工程力学(材料力学)9 应力状态和强度理论

合集下载

材料力学强度理论

材料力学强度理论

材料力学强度理论
材料力学强度理论是材料力学的一个重要分支,它研究材料在外力作用下的强
度和变形特性。

材料的强度是指材料抵抗破坏的能力,而变形特性则是指材料在外力作用下的形变行为。

强度理论的研究对于材料的设计、制备和应用具有重要意义。

首先,强度理论可以帮助我们了解材料的破坏机制。

材料在外力作用下会发生
破坏,而不同的材料在受力时表现出不同的破坏模式,比如拉伸、压缩、剪切等。

强度理论可以通过实验和理论分析,揭示材料在受力时的破坏机制,为材料的设计和选用提供依据。

其次,强度理论可以指导材料的合理使用。

在工程实践中,我们需要根据材料
的强度特性来选择合适的材料,并确定合理的使用条件。

强度理论可以帮助我们评估材料在特定工况下的承载能力,从而保证材料的安全可靠使用。

此外,强度理论还可以为材料的改进和优化提供指导。

通过对材料强度特性的
研究,我们可以发现材料的强度局限性,并提出改进的方案。

比如,可以通过合金化、热处理等手段来提高材料的强度,或者通过结构设计来减小应力集中,提高材料的抗破坏能力。

综上所述,材料力学强度理论是材料科学中的重要内容,它不仅可以帮助我们
了解材料的破坏机制,指导材料的合理使用,还可以为材料的改进和优化提供指导。

在未来的研究和工程实践中,我们需要进一步深入研究强度理论,不断提高材料的强度和可靠性,为社会发展和科技进步做出贡献。

工程力学第9章 应力状态与强度理论

工程力学第9章 应力状态与强度理论

27
根据广义胡克定律,有
解 (1)m-m 截面的内力为:
(2)m-m 截面上 K 点的应力为:
28
29
30
9.5 强度理论
9.5.1 强度理论的概念 在第7章中介绍了杆件在基本变形情况下的强度计 算,根据杆件横截面上的最大正应力或最大切应力及相 应的试验结果,建立了如下形式的强度条件:
31
32
33
(2)第二强度理论———最大伸长线应变理论
34
(3)第三强度理论———最大切应力理论
35
(4)第四强度理论———最大形状改变比能理论
36
37
(2)校核正应力强度
(3)校核切应力强度
38
(4)按第三强度理论校核 D 点的强度
39
思考题 9.1 某单元体上的应力情况如图9.18所示,已知 σx=σy。试求该点处垂直于纸面的任意斜截面上的正应力、 切应力及主应力,从而可得出什么结论?
6
9.2.1 方位角与应力分量的正负号约定 取平面单元体位于Oxy平面内,如图9.5(a)所示。 已知x面(外法线平行于x轴的面)上的应力σx及τxy,y 面上的应力σy及τyx。根据切应力互等定理,τxy=τyx。现 在为了确定与z轴平行的任意斜截面上的应力,需要首 先对方位角α以及各应力分量的正负号作如下约定:
10
11
9.2.3 平面应力状态下的主应力 与极值切应力由式(9.1)和式(9.2)可知,当σx, σy和τxy已知时,σα和τα将随α的不同而不同,即随斜截面 方位不同,截面上的应力也不同。因而有可能存在某种 方向面,其上之正应力为极值。设α=α0时,σα取极值。 由
12
13
14
15
16

工程力学中四种强度理论

工程力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用第一理论的应用和局限1、应用材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

