,为
解:根据牛顿环干涉的实验结果,有
根据已知条件
rk = kRλ / n
r1 = Rλ / n, r4 = 2 Rλ / n

∆r = Rλ / n ∆r ' = Rλ '/ n可得 因此有∆源自 (')2=
λ
'

大学物理课后习题答案 第十六章

大学物理课后习题答案 第十六章
大学物理练习册解答
大学物理下习题册八
1、 某黑体在某一温度时,辐射本领为 5.7W/cm2,试求这一辐射本领具有的峰值的 波长λ m?
解:根据斯忒藩定律 E(T) T4 ( 5.67108 J s m2 K3 ) 得
E(T) T4
再由维恩位移定律 Tm b (b 2.898103 m K)
10- 34 3? 108
sin2
90 2
=
0.00742nm
(2)由于光子散射角为 , 由动量守恒: 2
P0 P Pe
Pe P0 P
Pe
P02 P2
h 0
2
h
2
h
1 0
2
1
2
6.62 1034
1
2
0.05
10 1 0
1 0.07456 10
6、一实验用光电管的阴极是铜的(铜的逸出功为 4.47eV)。现以波长 0. 2m 的光照射此 阴极,若要使其不再产生光电流,所需加的截止电压为多大?
解:由爱因斯坦方程
hc
EK
A 及 EK
eU 0 得
U0
1 hc e
A
6.631034 3108 0.2106 1.61019
4.47
m
b T
b 2.898103 2.89 106 m
E(T)
5.7 104
4
5.67 108
2、在天文学中,常用斯特藩—玻尔兹曼定律确定恒星半径。已知某恒星到达地球的每单
位面积上的辐射能为1.2108 W / m2 ,恒星离地球距离为 4.31017 m ,表面温度为 5200
K。若恒星辐射与黑体相似,求恒星的半径。

四川大学大学物理练习册答案16电磁感应一解答

四川大学大学物理练习册答案16电磁感应一解答

L 0 ln d a a
证:
B
BL
BR
0I 2r
0I
2 d r
r I
d 2a
O
I r
d
d a
BdS
a
0I 2
d a 1 a r
1 ldr d r
0Il ln
d a a
L F 0 ln d a
Il Il
a
旧版电磁感应二 计算题 3
(D) 变大,但与电流不成反比关系.
旧版电磁感应二 选择题 4
电磁感应(一)
第八章
7.将一块铜板垂直于磁场方向放在磁感应强度正在增 大的磁场中时,铜板中出现的涡流(感应电流)将
(A) 加速铜板中磁场的增加.
(B) 减缓铜板中磁场的增加.
(C) 对磁场不起作用.
(D) 使铜板中磁场反向.
B
i
电磁感应(一)
b
(D) 线圈中感应电流方向不确定. x
c
直导线产生的磁场 B 0I 2x
B
0I
2 x
l
l ab
B ds
0I
l a b
1
1 cdx 0cI ln a b ln l a b
la
2 la x l x
2 a
la
向外增加
电磁感应(一)
第八章
3.一导体圆线圈在均匀磁场中运动,能使其产生感 应电流的一种情况是
u×B
ei
(v
B)
dl
L
e AB
d l
uBdx
d
d l
u
d
0I 2x
dx
0 Iu 2
ln
d l d

