中考数学压轴题汇编专题:几何综合之动态图形
中考复习 动态几何型压轴题
1、解决这类问题时,要 、解决这类问题时, 理解图形运动的过程, 理解图形运动的过程, 探索运动的特点和规律, 探索运动的特点和规律, 掌握好动静的切换---“动 掌握好动静的切换 动 中求静” 中求静”。 2、多作出几个符合要求 、多作出几个符合要求 草图。 的草图。
Page 4
例题: 中考回放 例题:09中考回放
(1)当t = 2时,AP = ) 时 ,点Q到AC的距离是 到 的距离是 ; 运动的过程中, 的面积S与 的 (2)在点 从C向A运动的过程中,求△APQ的面积 与t的 )在点P从 向 运动的过程中 的面积 函数关系式;(不必写出t的取值范围 ;(不必写出 的取值范围) 函数关系式;(不必写出 的取值范围) 运动的过程中, (3)在点 从B向C运动的过程中,四边形 )在点E从 向 运动的过程中 四边形QBED能否成为 能否成为 直角梯形?若能, 的值 若不能,请说明理由; 的值. 直角梯形?若能,求t的值.若不能,请说明理由; 经过点C 请直接写出t的值 的值. (4)当DE经过点 时,请直接写出 的值. ) 经过点
解:②如图5,当PQ∥BC时,DE⊥BC, 如图 , ∥ 时 ⊥ , 四边形QBED是直角梯形. 是直角梯形. ∴四边形 是直角梯形 此时∠ 此时∠APQ =90°. ° 由△AQP ∽△ABC,得 AQ = AP , AB AC Q 即 t = 3-t ,解得t= 15 解得 3 5 8 D
A P B
解:(3)能. :( ) ①当DE∥QB时,如图 .∵DE⊥PQ, ∥ 时 如图4. ⊥ , 是直角梯形. ∴PQ⊥QB,四边形 ⊥ ,四边形QBED是直角梯形. 是直角梯形 此时∠ 此时∠AQP=90° ° AQ = AP 由△APQ ∽△ABC,得 AC AB , 9 t 即 3 = 3-t ,解得,t= 8 5
动态几何(压轴)
动态几何一、由图形变换产生的函数关系1.将一矩形纸片OABC放在平面直角坐标系中,O为顶点,点A在x轴上,点C在y轴上,OA=10,OC=8.(1)如右上图,在OC边上取一点D,将△BCD沿BD折叠,使点C恰好落在OA边上,记作点E.①求点E的坐标及折痕BD的长;②在x轴上取两点M,N(点M在点N的左侧),且MN=4.5,求使四边形BDMN的周长最短的点M和点N的坐标;(2)如右下图,在OC,BC边上分别取点F,G,将△GCF沿GF折叠,使点C恰好落在OA边上,记作点H.设OH=x,四边形OHGC的面积为S,求S与x之间的函数关系式,并写出自变量x的取值范围.2.如图,将含30°角的直角三角板ABC (∠B=30°)绕其直角顶点A 逆时针旋转α(0°<α<90°),得到Rt △ADE ,AD 与BC 相交于点M ,过点M 作MN ∥DE 交AE 于点N ,连接NC .设BC=4,BM=x ,△MNC 的面积为S △MNC ,△ABC 的面积为S △ABC .(1)求证:△MNC 是直角三角形;(2)试求用x 表示S △MNC 的函数关系式,并写出x 的取值范围;(3)以点N 为圆心,NC 为半径作⊙N ,①当直线AD 与⊙N 相切时,试探求S △MNC 与S △ABC 之间的关系;②当S △MNC =41S △ABC 时,试判断直线AD 与⊙N 的位置关系,并说明理由3将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.(1)如图(1),在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;(2)如图(2),在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上的D′点,过D′作D′G∥A′O交E′F于T点,交OC′于G点,求证:TG=A′E′.(3)在(2)的条件下,设T(x,y)①探求:y与x之间的函数关系式.②指出变量x的取值范围.(4)如图(3),如果将矩形OABC变为平行四边形OA“B“C“,使O C“=10,O C“边上的高等于6,其它条件均不变,探求:这时T(x,y)的坐标y与x之间是否仍然满足(3)中所得的函数关系,若满足,请说明理由;若不满足,写出你认为正确的函数关系式.4.OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10,OC=6.(1)如图1,在OA 上选取一点G ,将△COG 沿CG 翻折,使点O 落在BC 边上,记为E ,求折痕y 1所在直线的解析式;(2)如图2,在OC 上选取一点D ,将△AOD 沿AD 翻折,使点O 落在BC 边上,记为E'.①求折痕AD 所在直线的解析式;②再作E'F ∥AB ,交AD 于点F .若抛物线y=- 121x 2+h 过点F ,求此抛物线的解析式,并判断它与直线AD 的交点的个数.(3)如图3,一般地,在OC 、OA 上选取适当的点D'、G',使纸片沿D'G'翻折后,点O 落在BC 边上,记为E''.请你猜想:折痕D'G'所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想.二、由比例线段产生的函数关系1.如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点O、B出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP∥OC,交AC于点P,连接MP,已知动点运动了x秒,△MPA的面积为S.