人教版高中数学必修5-3.3《简单的线性规划问题》第一课时参考教案
人教版高中数学必修5第三章不等式-3
在可行域内打出网格线,
y
B(3,9)
x y0
M(18 , 39) 55
C(4,8)
x
O
2x+y=15 x+2y=18 x+3y=27
直线 x y=12 经过整点B(3,9)和C(4,8),
它们是最优解.
z最小值 =12.
答:要截得所需三种规格的钢板,且使所截两种钢板 张数最小的方法有两种,第一种截法是第一种钢板3 张,第二种钢板9张;第二种截法是截第一种钢板4 张,第二种钢板8张;这两种截法都至少要两种钢板 12张.
或最后经过的点为最优解; (4)求出最优解并代入目标函数,从而求出目标函数的
最值.
简单线性规划问题的图解方法
例1 设 z=2x+y,式中变量x、 y满足下列条件:
x 4 y 3,
3x 5 y 25, 求z的最大值和最小值.
x 1,
分析:作可行域,画平行线,解方程组,求最值.
y x1
第2课时 简单线性规划的应用
1.体会线性规划的基本思想,并能借助几何直观解决 一些简单的实际问题; 2.利用线性规划解决具有限制条件的不等式; 3.培养学生搜集、整理和分析信息的能力,提高数学 建模和解决实际问题的能力.
在实际问题中常遇到两类问题: 一是在人力、物力、资金等资源一定的条件下,
如何使用它们来完成最多的任务;
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
高中数学必修五《简单的线性规划问题》优秀教学设计
§3.3.2 简单的线性规划问题(第一课时)【学习目标】1. 复习掌握二元一次不等式(组)表示的平面区域;2. 了解线性规划的意义以及线性的约束条件、线性目标函数、可行解、可行域、最优解的概念;3. 了解线性规划问题的图解法,掌握图解法求线性目标函数的最大值、最小值。
【重点和难点】重点、难点:掌握图解法求线性目标函数的最大值、最小值。
【课堂教学】(一)复习:二元一次不等式(组)与平面区域1. 满足二元一次不等式(组)的解()y x ,可以看成直角坐标平面内点的坐标。
于是,二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合。
2. 平面区域:二元一次不等式表示平面区域的判定方法是:以线定界(包括边界,画实线;不包括边界,画虚线),以点定域(以0>++C By Ax 为例):(1)画边界:即画出直线0=++C By Ax 。
(2)定区域:在直线0=++C By Ax 的一侧取一个特殊点()00,y x 作为测试点代入式子C By Ax ++,由C By Ax ++00的符号判定0>++C By Ax 表示的是直线0=++C By Ax 哪一侧的平面区域,当0≠C ,常选取()0,0作为测试点;当0=C ,常选取()0,1或()1,0作为测试点。
(3)求交集(公共部分):二元一次不等式组表示的平面区域是各不等式表示的平面区域的公共部分。
【温故而知新】1. 在平面直角坐标系中,若点()t A ,2-在直线042=+-y x 的上方,则t 的取值范围是___________。
2. 点()2,1与点()4,3-在直线0=++a y x 的两侧,则实数a 的取值范围是____________。
3. 画出不等式(组)⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域,并求其面积。
(二)简单的线性规划问题1. 线性规划问题中的基本概念:线性约束条件、目标函数、线性目标函数、可行解、可行域、最优解。
高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5
3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。
高中数学必修5公开课教案3.3.2 简单线性规划问题
3.3.2简略线性规划问题沉着说课本节课先由师生一同剖析日常日子中的实践问题来引出简略线性规划问题的一些根本概念,由二元一次不等式组的解集可以表明为直角坐标平面上的区域引出问题:在直角坐标系内,怎么用二元一次不等式(组)的解集来处理直角坐标平面上的区域求解问题?再从一个详细的二元一次不等式(组)下手,来研讨一元二次不等式表明的区域及确认的办法,作出其平面区域,并通过直线方程的常识得出最值.通过详细例题的剖析和求解,在这些例题中设置考虑项,让学生探求,层层铺设,以便让学生更深刻地了解一元二次不等式表明的区域的概念,有利于二元一次不等式(组)与平面区域的常识的稳固.“简略的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简略运用,这是《新纲要》对数学常识运用的注重.线性规划是运用数学为东西,来研讨必定的人、财、物、时、空等资源在必定条件下,怎么克勤克俭巧组织,用最少的资源,获得最大的经济效益.它是数学规划中理论较完好、办法较老练、运用较广泛的一个分支,并能处理科学研讨、工程设计、经营管理等许多方面的实践问题.中学所学的线性规划仅仅规划论中的极小一部分,但这部分内容表现了数学的东西性、运用性,一同也浸透了化归、数形结合的数学思维,为学生往后处理实践问题供给了一种重要的解题办法——数学建模法.通过这部分内容的学习,可使学生进一步了解数学在处理实践问题中的运用,培育学生学习数学的爱好和运用数学的认识和处理实践问题的才干.依据课程标准及教材剖析,二元一次不等式表明平面区域以及线性规划的有关概念比较笼统,按学生现有的常识和认知水平难以透彻了解,再加上学生对代数问题等价转化为几许问题以及数学建模办法处理实践问题有一个学习消化的进程,故本节常识内容定为了解层次.本节内容浸透了多种数学思维,是向学生进行数学思维办法教育的好教材,也是培育学生调查、作图等才干的好教材.本节内容与实践问题联络严密,有利于培育学生学习数学的爱好和“用数学”的认识以及处理实践问题的才干.教育要点要点是二元一次不等式(组)表明平面的区域.教育难点难点是把实践问题转化为线性规划问题,并给出答复.处理难点的关键是依据实践问题中的已知条件,找出束缚条件和方针函数,运用图解法求得最优解.为突出要点,本节教育应辅导学生紧紧抓住化归、数形结合的数学思维办法将实践问题数学化、代数问题几许化.课时组织 3课时三维方针一、常识与技术1.把握线性规划的含义以及束缚条件、方针函数、可行解、可行域、最优解等根本概念;2.运用线性规划问题的图解法,并能运用它处理一些简略的实践问题.二、进程与办法1.培育学生调查、联想以及作图的才干,浸透调集、化归、数形结合的数学思维,进步学生“建模”和处理实践问题的才干;2.结合教育内容,培育学生学习数学的爱好和“用数学”的认识,鼓励学生立异.三、情感情绪与价值观1.通过本节教育侧重培育学生把握“数形结合”的数学思维,虽然侧重于用“数”研讨“形”,但一同也用“形”去研讨“数”,培育学生调查、联想、猜想、概括等数学才干;2.结合教育内容,培育学生学习数学的爱好和“用数学”的认识,鼓励学生勇于立异.教育进程第1课时导入新课师前面咱们学习了二元一次不等式A x+B y+C>0在平面直角坐标系中的平面区域的确认办法,请同学们回想一下.(生答复)推动新课[协作探求]师在实践出产、日子中,经常会遇到资源运用、人力分配、出产组织等问题.例如,某工厂用A、B两种配件出产甲、乙两种产品,每出产一件甲产品运用4个A产品耗时1小时,每出产一件乙产品运用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天作业8小时核算,该厂一切或许的日出产组织是什么?设甲、乙两种产品别离出产x、y件,应怎么列式?生由已知条件可得二元一次不等式组:师怎么将上述不等式组表明成平面上的区域?生(板演)师对照讲义98页图3.39,图中暗影部分中的整点(坐标为整数的点)就代表一切或许的日出产组织,即当点P (x,y)在上述平面区域中时,所组织的出产任务x、y才有含义.进一步,若出产一件甲产品获利2万元,出产一件乙产品获利3万元,选用哪种出产组织赢利最大?设出产甲产品x件,乙产品y件时,工厂获得赢利为z,则怎么表明它们的联系?生则z=2x+3y.师这样,上述问题就转化为:当x、y满意上述不等式组并且为非负整数时,z的最大值是多少?[教师精讲]师把z=2x+3y变形为,这是斜率为,在y轴上的截距为z 的直线.当z改变时可以得到什么样的图形?在上图中表明出来.生当z改变时可以得到一组相互平行的直线.(板演)师因为这些直线的斜率是确认的,因而只需给定一个点〔例如(1,2)〕,就能确认一条直线,这说明,截距z[]3可以由平面内的一个点的坐标仅有确认.可以看到直线与表明不等式组的区域的交点坐标满意不等式组,并且当截距最大时,z取最大值,因而,问题转化为当直线与不等式组确认的区域有公共点时,可以在区域内找一个点P,使直线通过P时截距最大.由图可以看出,当直线通过直线x=4与直线x+2y-8=0的交点M(4,2)时,截距最大,最大值为.此刻2x+3y=14.所以,每天出产甲产品4件,乙产品2件时,工厂可获得最大赢利14万元.[常识拓宽]再看下面的问题:别离作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表明的平面区域(即三直线所围成的关闭区域),再作直线l0:2x+y=0.然后,作一组与直线l0平行的直线:l:2x+y=t,t∈R(或平行移动直线l0),然后调查t值的改变:t=2x+y∈[3,12].若设t=2x+y,式中变量x、y满意下列条件求t的最大值和最小值.剖析:从变量x、y所满意的条件来看,变量x、y所满意的每个不等式都表明一个平面区域,不等式组则表明这些平面区域的公共区域ABC.作一组与直线l0平行的直线:l:2x+y=t,t∈R(或平行移动直线l0),然后调查t值的改变:t=2x+y∈[3,12].1.从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l0:2x+y=0上.作一组与直线l0平行的直线(或平行移动直线l0)l:2x+y=t,t∈R.可知,当l在l0的右上方时,直线l上的点(x,y)满意2x+y>0,即t>0.并且,直线l往右平移时,t随之增大(引导学生一同调查此规则).在通过不等式组所表明的公共区域内的点且平行于l的直线中,以通过点B(5,2)的直线l2所对应的t最大,以通过点A(1,1)的直线l1所对应的t最小.所以t m a x=2×5+2=12,t min=2×1+3=3.2.3.[协作探求]师比如上述问题中,不等式组是一组对变量x、y的束缚条件,因为这组束缚条件都是关于x、y的一次不等式,所以又可称其为线性束缚条件.t=2x+y是欲到达最大值或最小值所触及的变量x、y的解析式,咱们把它称为方针函数.因为t=2x+y又是关于x、y的一次解析式,所以又可叫做线性方针函数.别的留意:线性束缚条件除了用一次不等式表明外,也可用一次方程表明.一般地,求线性方针函数在线性束缚条件下的最大值或最小值的问题,统称为线性规划问题.例如:咱们方才研讨的便是求线性方针函数z=2x+y在线性束缚条件下的最大值和最小值的问题,即为线性规划问题.那么,满意线性束缚条件的解(x,y)叫做可行解,由一切可行解组成的调集叫做可行域.在上述问题中,可行域便是暗影部分表明的三角形区域.其间可行解(5,2)和(1,1)别离使方针函数获得最大值和最小值,它们都叫做这个问题的最优解.讲堂小结用图解法处理简略的线性规划问题的根本过程:1.首要,要依据线性束缚条件画出可行域(即画出不等式组所表明的公共区域).2.设t=0,画出直线l0.3.调查、剖析,平移直线l0,然后找到最优解.4.最终求得方针函数的最大值及最小值.安置作业1.某工厂用两种不同质料均可出产同一产品,若选用甲种质料,每吨本钱1 000元,运费500元,可得产品90千克;若选用乙种质料,每吨本钱为1500元,运费400元,可得产品100千克,假如每月质料的总本钱不超越6 000元,运费不超越2 000元,那么此工厂每月最多可出产多少千克产品?剖析:将已知数据列成下表:甲质料(吨)乙质料(吨)费用限额本钱 1 000 1 500 6 000运费500 400 2 000产品90 100解:设此工厂每月甲、乙两种质料各x吨、y 吨,出产z千克产品,则z=90x+100y.作出以上不等式组所表明的平面区域,即可行域,如右图:由得令90x+100y=t,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t,当90x+100y=t过点M(,)时,直线90x+100y=t中的截距最大.由此得出t的值也最大,z m a x=90×+100×=440.答:工厂每月出产440千克产品.2.某工厂家具车间造A、B型两类桌子,每张桌子需木匠和漆工两道工序完结.已知木匠做一张A、B型桌子别离需求1小时和2小时,漆工油漆一张A、B型桌子别离需求3小时和1小时;又知木匠、漆工每天作业别离不得超越8小时和9小时,而工厂造一张A、B型桌子别离获赢利2千元和3千元,试问工厂每天应出产A、B型桌子各多少张,才干获得赢利最大?解:设每天出产A型桌子x张,B型桌子y张,则方针函数为z=2x+3y.作出可行域:把直线l:2x+3y=0向右上方平移至l′的方位时,直线通过可行域上的点M,且与原点间隔最大,此刻z=2x+3y 获得最大值.解方程得M的坐标为(2,3).答:每天应出产A型桌子2张,B型桌子3张才干获得最大赢利.3.讲义106页习题3.3A组2.第2课时导入新课师前面咱们学习了方针函数、线性方针函数、线性规划问题、可行解、可行域、最优解等概念.师同学们回想一下用图解法处理简略的线性规划问题的根本过程.生(1)首要,要依据线性束缚条件画出可行域(即画出不等式组所表明的公共区域);(2)设t=0,画出直线l0;(3)调查、剖析,平移直线l0,然后找到最优解;4.最终求得方针函数的最大值及最小值.推动新课师【例1】已知x、y满意不等式组试求z=300x+900y 的最大值时的整点的坐标及相应的z的最大值.师剖析:先画出平面区域,然后在平面区域内寻觅使z=300x+900y取最大值时的整点.