大学物理习题答案-第16章-电磁场

大学物理习题答案-第16章-电磁场

第16章 电磁场 参考答案一、选择题1(A),2(A),3(C),4(C),5(D),6(D),7(C),8(B),9(B),10(B) 二、填空题(1). )2/cos(/d d π+==t A NbB t x NbB ωωε 或t NBbA ωωεsin =. (2). πBnR 2, O . (3). 相同(或221R B ω), 沿曲线由中心向外.(4). 小于, 有关. (5). 0 (6). )8/(2220a I πμ. (7). 9.6 J.(8). ⎰⎰⋅∂∂S S D t ϖϖd 或 t D /d d Φ , ⎰⎰⋅∂∂-SS B t ϖϖd 或 t m /d d Φ-. (9). t E R d /d 02επ, 与E ϖ方向相同(或由正极板垂直指向负极板).(10).t B r d /d 21.三 计算题1. 如图所示,有一半径为r =10 cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B ϖ中(B = 0.5 T ).圆形线圈可绕通过圆心的轴O 1O 2转动,转速 n =600 rev/min .求圆线圈自图示的初始位置转过π21时,(1) 线圈中的瞬时电流值(线圈的电阻R 为 100 Ω,不计自感);(2) 圆心处的磁感强度.(μ0 =4π×10-7 H/m)解:(1) 设线圈转至任意位置时圆线圈的法向与磁场之间的夹角为θ,则通过该圆线圈平面的磁通量为θΦcos 2r B π=, nt t π==2ωθ∴ nt r B ππ=2cos 2Φ在任意时刻线圈中的感应电动势为nt n r NB tNπππ=Φ-=2sin 2d d 2 nt n BNr ππ=2sin 222 t ΤI nt R n NBr R i m π=ππ==22sin 2sin 22 当线圈转过π /2时,t =T /4,则 987.0/22=π==2R NBn r I i m A(2) 由圆线圈中电流I m 在圆心处激发的磁场为==')2/(0r NI B m μ 6.20×10-4 T方向在图面内向下,故此时圆心处的实际磁感强度的大小500.0)(2/1220≈'+=B B B T 方向与磁场B ρ的方向基本相同.ϖ2. 如图所示,真空中一长直导线通有电流I (t ) =I 0e -λt (式中I 0、λ为常量,t 为时间),有一带滑动边的矩形导线框与长直导线平行共面,二者相距a .矩形线框的滑动边与长直导线垂直,它的长度为b ,并且以匀速v ϖ(方向平行长直导线)滑动.若忽略线框中的自感电动势,并设开始时滑动边与对边重合,试求任意时刻t 在矩形线框内的感应电动势 i 并讨论 i 方向.解:线框内既有感生又有动生电动势.设顺时针绕向为 i 的正方向.由 i = -d Φ /dt 出发,先求任意时刻t 的Φ (t )⎰⋅=S B t ρϖd )(Φy t x yt I ba ad )(2)(0⎰+π=μaba t x t I +π=ln )()(20μ 再求Φ (t )对t 的导数:)d d d d )((ln 2d )(d 0txI x t I b ba t t ++π=μΦ ab a t I t+-π=-ln )1(e 200λμλv )(t x v =∴ i ab a t I tt +-π=-=-ln )1(e 2d d 00λμΦλvi 方向:λ t <1时,逆时针;λ t >1时,顺时针.3. 如图所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转.O 1O 2在离细杆a 端L /5处.若已知地磁场在竖直方向的分量为B ϖ.求ab 两端间的电势差b a U U -.解:Ob 间的动生电动势:⎰⎰=⋅⨯=5/405/401d d )L L l Bl l B ωϖϖϖv ( 225016)54(21BL L B ωω== b 点电势高于O 点. Oa 间的动生电动势:⎰⎰⋅=⨯=5/05/02d d )L L l Bl l B ωϖϖϖv ( 22501)51(21BL L B ωω== a 点电势高于O 点. ∴ 22125016501BL BL U U b a ωω-=-=- 221035015BL BL ωω-=-=I (t )v ϖI (t ) x (t )b4. 有一很长的长方的U 形导轨,与水平面成θ角,裸导线ab 可在导轨上无摩擦地下滑,导轨位于磁感强度B ϖ竖直向上的均匀磁场中,如图所示.设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计,abcd 形成电路,t =0时,v =0. 试求:导线ab 下滑的速度v 与时间t 的函数关系.