(1)求点P的坐标.(用含x的代数式表示)(2)写出S关于x的函数关系式,并求出S的最大值.(3)当△APM与△ACO相似时,求出点P的坐标.(4)△PMA能否成为等腰三角形?如能,直接写出所有点P的坐标;如不能,说明理由.2.如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在射线AM,BN上运动(点D不与A重合,点C不与B重合),E是AB边上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE.(1)求证:△ADE∽△BEC;(2)当点E为AB边的中点时(如图2),求证:DE,CE分别平分∠ADC,∠BCD;(3)若AD+DE=AB=a,设AE=m,请探究:△BEC的周长是否与m的值有关?若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.3. 如图,菱形ABCD的边长为12cm,∠ABC=30°,E为AB上一点,且AE=4cm,动点P从B点出发,以1cm/s的速度沿BC边向点C运动,PE交射线DA于点M,设运动时间为t(s).(1)当t为何值时,△MAE的面积为3cm2?(2)在点P出发的同时,动点Q从点D出发,以1cm/s的速度沿DC边向点C运动,连接MQ、PQ,试求△MPQ的面积S(cm2)与t(s)之间的函数关系式,并求出当t为何值时,△MPQ的面积最大,最大值为多少?(3)连接EQ,则在运动中,是否存在这样的t,使得△PQE的外心恰好在它的一边上?若存在,请直接写出满足条件的t的个数,并选择其一求出相应的t的值;若不存在,请说明理由.三、由面积公式产生的函数关系1. 如图,正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)求证:Rt△ABM∽Rt△MCN;(2)若MN的延长线交正方形外角平分线CP于点P,当点M在BC边上如图位置时,请你在AB边上找到一点H,使得AH=MC,连接HM,进而判断AM与PM的大小关系,并说明理由;(3)若BM=1,则梯形ABCN的面积为;设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(4)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时BM的值.2. 如图1,点C 将线段AB 分成两部分,如果 ACBC AB AC =,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果 121S S S S ==,那么称直线l 为该图形的黄金分割线.(1)研究小组猜想:在△ABC 中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是△ABC 的黄金分割线.你认为对吗?为什么?(2)研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF ∥CE ,交AC 于点F ,连接EF (如图3),则直线EF 也是△ABC 的黄金分割线.请你说明理由.3.如图,在平面直角坐标系x O y中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停2.止,设运动时间为t秒,当t=2秒时PQ=5(1)求点D的坐标,并直接写出t的取值范围;(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△A EF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值. (3)在(2)的条件下,t为何值时,四边形APQF是梯形?.4.如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动,以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形和梯形重合部分的面积为Scm2.(1)当t= s时,点P与点Q重合;(2)当t= s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.1. (2011•山西)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为.(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值.(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.2.已知抛物线y=-x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y 轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由.3. 在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位置(点E与点B重合,EF 落在BC上,如图1所示)在线段BC上沿BC方向以每秒1个单位的速度平移,DE、DF分别与AB相交于点M、N.当点F运动到点C时,△DEF停止运动,此时点D恰好落在AB上.在△DEF开始运动的同时,如果点P以每秒2个单位的速度从D点出发沿DE→EF运动,最终运动到F点.若设△DEF平移的时间为x秒,△PMN的面积为y.(1)△DEF的边长为;(2)当x为何值时,P点与M点重合?(3)当点P在DE上时,x为何值时,△PMN是直角三角形?(4)求y与x的函数关系式,并说明当P点在何处时,△PMN的面积最大?4.如图1,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.(1)①直接写出点E的坐标:.②求证:AG=CH.(2)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.(3)在(2)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.。