解:如图所示平面区域A O BC,点A(0,125),点B (150,0),点C的坐标由方程组得C(,),令t=300x+900y,即,欲求z=300x+900y的最大值,即转化为求截距t[]900的最大值,然后可求t的最大值,因直线与直线平行,故作的平行线,当过点A(0,125)时,对应的直线的截距最大,所以此刻整点A使z取最大值,z m a x=300×0+900×125=112 500.师【例2】求z=600x+300y的最大值,使式中的x、y 满意束缚条件3x+y≤300,x+2y≤250,x≥0,y≥0的整数值.师剖析:画出束缚条件表明的平面区域即可行域再解.解:可行域如图所示.四边形A O BC,易求点A(0,126),B(100,0),由方程组得点C的坐标为(,).因题设条件要求整点(x,y)使z=600x+300y取最大值,将点(69,91),(70,90)代入z=600x+300y,可知当x=70,y=90时,z取最大值为z m a x=600×70+300×900=69 000.师【例3】已知x、y满意不等式求z=3x+y的最小值.师剖析:可先找出可行域,平行移动直线l0:3x+y=0找出可行解,然后求出方针函数的最小值.解:不等式x+2y≥2表明直线x+2y=2上及其右上方的点的调集;不等式2x+y≥1表明直线2x+y=1上及其右上方的点的调集.可行域如右图所示.作直线l0:3x+y=0,作一组与直线l0平行的直线l:3x+y=t(t∈R).∵x、y是上面不等式组表明的区域内的点的坐标.由图可知:当直线l:3x+y=t通过P(0,1)时,t取到最小值1,即z min=1.师评述:简略线性规划问题便是求线性方针函数在线性束缚条件下的最优解,不管此类标题是以什么实践问题提出,其求解的格局与过程是不变的:(1)寻觅线性束缚条件,线性方针函数;(2)由二元一次不等式表明的平面区域作出可行域;(3)在可行域内求方针函数的最优解.师讲堂操练:请同学们通过完结操练来把握图解法处理简略的线性规划问题.(1)求z=2x+y的最大值,使式中的x、y满意束缚条件(2)求z=3x+5y的最大值和最小值,使式中的x、y满意束缚条件[教师精讲]师(1)求z=2x+y的最大值,使式中的x、y满意束缚条件解:不等式组表明的平面区域如右图所示:当x=0,y=0时,z=2x+y=0,点(0,0)在直线l0:2x+y=0上.作一组与直线l0平行的直线l:2x+y=t,t∈R.可知在通过不等式组所表明的公共区域内的点且平行于l 的直线中,以通过点A(2,-1)的直线所对应的t最大.所以z m a x=2×2-1=3.(2)求z=3x+5y的最大值和最小值,使式中的x、y满意束缚条件解:不等式组所表明的平面区域如右图所示.从图示可知直线3x+5y=t在通过不等式组所表明的公共区域内的点时,以通过点(-2,-1)的直线所对应的t最小,以通过点(,)的直线所对应的t最大.所以z min=3×(-2)+5×(-1)=-11,z m a x=3×+5×=14.[常识拓宽]某工厂出产甲、乙两种产品.已知出产甲种产品1 t,需耗A种矿石10 t、B种矿石5 t、煤4 t;出产乙种产品需耗A种矿石4 t、B种矿石4 t、煤9 t.每1 t甲种产品的赢利是600元,每1 t乙种产品的赢利是1 000元.工厂在出产这两种产品的方案中要求耗费A种矿石不超越360 t、B种矿石不超越200 t、煤不超越300 t,甲、乙两种产品应各出产多少(准确到0.1 t),能使赢利总额到达最大?师剖析:将已知数据列成下表:甲产品(1 t)乙产品(1 t) 资源限额(t)耗费量产品资源A种矿石(t)10 4 300B种矿石(t) 5 4 200煤(t) 赢利(元) 4 9 360600 1 000解:设出产甲、乙两种产品别离为x t、y t,赢利总额为z元,那么方针函数为z=600x+1 000y.作出以上不等式组所表明的平面区域,即可行域.作直线l:600x+1 000y=0,即直线:3x+5y=0,把直线l向右上方平移至l1的方位时,直线通过可行域上的点M,且与原点间隔最大,此刻z=600x+1 000y取最大值.解方程组得M的坐标为x=≈12.4,y=≈34.4.答:应出产甲产品约12.4 t,乙产品34.4 t,能使赢利总额到达最大.讲堂小结用图解法处理简略的线性规划问题的根本过程:(1)首要,要依据线性束缚条件画出可行域(即画出不等式组所表明的公共区域).(2)设t=0,画出直线l0.(3)调查、剖析,平移直线l0,然后找到最优解.(4)最终求得方针函数的最大值及最小值.以实践问题为布景的线性规划问题其求解的格局与过程:(1)寻觅线性束缚条件,线性方针函数;(2)由二元一次不等式表明的平面区域作出可行域;(3)在可行域内求方针函数的最优解.当然也要留意问题的实践含义安置作业讲义第105页习题3.3A组3、4.第3课时导入新课师前面咱们现已学习了用图解法处理简略的线性规划问题的根本过程以及以实践问题为布景的线性规划问题其求解的格局与过程.这节课咱们持续来看它们的实践运用问题.推动新课师【例5】营养学家指出,成人杰出的日常饮食应该至少供给0.075 kg的碳水化合物,0.06 kg的蛋白质,0.06 kg 的脂肪.1 kg食物A含有0.105 kg碳水化合物,0.07 kg蛋白质,0.14 kg脂肪,花费28元;而1kg食物B含有0.105 kg碳水化合物,0.14 kg蛋白质,0.07 kg脂肪,花费21元.为了满意营养学家指出的日常饮食要求,一同使花费最低,需求一同食用食物A和食物B各多少克?师剖析:将已知数据列成下表:食物/kg碳水化合物/kg蛋白质/kg脂肪/kgA 0.105 0.07 0.14B 0.105 0.14 0.07若设每天食用x kg食物A,y kg食物B,总本钱为z,怎么列式?生由题设条件列出束缚条件其方针函数z=28x+21y.二元一次不等式组①等价于师作出二元一次不等式组②所表明的平面区域,即可行域.请同学们在草稿纸上完结,再与讲义上的对照.生考虑z=28x+21y,将它变形为,这是斜率为、随z改变的一族平行直线.是直线在y轴上的截距,当获得最小值时,z 的值最小.当然直线与可行域相交,即在满意束缚条件时方针函数z=28x+21y获得最小值.由图可见,当直线z=28x+21y通过可行域上的点M时,截距z[]28最小,即z最小.解方程组得点M(,),因而,当,时,z=28x+21y取最小值,最小值为16.由此可知每天食用食物A约143克,食物B约571克,可以满意日常饮食要求,又使花费最低,最低本钱为16元.师【例6】在上一节讲义的例题(讲义95页例3)中,若依据有关部门的规则,初中每人每年可收取膏火1 600元,高中每人每年可收取膏火2 700元.那么开设初中班和高中班各多少个,每年收取的膏火总额最多?学段班级学生数装备教师数硬件建造/万元教师年薪/万元初中45 2 26/班2/人高中40 3 54/班2/人师由前面内容知若设开设初中班x个,高中班y个,收取的膏火总额为z万元,此刻,方针函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y变形为,得到斜率为-,在y轴上截距为,随z改变的一组平行直线.由图可以看出,当直线z=7.2x+10.8y通过可行域上的点M时,截距最大,即z最大.解方程组得点M(20,10),因而,当x=20,y=10时,z=7.2x+10.8y取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的膏火总额最多,为252万元.师【例7】在上一节例4中(讲义96页例4),若出产1车皮甲种肥料,发生的赢利为10 000元,若出产1车皮乙种肥料,发生的赢利为5 000元,那么别离出产甲、乙两种肥料各多少车皮,可以发生最大的赢利?生若设出产x车皮甲种肥料,y车皮乙种肥料,可以发生的赢利z万元.方针函数z=x+0.5y,可行域如下图:把z=x+0.5y变形为y=-2x+2z,得到斜率为-2,在y轴上截距为2z,随z改变的一组平行直线.由图可以看出,当直线y=-2x+2z通过可行域上的点M时,截距2z最大,即z最大.解方程组得点M(2,2),因而当x=2,y=2时,z=x+0.5y取最大值,最大值为3.由此可见,出产甲、乙两种肥料各2车皮,可以发生最大的赢利,最大赢利为3万元.[教师精讲]师以实践问题为布景的线性规划问题其求解的格局与过程:(1)寻觅线性束缚条件,线性方针函数;(2)由二元一次不等式表明的平面区域做出可行域;(3)在可行域内求方针函数的最优解.当然也要留意问题的实践含义.讲堂小结用图解法处理简略的线性规划问题的根本过程:(1)首要,要依据线性束缚条件画出可行域(即画出不等式组所表明的公共区域);(2)设t=0,画出直线l0;(3)调查、剖析,平移直线l0,然后找到最优解;(4)最终求得方针函数的最大值及最小值.以实践问题为布景的线性规划问题其求解的格局与过程:(1)寻觅线性束缚条件,线性方针函数;(2)由二元一次不等式表明的平面区域做出可行域;(3)在可行域内求方针函数的最优解.当然也要留意问题的实践含义.安置作业讲义第105页习题3.3 B组1、2、3板书设计第1课时简略线性规划问题图1讲堂小结线性规划问题的相关概念图2第2课时简略线性规划问题例1讲堂小结例3例2第3课时简略线性规划问题例5讲堂小结例7例6。
人教A版高中数学必修5《三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题》示范课教案_1
利用Excel 求解数学规划问题1、 线性规划 例1⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥≥≤+++≤+++≤++++++=4,3,2,10105000452110001001401101401100101461680..6001180310460max 214321432143214321j x x x x x x x x x x x x x x x t s x x x x z j利用Excel 求解其步骤如下:1、选择“工具”菜单中的“加载宏”选项,装入“规划求解”宏,此时,“工具”菜单中便出现“规划求解”选项。
如果“工具”菜单中已有“规划求解”选项,则直接进行第2步。
2、 按下表格式输入线性规划模型表中3、 在目标函数所在行的G3单元格内输入公式: =$B$2*B3+$C$2*C3+$D$2*D3+$E$2*E3此公式即为目标函数表达式,将该公式复制到G4,G5,G6,G7,G8单元格,即得约束条件左端表达式。
4、选择“工具”菜单的“规划求解”选项,弹出“规划求解参数”对话框,依次选定符合模型要求的项目。
(1)单击“设置目标单元格”框,将光标定位于框内,然后单击目标函数值单元格G3。
(2)在“规划求解参数”对话框的“等于”栏内,选择“最大值”选项。
(3)在“可变单元格”栏输入处,从表中选择$B$2:$E$2区域,使之出现$B$2:$E$2。
(4)在“约束”栏,单击“添加”按钮,弹出“添加约束”对话框,依次输入约束条件。
在“单元格引用位置”处,点击G4单元格,从“约束值”位置处选择约束类型“>=,<=,=,int,bin ”中的“<=”,在后面的框内点击F4单元格,按“添加”按钮,产生第一个约束条件。
类似地,添加第二、第三、第四、第五个约束条件后,按“确定”按钮,返回“规划求解参数”对话框。
(5)点击“选项”按钮,根据需要选择“假定非负”等项目后,按“确定”按钮,返回“规划求解参数”对话框(6)按“求解”按钮,弹出“规划求解结果”对话框,可根据需要选择“运算结果报告、敏感性报告、极限值报告”。
高中数学新人教A版必修5教案3.3.2简单线性规划问题
简单线性规划问题冷静讲课本节课先由师生共同剖析平时生活中的实质问题来引出简单线性规划问题的一些基本概念,由二元一次不等式组的解集能够表示为直角坐标平面上的地区引出问题:在直角坐标系内,怎样用二元一次不等式(组)的解集来解决直角坐标平面上的地区求解问题?再从一个详细的二元一次不等式(组)下手,来研究一元二次不等式表示的地区及确立的方法,作出其平面区域,并经过直线方程的知识得出最值. 经过详细例题的剖析和求解,在这些例题中设置思虑项,让学生研究,层层铺设,以便让学生更深刻地理解一元二次不等式表示的地区的观点,有益于二元一次不等式(组)与平面地区的知识的稳固.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新纲领》对数学知识应用的重视. 线性规划是利用数学为工具,来研究必定的人、财、物、时、空等资源在必定条件下,怎样精打细算巧安排,用最少的资源,获得最大的经济效益. 它是数学规划中理论较完好、方法较成熟、应用较宽泛的一个分支,并能解决科学研究、工程设计、经营管理等很多方面的实质问题. 中学所学的线性规划不过规划论中的极小一部分,但这部分内容表现了数学的工具性、应用性,同时也浸透了化归、数形联合的数学思想,为学生此后解决实质问题供给了一种重要的解题方法——数学建模法. 经过这部分内容的学习,可使学生进一步认识数学在解决实质问题中的应用,培育学生学习数学的兴趣和应用数学的意识和解决实际问题的能力 .依照课程标准及教材剖析,二元一次不等式表示平面地区以及线性规划的有关观点比较抽象,按学生现有的知识和认知水平难以透辟理解,再加上学生对代数问题等价转变为几何问题以及数学建模方法解决实质问题有一个学习消化的过程,故本节知识内容定为认识层次.本节内容浸透了多种数学思想,是向学生进行数学思想方法教课的好教材,也是培育学生察看、作图等能力的好教材.本节内容与实质问题联系密切,有益于培育学生学习数学的兴趣和“用数学”的意识以及解决实质问题的能力 .教课要点要点是二元一次不等式(组)表示平面的地区.教课难点难点是把实质问题转变为线性规划问题,并给出解答. 解决难点的要点是依据实质问题中的已知条件,找出拘束条件和目标函数,利用图解法求得最优解. 为突出要点,本节教课应指导学生牢牢抓住化归、数形联合的数学思想方法将实质问题数学化、代数问题几何化.三维目标一、知识与技术1.掌握线性规划的意义以及拘束条件、目标函数、可行解、可行域、最优解等基本观点;2.运用线性规划问题的图解法,并能应用它解决一些简单的实质问题.二、过程与方法1.培育学生察看、联想以及作图的能力,浸透会合、化归、数形联合的数学思想,提升学生“建模”和解决实质问题的能力;2. 联合教课内容,培育学生学习数学的兴趣和“用数学”的意识,激励学生创新.三、感情态度与价值观1.