解:ab 导线在磁场中运动产生的感应电动势 θcos v Bl i = abcd 回路中流过的电流 θcos RBl R I ii v ==ab 载流导线在磁场中受到的安培力沿导轨方向上的分力为: θθθcos cos cos Bl RBl Bl I F i v ==由牛顿第二定律: t mBl R Bl mg d d cos cos sin vv =-θθθ mR l B g t θθ222cos sin d d v v-=令 θsin g A =,)/(cos 222mR l B c θ= 则 )/(d d v v c A t -=利用t = 0,v = 0 有⎰⎰⎰---=-=vv v v v v 000)d(1d c A c A c c A d t t Ac A ct v--=ln1 ∴ )e 1(cos sin )e 1(222ct ctl B mgR c A ---=-=θθv5. 一根长为l ,质量为m ,电阻为R 的导线ab 沿两平行的导电轨道无摩擦下滑,如图所示.轨道平面的倾角为θ,导线ab 与轨道组成矩形闭合导电回路abdc .整个系统处在竖直向上的均匀磁场B ϖ中,忽略轨道电阻.求ab 导线下滑所达到的稳定速度.解∶动生电动势θcos Bl i v = RBl RI iθcos v ==导线受到的安培力 lB I f m =ab 导线下滑达到稳定速度时重力和磁力在导轨方向的分力相平衡 θθcos sin m f mg =θθθcos cos sin lB RBl mg v =∴ θθ222cos sin l B mgR =vdϖ6. 已知,一根长的同轴电缆由半径为R 1的空心圆柱导体壳和另一半径为R 2的外圆柱导体壳组成,两导体壳间为真空.忽略电缆自身电阻,设电缆中通有电流i ,导体间电势差为U ,求(1) 两导体壳之间的电场强度E ϖ和磁感强度B ϖ. (2) 电缆单位长度的自感L 和电容C .解:(1) 根据安培环路定理i l B 0d μ⎰=⋅ϖϖ和长直条件及轴对称性可知,在R 2 >r > R 1 (r 为轴线到场点的半径)区域有 )2/(0r I B π=μB ϖ方向与内导体壳电流方向成右手螺旋关系.根据高斯定理:⎰⋅=0/d εQ S E ϖϖ和长直条件及轴对称性可知,在R 2 >r > R 1区域有r E 02/ελπ=E ϖ方向沿半径指向电势降落方向,式中λ为电缆内导体壳上单位长度上的电荷.由两导体间电势差U ,可求得 )/ln(2120R R U ελπ=, ∴ )/ln(12R R r UE =(2) 在电缆的两个导体壳之间单位长度的磁通量为 1200ln 2d 221R R ir riR R π=π=⎰μμΦ 单位长度电缆的自感系数为12ln2R R iL π==μΦ由电容定义又知单位长度电缆的电容应为 )/ln(2120R R UC ελπ==7. 两线圈顺接,如图(a),1、4间的总自感为1.0 H .在它们的形状和位置都不变的情况下,如图(b)那样反接后1、3之间的总自感为0.4 H .求两线圈之间的互感系数.解:设顺接的总自感为L S ,反接的总自感为L F . ∵ M L L L S 221++= M L L L F 221-+=∴ 4/)(F S L L M -== 0.15 H8. 如图所示,真空中一矩形线圈宽和长分别为2a 和b ,通有电流I 2,可绕其中心对称轴OO '转动.与轴平行且相距为d +a 处有一固定不动的长直电流I 1,开始时矩形线圈与长直电流在同一平面内,求:(1) 在图示位置时,I 1产生的磁场通过线圈平面的磁通量;(2) 线圈与直线电流间的互感系数. (3) 保持I 1、I 2不变,使线圈绕轴OO '转过90°外力要做多少功? 解:(1) 按题意是指图示位置时的Φ.123(a)顺接(b) 反接Ibdad bI bdx xI ad d2ln2210210+π=π=⎰+μμΦ (2) dad bI M 2ln201+π==μΦ(3)dad bI I I A 2ln22102+π==∆μΦ9. 一根电缆由半径为R 1和R 2的两个薄圆筒形导体组成,在两圆筒中间填充磁导率为μ 的均匀磁介质.电缆内层导体通电流I ,外层导体作为电流返回路径,如图所示.求长度为l 的一段电缆内的磁场储存的能量.解: ⎰∑⋅=i I l H ϖϖd , I rH =π2 (R 1< r < R 2)r I H π=2, r I H B π==2μμ2222)2(22r I B w m π==μμμ l r r w V w W m m m ⋅π==d 2d d r rl r Id 2)2(222ππ=μ∴ ⎰⎰π==2121d 4d 2R R R R m m rrl I W W μ122ln4R R lI π=μ四 研讨题1. 我们考虑这样一个例子: 设一个半径为R 的导体圆盘绕通过其中心的垂直轴在磁场中作角速度为ω的匀速转动,并假设磁场B 均匀且与轴线平行,如图所示。