中考数学压轴题专题十动态几何问题
中考数学压轴题专题十动态几何问题试题特点用运动的观点来探究几何图形变化规律的问题称为动态几何问题,此类问题的显著特点是图形中的某个元素(如点、线段、三角形等)或整个图形按照某种规律运动,图形的各个元素在运动变化过程中互相依存、和谐统一,体现了数学中“变”与“不变”、“一般”与“特殊”的辩证思想.其主要类型有:1.点的运动(单点运动、多点运动);2.线段(直线)的运动;3.图形的运动(三角形运动、四边形运动、圆运动等).方式趋势动态几何题已成为中考试题的一大热点题型.在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,总体呈现源于教材、高于教材,入口宽、难易适度、梯度分明,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力.热点解析一、点的运动【题1】(2011盐城)如图1,已知一次函数y=-x+7与正比例函数y=43x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴,动点P从点O出发,以每秒1个单位长的速度,沿O-C-A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.【思路】(1)联立方程y=-x+7和y=43x即可求出点A的坐标,令-x+7=0即可得点B的坐标.(2)①只要把三角形的面积用t表示,求出即可.应注意分P在OC上运动和P在CA上运动两种情况.(D只要把有关线段用t表示,找出满足AP=AQ,AP=PQ,AQ=PQ的条件时t的值即可,应注意分别讨论P在OC上运动(此时直线∠与AB相交)和P在CA上运动(此时直线∠与AO相交)时AP=AQ,AP=PQ,AQ=PQ的条件.【失分点】以A、P、Q为顶点的三角形是等腰三角形有多种可能,容易考虑不周.【反思】涉及的主要知识点有:一次函数的图象和性质,解二元一次方程组,勾股定理,锐角三角函数,解一元二次方程,等腰三角形的判定.【牛刀小试】1.(2010湖北咸宁)如图6,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动,当点M到达点B 时,两点同时停止运动.过点M作直线∠∥AD,与线段CD的交点为E,与折线A-C -B的交点为Q.点M运动的时间为t(秒).(1)当t=时,求线段QM的长.(2)当0<t<2时,如果以C,P,Q为顶点的三角形为直角三角形,求t的值.(3)当t>2时,连接PQ交线段AC于点R,请探究CQRQ是否为定值.若是,试求这个定值;若不是,请说明理由.2.(2010湖南娄底)如图7,在梯形ABCD中,AB∥CD,AB=2,DC=10,AD=BC=5,点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥DC,NF⊥DC,垂足分别为E,F.(1)求梯形ABCD的面积.(2)探究一:四边形MNFE的面积有无最大值?若有,请求出这个最大值;若无,请说明理由.(3)探究二:四边形MNFF能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.3.(2010广西钦州)如图8,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M,N以每秒1个单位的速度分别从点A,C同时出发,其中点M沿AO向终点0运动,点N沿CB向终点B运动,当两个动点运动了ts时,过点N作NP⊥BC,交OB 于点P,连接MP.(1)点B的坐标为_______;用含£的式子表示点P的坐标为_______.(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6).并求t为何值时,S有最大值.(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的13?若存在,求出点T的坐标;若不存在,请说明理由.二、线的运动【题2】(2010云南昭通)如图,已知直线l的解析式为y=-x+6,它与x轴,y 轴分别相交于A,B两点.平行于直线l的直线n从原点出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t秒,运动过程中始终保持n∥l.直线n与x轴,y轴分别相交于C,D两点.线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S.当直线n与直线l重合时,运动结束.(1)求A,B两点的坐标.(2)求S与t的函数关系式及自变量t的取值范围.(3)直线n在运动过程中,①当t为何值时,半圆与直线l相切?②是否存在这样的T值,使得半圆面积S=12S梯形ABCD?若存在,求出t值;若不存在,说明理由。