2、局限没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

工程力学第11章 应力状态和强度理论

工程力学第11章 应力状态和强度理论

而最大正应力的方位角α0则可由下式确定
式中, 负号表示由x面到最大正应力作用面沿顺时针方向旋转。 因为 tan2α0=tan(180°+2α), 所以式(11-4) 给出两个相差90°的 α0 角, 即α0和 α0'=90°+α0(或α'0=α0-90°), 即这两个面互相垂直。 考虑到图11-8a中A、 B两点位于应力圆上同一直径两端, 即最大正应力所在截面和最小正应力所在截 面互相垂直 , 所以式 (11-4) 所求两个 α0 值即是 A 、B 两点所代表截面的方向。 它们之间的对应关系可以利用下述规则来确定 : 在 α0 和 α0+90°两个方向中 , σmax的方向总是在τx所指向的那一侧。 所以, 最大和最小正应力所在截面的方 位如图11-8b所示。 从图11-8a中还可以看出, 应力圆上存在K、M两个极值点, 由此得单元体在平 行于z轴的截面中最大和最小切应力分别为
11.2.2 平面应力状态分析的图解法
由式(11-1)和(11-2)可知, 任一斜截面α上的正应力σα和切应力τα均随参量α变 化。 所以σα和τα间必有确定的函数关系。 为建立它们间直接关系式, 先将式 (11-1)和式(11-2)改写为
式(c)、式(d)两边平方相加, 即有
从式(e)可以看出, 在以τ、σ为纵横坐标轴的平面内, 式(e)所对应的曲线为圆 (图11-5), 其圆心C的坐标为 , 半径为 , 而圆上任何一点的 纵、横坐标分别代表了单元体上某斜截面上的切应力和正应力。 此圆称为应力 圆。 并按以下步骤绘制应力圆。
的构件, 则必须研究危险点处的应力状态。 所谓一点的应力状态, 就是通过受 力构件内某一点的各个截面上应力情况。 由于构件内的应力分布一般是不均匀的, 所以在分析各个不同方向截面上的应 力时, 不宜截取构件的整个截面来研究, 而是围绕构件中的危险点截取一单元体 来分析, 以此来反映一点的应力状态。 例如, 螺旋桨轴工作时既受拉、又受扭 (图11-1a),若围绕轴表面上一点用纵、横截面截取单元体, 其应力情况如图 11-1b所示, 即处于正应力和切应力的共同作用下; 又如, 在导轨和车轮的接触 处(图11-2a), 单元体A除在垂直方向直接受压外, 由于其横向变形受到周围材 料的阻碍, 因而侧向也受到压力作用, 即单元体A处于三向受压状态。 显然, 要解决这类构件的强度问题, 除应全面研究危险点处各截面的应力外, 还 应研究材料在复杂应力作用下的破坏规律。 前者为应力状态理论的任务, 后者 则为强度理论所要研究的问题。

《材料力学 第2版》_顾晓勤第09章第2节 二向应力状态分析

《材料力学 第2版》_顾晓勤第09章第2节 二向应力状态分析

第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
最大主应力和最小主应力的计算式
max m in
x
y
2
x
2
y
2
2 x
确定 max 和 min 所在平面的方法
1)若x>y,则所求的两个角度0 和 90º+0 中, 绝对值较小的一个确定max 所在的平面;
2)若x <y,则所求的两个角度0 和 90º+0 中, 绝对值较小的一个确定min 所在的平面;
2

2sin cos sin 2 对以上二式进行整理得到:
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
利用上述两式可以求得 de 斜截面上的正应力和切
设 de 斜截面面积为 dA,则 ae 面的面积为 dAsin , ad面的面积为 dAcos 。取 t 和 n 为参考轴,建立棱
柱体 ade 的受力平衡方程如下:
dA ( xdAcos ) sin ( xdAcos ) cos ( ydAsin ) cos ( ydAsin ) sin 0
y
2
2 x
105 MPa
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
0
1 2
arctan(
2 x x

材料力学第六章 应力状态理论和强度理论

材料力学第六章 应力状态理论和强度理论

单元体的各个面均为主平面,其上的主应力为: 单元体的各个面均为主平面,其上的主t
9
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
3、三向应力状态(空间应力状态) 、三向应力状态(空间应力状态) 定义:三个主应力均不为零。 定义:三个主应力均不为零。 例如:导轨与滚轮接触点处,取导轨表面任一点 的单元体 的单元体, 例如:导轨与滚轮接触点处,取导轨表面任一点A的单元体, 它各侧面均受到压力作用,属于三向应力状态。 它各侧面均受到压力作用,属于三向应力状态。
工程力学
Engineering mechanics
第六章 应力状态理论 和强度理论
1
工程力学
Engineering mechanics