经过本节教课侧重培育学生掌握“数形联合”的数学思想,只管重视于用“数”研究“形”,但同时也用“形”去研究“数”,培育学生察看、联想、猜想、概括等数学能力;2. 联合教课内容,培育学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教课过程第 1课时导入新课师前方我们学习了二元一次不等式x+ y+ > 0 在平面直角坐标系中的平面地区确实定方法,A B C请同学们回想一下 .(生回答)推动新课[合作研究]师在现实生产、生活中,常常会碰到资源利用、人力分配、生产安排等问题.比如,某工厂用 A、 B 两种配件生产甲、乙两种产品,每生产一件甲产品使用 4 个A产品耗时 1小时,每生产一件乙产品使用4个 B 产品耗时 2 小时,该厂每日最多可从配件厂获取16个A配件和 12 个B配件,按每日工作8 小时计算,该厂全部可能的日生产安排是什么?设甲、乙两种产品分别生产x、 y 件,应怎样列式?x 2 y 8,4x16,生由已知条件可得二元一次不等式组: 4 y12,x0,y0.生 (板演)师 比较课本 98 页图 3.39 ,图中暗影部分中的整点(坐标为整数的点)就代表全部可能的日生产安排,即当点P ( x,y )在上述平面地区中时,所安排的生产任务x 、 y 才存心义 .进一步,若生产一件甲产品赢利2 万元,生产一件乙产品赢利3万元,采纳哪一种生产安排收益最大?设生产甲产品 x 件,乙产品 y 件时,工厂获取收益为z ,则怎样表示它们的关系?生 则 z=2x+3y.师 这样,上述问题就转变为:当x 、 y 知足上述不等式组并且为非负整数时, z 的最大值是多少?[教师精讲]师 把 z=2x+3y 变形为 y2x 1z ,这是斜率为2,在 y轴上的截距为1z 的直线 . 当 z 变3333化时能够获取什么样的图形?在上图中表示出来 .生 当 z 变化时能够获取一组相互平行的直线. (板演)师 因为这些直线的 斜率是确立的,所以只需给定一个点〔比如( 1, 2)〕,就能确立一条直线y2 x1z ,这说明,截距 z3 能够由平面内的一个点的坐标独一确立 . 能够看到直线3 3y 2x1 z与表示不等式组的地区的交点坐标知足不等式组,并且当截距z最大时,z 取333最大值,所以,问题转变为当直线y2x 1z 与不等式组确立的地区有公共点时,能够在3 3地区内找一个点P ,使直线经过 P 时截距z 最大.3由图能够看出,当直线y2x 1 z 经过直线 x=4 与直线 x+2y-8=0 的交点 M ( 4, 2)时,截33距 z最大,最大值为14. 此时2x+3y=14. 所以,每日生产甲产品 4 件,乙产品 2 件时,工厂可33获取最大收益 14万元.[知识拓展]再看下边的问题:分别作出x=1 , x-4y+3=0 , 3x+5y-25=0 三条直线,先找出不等式组所表示的平面地区(即三直线所围成的关闭地区), 再作直线 l 0:2x+y=0.而后,作一组与直线l 0 平行的直线: l:2x+y=t,t∈R (或平行挪动直线l 0 ),从而察看 t 值的变化: t=2x+y ∈[ 3,12 ] .x 4 y3,若设 t=2x+y ,式中变量x、 y 知足以下条件3x5y25, 求t的最大值和最小值.x 1.剖析:从变量x 、 y 所知足的条件来看,变量x 、 y 所知足的每个不等式都表示一个平面地区,不ABC.等式组则表示这些平面地区的公共地区作一组与直线l 0平行的直线: l:2x+y=t,t∈R(或平行挪动直线l 0),从而察看t值的变化:t=2x+y ∈[ 3,12 ] .(1)从图上可看出,点(0, 0)不在以上公共地区内,当x=0, y=0 时, t=2x+y=0. 点( 0, 0)在直线l 0: 2x+y=0 上 . 作一组与直线l 0平行的直线(或平行挪动直线l 0)l:2x+y=t,t∈R.可知,当l 在 l 0的右上方时,直线l 上的点( x,y) 知足 2x+y > 0, 即 t > 0.并且,直线l 往右平移时,t 随之增大(指引学生一同察看此规律).在经过不等式组所表示的公共地区内的点且平行于l的直线中,以经过点B(5,2)的直线l 2所对应的t最大,以经过点A (1,1)的直线l 1所对应的t最小.所以t max=2×5+2=12,t min=2×1+3=3.(2)(3)[合作研究]师诸如上述问题中,不等式组是一组对变量x、 y 的拘束条件,因为这组拘束条件都是对于x、y 的一次不等式,所以又可称其为线性拘束条件.t=2x+y是欲达到最大值或最小值所波及的变量x、 y 的分析式,我们把它称为目标函数. 因为 t=2x+y 又是对于x 、 y 的一次分析式,所以又可叫做线性目标函数.此外注意:线性拘束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性拘束条件下的最大值或最小值的问题,统称为线性规划问题. 例如:我们方才研究的就是求线性目标函数z=2x+y在线性拘束条件下的最大值和最小值的问题,即为线性规划问题 .那么,知足线性拘束条件的解(x,y)叫做可行解,由全部可行解构成的会合叫做可行域. 在上述问题中,可行域就是暗影部分表示的三角形地区. 此中可行解( 5, 2)和( 1, 1)分别使目标函数获得最大值和最小值,它们都叫做这个问题的最优解.讲堂小结用图解法解决简单的线性规划问题的基本步骤:1.第一,要依据线性拘束条件画出可行域(即画出不等式组所表示的公共地区).2.设 t=0 ,画出直线 l 0.3.察看、剖析,平移直线l 0,从而找到最优解 .4.最后求得目标函数的最大值及最小值.部署作业1.某工厂用两种不一样原料均可生产同一产品,若采纳甲种原料,每吨成本 1 000 元,运费 500元,可得产品 90 千克;若采纳乙种原料,每吨成本为1500 元,运费400 元,可得产品100 千克,假如每个月原料的总成本不超出 6 000 元,运费不超出 2 000 元,那么此工厂每个月最多可生产多少千克产品?剖析:将已知数据列成下表:甲原料(吨)乙原料(吨)花费限额成本 1 000 1 500 6 000运费500400 2 000产品90100解:设此工厂每个月甲、乙两种原料各x 吨、 y 吨,生产 z 千克产品,则x0,y0,1000 x1500 y6000,500x400 y2000,z=90x+100y.作出以上不等式组所表示的平面地区,即可行域,如右图:2x3y12,x12 ,得7由4y20.205xy.7令 90x+100y=t ,作直线 :90x+100y=0 ,即 9x+10y=0 的平行线 90x+100y=t ,当 90x+100y=t 过点 M(12,20)时,直线 90x+100y=t 中的截距最大 .7 7由此得出 t 的值也最大, z max =90×12+100×20=440.77答:工厂每个月生产 440 千克产品 .2. 某工厂家具车间造、B 型两类桌子,每张桌子需木匠和漆工两道工序达成. 已知木匠做一张A、B 型桌子分别需要 1 小时和 2 小时,漆工油漆一张、型桌子分别需要 3 小时和 1 小时;又A A B知木匠、漆工每日工作分别不得超出8 小时和9 小时,而工厂造一张、B 型桌子分别获收益 2A千元和 3 千元,试问工厂每日应生产A、 B型桌子各多少张,才能获取收益最大?解:设每日生产 A 型桌子x张, B 型桌子y张,x 2 y8,则 3x y9,x0, y0.目标函数为 z=2x+3y.作出可行域:把直线 l : 2x+3y=0 向右上方平移至l ′的地点时,直线经过可行域上的点 M ,且与原点距离最大,此时 z=2x+3y 获得最大值 .x 2 y 8,解方程y得 M 的坐标为( 2, 3) .3x 9,答:每日应生产 A 型桌子 2 张, B 型桌子 3 张才能获取最大收益 .3. 课本 106页习题 3.3A 组 2.第 2课时导入新课师 前方我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念.师 同学们回想一下用图解法解决简单的线性规划问题的基本步骤.生( 1)第一,要依据线性拘束条件画出可行域(即画出不等式组所表示的公共地区);(2)设 t=0 ,画出直线 l 0 ;(3) 察看、剖析,平移直线l 0,从而找到最优解 ;(4) 最后求得目标函数的最大值及最小值. 推动新课2x y 300, x 2 y 250, 师 【例 1】 已知 x 、 y 知足不等式组0, 试求 z=300x+900y 的最大值时的整点的坐xy 0,标及相应的 z 的最大值 .师 剖析:先画出平面地区,而后在平面地区内找寻使 z=300x+900y 取最大值时的整点 .解:以下图平面地区A O BC ,点 A ( 0, 125 ),点B ( 150 ,0),点C 的坐标由方程组2x y 300 x 350 ,3 x2 y 250y 200 ,3得 C (350 ,200),3 3令 t=300x+900y , 即y1 x t , ,3 900欲求 z=300x+900y 的最大值,即转变为求截距 t900 的最大值,从而可求 t 的最大值,因直线1 xt与直线 y1x 平行,故作 y 1 A ( 0, 125)时,对y9003 x 的平行线,当过点33应的直线的截距最大,所以此时整点A 使 z 取最大值, z ma x =300×0+900×125=112 500.师 【例 2】 求 z=600x+300y 的最大值,使式中的x 、 y 知足拘束条件 3x+y ≤300,x+2y ≤250,x ≥0,y ≥0 的整数值 .师 剖析:画出拘束条件表示的平面地区即可行域再解 .解:可行域以下图.四边形 A O BC ,易求点 A (0, 126 ), B ( 100 , 0) , 由方程组3x y 300 x 69 3,5 x 2 y252y911.5得点 C 的坐标为(693, 911).5 5因题设条件要求整点(x,y) 使 z=600x+300y 取最大值,将点(69 , 91 ),( 70 , 90 )代入z=600x+300y ,可知当 x=70, y=90 时, z 取最大值为 z m x =600×70+300×900=69 000.ax 2y 2,师 【例 3】 已知 x 、 y 知足不等式 2xy 1, 求 z=3x+y 的最小值 .x0, y0,师剖析:可先找出可行域,平行挪动直线l 0:3x+y=0找出可行解,从而求出目标函数的最小值.解:不等式x+2y≥ 2 表示直线x+2y=2 上及其右上方的点的会合;不等式 2x+y≥1表示直线2x+y=1 上及其右上方的点的会合.可行域如右图所示.作直线 l 0:3x+y=0 ,作一组与直线l 0平行的直线l:3x+y=t(t∈R).∵x、 y 是上边不等式组表示的地区内的点的坐标.由图可知:当直线 l:3x+y=t经过P(0,1)时,t取到最小值1,即 z min =1.师评论:简单线性规划问题就是求线性目标函数在线性拘束条件下的最优解,不论此类题目是以什么实质问题提出,其求解的格式与步骤是不变的:(1)找寻线性拘束条件,线性目标函数;(2)由二元一次不等式表示的平面地区作出可行域;(3)在可行域内求目标函数的最优解.师讲堂练习:请同学们经过达成练习来掌握图解法解决简单的线性规划问题.y x,(1)求 z=2x+y 的最大值,使式中的x 、 y 知足拘束条件x y1,y 1.5x 3 y15,(2)求 z=3x+5y 的最大值和最小值,使式中的x、 y 知足拘束条件y x 1,x5y 3.[教师精讲]y x,师( 1)求 z=2x+y 的最大值,使式中的x、 y 知足拘束条件x y1,y 1.解:不等式组表示的平面地区如右图所示:当 x=0,y=0 时, z=2x+y=0 ,点( 0, 0)在直线 l 0:2x+y=0 上 .作一组与直线 l 0 平行的直线 l:2x+y=t,t∈R.可知在经过不等式组所表示的公共地区内的点且平行于l 的直线中,以经过点A ( 2, -1 )的直线所对应的 t 最大 .所以 z max =2×2-1=3.5x3 y 15, (2)求 z=3x+5y 的最大值和最小值,使式中的x 、 y 知足拘束条件yx1,x 5y3.解:不等式组所表示的平面地区如右图所示.从图示可知直线 3x+5y=t在经过不等式组所表示的公共地区内的点时,以经过点(-2 , -1 )的直线所对应的 t 最小,以经过点(9 , 17)的直线所对应的 t 最大 .8 8所以 z min =3×(-2)+ 5×(-1)=-11,zmax=3×9+5×17=14.88[知识拓展]某工厂生产甲、乙两种产品 . 已知生产甲种产品 1 t ,需耗 A 种矿石 10 t 、 B 种矿石 5 t 、煤 4 t ;生产乙种产品需耗 A 种矿石 4 t 、 B 种矿石 4 t 、煤 9 t. 每 1 t 甲种产品的收益是600 元,每 1 t乙种产品的收益是1 000 元 . 工厂在生产这两种产品的计划中要求耗费A 种矿石不超出 360 t 、 B种矿石不超出 200 t 、煤不超出 300 t ,甲、乙两种产品应各生产多少(精准到0.1 t),能使收益总数达到最大?师 剖析:将已知数据列成下表:耗费量 产品 甲产品( 1乙产品 (1资源限额( t )资源t ) t)A 种矿石( t ) 10 4 300B 种矿石 (t)5 4 200 煤 (t) 收益(元)4 9 3606001 000解:设生产甲、乙两种产品分别为 x t 、 y t ,收益总数为 z 元,10 x 4 y 300, 5x 4 y 200,那么4 x 9 y 360,x 0, y 0;目标函数为 z=600x+1 000y.作出以上不等式组所表示的平面地区,即可行域.作直线 l:600x+1 000y=0,即直线 :3x+5y=0,把直线 l 向右上方平移至l 1 的地点时,直线经过可行域上的点 M ,且与原点距离最大,此时z=600x+1 000y 取最大值 .5x 4 y 200,解方程组9 y 360,4x得 M 的坐标为 x=360≈12.4,y=1000≈34.4.2929答:应生产甲产品约 12.4 t ,乙产品 34.4 t ,能使收益总数达到最大.讲堂小结用图解法解决简单的线性规划问题的基本步骤:(1)第一,要依据线性拘束条件画出可行域(即画出不等式组所表示的公共地区).(2)设 t=0 ,画出直线 l 0 .