近几年中考压轴题动态几何问题归类解析
近几年中考压轴题动态几何问题归类解析一、点动带动线动例1如图1-1所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-■x+b交折线O-A-B于点E。
(1)记△ODE的面积为S,求S与b的函数关系式。
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由。
分析:本题是以一条运动直线为载体,以矩形为背景的有关图形面积是否改变的探究题。
问题(1):点D在线段BC上沿CB向点B运动,其实就是直线DE向右平移。
在运动过程中,有三个临界点:直线DE经过点C(b=1),直线DE经过点A(b=■),直线DE经过点B(b=■),故分两种情况①1<b≤■,②■<b<■展开讨论;问题(2):直线DE运动过程中,重叠部分(菱形)的面积是否变化,取决于这个菱形的边长,由勾股定理可知这个菱形的边长始终不变,且为■,从而确定重叠部分的面积不会变化。
解:(1)①当点E在线段OA上时,即1<b≤■,此时E(2b,0)∴S=■OE·CO=■×2b×1=b②当点E在线段AB上时(如图1-2),即■<b<■,此时E(3,b-■),D (2b-2,1)∴S=S矩-(S△OCD+S△OAE +S△DBE )=3-[■(2b-1)×1+■×(5-2b)·(■-b)+■×3(b-■)]=-b2+■b(2)如图1-3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积。
由题意知,DM∥NE,DN∥ME,则四边形DNEM为平行四边形。
由轴对称知,∠MED=∠NED又∵∠MDE=∠NED∴∠MED=∠MDE ∴MD=ME∴平行四边形DNEM为菱形过点D作DH⊥OA于H,则tan∠DEN=■,DH=1 ∴HE=2设菱形DNEM的边长为a,则在Rt△DHN中,由勾股定理知:a2=(2-a)2+12,a=■∴S四边形DNEM=NE·DH=■∴矩形O1A1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为■。
中考数学专题复习卷:几何图形的动态问题含解析
几何图形的动向问题精编1、如图,平行四边形ABCD中,AB=cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,抵达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大概图象是()A、B、C、D、【答案】A【分析】:分三种状况议论:①当0≤t≤2时,过A作AE⊥BC于E.∵∠B=45°,∴△ABE是等腰直角三角形.∵AB=,∴AE=1,∴S= BP×AE=×t×1=t;②当③当2<t≤<t≤时,S=时,S=AP×AE==×(×2×1=1;-t)×1=(-t).故答案为:A.【剖析】依据题意分三种状况议论:①当当2+<t≤4+时,分别求出0≤t≤2时,过A作AE⊥BC于E;②当2<t≤2+时;③S与t的函数分析式,再依据各选项作出判断,即可得出答案。
2、如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,知足AE+CF=a,△BEF的周长最小值是()A、B、C、D、【答案】B【分析】:连结BD∵四边形ABCD是菱形,AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,AB=DB,∠BDF=60°∴∠A=∠BDF又∵AE+CF=a,AE=DF,在△ABE和△DBF中,∴△ABE≌△DBF(SAS),BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形.∵E是异于A、D两点的动点,F是CD上的动点,要使△BEF的周长最小,就是要使它的边长最短∴当BE⊥AD时,BE最短在Rt△ABE中,BE==∴△BEF的周长为【剖析】依据等边三角形的性质及菱形的性质,证明∠A=∠BDF,AE=DF,AB=AD,便可证明△ABE≌△DBF,依据全等三角形的性质,可证得BE=BF,∠ABE=∠DBF,再证明△BEF是等边三角形,而后依据垂线段最短,可得出当BE⊥AD时,BE最短,利用勾股定理求出BE的长,即可求出△BEF的周长。
2023年九年级数学中考压轴复习专题几何综合——动点问题课件
∴
=
4
Rt△ADH中,AD=5,tanA= = 3
6−5
∴y与x的函数关系式为
=
∴DH=4,AH=3.在Rt△EDH中,DH=4,
25
EH=x-3,
( 6 ≤≤35)
∴DE²=DH²+EH²=4²+(x-3)²=x²-6x+
4
例题 在△ABC中,AC=25,AB =35,tanA=3,D为AC边上的一点,且AD=5 ,E,F都为AB边上的动
所以结合已知条件与所给图形进行认真分析是非常重要的,
当然这样的分析是建立在熟练运用常见图形的几何性质之上
的.
(2)类似于例题这样的几何计算型的压轴题,同学们
要切实体会解直角三角形与相似三角形在计算中所发挥的
重要作用.
(3)对于类似于例题这样的动态几何,应时刻谨记
“动静结合”、“数形结合”的处理原则,以及“分类
∴∠EDF+∠ADF=90°,即
∠ADE=90°.在Rt△ADE中,AD=5,