大学物理学(下册)习题答案详解

大学物理学(下册)习题答案详解

第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。

大学物理习题解答 第十六章习题

大学物理习题解答 第十六章习题

第十六章习题16.8 氧气瓶的容积为32L ,其中氧气的压强为1.27⨯107P а,氧气厂规定压强降到9.8⨯105P а时,就应重新充气,以免经常洗瓶。

某小型吹玻璃车间,平均每天用400L ,1个工程大气压下的氧气,问一瓶氧气能用多少天?(设使用过程中,温度不变,1个工程大气压=9.8⨯104 P а)。

分析:由于使用条件的限制,瓶中氧气不能完全被使用,因此可通过两条不同的思路进行分析和求解; 解法(一)从氧气质量的角度来分析:设原瓶中氧气的总质量为1m ,需充气时瓶中剩余氧气的质量为2m ,每天使用氧气的质量为3m 。

由理想气体的状态方程MpV RT μ=可得:111p V m RT μ= : 212p V m RT μ= 333p V m RT μ= 则一瓶氧气可用天数321)(m m m n -= 12133()p p V p V =-6.9≈天解法(二)从体积的角度来分析。

利用等温膨胀条件,将原瓶中氧气由初态,pa p 711027.1(⨯=,331323210V L m ==⨯) 膨胀到需充气条件下的终态,5229.810,p pa V =⨯待求),比较可得2p 状态下实际使用掉的氧气的体积为21V V -,同样将每天的氧气由初态41333(9.810,400410)p Pa V L m -=⨯==⨯等温压缩到压强为2p 的终态,并算出此的体积'2V ,由此可得使用天数为:212()n V V V '=-。

对等温膨胀过程利用理想气体的状态方程可得压强为pa p 52108.9⨯=时体积为 2112V p V p =每天使用相同状态的氧气的体积为 2332V p V p '= 可得瓶内氧气的可用天数为212n V V V '=- =12133()p p V p V - 5.9≈天16.9 水银气压计重混进了一个空气泡,因此它的读数比实际的气压要小一些。