(3)察看、剖析,平移直线l 0,从而找到最优解 .(4)最后求得目标函数的最大值及最小值.以实质问题为背景的线性规划问题其求解的格式与步骤:(1)找寻线性拘束条件,线性目标函数;(2)由二元一次不等式表示的平面地区作出可行域;(3)在可行域内求目标函数的最优解.自然也要注意问题的实质意义部署作业课本第 105 页习题 3.3A 组 3、 4.第 3课时导入新课师前方我们已经学习了用图解法解决简单的线性规划问题的基本步骤以及以实质问题为背景的线性规划问题其求解的格式与步骤 . 这节课我们持续来看它们的实质应用问题.推动新课师【例 5】营养学家指出,成人优秀的平时饮食应当起码供给0.075 kg 的碳水化合物,0.06 kg 的蛋白质, 0.06 kg 的脂肪 .1 kg 食品A含有 0.105 kg 碳水化合物,0.07 kg 蛋白质, 0.14 kg脂肪,花销28 元;而1kg 食品B含有 0.105 kg碳水化合物,0.14 kg蛋白质,0.07 kg脂肪,花销 21 元 . 为了知足营养学家指出的平时饮食要求,同时使花销最低,需要同时食用食品A和食物 B 各多少克?师剖析:将已知数据列成下表:食品 /kg碳水化合物 /k g蛋白质 /kg脂肪 /kg A0.1050.070.14B0.1050.140.07若设每日食用 x kg食品 A,y kg食品 B,总成本为z,怎样列式?生由题设条件列出拘束条件其目标函数z=28x+21y.二元一次不等式组①等价于0.105x 0.105y 0.075, 0.07x 0.14y 0.06,0.14x 0.07y 0.06,①x0,y0,7 x7 y5,7 x14y6,14 x7 y②6,x0,y 0.师作出二元一次不等式组②所表示的平面地区,即可行域. 请同学们在底稿纸上达成,再与课本上的比较 .生考虑z=28x+21y, 将它变形为y 4 xz, 这是斜率为-4、随 z 变化的一族平行直线. zz3283是直线在 y 轴上的截距,当获得最小值时,z 的值最小 . 自然直线与可行域订交,即2828在知足拘束条件时目标函数z=28x+21y获得最小值 .由图可见,当直线z=28x+21y 经过可行域上的点M时,截距z28 最小,即z 最小 .7x7 y5,1 ,4) ,所以,当x1, y4时, z=28x+21y 取最小值,最解方程组7y 得点 M(14x67777小值为 16.由此可知每日食用食品 A 约143克,食品 B约571克,能够知足平时饮食要求,又使花销最低,最低成本为 16元 .师【例 6】在上一节课本的例题(课本95 页例 3)中,若依占有关部门的规定,初中每人每年每年收取的学费总数最多?学段班级学生数装备教师数硬件建设/万元教师年薪/万元初中45226/班2/人高中40354/班2/人师由前方内容知若设开设初中班x 个,高中班y 个,收取的学费总数为z 万元 ,此时,目标函数z=0.16 ×45x+0.27 ×40y, 可行域以以下图把 z=7.2x+10.8y 变形为y2x5z,获取斜率为 - -2,在 y 轴上截距为5z,随 z 变化的354354一组平行直线 .由图能够看出,当直线z=7.2x+10.8y经过可行域上的点M时,截距5z最大,即 z 最大 . 54x y30,得点 M( 20,10 ),所以,当 x=20,y=10时, z=7.2x+10.8y取最大值,最解方程组2 y40x大值为 252.由此可知开设20 个初中班和10 个高中班时,每年收取的学费总数最多,为252万元 .师【例 7】在上一节例 4 中(课本96 页例 4),若生产 1 车皮甲种肥料,产生的收益为10 000元,若生产 1车皮乙种肥料,产生的收益为 5 000 元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的收益?生若设生产 x 车皮甲种肥料,y 车皮乙种肥料,能够产生的收益z 万元 . 目标函数z=x+0.5y,可行域以以下图:把 z=x+0.5y变形为y=-2x+2z,获取斜率为-2,在y轴上截距为2z, 随 z 变化的一组平行直线 . 由图能够看出,当直线y=-2x+2z 经过可行域上的点 M 时,截距 2z 最大,即 z 最大 .18x 15y 66,M(2,2), 所以当 x=2,y=2 时, z=x+0.5y取最大值,最大值为解方程组y 10得点 4x 3.因而可知,生产甲、乙两种肥料各 2 车皮,能够产生最大的收益,最大收益为3万元 .[教师精讲]师 以实质问题为背景的线性规划问题其求解的格式与步骤:( 1)找寻线性拘束条件,线性目标函数;( 2)由二元一次不等式表示的平面地区做出可行域;( 3)在可行域内求目标函数的最优解.自然也要注意问题的实质意义.讲堂小结用图解法解决简单的线性规划问题的基本步骤:( 1)第一,要依据线性拘束条件画出可行域(即画出不等式组所表示的公共地区);( 2)设 t=0 ,画出直线 l 0 ;(3 )察看、剖析,平移直线l 0,从而找到最优解;(4 )最后求得目标函数的最大值及最小值.以实质问题为背景的线性规划问题其求解的格式与步骤:( 1)找寻线性拘束条件,线性目标函数;( 2)由二元一次不等式表示的平面地区做出可行域;( 3)在可行域内求目标函数的最优解.自然也要注意问题的实质意义.部署作业课本第 105 页习题 3.3 B组 1、 2、 3板书设计第 1课时简单线性规划问题图 1讲堂小结线性规划问题的有关观点图 2第 2课时简单线性规划问题例 1讲堂小结例 3例 2第 3课时简单线性规划问题例 5讲堂小结例 7例 6习题详解(课本第104 页练习)1.(1)目标函数为z=2x+y ,可行域以下图,作出直线y=-2x+z,可知z要取最大值,即直线经过点 C时,x y 1,解方程组得 C(2,-1),y1,所以 z max=2x+y=3.( 2)目标函数为z=3x+5y, 可行域以下图,作出直线z=3x+5y, 可知直线经过点B时,z获得最大值 ; 直线经过点 A 时,z获得最小值.解方程组y x 1,y x1,和x 5y 35x 3 y15.可得点 A(-2,-1)和点 B(1.5,2.5).所以 z max=17,z min =-11.2. 设每个月生产甲产品 x 件,生产乙产品y 件,每个月收入为z,目标函数为z=3x+2y ,需要知足的条件是x 2 y 400,2x y 500,x0,y 0,作直线 z=3x+2y ,当直线经过点 A 时,z获得最大值.解方程组x 2 y 400,2x y 500,可得点 A(200,100),z的最大值为800.( 课本第 106 页习题 3.3)A组1.绘图求解二元一次不等式:(1)x+y≤2;(2)2x-y>2;(3)y ≤ -2;(4) x ≥3.2.3. 解:设每周播放连续剧甲 x 次,播放乙连续剧y 次,目标函数z=60x+20y, 所以题目中包括的80x 40 y 320,x y 6, 80x 40y 320,限制条件为0,解方程组得( 2, 4). 所以 z 的最大值为 200xx y6y 0,(万) .4. 解:设每周生产空调器 x 台、彩电 y 台,则生产冰箱 12-x-y 台,产值为 z ,目标函数为z=4x+3y+2(120-x-y)=2x+y+240,所以题目中包括的限制条件为1 x 1 y1(120 xy) 40,3xy 120,2 3 4x y100,120 x y 20,即0,x 0,xy 0.y0,3x y 120,10 台,可行域如图,解方程组y得 M 点坐标为 ( 10, 90 ). 所以每周应生产空调器x 100,彩电 90 台,冰箱20 台,才能使产值最高,最高产值是1050 千元.B 组1.2.3. 解:设甲粮库要向 A 镇运送大米x 吨、向 B 镇运送大米y 吨,总运费为 z ,则乙粮库要向 A 镇运送大米( 70-x )吨、向 B 镇运送大米( 110-y )吨,目标函数(总运费)为z=12×20×x+25×10×y+15×12×(70 - x)+20 ×8×(110 -y)=60x+90y+30 200.所以题目中包括的限制条件为x y 100,(70 x) (110 y) 80,0 x 70, y 0.所以当 x=70,y=30 时,总运费最省 ,z min=37 100 (元),所以当 x=0,y=100 时,总运费最不合理,z max=39 200 (元) .使国家造成不应有的损失2 100 元.答:甲粮库要向 A 镇运送大米70 吨,向 B 镇运送大米30 吨,乙粮库要向A 镇运送大米0 吨,向B 镇运送大米80吨,此时总运费最省,为37 100元 . 最不合理的调运方案是甲粮库要向 A 镇运送大米 0 吨、向B镇运送大米 100 吨,乙粮库要向 A 镇运送大米70 吨、向B镇运送大米10 吨,此时总运费为39 200元,使国家造成损失 2 100元 .备课资料备用习题1. 某糖果厂生产、两种糖果,A 种糖果每箱获收益40 元,B种糖果每箱获收益 50 元,其生产A B过程分为混淆、烹饪、包装三道工序,下表为每箱糖果生产过程中所需均匀时间:(单位:分钟)混淆烹饪包装A153B241每种糖果的生产过程中,混淆的设施至多能用12 小时,烹饪的设施至多只好用30 小时,包装的设施只好用15 小时,试求每种糖果各生产多少箱可获取最大收益?剖析:找拘束条件,成立目标函数.解:设生产 A 种糖果x 箱,B种糖果y 箱,可获取收益z 元,则此问题的数学模式在拘束条件x 2 y 720,5x 4y 1800,3x y 900,下,求目标函数z=40x+50y的最大值,作出可行域,其界限O A: y=0,AB:x0,y 03x+y-900=0 ,BC: 5x+4y- 1 800=0,C D: x+2y-720=0 , DO: x=0.由 z=40x+50y, 得y 4 x z,它表示斜率为4,截距为z50 的平行直线系,z550550越大,从而可知过 C 点时截距最大,z 获得了最大值 .越大, zx 2 y720解方程组C(120,300).5x 4 y1800∴z max=40×120+50×300=19 800, 即生产A种糖果 120 箱,生产B种糖果 300 箱,可得最大收益19 800 元.评论:因为生产 A 种糖果120箱,生产B种糖果300箱,就使得两种糖果合计使用的混淆时间为120+2×300= 720 (分),烹饪时间5×12 0+4×300= 1 800 (分),包装时间3×120+ 300 =660(分),这说明该计划已完好利用了混淆设施与烹饪设施的可用时间,但对包装设施却有240分钟的包装时间未加利用,这类“剩余”问题构成了该问题的“废弛”部分,有待于改良研究.2.甲、乙、丙三种食品的维生素A、 B含量及成本以下表:甲乙丙维生素(单位 /千600700400 A克)维生素(单位 /千800400500 B克)成本(元 / 千克)1194某食品营养研究所想用x 千克甲种食品,y 千克乙种食品,z 千克丙种食品配成100 千克的混淆食品,并使混淆食品起码含56 000 单位维生素A和 63 000单位维生素B.(1)用x、y表示混合食品成本 C;(2)确立x、y、z的值,使成本最低.剖析 : 找到线性拘束条件及目标函数,用平行线挪动法求最优解.解: ( 1)依题意 x 、 y、 z 知足 x+y+z=100z=100-x-y.∴ 成本=11x+9y+4z=7x+5y+400 (元) .C(2)依题意600x700y400z56000, 800x400y500z63000,∵z=100 -x-y,2x3y160,∴ 3x y130,x0, y0.作出不等式组所对应的可行域,如右图所示.联立3xy130交点(50,20). 2x 3 y160A作直线 7x+5y+400= C,则易知该直线截距越小,C越小,所以该直线过A(50,20)时,直线在y 轴截距最小,从而C最小,此时7×50+5×20+ 400 =C=850 元 .∴x=50 千克, z=30 千克时成本最低 .。
人教A版高中数学必修五优秀教案示范教案简单线性规划问题
3.3.2简单线性规划问题从容说课本节课先由师生共同分析日常生活中的实际问题来引出简单线性规划问题的一些基本概念,由二元一次不等式组的解集可以表示为直角坐标平面上的区域引出问题:在直角坐标系内,如何用二元一次不等式(组)的解集来解决直角坐标平面上的区域求解问题?再从一个具体的二元一次不等式(组)入手,来研究一元二次不等式表示的区域及确定的方法,作出其平面区域,并通过直线方程的知识得出最值.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生更深刻地理解一元二次不等式表示的区域的概念,有利于二元一次不等式(组)与平面区域的知识的巩固.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》对数学知识应用的重视.线性规划是利用数学为工具,来研究一定的人、财、物、时、空等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益.它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经营管理等许多方面的实际问题.中学所学的线性规划只是规划论中的极小一部分,但这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力.依据课程标准及教材分析,二元一次不等式表示平面区域以及线性规划的有关概念比较抽象,按学生现有的知识和认知水平难以透彻理解,再加上学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题有一个学习消化的过程,故本节知识内容定为了解层次.本节内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力.教学重点重点是二元一次不等式(组)表示平面的区域.教学难点难点是把实际问题转化为线性规划问题,并给出解答.解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化.课时安排3课时三维目标一、知识与技能1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.