4
tanA= = 3
4
20
5
25
∴DE=3AD= 3 ,AE=3AD= 3
∴△EDF∽△EAD,
∴ =
∴DE²=AE·EF=x·(x一y)=x²-xy.∴x²-6x+25=x²xy
(2) 如下图,作DH⊥AE于点H,在
目录
01
研究背景
03
典型例题探究
动 态 几 何 研 究 重 要 性
总结分析动态问题处理技巧
05
02
知识脉络梳理
初中阶段几何知识梳理
04 小试能手
技 巧 ,
挑战自我
展
九年级数学中考专题:动态几何综合压轴题
2023年九年级数学中考专题:动态几何综合压轴题1.如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转.若B 、P 在直线a 的异侧,BM △直线a 于点M ,CN △直线a 于点N ,连接PM 、PN ; (1)延长MP 交CN 于点E (如图2). △求证:△BPM △△CPE ; △求证:PM =PN ;(2)若直线a 烧点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变.此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 还成立吗?(不必说明理由)2.如图△,在Rt ABC △中,90ABC ∠=︒,AB BC =,延长CA 至点E ,作DE CE ⊥交BA 的延长线于点D ,连接CD ,点F 为CD 的中点,连接EF ,BF .(1)直接写出线段EF 和BF 之间的数量关系为______.(2)将ADE 绕A 顺时针旋转到图△的位置,猜想EF 和BF 之间的数量关系,并加以证明;(3)若AC =:5AD BC =,将ADE 绕点A 顺时针旋转,当A ,E ,B 共线时,请直接写出EF 的长.3.如图,O 是正ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,连接AO ′、OO ′, (1)OO ′= .(2)求△AOB 的度数及四边形AOB O '的面积.(3)直接写出AOC AOB S S +△△的值,AOC AOB S S +△△= .4.如图1,在△ABC 中,△C =90°,△ABC =30°,AC =1,D 为△ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:△BDA △△BFE ;(2)△CD +DF +FE 的最小值为 ; △当CD +DF +FE 取得最小值时,求证:AD △BF .(3)如图2,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断△MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.5.已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ; (2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.6.已知,在ABC 中,AB AC =,D 是平面上一点,连接AD ,把AD 绕点A 逆时针旋转至点E ,使DAE BAC ∠=∠.连接DE 并延长,交AB 于点O ,交BC 于点F .连接BD 和CE ,CE 的延长线分别交AB ,BD 于点P ,G .(1)如图1,求证:BGC DAE ∠=∠;(2)如图2,若点F 是BC 的中点,//AD CB ,求证12AE BC =; (3)在(2)的条件下,若G 是BD 的中点,连接,OG FG .当5,3AB AD ==时,请直接写出OFG △的周长.7.【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,△ACB=△DCE=90°,点B,D,E 在同一直线上,连接AD,BD.△请探究AD与BD之间的位置关系?并加以证明.△若AC=BC,DC=CE AD的长.【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,△ACB=△DCE=90°,AC BC,CD CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角△BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.8.如图1和图2,四边形ABCD中,已知AD=DC,△ADC=90°,点E、F分别在边AB、BC上,△EDF=45°.(1)观察猜想:如图1,若△A、△DCB都是直角,把△DAE绕点D逆时针旋转90°至△DCG,使AD与DC重合,易得EF、AE、CF三条线段之间的数量关系,直接写出它们之间的关系式_____;(2)类比探究:如图2,若△A、△C都不是直角,则当△A与△C满足数量关系_____时,EF、AE、CF三条线段仍有(1)中的关系,并说明理由;(3)解决问题:如图3,在△ABC中,△BAC=90°,AB=AC=D、E均在边BC上,且△DAE=45°,若BD=1,求AE的长.9.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察图1,猜想线段AP 与BE 的数量关系是______,位置关系是______; (2)把ADE 绕点A 逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立请证明;若不成立,请写出新的结论并说明理由;(3)把ADE 绕点A 在平面内自由旋转,若6DE =,10BC =,请直接写出线段AP 长的取值范围.10.