大学物理16章物理答案3

大学物理16章物理答案3

16.20 两个共轴的螺线管A 和B 完全耦合,A 管的自感系数L 1 = 4.0×10-3H ,通有电流I 1 = 2A ,B 管的自感L 2 = 9×10-3H ,通有电流I 2 = 4A .求两线圈内储存的总磁能.[解答]A 管储存的自能为211112m W L I = 32314102810(J)2--=⨯⨯⨯=⨯,B 管储存的自能为222212m W L I = 323191047210(J)2--=⨯⨯⨯=⨯;由于两线圈完全耦合,互感系数为M =3610(H)-==⨯,A 管和B 管储存的相互作用能为W m 12 = MI 1I 2 = 6×10-3×2×4 = 48×10-3(J),两线圈储存的总能量为W m = W m 1 + W m 2 + W m 12 = 0.128(J).16.21 一螺绕环中心轴线的周长L = 500mm ,横截面为正方形,其边长为 b = 15mm ,由N = 2500匝的绝缘导线均匀密绕面成,铁芯的相对磁导率μr = 1000,当导线中通有电流I = 2.0A 时,求:图16.21(1)环内中心轴线上处的磁能密度;(2)螺绕环的总磁能.[解答](1)设螺绕环单位长度上的线圈匝数为 n = N/L , 中心的磁感应强度为B = μnI ,其中μ = μr μ0.磁场强度为H = B/μ = nI ,因此中心轴线上能量密度为2111()222w BH nI μ=⋅==B H72125001000410(2)20.5π-=⨯⨯⨯⨯ = 2π×104(J·m -3).(2)螺绕环的总体积约为V = b 2L ,将磁场当作匀强磁场,总磁能为W = wV= 2π×104×(0.015)2×0.5=2.25π = 7.07(J).16.22试证:平行板电容器中的位移电流可写成d d d UI C t =的形式,式中C 是电容器的电容,U 是两板间的电势差.对于其他的电容器上式可以应用吗?[证明]根据麦克斯韦理论:通过电场任意截面的位移电流强度等于通过该截面电位移通量的时间变化率,即I d = d ΦD /d t .在平行板电容器中,由于ΦD= DS,而电位移D等于电容器的面电荷密度,即D = σ.因为电容器带电量为q = σS = DS = ΦD,所以I d= d q/d t,即:位移电流等于极板上电量的时间变化率.根据电容的定义 C = q/U,可得I d= C d U/d t.其他电容器可以看作由很多平等板电容器并联而成,总电容等于各电容之和,所以此式对于其他电容器也可以应用.16.23 如果要在一个1.0PF的电容器中产生1.0A的位移电流,加上电容器上的电压变化率为多少?[解答]因为I d= C d U/d t,所以电压变化率为d U/d t = I d/C = 1/10-12 = 1012(V·s-1).16.24在圆形极板的平行板电容器上,加上频率为50Hz,峰值为2×105V的交变电压,电容器电容C = 2PF,求极板间位移电流的最大值为多少?[解答]交变电压为U = U m cos2πνt,位移电流为I d= C d U/d t = -CU m2πνsin2πνt,电流最大值为I m = CU m 2πν= 2×10-12×2×105×2π×50 = 4π×10-5(A).16.25一平行板电容器的两极板面积为S 的圆形金属板,接在交流电源上,板上电荷随时间变化,q = q m sin ωt .求:(1)电容器中的位移电流密度;(2)两极板间磁感应强度的分布.[解答](1)平行板电容器的面电荷密度为σ = q/S ,位移电流密度为 d d cos d d m d q q t t S t S ωσδω===.(2)在安培-麦克斯韦环路定律中dL I I +=⋅⎰l H d ,两极板间没有传导电流,即I = 0.由于轴对称,在两板之间以轴为圆心作一个半径为r 的圆,其周长为 C = 2πr ,使磁场的方向与环路的方向相同,左边为rHl H L π2d d L =⋅=⋅⎰⎰l H .环路所包围的面积为S` = πr 2,右边的位移电流为2`(cos )m d d q I S t r S ωδωπ==.因此,两极板间磁场强度的分布为cos 2m q r H t S ωω=,磁感应强度的分布为00cos 2m q rB H t S μωμω==.16.26 如图所示,电荷+q 以速度v 向O 点运动(电荷到O 点的距离以x 表示).以O 点O 圆心作一半径为a 的圆,圆面与v 垂直.试计算通过此圆面的位移电流. [解答]在圆面上取一半径为R 的环,其面积为d S = 2πR d R , 环上任一面元的法线方向与场强方向之间的夹角为φ,场强大小为 E = q /4πε0r 2,其中r = (x 2 + R 2)1/2,通过环的电通量为d Φe = E ·d S = E d S cos φ,其中cos φ = x/r ,所以得3223/200d d d 22()e qxR R qx R R r x R Φεε==+,积分得电通量为22223/200d()22()a e qx x R x R Φε+=+⎰0(12q ε=.由于电位移强度D 和电场强度E 的关系为 D = ε0E ,图16.26a所以电位移通量和电通量之间的关系为Φd = ε0Φe ,因此点电荷在圆面上通过的电位移通量为(12d q Φ=.当电荷q 以速度v 向O 运动时,可认为圆面以d x /d t = -v 向电荷运动,因此,通过此圆面的位移电流为d d dd I t Φ=2q -=2223/22()q a v x a =+.16.27在真空中,一平面电磁波的电场为70.3cos[210()]y x E t c π=⨯-(V·m -1).求:(1)电磁波的波长和频率;(2)传播方向;(3)磁场的大小和方向. [解答](1)电磁波的角频率为ω = 2π×107(rad·s -1),频率为 ν = ω/2π = 107(Hz).波长为 λ = cT = c/ν = 3×108/107 = 30(m).(2)电磁波的传播方向为x 方向.(3)磁场的方向在z 方向,由于y z =,所以磁场强度为001z y y yH E E c μ===871310410y E π-=⨯⨯⨯71cos[210()]400xt c ππ=⨯-.磁感应强度为01z z y B H E c μ==9710cos[210()]xt c π-=⨯-.71cos[210()]400xt c ππ=⨯-.磁感应强度为01z z y B H E c μ==9710cos[210()]xt c π-=⨯-.16.28 一个长直螺线管,每单位长度有n 匝线圈,载有电流i ,设i随时间增加,d i /d t >0,设螺线管横截面为圆形,求:(1)在螺线管内距轴线为r 处某点的涡旋电场;(2)在该点处坡印廷矢量的大小和方向.[解答](1)长直螺线管通有电流i 时,在轴线上产生的磁感应强度为μ0ni , B = 磁场是均匀的,也是轴对称的.以轴线上某点为圆心,以r 为半径作一环路,环路的周长为 C = 2πr ,面积为 S=πr 2,根据电场的环路定理S B l Εd d d d ⋅-=⋅⎰⎰S L k t ,可得 2πrE = -πr 2d B /d t ,因此涡旋电场为0d 2d nr iE t μ=-,负号表示涡旋电场的方向与环路的环绕方向相反.(2)管中磁场强度为H = B/μ0 = ni .坡印廷矢量为S = E ×H ,其大小为20d 2d n r iS EH i t μ==.当d i /d t > 0时,S 的方向沿径向指向轴线;当d i /d t < 0时,S 的方向沿径向向外.。