二、过程与方法1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.三、情感态度与价值观1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学过程第1课时导入新课师 前面我们学习了二元一次不等式A x+B y+C >0在平面直角坐标系中的平面区域的确定方法,请同学们回忆一下. (生回答)推进新课 [合作探究]师 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y )在上述平面区域中时,所安排的生产任务x 、y 才有意义.进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x 件,乙产品y 件时,工厂获得利润为z,则如何表示它们的关系? 生 则z=2x+3y.师 这样,上述问题就转化为:当x 、y 满足上述不等式组并且为非负整数时,z 的最大值是多少? [教师精讲]师 把z=2x+3y 变形为z x y 3132+-=,这是斜率为32-,在y 轴上的截距为31z 的直线.当z 变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线z x y 3132+-=,这说明,截距z[]3可以由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z 最大时,z 取最大值,因此,问题转化为当直线z x y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z 最大.由图可以看出,当直线z x y 3132+-=经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 最大,最大值为314.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元. [知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x+y=0.然后,作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l:2x+y=t,t ∈R. 可知,当l 在l 0的右上方时,直线l 上的点(x,y)满足2x+y >0,即t >0.而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t m a x =2×5+2=12,t min =2×1+3=3.(2)(3) [合作探究]师 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t=2x+y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.课堂小结 用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品?分析:将已知数据列成下表:甲原料(吨) 乙原料(吨) 费用限额成本1 000 1 500 6 000 运费500 400 2 000 产品90 100 解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y xz=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t 过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440. 答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y 张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x目标函数为z=2x+3y. 作出可行域:把直线l :2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值.解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3). 答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.3.课本106页习题3.3A 组2.第2课时导入新课师 前面我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念.师 同学们回忆一下用图解法解决简单的线性规划问题的基本步骤.生(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值.推进新课师 【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.师 分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y, 即,90031t x y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t[]900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500. 师 【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y≤300,x+2y≤250, x≥0,y≥0的整数值.师 分析:画出约束条件表示的平面区域即可行域再解.解:可行域如图所示.四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191).因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000. 师 【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.师 分析:可先找出可行域,平行移动直线l 0:3x+y=0找出可行解,进而求出目标函数的最小值.解:不等式x+2y≥2表示直线x+2y=2上及其右上方的点的集合;不等式2x+y≥1表示直线2x+y=1上及其右上方的点的集合.可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t ∈R).∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min=1.师 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.师 课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x [教师精讲]师 (1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如右图所示:当x=0,y=0时,z=2x+y=0,点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线l:2x+y=t,t ∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大.所以z m a x =2×2-1=3.(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如右图所示.从图示可知直线3x+5y=t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z m a x =3×89+5×817=14.[知识拓展]某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?师 分析:将已知数据列成下表:消耗量 产品 资源甲产品(1 t ) 乙产品(1 t) 资源限额(t ) A 种矿石(t )10 4 300 B 种矿石(t)5 4 200 煤(t) 利润(元)4 9 360 600 1 000解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为z=600x+1 000y.作出以上不等式组所表示的平面区域,即可行域.作直线l:600x+1 000y=0,即直线:3x+5y=0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=600x+1 000y 取最大值.解方程组⎩⎨⎧=+=+,36094,20045y x y x 得M 的坐标为x=29360≈12.4,y=291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).(2)设t=0,画出直线l 0.(3)观察、分析,平移直线l 0,从而找到最优解.(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义布置作业课本第105页习题3.3A 组3、4.第3课时导入新课师 前面我们已经学习了用图解法解决简单的线性规划问题的基本步骤以及以实际问题为背景的线性规划问题其求解的格式与步骤.这节课我们继续来看它们的实际应用问题. 推进新课师 【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克?师 分析:将已知数据列成下表:食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kgA 0.105 0.07 0.14B 0.105 0.14 0.07若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式?生 由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0 其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x师 作出二元一次不等式组②所表示的平面区域,即可行域.请同学们在草稿纸上完成,再与课本上的对照.生 考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z 是直线在y 轴上的截距,当28z 取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值.由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z[]28最小,即z 最小. 解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16.由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.师 【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多?学段 班级学生数 配备教师数 硬件建设/万元 教师年薪/万元初中 45 2 26/班 2/人高中 40 3 54/班 2/人师 由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y 变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z ,随z 变化的一组平行直线.由图可以看出,当直线z=7.2x+10.8y 经过可行域上的点M 时,截距545z 最大,即z 最大. 解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=7.2x+10.8y 取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元. 师 【例7】 在上一节例4中(课本96页例4),若生产1车皮甲种肥料,产生的利润为10 000元,若生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生 若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数z=x+0.5y,可行域如下图:把z=x+0.5y 变形为y=-2x+2z,得到斜率为-2,在y 轴上截距为2z,随z 变化的一组平行直线.由图可以看出,当直线y=-2x+2z 经过可行域上的点M 时,截距2z 最大,即z 最大. 解方程组⎩⎨⎧=+=+104,661518y x y x 得点M(2,2),因此当x=2,y=2时,z=x+0.5y 取最大值,最大值为 3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元. [教师精讲]师 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义. 课堂小结 用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.布置作业课本第105页习题3.3 B组1、2、3板书设计第1课时简单线性规划问题图1课堂小结线性规划问题的相关概念图2第2课时简单线性规划问题例1课堂小结例3例2第3课时简单线性规划问题例5课堂小结例7例6。
人教高中数学必修五 《3.3.2简单的线性规划问题》教案-教育文档
课题名称:简单的线性规划问题 (教案)
三维教学目标
知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;
②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。
过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;
③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。
情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。
教学重点及应对策略
1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;