前面的分析结果表明, 前面的分析结果表明,在一般情况下杆件横截面上不同点 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 因此,当提及应力时,必须明确“哪一个面上哪一点” 因此,当提及应力时,必须明确“哪一个面上哪一点”的应力或 哪一点哪一个方向面上”的应力。 者“哪一点哪一个方向面上”的应力。 如果危险点既有正应力,又有切应力,应如何建立其强度 如果危险点既有正应力,又有切应力, 条件? 条件? 如何解释受力构件的破坏现象? 如何解释受力构件的破坏现象? 对组合变形杆应该如何进行强度计算? 对组合变形杆应该如何进行强度计算? 要全面了解危险点处各截面的应力情况。 要全面了解危险点处各截面的应力情况。
2
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
一、一点的应力状态 定义:过受力体内一点所有方向面上应力的集合。 定义:过受力体内一点所有方向面上应力的集合。 一点的应力状态的四要素 四要素: 一点的应力状态的四要素: )、应力作用点的坐标 (1)、应力作用点的坐标; )、应力作用点的坐标; )、过该点所截截面的方位 (2)、过该点所截截面的方位; )、过该点所截截面的方位; )、应力的大小 (3)、应力的大小; )、应力的大小; )、应力的类型 (4)、应力的类型。 )、应力的类型。 二、研究应力状态的目的 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, )、扭转 其危险点处于单向应力状态或纯剪切应力状态,受力简单, 其危险点处于单向应力状态或纯剪切应力状态,受力简单,可直 接由相应的试验确定材料的极限应力,建立相应的强度条件。 接由相应的试验确定材料的极限应力,建立相应的强度条件。

材料力学 第七章 应力状态和强度理论

材料力学 第七章  应力状态和强度理论

y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。

应力状态分析和强度理论

应力状态分析和强度理论

03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。

材料力学-应力状态分析

材料力学-应力状态分析

画出下列图中的A、B、C点的已知应力单元体图。
P
A y
P
σx
A
σx τ yx
B C z
P M x
σx
τzx
B
σx
τxz
C
τ xy
4、应力状态的分类
(1)、主平面与主应力 )、主平面与主应力: 主平面与主应力:
σx
τy
σy τx
σx
主平面: 主平面:单元体中切应力为零的平面。 单元体中切应力为零的平面。 主应力: 主应力:作用于主平面上的正应力。 作用于主平面上的正应力。
圆心: 圆心:
(
σ x +σ y
2
,0)
半径:
R= (
σ x−σ y
2
) + τ xy
2
2
应力圆: 应力圆:
(σ α −
σ x +σ y
2
) +τ
2
2
α
=(
σ x −σ y
2
)2 + τ 2 xy
τ
R= (
σ x −σ y
2
)2 + τ 2 xy
R C
σ x +σ y
2
σ
二.应力圆的画法
y σ y
+ (σ y dA sin α ) cos α + (τ y dA sin α ) sin α = 0
b
由切应力互等定理和三角变换,可得:
n
σα
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ xy sin 2α
σx

工程力学 应力状态

工程力学 应力状态
x y sin 2 x cos2 2
d 令 0 d
x y tg 2 2 x
可解出两个相差 的极值平面,一 2 个面上为极大值,另一个面上为极小值。
23
1 1 x y 将 tg 2 2 x
代入(7-2)式,可得:
60.8MPa
26
x y 60 sin 120 x cos120 2
70 sin 120 50 cos 120 2
55.3MPa
② 求主应力
2 x 2 50 tg 2 0 1.429 x y 70


A
B



横截面
横截面 外轮廓线
7
① 材料单元体上相对坐标面上的 应力大小相等、方向相反。 ② 材料单元体上任意方向面上的 应力视作均匀分布。
8
§7-2 平面应力状态分析
一、解析法求斜截面的应力
应力状态分析:已知材料单元体坐标平面的应
力,求任意方向面上的应力。
9
最常见的情况:有一对方向面上的应力为 零,单元体上所有的应力 在同一平面内,称为二向
(1) (2)
(1)2 (2)2 得:
x y 2 x y 2 ( ) ( cos 2 x sin 2 ) 2 2 2 x y ( sin 2 x cos2 ) 2 2
30
整理可得: x y 2 x y 2 2 2 ( ) ( ) x
(7-1)记忆
同理,利用
F
t
0 ,可得:
x y sin 2 x cos 2 2
(7-2)记忆
13