大学物理学(下册)第16章 物理学课外知识

大学物理学(下册)第16章 物理学课外知识
目前,超声波已经在海洋探测与开发、无损检测、医学诊断等领域 发挥着不可取代的作用。
超声波可用来探 测鱼群和冰山
2020/5/7
用于潜艇 导航或传 送信息、 地形地貌 测绘和地
质勘测
利用超声波检测固体材料内部缺陷、材料尺寸测量、物理参数测量等在 医学中利用超声波进行人体内部器官的组织结构扫描和血流速度的测量
• 宇宙中99.9%以上的物质是处在等离子态。

例如太阳、恒星就是等离子体,只有行星和某些星际物质和
微尘云是处在气液固三态,而这只是宇宙中极小的一部分。在地i球
上,闪电、极光、大气电离层也是等离子体,霓虹灯发出的辉光、
电焊时闪烁的电弧、火箭喷出的火焰、核爆炸产生的火球云等则是
人工产生的等离子体。
太阳
高真空 可用于热绝缘、电绝缘和避免分子电子、离子碰撞的场合。 高真空中分子自由程大于容器的线性尺寸,因此高真空可用于电子 管、光电管、阴极射线管、X 射线管、加速器、质谱仪和电子显微 镜等器件中,以避免分子、电子和离子之间的碰撞。这个特性还可 应用于真空镀膜 ,以供光学、电学或镀制装饰品等方面使用。
目前,发现混沌 现象不仅存在于物理 系统,也存在于化学 系统、生物系统及人 的生命进程中,甚至 还存在于社会学与经 “今天在北京的一只蝴蝶扇动了一下翅膀,可 济学等社会科学领域。 能下月在纽约引起一场暴风雨”
2020/5/7
超声波简介
正常人的听觉可以听到20Hz-20kHz的声波,低于20Hz的声波称 为次声波,超过20kHz的声波称为超声波。超声波和可闻声本质上是一 致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质 内传播,是一种能量和动量的传播形式,其不同点是超声频率高,波长 短,在一定距离内沿直线传播具有良好的束射性和方向性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16章习题解答【16-1】解:取固定坐标xOy ,坐标原点O 在水面上(图题16-1示)设货轮静止不动时,货轮上的B 点恰在水面上,则浮力的增量为S ρgy 。

该力与位移y 成正比,方向指向平衡位置,故货轮的自由振动是简谐振动,其运动方程为:0gy S dt yd M 22=+ρ0y MgS dt y d 22=+ρ 根据简谐振动的动力学方程,有:Mg S 2ρω=故s 35.6s 8.910102101022g S M 22T 3334=⨯⨯⨯⨯⨯===πρπωπ【16-2】解:取物体A 为研究对象,建立坐标Ox 轴沿斜面向下,原点取在平衡位置处,即在初始位置斜下方距离l 0处,此时:m 1.0ksin m g l 0==θ(1)(1)A 物体共受三力;重力mg ,支持力N ,张力T 。

不计滑轮质量时,有:kx T =列出A 在任一位置x 处的牛顿方程式:220dt xd m )x l (k sin mg T sin mg =+-=-θθ将①式代入上式,整理后得:0x mkdt x d 22== 故物体A 的运动是简谐振动,且s rad mk/7==ω 由初始条件⎩⎨⎧=-=0υl x ,求得:⎩⎨⎧===πϕml A 1.00,故物体A 的运动方程为:x=0.1cos(7t+π)m(2)当考虚滑轮质量时,两段绳子中张力数值不等,如图题16-2(c )所示,分别为T 1、T 2,则对A 列出任一位置x 处的牛顿方程式为:221dtxd m T sin mg =-θ (2)对滑轮列出转动方程为:222r2r 1dt xd Mr21r a )Mr 21(J T T ===-β (3)式中,T 2=k(l 0+x) (4) 将③、④代入式②式,有:220dtxd )m 2M ()x l (k sin mg +=+-θ整理得:0x )m 2M (kdt x d 22=++ 可见,物体A 仍作简谐振动,此时圆频率为:s /ra d 7.5m 2Mk =+=ω由于初始条件:x 0=-l 0,υ0=0可知,A 、ϕ不变,故物体A 的运动方程为: x=0.1cos(5.7t+π)m由以上可知:弹簧在斜面上的运动,仍为谐振动,但平衡位置发生了变化,滑轮的质量改变了系统的振动频率。