已知AOB 和△MON 都是等腰直角三角形,△AOB =△MON =90°. (1)如图1:连AM ,BN ,求证:AOM △BON ;(2)若将Rt MON 绕点O 顺时针旋转,当点A ,M ,N 恰好在同一条直线上时,如图2所示,线段OH //BN ,OH 与AM 交点为H ,若OB =4,ON =3,求出线段AM 的长; (3)若将MON 绕点O 顺时针旋转,当点N 恰好落在AB 边上时,如图3所示,MN 与AO 交点为P ,求证:MP 2+PN 2=2PO 2.11.如图1,在Rt ABC △中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 顺时针旋转90°,得到AE ,连接DE .(1)如图1所示,若4BC =,在D 点运动过程中,当8tan 11BDE ∠=时,求线段CD 的长.(2)如图2所示,点F 是线段DE 的中点,连接BF 并延长交CA 延长线于点M ,连接DM ,交AB 于点N ,连接CF ,AF ,当点N 在线段CF 上时,求证:AD BF CF +=.(3)如图3,若AB =ABC 绕点A 顺时针旋转得AB C ''△,连接CC ',P 为线段CC '上一点,且CC ''=,连接BP ,将BP 绕点B 顺时针旋转60°得到BQ ,连接PQ ,K 为PQ 的中点,连接CK ,请直接写出线段CK 的最大值.12.已知:如图1,将一块45︒角的直角三角板DEF 与正方形ABCD 的一角重合,连结AF 、CE ,点M 是CE 的中点,连结DM .(1)请你猜想AF 与DM 的数量关系是___________.(2)如图2,把正方形ABCD 绕着点D 逆时针旋转α角(090α︒<<︒). △AF 与DM 的数量关系是否仍成立,若成立,请证明:若不成立,请说明理由;△若60α=︒,且3FDM MDC ∠=∠,求DEDC的值.13.在等腰直角三角形ABC 中,290AC BC ACB ==∠=︒,,点M 为射线CA 上一个动点.过点M 作ME BM ⊥,交射线BA 于E ,将线段BM 绕点B 逆时针旋转90︒得到线段BN ,过点N 作NF BN ⊥交BC 延长线于点F ,连接EF .(1)如图1,当点M 在边AC 上时,线段,,EM EF NF 的数量关系为_______; (2)如图2,当点M 在射线CA 上时,判断线段,,EM EF NF 的数量关系并说明理由; (3)当点M 在射线CA 上运动时,能否存在BEF △为等腰三角形,若不存在,请说明理由;若存在,请直接写出CM 的长.14.如图,等腰Rt CEF 绕正方形ABCD 的顶点C 顺时针旋转,且AB CE EF ==,90CEF ∠=︒.连接AF 与射线BE 交于点G .(1)如图1,当点B 、C 、F 三点共线时,则ABE ∠ FEM ∠(填“>”、“=”或“<”),则AG FG (填“>”、“=”或“<”);(2)如图2,当点B 、C 、F 三点不共线时,求证:AG GF =;(3)若等腰CEF △从图1的位置绕点C 顺时针旋转α(090α︒<≤︒),当直线AB 与直线EF 相交构成的4个角中最小角为30°时,直接写出α的值.15.在菱形ABCD 中,4AB =,60ABC ∠=︒,E 是对角线AC 上一点,F 是线段BC 延长线上一点,且CF AE =,连接BE 、EF .(1)如图1,若E 是线段AC 的中点,求EF 的长;(2)如图2,若E 是线段AC 延长线上的任意一点,求证:BE EF =. (3)如图3,若E 是线段AC 延长线上的一点,12CE AC =,将菱形ABCD 绕着点B 顺时针旋转α︒(0360)α≤≤,请直接写出在旋转过程中DE 的最大值.16.如图,等边三角形ABC 中,D 为AB 边上一点(点D 不与点,A B 重合),连接CD ,将CD 平移到BE (其中点B 和C 对应),连接AE .将BCD △绕着点B 逆时针旋转至BAF △,延长AF 交BE 于点G .(1)连接DF ,求证:BDF 是等边三角形; (2)求证:,,D F E 三点共线;(3)当2BG EG =时,求tan AEB ∠的值.17.ABC 为等边三角形,CD AB ⊥于点D ,点E 为边BC 上一点,点F 为线段CD 上一点,连接EF ,且CE EF =.(1)如图1,若342AB CE ==,,连接BF ,G 为BF 的中点,连接DG ,求线段DG 的长:(2)如图2,将CEF △绕点C 逆时针方向旋转一定的角度得到CMN ,连接BN ,点H为BN 的中点,连接AH HM ,,求证:AH =:(3)如图3,在(2)问的条件下,线段HM 与线段CN 交于点P ,连接AM ,交线段CN 于点Q ,当2CQ PN a ==时,请直接用含a 的式子表示PQ 的长.18.在ABC 中,90ACB ∠=︒.将ABC 绕点C 逆时针旋转一定角度(旋转角度不大于180︒),得到DEC (点D ,E 分别与点A ,B 对应),连接AD ,BE .(1)如图1,当点A ,C ,E 在同一条直线上时,直接写出AD 与BE 的位置关系为__________;(2)如图2,当点D 落在AB 上时,(点D 不与点A 重合),请判断AD 与BE 的位置关系,并证明你的结论;(3)如图3,将ABC 绕点C 逆时针旋转60︒时,延长AD 与直线BC ,BE 分别相交于点F ,G ,连接CG ,试探究线段CG 与DE 之间满足的数量关系,并说明理由.19.