应力状态及强度理论

应力状态及强度理论

应力张量是一个二阶对称张量, 包含六个独立的分量,可以用 来描述物体的应力状态。
主应力和应力张量可以通过计 算得到,它们是描述物体应力 状态的重要参数。
02
强度理论
第一强度理论
总结词
最大拉应力准则
详细描述
该理论认为材料达到破坏是由于最大拉应力达到极限值,不考虑剪切应力和压 力的影响。
第二强度理论
05
实际应用
航空航天领域
飞机结构强度分析
利用应力状态及强度理论,对飞 机各部件的受力状态进行详细分 析,确保飞机在各种工况下的结 构安全。
航天器材料选择
根据材料的应力-应变关系,选择 适合航天器发射和运行阶段的材 料,确保航天器的可靠性和寿命。
航空材料疲劳寿命
评估
通过应力状态及强度理论,评估 航空材料的疲劳寿命,预防因疲 劳引起的结构失效。
03
材料失效分析
弹性失效
总结词
材料在弹性阶段发生的失效。
详细描述
当材料受到的应力超过其弹性极限时 ,会发生弹性失效。这种失效通常表 现为突然断裂或大幅度变形,且材料 不具有恢复原状的能力。
塑性失效
总结词
材料在塑性阶段发生的失效。
详细描述
当材料受到的应力超过其屈服点后,会发生塑性失效。这种 失效表现为材料发生较大的塑性变形,无法保持其原始形状 和尺寸。
土木工程领域
桥梁承载能力分析
通过对桥梁的应力分布和承载能力的分析,确保桥梁在设计寿命 内的安全性和稳定性。
建筑结构抗震设计
利用强度理论,对建筑结构进行抗震设计,提高建筑物的抗震能 力,减少地震灾害的影响。
岩土工程稳定性分析
通过对岩土工程的应力状态和强度理论的分析,评估岩土工程的 稳定性和安全性。

材料力学应力状态分析和强度理论

材料力学应力状态分析和强度理论

材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。

在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。

材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。

应力有三个分量:法向应力、剪应力和旋转应力。

法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。

应力状态的描述可以用应力矢量来表示。

应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。

常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。

平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。

强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。

常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。

最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。

实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。

材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。

为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。

综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。

通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。

工程力学 第9章 应力状态分析 习题及解析

工程力学 第9章 应力状态分析 习题及解析

习题9-1图 x15-'x x'σy'x'τ 1.25MPa15 (b-1)15a 4MP15-y'x'τx'x'σa1.6MP x (a-1) 习题9-2图302MPa 0.5MPa-60x'σ'x ''y x τ 工程力学(工程静力学与材料力学)习题与解答第9章 应力状态分析9-1 木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。

试求: 1.面内平行于木纹方向的切应力;2.垂直于木纹方向的正应力。

知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答:(a )平行于木纹方向切应力6.0))15(2cos(0))15(2sin(2)6.1(4=︒-⨯⋅+︒-⨯---=''y x τMPa 垂直于木纹方向正应力84.30))15(2cos(2)6.1(42)6.1(4-=+︒-⨯---+-+-='x σMPa (b )切应力08.1))15(2cos(25.1-=︒-⨯-=''y x τMPa正应力625.0))15(2sin()25.1(-=︒-⨯--='x σMPa9-2 层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。

若已知胶层切应力不得超过1MPa 。

试分析是否满足这一要求。

知识点:平面应力状态、任意方向面上的应力分析 难度:易 解答:55.1))60(2cos(5.0))60(2sin(2)1(2-=︒-⨯⋅+︒-⨯---=''y x τMPa 1MPa 55.1||>=''y x τMPa ,不满足。

9-3 结构中某点处的应力状态为两种应力状态的叠加结果。

试求叠加后所得应力状态的主应力、面内最大切应力和该点处的最大切应力。

知识点:平面应力状态分析 难度:难 解答:习题9-2图yσxσxyτ=yσxσxyτx=yσxσxyτ=左微元⎪⎪⎪⎩⎪⎪⎪⎨⎧-='-='-=-='+=--+='000000022cos 122sin )2sin(222cos 10)2cos(22σθσσσσθθστσθθσσσx y xy x 叠加 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+'=-=+=+=+'=''000022cos 1022sin 022cos 3σθσσσθττσθσσσy y y x xy x x0)cos 1()cos 1( )22sin (4)22cos 122cos 3(21222cos 122cos 330020202021=⎩⎨⎧-+=-+--+±-++=⎭⎬⎫σσθσθσθσθθσθθσσ 面内最大切应力:θσσστcos 2021max=-='该点最大切应力:031max2cos 12σθσστ+=-=左微元0023))30(2sin()(ττσ=︒-⨯-='x ,0230τσσ-='-='x y ,2))30(2cos(00τττ=︒-⨯='xy 右微元0023)302sin()(ττσ=︒⨯-=''x,0230τσσ-=''-=''x y ,2))30(2cos()(00τττ-=︒⨯-=''xy 叠加 03τσσσ='+'=y x x ,03τσσσ-=''+'=y y y ,0=''+'=xyxy xy τττ 013τσ=,02=σ,033τσ-= 面内031max32||τσστ=-='xABOσOσαα(a)习题9-4图A60CB60100-x σxσyxτxyτ92MPa(a)习题9-5图该点031max 32||τσστ=-=叠加[]⎪⎪⎪⎩⎪⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡︒-⨯--+==--+==⎥⎦⎤⎢⎣⎡︒-⨯--+-++=MPa 30))45(2sin(2)30(5070MPa 1010)3050(0MPa 90))45(2cos(2)30(502)30(5080xy y x σσσ主应力0MPa 0MPa100304)]100(90[212109022231=⎩⎨⎧=⨯+-±+=⎭⎬⎫σσσ面内及该点:5021002||||31max max=-=-=='σσττMPa9-4 已知平面应力状态的最大正应力发生在与外力作用的自由表面AB 相垂直的面上,其值为0σ。