教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。
教学过程设计。
人教版-高中数学必修5--简单的线性规划问题教案
简单的线性规划问题教学目标:1.了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最优解.2.在实验探究的过程中,让学生体验数学活动充满着探索与创造,培养学生的数据分析能力、探索能力、合情推理能力及动手操作、勇于探索的精神;3、在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力和化归能力,体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用.教学重点和难点:求线性目标函数的最值问题是重点;从数学思想上看,学生对为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题以及如何想到要这样转化存在一定疑虑及困难;教学应紧扣问题实际,通过突出知识的形成发展过程,引入数学实验来突破这一难点.教学过程:(一)引入(1)情景某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h.该产每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么请学生读题,引导阅读理解后,列表→建立数学关系式→画平面区域,学生就近既分工又合作,教师关注有多少学生写出了线性数学关系式,有多少学生画出了相应的平面区域,在巡视中并发现代表性的练习进行展示,强调这是同一事物的两种表达形式数与形.【问题情景使学生感到数学是自然的、有用的,学生已初步学会了建立线性规划模型的三个过程:列表→建立数学关系式→画平面区域,可放手让学生去做,再次经历从实际问题中抽象出数学问题的过程,教师则在数据的分析整理、表格的设计上加以指导】教师打开几何画板,作出平面区域.(2)问题师:进一步提出问题,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大学生不难列出函数关系式y x z 32+=.师:这是关于变量y x 、的一次解析式,从函数的观点看y x 、的变化引起z 的变化,而y x 、是区域内的动点的坐标,对于每一组y x 、的值都有唯一的z 值与之对应,请算出几个z 的值. 填入课前发下的实验探究报告单中的第2—4列进行观察,看看你有什么发现学生会选择比较好算的点,比如整点、边界点等.【学生思维的最近发现区是上节的相关知识,因此教师有目的引导学生利用几何直观解决问题,虽然这个过程计算比较繁琐,操作起来有难度,但是教学是一个过程,从中让学生体会科学探索的艰辛,这样引导出教科书给出的数形结合的合理性,也为引入信息技术埋下伏笔】(二)实验教师打开画板,当堂作出右图,在区域内任意取点,进行计算,请学生与自己的数据对比,继续在实验探究报告单上补充填写画板上的新数据.【在信息技术与课程整合过程中,为改变老师单机的演示学生被动观看的现状,让学生参与进来,老师(可以根据学生要求)操作,学生记录,共同提出猜想,在当前技术条件受限时不失为一个好方法】师:这有限次的实验得来的结论可靠吗我们毕竟无法取遍所有点,因为区域内的点是无数的!况且没有计算机怎么办,数据复杂手工无法计算怎么办因此,有必要寻找操作性强的可靠的求最优解的方法.【形成认知冲突,激发求知欲望,调整探究思路,寻找解决问题的新方法】继续观察实验报告单,聚焦每一行的点坐标和对应的度量值,比如M (, )时方程是1032=+y x ,填写表中的第6—7列,引导学生先在点与直线之间建立起联系 ------点M 的坐标是方程1032=+y x 的解,那么点M 就应该在直线1032=+y x 上,反过来直线1032=+y x 经过点M ,当然也就经过平面区域,所以点M 的运动就可转化为直线的平移运动。
高中数学必修5《简单线性规划》教学设计
课题:简单的线性规划(高三一轮复习课)主旨:本节课是人民教育出版全日制普通高级中学数学教科书(必修5)第三章第3节“简单的线性规划”.本节课是高三第一轮复习课,内容包括二元一次不等式表示平面区域、线性规则及线性规划的实际应用.下面我从三方面来说说对这节课的分析和设计.1. 教材地位分析一教学背景分析 2. 学生特征分析3. 教学目标分析1. 教学重点、难点分析二教学展开分析 2. 教学策略和方法指导3. 教学媒体选择4. 教学实施三教学结果分析一、教学背景分析1、教材地位分析(1)“简单的线性规划”是在复习了直线方程的基础上而再度学习的. 因线性规划的应用性广泛,“简单线性规划”不仅是“新大纲”中增加的新内容,也是“新课标”的必修内容;说明了教材重视数学知识的应用.(2)“简单的线性规划”体现了数学应用性的同时,还渗透了化归、数形结合等数学思想和数学建模法.(3)“简单的线性规划”内容已成为近年来高考数学命题的一个亮点. 几乎每年必考。
考查的题型有选择题,填空题..2、学生特征分析(1)学习任务分析:通过第一轮复习,学生对不等式、直线方程知识有了更系统的理解;这是复习“简单的线性规划”的起点能力.(2)认知能力分析:学生能应用不等式、直线方程知识来解决问题,加之,体会过“简单的线性规划”应用性;这有益于“简单的线性规划”的“同化”和“顺应”.(3)认知结构变量分析:“不等式”、“直线方程”与“简单的线性规划”是“类属关系”,故“简单的线性规划”的复习是“下位学习”,说明认知结构的可利用性和可分辩性. 但是,由于“简单的线性规划”在教材上的编排简约、图解方法的动态,影响到认知结构的稳固性;这要求通过创设问题情境、自主探究等来促进认知结构的稳固性,进行意义建构.3、教学目标分析(1)知识技能:掌握二元一次不等式表示平面区域,进一步了解线性规划的意义,并能应用其解决一些简单的实际问题.(2)过程与方法:通过自主探究,师生会话,体验数学发现和创造的历程;经历线性规划的实际应用,提高数学建模能力.(3)情感态度:通过自主探究,师生会话,养成批判性的思维品质,形成良好的合作交流品质,提高“应用数学”的意识.以上三个目标确定是基于教材地位分析和学生特征分析.二、教学展开分析1、教学重点与难点分析重点:掌握二元一次不等式表示平面区域并灵活运用,以及线性规划最优解的求解.难点:实际问题转化为线性规划问题及其整数最优解、最优近似解的求解.利用例题、变式训练,求线性规划最优解的两种有效的方法——“调整优值法”、“换元取优法”的应用,以及“简单的线性规划解答器”的应用,来突出重点,突破难点.2、教学策略与方法指导(1)教学策略:本节课采用基于建构主义理论的“建构式教学方法”,即由“创设问题情境——自主探究——师生会话——意义建构”四个环节组成. 以学生为主体,并根据教学中的实际情况及时调整教学方案.(2)学法指导:教师平等地参与“师生会话”,间或参与“自主探究”并适时点拨指导;引导学生全员、全过程参与;自主探究的形式可以是小组学习,也可以是“学习共同体”等,引导学生反思评价.3、教学媒体的选择与运用使用多媒体辅助教学.4、教学实施按照“建构式教学法”的思想,围绕突出重点,解决难点,不断设置问题情境,激发学生自主探究,并由师生会话促进意义建构. 我把本节课的教学实施分成三大部分,即(1)概念“同化”,(2)例题研讨,(3)反思评价.Ⅱ例题分析三、教学结果分析通过本节课的学习,结合教学目标,从知识、能力、情感三个方面预测可能会出现的结果.1、学生能掌握并灵活运用二元一次不等式的平面区域,能够求出最优解;但在数学建模方面,估计有少部分学生会有一定的困惑. 另外,对线性规划和其它知识的交汇题的求解以及实际问题的整数最优解、近似最优解的求解仍会有学生感到陌生,故须督促学生课后加强消化.2、学生基本思想能力得到一定的提高,但良好的数学素养有待进一步提高.3、由于学生层次不同,已有的数学知识、观念不同,体验和认识也不同,对于学习层次较高的学生,应鼓励其严谨、谦虚、锲而不舍的求学态度;而对学习欠佳的同学,应多鼓励,并辅之以师生的帮助促进其进步.。
最新人教A版必修5高中数学 3.3.2《简单的线性规划问题》(1)教案(精品)
高一数学人教A版必修5:3.3.2《简单的线性规划问题》(1)教案一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第三章不等式第三节简单的线性规划问题第一课时。
简单的线性规划问题是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,简单的线性规划问题与直线方程密不可分;另一方面,学习简单的线性规划问题也为进一步学习解析几何等内容做好准备。
二、学生学习情况分析本节课学生很容易在以下一个地方产生困惑:1. 线性约束条件的几何意义三、教学目标(1)知识和技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值(2)过程与方法:本节课是以二元一次不等式表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决。
考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性。
同时,可借助计算机的直观演示可使教学更富趣味性和生动性(3)情感与价值:渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识;激发学生的学习兴趣四、教学重点与难点教学重点:线性规划的图解法教学难点:寻求线性规划问题的最优解五、教学过程(一).创设情境例 1.甲、乙、丙三种食物的维生素A、B的含量及成本如下表:营养师想购这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时成本最低,最低成本是多少?问题1:如何将此实际问题转化为数学问题呢?解:设所购甲、乙两种食物分别为千克,则丙食物为千克.又设成本为元.由题意可知应满足条件:即①.问题转化为:当满足①求成本的最小值问题.(二).分析问题问题2:如何解决这个求最值的问题呢?学生基于上一课时的学习,一般都能意识到要将不等式组①表示成平面区域(教师动画演示画不等式组①表示的平面区域).问题3:当点(x,y)在此平面区域运动时,如何求z=2x+y+50的最小值.(第一次转化)引导学生:由于已将x,y所满足的条件几何化了,你能否也给式子z=2x+y+50作某种几何解释呢?将等式z=2x+y+50视为x,y的一次方程,它在几何上表示直线,当z取不同的值时可得到一族平行直线,于是问题又转化为当这族直线与不等式组①所表示的平面区域有公共点时,求z的最小值.(第二次转化)问题4:如何更好地把握直线y+2x+50=z的几何特征呢?将其改写成斜截式y=-2x+z-50,让学生明白原来z-50就是直线在y轴上的截距,当截距z-50最小时z也最小,于是问题又转化为当直线y=-2x+z-50与平面区域有公共点时,在区域内找一个点P,使直线经过P时在y轴上的截距最小.(第三次转化)让学生动手实践,用作图法找到点P(3,2),求出z的最小值为58,即最低成本为58元)(三).形成概念1. 不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件.z=2x+y+50是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数.由于z=2x+y+50又是x、y的一次解析式,所以又叫做线性目标函数.2.一般的,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.其中使目标函数取得最大值或最小值的可行解它们都叫做这个问题的最优解.(四).反思过程求解步骤:(1)画可行域---画出线性约束条件所确定的平面区域;(2)过原点作目标函数直线的平行直线;(3)平移直线,观察确定可行域内最优解的位置;(4)求最值---解有关方程组求出最优解,将最优解代入目标函数求最值. 简记为画作移求四步.(五).例题讲解例1、设2z x y =+,式中变量x 、y 满足下列条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值。
高中数学新人教A版必修5教案 3.3.2 简单线性规划问题