【16-3】解:简谐振动的振动表达式:x=Acos(ωt+ϕ)由题图16-3可知,A=4×10-2m ,当t=0时,将x=2×10-2m 代入谐振动表达式,得:21cos =ϕ 由υ=-ωA sin(ωt+ϕ),当t=0时,υ=-ωA sin ϕ 由图题16-3可知,υ>0,即sin ϕ<0,故由21cos =ϕ,取 3πϕ-= 又因:t=1s 时,x=2×10-2m ,将其入代简谐振动表达式,得:)3cos(42πω-=,21)3cos(=-πω由t=1s 时,0)3sin(<--=πωωυA 知,0)3sin(>-πω,取 33ππω=-,即 32πω=s 质点作简谐振动的振动表达式为: m t x )332cos(1042ππ-⨯=-【16-4】解:以该球的球心为原点,假设微粒在某一任意时刻位于遂道中的位矢为r ,则微粒在此处受电场力为:r R Qq F 304πε-=式中,负号表明电场F 的方向与r 的正方向相反,指向球心。

由上式及牛顿定律,得:0430=+r R Qq F πε043022=+r R Qq dt r d mπε令 3024RQq πεω=则0222=+r dtr d ω故微粒作简谐振动,平衡点在球心处。

由 ωπ2=T知: QqmR T 3042πεπ=【16-5】解:(1)取弹簧原长所在位置为O '点。

当弹簧挂上物体A 时,处于静止位置P 点,有:P O k Mg '=将A 与B 粘合后,挂在弹簧下端,静止平衡时所在位置O 点,取O 点为原坐标原点如图题16-5所示,则有:g m M O O k )(+='设当B 与A 粘在一起后,在其运动过程的任一位置,弹簧形变量x O O +',则A 、B 系统所受合力为:kx x O O k g m M F -=+'-+=)()(即 0)(22=++kx dt x d m M可见A 与B 作简谐振动。

(2)由上式知,s rad mM k/10=+=ω 以B 与A 相碰点为计时起点,此时A 与B 在P 点,由图题16-5可知 kmg k Mg g k mM P O O O OP =-+='-'= 则t=0时,m kmgOP x 02.00-=-=-=(负号表P 点在O 点上方) 又B 与A 为非弹性碰撞,碰撞前B 的速度为:s m gh /2220101=-='υυ碰撞后,A 、B 的共同速度为:s m mM m /4.0010=+'=υυ (方向向上) 则t=0时,⎩⎨⎧=-=s m mx /4.002.000υ可求得:m x A 0447.02202=+=ωυπωυϕ65.0)arctan(00=-=x 可知A 与B 振动系统的振动表达式为:x=0.0447cos(10t+0.65π)m (3)弹簧所受的最大拉力,应是弹簧最大形变时的弹力,最大形变为:m A g kmM A O O x 1447.0=++=+'=∆ 则最大拉力 F max =k ∆x=72.4N 【16-6】解:(1)已知A=0.24m , 22ππω==T ,如选x 轴向下为正方向。

已知初始条件x 0=0.12m ,υ0<0即 0.12=0.24cos ϕ,3,21cos πϕϕ±== 而 υ0=-Aωsin ϕ<0,sin ϕ>0,取3πϕ=,故:m t x )32cos(24.0ππ+=(2)如图题16-6所示坐标中,在平衡位置上方0.12m ,即x=-0.12m 处,有:21)32cos(-=+ππt3232πππ±=+t 因为所求时间为最短时间,故物体从初始 位置向上运动,υ<0。