工程力学中四大强度理论

工程力学中四大强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容。

一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

材料力学9压杆稳定性标准

材料力学9压杆稳定性标准

临界压力计算
Beijing Jiaotong University
Institute of Engineering Mechanics
—— 理想铰支中心压杆
问题:
思路:过程倒序
F
Fcr
Fcr
F
Fcr
Q
北京交通大学工程力学研究所 汪越胜 Wang Yue-Sheng
1
理想铰支中心压杆
Beijing Jiaotong University
Institute of Engineering Mechanics
F w
w
wmax
F
M w
F
F
M = Fw
d2w = − M dx2 EI
= − Fw EI
(小挠度假设)
d2w dx2
+
k
2
w
=
0
⎛ ⎜⎝
k
2
=
F EI
⎞ ⎟⎠
w = Asin kx + B cos kx
(A, B: 积分常数)
北京交通大学工程力学研究所 汪越胜 Wang Yue-Sheng
M0 F
M0 F
边界条件为: x = 0, w = w' = 0 ; x = L,w = w' = 0
北京交通大学工程力学研究所 汪越胜 Wang Yue-Sheng
其他支座条件 — 例1
Beijing Jiaotong University
Institute of Engineering Mechanics
欧拉公式应用范围
Beijing Jiaotong University
Institute of Engineering Mechanics