从容说课本节课先由师生共同分析日常生活中的实际问题来引出简单线性规划问题的一些基本概念,由二元一次不等式组的解集可以表示为直角坐标平面上的区域引出问题:在直角坐标系内,如何用二元一次不等式(组)的解集来解决直角坐标平面上的区域求解问题?再从一个具体的二元一次不等式(组)入手,来研究一元二次不等式表示的区域及确定的方法,作出其平面区域,并通过直线方程的知识得出最值.通过具体例题的分析和求解,在这些例题中设置思考项,让学生探究,层层铺设,以便让学生更深刻地理解一元二次不等式表示的区域的概念,有利于二元一次不等式(组)与平面区域的知识的巩固.“简单的线性规划”是在学生学习了直线方程的基础上,介绍直线方程的一个简单应用,这是《新大纲》对数学知识应用的重视.线性规划是利用数学为工具,来研究一定的人、财、物、时、空等资源在一定条件下,如何精打细算巧安排,用最少的资源,取得最大的经济效益.它是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,并能解决科学研究、工程设计、经营管理等许多方面的实际问题.中学所学的线性规划只是规划论中的极小一部分,但这部分内容体现了数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.通过这部分内容的学习,可使学生进一步了解数学在解决实际问题中的应用,培养学生学习数学的兴趣和应用数学的意识和解决实际问题的能力.依据课程标准及教材分析,二元一次不等式表示平面区域以及线性规划的有关概念比较抽象,按学生现有的知识和认知水平难以透彻理解,再加上学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题有一个学习消化的过程,故本节知识内容定为了解层次.本节内容渗透了多种数学思想,是向学生进行数学思想方法教学的好教材,也是培养学生观察、作图等能力的好教材.本节内容与实际问题联系紧密,有利于培养学生学习数学的兴趣和“用数学”的意识以及解决实际问题的能力.教学重点重点是二元一次不等式(组)表示平面的区域.教学难点难点是把实际问题转化为线性规划问题,并给出解答.解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化.课时安排3课时三维目标一、知识与技能1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.二、过程与方法1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.三、情感态度与价值观1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学过程 第1课时导入新课师 前面我们学习了二元一次不等式A x+B y+C >0在平面直角坐标系中的平面区域的确定方法,请同学们回忆一下. (生回答)推进新课[合作探究]师 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么? 设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x师 如何将上述不等式组表示成平面上的区域? 生 (板演)师 对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y )在上述平面区域中时,所安排的生产任务x 、y 才有意义.进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大? 设生产甲产品x 件,乙产品y 件时,工厂获得利润为z,则如何表示它们的关系? 生 则z=2x+3y.师 这样,上述问题就转化为:当x 、y 满足上述不等式组并且为非负整数时,z的最大值是多少?[教师精讲]师 把z=2x+3y 变形为z x y 3132+-=,这是斜率为32-,在y 轴上的截距为31z 的直线.当z 变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线z x y 3132+-=,这说明,截距z3可以由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z 最大时,z 取最大值,因此,问题转化为当直线zx y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z最大.由图可以看出,当直线z x y 3132+-=经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z最大,最大值为314.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元.[知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x+y=0.然后,作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l0:2x+y=0上.作一组与直线l0平行的直线(或平行移动直线l0)l:2x+y=t,t∈R.可知,当l在l0的右上方时,直线l上的点(x,y)满足2x+y>0,即t>0.而且,直线l往右平移时,t随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l的直线中,以经过点B(5,2)的直线l2所对应的t最大,以经过点A(1,1)的直线l1所对应的t最小.所以t m a x=2×5+2=12,t min=2×1+3=3.(2)(3)[合作探究]师诸如上述问题中,不等式组是一组对变量x、y的约束条件,由于这组约束条件都是关于x、y的一次不等式,所以又可称其为线性约束条件.t=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,我们把它称为目标函数.由于t=2x+y又是关于x、y的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.课堂小结用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值.布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品?分析:将已知数据列成下表:解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y x z=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t 过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440.答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y 张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x 目标函数为z=2x+3y.作出可行域:把直线l :2x+3y=0向右上方平移至l ′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值. 解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润. 3.课本106页习题3.3A 组 2.第2课时导入新课师 前面我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念. 师 同学们回忆一下用图解法解决简单的线性规划问题的基本步骤.生(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域); (2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解; (4)最后求得目标函数的最大值及最小值.推进新课师 【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.师 分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y, 即,90031tx y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500.师 【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y ≤300,x+2y ≤250, x ≥0,y ≥0的整数值.师 分析:画出约束条件表示的平面区域即可行域再解. 解:可行域如图所示.四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191).因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000.师 【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.师 分析:可先找出可行域,平行移动直线l 0:3x+y=0找出可行解,进而求出目标函数的最小值. 解:不等式x+2y ≥2表示直线x+2y=2上及其右上方的点的集合; 不等式2x+y ≥1表示直线2x+y=1上及其右上方的点的集合. 可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t ∈R).∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min =1.师 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.师 课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x[教师精讲]师 (1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如右图所示: 当x=0,y=0时,z=2x+y=0, 点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线l:2x+y=t,t ∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大.所以z m a x =2×2-1=3.(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如右图所示.从图示可知直线3x+5y=t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z m a x =3×89+5×817=14.[知识拓展]某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大? 师 分析:将已知数据列成下表:解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为z=600x+1 000y.作出以上不等式组所表示的平面区域,即可行域.作直线l:600x+1 000y=0, 即直线:3x+5y=0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=600x+1 000y 取最大值. 解方程组⎩⎨⎧=+=+,36094,20045y x y x得M 的坐标为x=29360≈12.4,y=291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). (2)设t=0,画出直线l 0.(3)观察、分析,平移直线l 0,从而找到最优解. (4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义布置作业课本第105页习题3.3A 组3、 4.第3课时导入新课师 前面我们已经学习了用图解法解决简单的线性规划问题的基本步骤以及以实际问题为背景的线性规划问题其求解的格式与步骤.这节课我们继续来看它们的实际应用问题.推进新课师 【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克? 师 分析:将已知数据列成下表:/k若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式?生 由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0 其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x师 作出二元一次不等式组②所表示的平面区域,即可行域.请同学们在草稿纸上完成,再与课本上的对照.生 考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z是直线在y轴上的截距,当28z取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值.由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z28最小,即z 最小. 解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16.由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.师 【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多?师 由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y 变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z,随z 变化的一组平行直线.由图可以看出,当直线z=7.2x+10.8y 经过可行域上的点M 时,截距545z最大,即z 最大. 解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=7.2x+10.8y 取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元.师 【例7】 在上一节例4中(课本96页例4),若生产1车皮甲种肥料,产生的利润为10 000元,若生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生 若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数z=x+0.5y,可行域如下图:把z=x+0.5y 变形为y=-2x+2z,得到斜率为-2,在y 轴上截距为2z,随z 变化的一组平行直线.由图可以看出,当直线y=-2x+2z 经过可行域上的点M 时,截距2z 最大,即z 最大. 解方程组⎩⎨⎧=+=+104,661518y x y x 得点M(2,2),因此当x=2,y=2时,z=x+0.5y 取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元.[教师精讲]师以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l0;(3)观察、分析,平移直线l0,从而找到最优解;(4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.布置作业课本第105页习题3.3 B组1、2、3板书设计第1课时第2课时第3课时习题详解(课本第104页练习)1.(1)目标函数为z=2x+y ,可行域如图所示,作出直线y=-2x+z,可知z 要取最大值,即直线经过点C 时, 解方程组⎩⎨⎧-==+,1,1y y x 得C (2,-1),所以z m a x =2x+y=3.