如图△,在矩形ABCD 中,1AB =,对角线AC ,BD 相交于点O ,60COD ∠=︒,点E 是线段CD 上一点,连接OE ,将线段OE 绕点O 逆时针旋转60︒得到线段OF ,连接DF .(1)求证:DF CE =;(2)连接EF 交OD 于点P ,求DP 的最大值;(3)如图△,点E 在射线CD 上运动,连接AF ,在点E 的运动过程中,若AF AB =,求OF 的长.20.将等边三角形ABC 如图放置在平面直角坐标系中,8AB =,E 为线段AO 的中点,将线段AE 绕点A 逆时针旋转60°得线段AF ,连接EF . (△)如图1,求点E 的坐标;(△)在图1中,EF 与AC 交于点G ,连接EC ,N 为EC 的中点,连接NG ,求线段NG 的长.请你补全图形,并完成计算;(△)如图2,将AEF △绕点A 逆时针旋转,M 为线段EF 的中点,N 为线段CE 的中点,连接MN ,请直接写出在旋转过程中MN 的取值范围.参考答案:1.(2)成立(3)四边形MBCN的是矩形,PM=PN.2.(1)EF BF=;(2)FE FB=,(33.(1)4;(2)150°,(3)64.(2)(3)是,△MPN=30°.5.(1)AE CF=;(2)成立,(36.(3)47.(1)△AD BD⊥;△4;(2)8.(1)EF=AE+CF;(2)△A+△C=180°;(39.(1)12AP BE=,AP BE⊥;(2)12AP BE=,AP BE⊥仍成立;(3AP≤≤.10.(2;11.(1)3219;(3)312.(1)AF=2DM,(2)△AF=2DM仍然成立;13.(1)结论:EM+EF=FN;(2)结论:EF=EM=FN;(3)2或2+14.(1)=;=;(3)15°或75°15.(1)(3)16.tan AEB∠=17.(1;(318.(1)AD BE⊥;(2)AD BE⊥,(3)CG DE=19.(2)DP的最大值为14;(3)1OF=20.(△)(0,E;(△;(△)44MN≤≤答案第1页,共1页。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=
动态几何(压轴)
动态几何一、由图形变换产生的数量位置关系1.(2009年宁波)如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),将四边形OABC 绕点O 按顺时针方向旋转α度得到四边形OA ′B ′C ′,此时声母OA ′、直线B ′C ′分别与直线BC 相交于P 、Q .(1)四边形的形状是 ,当α=90°时,BP PQ的值是 . (2)①如图2,当四边形OA ′B ′C ′的顶点B ′落在y 轴正半轴上时,求BP PQ的值; ②如图3,当四边形OA ′B ′C ′的顶点B ′落在直线BC 上时,求ΔOPB ′的面积. (3)在四边形OA B C 旋转过程中,当000180α<≤时,是否存在这样的点P 和点Q ,使BP=12BQ ?若存在,请直接写出点P 的坐标;基不存在,请说明理由.3.(2012年潜江)△ABC 中,AB=AC ,D 为BC 的中点,以D 为顶点作∠MDN=∠B .(1)如图(1)当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅助线,写出图中所有与△ADE 相似的三角形.(2)如图(2),将∠MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交线段AC ,AB 于E ,F 点(点E 与点A 不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF 的面积等于△ABC 的面积的时,求线段EF 的长.4.(2012河南)(10分)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在ABCD 中,点E 是BC 边上的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若3AF BF =,求CD CG的值。
(1)尝试探究在图1中,过点E 作EH AB ∥交BG 于点H ,则AB 和EH 的数量关系是 ,CG 和EH 的数量关系是 ,CD CG 的值是 (2)类比延伸如图2,在原题的条件下,若(0)AF m m BF=>则CD CG 的值是 (用含m 的代数式表示),试写出解答过程。
中考数学压轴题策略之动态几何问题
中考数学压轴题策略之动态几何问题
③在各类“静态图形”中运用相关的知识和方法(如方程、相似等)进行探索,寻找各个相关几何量之间的关系,建立相应的数学模型进行求解。
另外,需要强调的是此类题型一般起点低,第一步往往是一个非常简单的问题,考生一般都能拿分,但恰恰是这一步问题的解题思想和方法是本题基本的做题思想和方法,是特殊到一般数学思想和方法的具体应用,所以考生在解决第一步时不仅要准确计算出答案,更重要的是明确此题的方法和思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 . 4
C
C1 C2
C1 P F E D1
C2
A
B
A
D1 D2
B
A
图1
D2
B
图2
图3
[ 解]
(1) D1 E D2 F .因为 C1D1∥C2 D2 ,所以 C1 AFD2 .