则取3232πππ=+t可得: s t 32min =(3)物体在平衡位置上方0.12m 处所受合外力F=-m ωx=0.3N ,指向平衡位置。

【16-7】解:子弹射入木块为完全非弹性碰撞,设υ为子弹射入木块后二者共同速度,由动量恒定可知; s m mM mu /0.2=+=υ 不计摩擦,弹簧压缩过程中系统机械能守恒,即: 2221)(21kx u m M =+ (x 0为弹簧最大形变量) m u kmM x 20100.5-⨯=+=由此简谐振动的振幅 A=x 0=5.0×10-2 系统圆频率s rad mM k/40=+=ω 若取物体静止时的位置O (平衡位置)为坐标原点,Ox 轴水平向右为正,则初始条件为: t=0时,x=0,υ0=u=2.0m/s>0由 x0=acos ϕ,υ0=-A ωsin ϕ,得:2πϕ-=则木块与子弹二者作简谐振动,其振动表达式为: m t x )240cos(100.52π-⨯=-【16-8】解:当物体m 1向右移动x 时,左方弹簧伸长x ,右方弹簧缩短x ,但它们物体的作用方向是相同的,均与物体的位移方向相反,即 F=-(k 1x+k 2x )令F=-kx ,有:k=k 1+k 2=4N/m 由 km T π2= 得 kg k T m 10.042211==π则粘上油泥块后,新的振动系统质量为: m 1+m 2=0.20kg 新的周期 s km m T 4.12212=+=π在平衡位置时,m 2与m 1发生完全非弹性碰撞。

碰撞前,m 1的速度υ1=ω1A 1=0.10πm/s设碰撞后,m 1和m 2共同速度为υ。

根据动量守恒定律, m 1υ1=(m 1+m 2)υ 则 s m m m m /05.0)(2111πυυ=+=新的振幅 m T A 035.0222===πυωυ 【16-9】解:以两轮轮心间距的中心为原点,作x 轴,当重心由x=0处移到x 处时,考虑到杆对通过A 2点的水平轴(与x 轴垂直)无转动,于是有: 0)2(1=--x lmg l T同理可得:0)2(2=+-x lmg l T由上两式,得:lmgxT T 221-=- 故杆受到的摩擦力(沿x 轴)为:x lmg T T T T dt x d m μμμμ2)(212122-=-=-= 于是有:0222=+x lgdt x d μ 可见杆的运动为简谐振动:s gT 5.12122===μπωπ【16-10】解:(1)由振动方程)25sin(60.0π-=t x 知, A=0.6m ,ω=5rad/s故振动周期:s T 26.12==ωπ(2)t=0时,由振动方程得: x 0=-0.60m0)25cos(0.3|00=-===πυt dt dx t (3)由旋转矢量法知,此时的位相:3πϕ-=速度 s m s m A /6.2/)23(560.0sin =-⨯⨯-=-=ϕωυ 加速度 2222/5.7/21560.0cos s m s m A a -=⨯⨯-=-=ϕω所受力 F=ma=0.2×(-7.5)N=-1.5N(4)设质点在x 处的动能与势能相等,由于简谐振动能量守恒,即: 221kA E E E p k ==+ 故有:)21(21212kA E E E p k === 即22212121kA kx ⨯= 可得: m A x 42.022±=±= 【16-11】解:(1)砝码运动到最高点时,加速度最大,方向向下,由牛顿第二定律,有: ma max =mg -NN 是平板对砝码的支持力。

故N=m(g -a max )=m(g -A ω2)=m(g-4π2vA)=1.74N砝码对板的正压力与N 大小相等,方向相反。

砝码运动到最低点时,加速度也是最大,但方向向上,由牛顿第二定律,有:mg N ma -'=max故 N A v g m a g m N 1.8)4()(22m a x =+=+='π砝码对板的正压力与板对砝码的支持力N '大小相等,方向相反。

(2)当N=0时,砝码开始脱离平板,故此时的振幅应满足条件: N=m(g -4π2vA max )=0 m vg A 062.0422max ==π(3)由22max 4vg A π=,可知,A max 与v 2成反比,当v v 2='时,m A A 0155.041max max==' 【16-12】解:(1)设振子过平衡位置时的速度为υ,由机械能守恒,有: 222121υm kA = 故 mkA±=υ m '在平衡位置处竖直落下至m ,发生完全非弹性碰撞,系统动量守恒,有: m υ=(m+m ')u 故 υm m mu '+=此后,系统振幅为A ',由机械能守恒,有: 22)(2121u m m A k '+=' 得: A m m mA '+=' 有: km m T '+='π2 (2)碰撞前后系统总能量变化为: )21()1(2121212222kA m m m m m m kA kA A k E '+'-=-'+=-'=∆ 式中,负号表示能量损耗,这是泥团与物体的非弹性碰撞所致。

相关文档
最新文档