(2)目标函数为z=3x+5y,可行域如图所示,作出直线z=3x+5y,可知直线经过点B 时,z 取得最大值;直线经过点A 时,z 取得最小值.解方程组⎩⎨⎧=-+=35,1y x x y 和⎩⎨⎧=++=.1535,1y x x y 可得点A (-2,-1)和点B (1.5,2.5). 所以z m a x =17, z min =-11.2.设每月生产甲产品x 件,生产乙产品y 件,每月收入为z ,目标函数为z=3x+2y ,需要满足的条件是⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,5002,4002y x y x y x 作直线z=3x+2y ,当直线经过点A 时,z 取得最大值.解方程组⎩⎨⎧=+=+,5002,4002y x y x 可得点A (200,100),z 的最大值为800. (课本第106页习题 3.3)A 组1.画图求解二元一次不等式: (1)x+y ≤2;(2)2x-y >2;(3)y ≤-2;(4)x ≥ 3.2.3.解:设每周播放连续剧甲x 次,播放乙连续剧y 次,目标函数z=60x+20y,所以题目中包含的限制条件为⎪⎪⎩⎪⎪⎨⎧≥≥≥+≤+,0,0,6,3204080y x y x y x 解方程组⎩⎨⎧=+=+6,3204080y x y x 得(2,4).所以z 的最大值为200(万).4.解:设每周生产空调器x 台、彩电y 台,则生产冰箱12-x-y 台,产值为z ,目标函数为z=4x+3y+2(120-x-y)=2x+y+240,所以题目中包含的限制条件为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥--≤--++,0,0,20120,40)120(413121y x y x y x y x 即⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,100,1203y x y x y x 可行域如图,解方程组⎩⎨⎧=+=+,100,1203y x y x 得M 点坐标为(10,90).所以每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是1 050千元.B组1.2.3.解:设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z ,则乙粮库要向A 镇运送大米(70-x )吨、向B 镇运送大米(110-y )吨,目标函数(总运费)为 z=12×20×x+25×10×y+15×12×(70-x)+20×8×(110-y)=60x+90y+30 200.所以题目中包含的限制条件为⎪⎪⎩⎪⎪⎨⎧≥≤≤≤-+-≤+.0,700,80)110()70(,100y x y x y x 所以当x=70,y=30时,总运费最省,z min =37 100(元), 所以当x=0,y=100时,总运费最不合理,z m a x =39 200(元). 使国家造成不该有的损失2 100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37 100元.最不合理的调运方案是甲粮库要向A 镇运送大米0吨、向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨、向B 镇运送大米10吨,此时总运费为39 200元,使国家造成损失2 100元.备课资料备用习题1.某糖果厂生产A 、B 两种糖果,A 种糖果每箱获利润40元,B 种糖果每箱获利润50元,其生产过程分为混合、烹调、包装三道工序,下表为每箱糖果生产过程中所需平均时间:(单位:分钟)每种糖果的生产过程中,混合的设备至多能用12小时,烹调的设备至多只能用30小时,包装的设备只能用15小时,试求每种糖果各生产多少箱可获得最大利润? 分析:找约束条件,建立目标函数.解:设生产A 种糖果x 箱,B 种糖果y 箱,可获得利润z 元,则此问题的数学模式在约束条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+0,0,9003,180045,7202y x y x y x y x 下,求目标函数z=40x+50y 的最大值,作出可行域,其边界O A :y=0,AB :3x+y-900=0,BC :5x+4y- 1 800=0,C D :x+2y-720=0,DO :x=0.由z=40x+50y,得5054z x y +-=,它表示斜率为54-,截距为z50的平行直线系,50z越大,z 越大,从而可知过C 点时截距最大,z 取得了最大值. 解方程组⇒⎩⎨⎧=+=+1800457202y x y x C (120,300).∴z m a x =40×120+50×300=19 800,即生产A 种糖果120箱,生产B 种糖果300箱,可得最大利润19 800元. 点评:由于生产A 种糖果120箱,生产B 种糖果300箱,就使得两种糖果共计使用的混合时间为120+2×300=720(分),烹调时间5×120+4×300=1 800(分),包装时间3×120+300=660(分),这说明该计划已完全利用了混合设备与烹调设备的可用时间,但对包装设备却有240分钟的包装时间未加利用,这种“过剩”问题构成了该问题的“松弛”部分,有待于改进研究. 2.甲、乙、丙三种食物的维生素A 、B 含量及成本如下表:某食物营养研究所想用x 千克甲种食物,y 千克乙种食物,z 千克丙种食物配成100千克的混合食物,并使混合食物至少含56 000单位维生素A 和63 000单位维生素B .(1)用x 、y 表示混合食物成本C ;(2)确定x 、y 、z 的值,使成本最低.分析:找到线性约束条件及目标函数,用平行线移动法求最优解.解:(1)依题意x 、y 、z 满足x+y+z=100z=100-x-y. ∴成本C =11x+9y+4z=7x+5y+400(元).(2)依题意⎩⎨⎧≥++≥++,63000500400800,56000400700600z y x z y x ∵z=100-x-y, ∴⎪⎩⎪⎨⎧≥≥≥-≥+.0,0,1303,16032y x y x y x 作出不等式组所对应的可行域,如右图所示.联立⇒⎩⎨⎧=+=-160321303y x y x 交点A(50,20). 作直线7x+5y+400=C ,则易知该直线截距越小,C 越小,所以该直线过A (50,20)时,直线在y 轴截距最小,从而C 最小,此时7×50+5×20+400=C =850元.∴x=50千克,z=30千克时成本最低.。
人教版高中数学必修5-3.3《简单的线性规划(第1课时)》教学设计
3.3.2 简单的线性规划问题(第1课时)(名师:陈庚生)【核心素养】通过学习简单的线性规划问题,提升学生的数学抽象、数学建模与数据处理的能力.【学习目标】理解什么是线性规划,并能够解决一些简单的线性规划问题.【学习重点】简单的二元线性规划问题.【学习难点】准确而快速的画出线性规划可行域,并进行最优解的求解.二、教学设计(一)课前设计1.预习任务任务 1 阅读教材P1-P4,思考:线性规划是如何形成的?它的主要功能是什么?利用线性规划解决一些简单问题.2.预习自测1.不等式组36020.x yx y≥⎧⎨<⎩-+,-+表示的平面区域是()【知识点:简单的线性规划;数学思想:数形结合】解:B2.不等式组210.y xy xy≤⎧⎪≤⎨⎪≥⎩-+,-,所表示的平面区域的面积为( )A.1B.12C.13D.14【知识点:简单的线性规划;数学思想:数形结合】解:D3.若满足条件20x yx yy a-≥⎧⎪+-≤⎨⎪≥⎩的整点(,)x y恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a的值为()A.3-B.2-C.1-D.0【知识点:简单的线性规划;数学思想:数形结合】解:C(二)课堂设计1.知识回顾在平面直角坐标系中,直线:0l Ax By C++=将平面分成两部分,平面内的点分为三类:(1)直线上的点(x,y)的坐标满足:0=++CByAx;(2)直线一侧的平面区域内的点(x,y)的坐标满足:0>++CByAx;(3)直线另一侧的平面区域内的点(x,y)的坐标满足:0Ax By C++<.即二元一次不等式0Ax By C++>或0Ax By C++<在平面直角坐标系中表示直线0Ax By C++=的某一侧所有点组成的平面区域,直线0Ax By C++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.2.问题探究问题探究一线性规划的含义观察与思考:某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A产品耗时1小时,每生产一件乙产品使用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?想一想:怎样将题目条件转化为我们熟悉的不等式组?。
人教A版高中数学必修5教案简单的线性规划问题(1)
(2)将上述不等式组表示成平面上的区域,如图3.3-9中阴影部分的整点。
(3)若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
设生产甲产品x乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x、y满足不等式※并且为非负整数时,z的最大值是多少?
3.情感、态度与价值观
渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识;激发学生的学习兴趣
教学重点
线性规划的图解法
教学难点
寻求线性规划问题的最优解
教学过程:
批注
(一)复习引入
1、某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有的日生产安排是什么?
思考:已知点(x,y)的坐标满足 则 的最大值为,最小值为
(四)课堂小结:了解线性规划问题的有关概念,掌握线性规划问题的图解法,懂得寻求实际问题的最优解
(五)作业:
板书设计:
教学后记:
变形:把 ,
这是斜率为 ,在 轴上的截距为 的直线,当z变化时,可以得到一组互相平行的直线; 的平面区域内有公共点时,在区域内找一个点P,使直线经点P时截距 最大
平移——通过平移找到满足上述条件的直线
表述——找到给M(4,2)后,求出对应的截距及z的值
(二)新课讲授
1、概念引入
(1)若 ,式中变量x、y满足上面不等式组 ,则不等式组叫做变量x、y的约束条件, 叫做目标函数;又因为这里的 是关于变量x、y的一次解析式,所以又称为线性目标函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: §3.3.2简单的线性规划问题
第1课时
【教学目标】
1.知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;
2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;
3.情态与价值:培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。
【教学重点】
用图解法解决简单的线性规划问题
【教学难点】
准确求得线性规划问题的最优解
【教学过程】
1.课题导入
[复习提问]
1、二元一次不等式0
By
Ax在平面直角坐标系中表示什么图形?
+C
+
>
2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?
3、熟记“直线定界、特殊点定域”方法的内涵。
2.讲授新课
在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。
1、下面我们就来看有关与生产安排的一个问题:
引例:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,该厂所有可能的日生产安排是什么?
(1)用不等式组表示问题中的限制条件:
设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组: 2841641200
x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩ ………………………………………………………….(1) (2)画出不等式组所表示的平面区域:
如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排。
(3)提出新问题:
进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
(4)尝试解答:
设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:
当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?
把z=2x+3y 变形为233z y x =-+,这是斜率为23
-,在y 轴上的截距为3z 的直线。
当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是
确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833
y x =-+),这说明,截距3
z 可以由平面内的一个点的坐标唯一确定。
可以看到,直线233z y x =-+与不等式组(1)的区域的交点满足不等式组(1),而且当截距3
z 最大时,z 取得最大值。
因此,问题可以转化为当直线233
z y x =-+与不等式组(1)确定的平面区域有公共点时,在区域内找一个点P ,
使直线经过点P 时截距3
z 最大。
(5)获得结果: 由上图可以看出,当实现233
z y x =-+金国直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 的值最大,最大值为143
,这时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元。
2、线性规划的有关概念:。