又因为 ACB 90 ,CD 是斜边上的中线, 所以, DC DA DB ,即 C1D1 C2 D2 BD2 AD1 所以, C1 A ,所以 AFD2 A 所以, AD2 D2 F .同理: BD1 D1E . 又因为 AD1 BD2 ,所以 AD2 BD1 .所以 D1 E D2 F (2)因为在 RtABC 中, AC 8, BC 6 ,所以由勾股定理,得 AB 10. 即 AD1 BD2 C1D1 C2 D2 5 又因为 D2 D1 x ,所以 D1 E BD1 D2 F AD2 5 x .所以 C2 F C1E x
边形 DPBQ ,过 D 作 DG ⊥ AP 于 G , DN ⊥ BC 于 N ,
∴DG DN 2
8 x 1 1 1 于是 y AB AC CQ DN AP DG 2 2 2 8 8 x (2 x 4) x
由(2)知: AP CQ 8 得 AP
G B M
即 APD CDQ
F
∴△ APD ∽△CDQ ∴
AP CD AD CQ
2
1 ∴ AP CQ AD CD AD 2 AC 8 2
(3)情形 1:当 0 a 45 时, 2 CQ 4 ,即 2 x 4 ,此时两三角板重叠部分为四
A
中考数学分类汇:几何综合——动态图形
1.如图 1 所示,一张三角形纸片 ABC,∠ACB=90°,AC=8,BC=6.沿斜边 AB 的中线 CD 把这张 纸片剪成 AC1D1 和 BC2 D2 两个三角形 (如图 2 所示) .将纸片 AC1D1 沿直线 D2 B (AB) 方向平移(点 A, D1 , D2 , B 始终在同一直线上) ,当点 D1 于点 B 重合时,停止平移.在平移 过程中, C1 D1 与 BC2 交于点 E, AC1 与 C2 D2、BC2 分别交于点 F、P. (1) 当 AC1D1 平移到如图 3 所示的位置时,猜想图中的 D1 E 与 D2 F 的数量关系,并证明 你的猜想; (2) 设平移距离 D2 D1 为 x , AC1D1 与 BC2 D2 重叠部分面积为 y ,请写出 y 与 x 的函数 关系式,以及自变量的取值范围; (3) 对于 (2) 中的结论是否存在这样的 x 的值, 使重叠部分的面积等于原 ABC 面积的 若存在,求 x 的值;若不存在,请说明理由.
在 BC2 D2 中, C2 到 BD2 的距离就是 ABC 的 AB 边上的高,为
24 . 5
设 BED1 的 BD1 边上的高为 h ,由探究,得 BC2 D2∽BED 1 ,所以
h 5 x . 24 5 5
所以 h
1 24(5 x) 12 (5 x) 2 . S BED1 BD1 h 2 25 25
又因为 C2 B , sin B
2. 把两块全等的直角三角形 ABC 和 DEF 叠放在一起, 使三角板 DEF 的锐角顶点 D 与三 角 板 ABC 的 斜 边 中 点 O 重 合 , 其 中 ABC DEF 90 , C F 45 ,
AB DE 4 ,把三角板 ABC 固定不动,让三角板 DEF 绕点 O 旋转,设射线 DE 与射线 AB 相交于点 P ,射线 DF 与线段 BC 相交于点 Q .
A
A E P
A D(O) D(O) C B M Q E F P
图3
D(O) E
B(Q) C
P B Q
C
F
F 图1
图3
[ 解]
(1)8
· CQ 的值不会改变. (2) AP
A
理由如下:在 △APD 与 △CDQ 中, A C 45
D(O) P E B Q C
APD 180 45 (45 a) 90 a CDQ 90 a
又因为 C1 C2 90 ,所以 FPC2 90 .
4 3 , cos B . 5 5 1 3 6 2 4 x 所以 PC2 x, PF x , SFC2 P PC2 PF 2 5 25 5 1 12 6 (5 x) 2 x 2 而 y S BC2 D2 S BED1 S FC2 P S ABC 2 25 25 18 2 24 x x(0 x 5) 所以 y 25 5 18 2 24 1 x x6 (3) 存在. 当 y S ABC 时,即 25 4 5 5 2 整理,得 3x 20 x 25 0. 解得, x1 , x2 5 . 3 1 5 即当 x 或 x 5 时,重叠部分的面积等于原 ABC 面积的 4 3
D(O) C
NQ E
P
F
情形 2:当 45 ≤ a 90 时, 0 CQ ≤ 2 时,即 0 x ≤ 2 ,此时两三角板重叠部分
为 △DMQ ,
8 8 , PB 4 ,易证: △PBM ∽△DNM , x x BM BM PB 2 PB 8 4x PB ∴ 即 解得 BM MN DN 2 BM 2 PB 4 x 2 8 4x ∴ MQ 4 BM CQ 4 x 4 x 1 8 4x (0 x ≤ 2) 于是 y MQ DN 4 x 2 4 x 8 综上所述,当 2 x 4 时, y 8 x x 8 4x 当 0 x ≤ 2 时, y 4 x 4 x
(1)如图 9,当射线 DF 经过点 B ,即点 Q 与点 B 重合时,易证 △ APD ∽△CDQ .此
· CQ 时, AP
.
(2)将三角板 DEF 由图 1 所示的位置绕点 O 沿逆时针方向旋转,设旋转角为 .其中
· CQ 的值是否改变?说明你的理由. 0 90 ,问 AP
(3)在(2)的条件下,设 CQ x ,两块三角板重叠面积为 y ,求 y 与 x 的函数关系式.