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析

《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析
1. MPa
MPa
MPa
2.
MPa
MPa
9-13图示外径为300mm的钢管由厚度为8mm的钢带沿20°角的螺旋线卷曲焊接而成。试求下列情形下,焊缝上沿焊缝方向的切应力和垂直于焊缝方向的正应力。
1.只承受轴向载荷FP = 250kN;
2.只承受内压p=5.0MPa(两端封闭)
3.同时承受轴向载荷FP = 250kN和内压p=5.0MPa(两端封闭)
难度:一般
解答:
(1)当 = 40℃
mm<
mm<
所以铝板内无温度应力,
(2)当 = 80℃
mm>
mm>
∴ (1)
(2)
所以解得qx = qy=70MPa(压)
, MPa
MPa
9-18对于一般平面应力状态,已知材料的弹性常数E、 ,且由实验测得 和 。试证明:
知识点:广义胡克定律、 三者之间的关系
难度:一般
难度:一般
解答:
正确答案是C。
(A)不满足切应力互等定律;
(B)不满足平衡;
(C)既可满足切应力互等,又能达到双向的平衡;
(D)不满足两个方向的平衡。
9-27微元受力如图所示,图中应力单位为MPa。试根据不为零主应力的数目,它是:
(A)二向应力状态;
(B)单向应力状态;
(C)三向应力状态;
(D)纯切应力状态。
MPa
9-7受力物体中某一点处的应力状态如图所示(图中p为单位面积上的力)。试求该点处的主应力。
知识点:应力圆的应用
难度:难
解答:
应力圆半径
9-8从构件中取出的微元,受力如图所示。试:
1.求主应力和最大切应力;
2.确定主平面和最大切应力作用面位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
截面-----斜截面
2.一点的应力状态的确定方法
一点的应力状态可用围绕该点截取的微单元体(微正六面体) 上三对互相垂直微面上的应力情况来表示。
3.主平面、主应力
y
z z
y
主平面:切应力为零的截面。
x
主应力单元体:三对相互垂直的主平面
组成的单元体。
主应力:主平面上的正应力。
x
2
主应力排列规定:按代数值大小顺序排列。
应力状态和强度理论
• 应力状态的概念; • 平面应力状态下的应力分析; • 空间应力状态简介; • 材料的破坏形式; • 强度理论的概念;
教学目的和要求
• 构件的应力应变状态及材料破坏的强度理论。 • 掌握一点应力状态的概念, • 平面应力状态下单元体任意斜截面上的应力及单
元体主应力、主方向、最大切应力。 • 任意状态下通过广义胡克定律建立应力应变关系。 • 了解材料破坏的方式,掌握四种强度理论。
1
2
(σ1
σ2)2
(σ2
σ3)2
(σ3
σ1)2
σs
考虑安全因数后,第四强度理论的强度条件为
1
2
(1
2 )2
( 2
3)2
( 3
1)2
[ ]
3.强度理论的选用
具体可以归结为如下四点:
(1)脆性材料,最小主应力大于等于零时,使用第一理论;当 最大主应力小于等于零时,使用第三或第四理论。 (2)塑性材料,当最小主应力大于等于零时,使用第一理论; 其他应力状态时,使用第三或第四理论。 (3)简单变形时,用与其对应的强度准则。如扭转等要求
变比能Ud达到材料在单向拉伸屈服时的形状改变比能极 限值Udu,发生塑性屈服破坏。 材料屈服破坏的条件为
Ud Udjx
三向应力状态下的形状改变比能为
Ud
1
6E
[(1
2 )2
( 2
3)2
( 3
1)2 ]
而材料单向拉伸屈服时的形状改变比能极限值为 :
Udu
1
3E
2 s
则材料屈服破坏的条件可改写为
• 4. 试件的应力达到屈服点后发生明显塑性变形,使其失去 正常的工作能力的破坏称为塑性屈服。受拉伸或扭转时在 未产生明显的塑性变形情况下就突然断裂的破坏称为脆性 断裂。
本章小结
• 5.四种常用的强度理论
(1)有关脆性断裂的强度理论
①最大拉应力理论(第一强度理论)
②最大伸长线应变理论(第二强度理论)
(2)有关塑性屈服的强度理论
①最大切应力理论(第三强度理论)
②形状改变比能理论(第四强度理论)
上述介绍的四种强度理论可写成统一形式
ri [ ]
(i 1,2,3,4)
r1 1
r2 1 ( 2 3) r3 1 3
r4
1 2
[(
1
2
)2
( 2
3 )2
(
3
1)2
]
1
1 2 3
3
主应力排列规定:
1 2 3
30MPa、0MPa、-50MPa,
1 30MPa
2 0 3 50MPa
1 2 3
4.应力状态的分类
x
x
A
(1)单向应力状态,仅一个主应力不为零的应力状态。
(2)二向应力状态,仅一个主应力为零的应力状态。
(3)三向应力状态,三个主应力都不为零的应力状态。
力及另一主应变。
解 自由面上 2 0,所以该点处为平面应力状态,线应变为
1
1 E
1
3
3
3
1 E
3
1
1
故有 1 44.3MPa; 2 0; 3 20.3MP;
2
E
3
1
34.3 10 6
第五节 强度理论的概念
1.强度理论的概念 复杂应力状态下的强度,试验测定不现实。 长期的实践和试验结果,材料强度破坏的规律,材料失效 的原因假说,称为强度理论。
教学重点
• 一点的应力状态; • 任意斜截面上的应力及应力极值; • 广义胡克定律; • 强度理论及其选用。
教学难点
• 任意斜截面上的应力及应力极值; • 空间应力状态及广义胡克定律; • 强度理论的选用。
第一节 应力状态的概念
1.一点的应力状态
一点的应力状态是指通过一点不同方位截面上的应力情 况,所有方位截面上应力的集合。 不同方位截面上应力随截面方向的变化规律。
单向拉伸断裂时的最大拉应变为
jx
jx
E
材料断裂破坏的条件可改写为
1 (2 3) jx
第二强度理论的强度条件为
1 (2 3) [ ]
脆性材料双向受拉或受压的情况,理论与试验结果却完 全不符。
2)塑性屈服的强度理论
分为最大切应力理论和形状改变比能理论(畸变能密度理论)。
(1)最大切应力理论(第三强度理论)。
[ ] t max t
本章小结
• 1.从受力杆件中围绕一点取出一个边长为无限小的正六面 体,所截取出来的单元体中剪应力为零的平面称为主平面。 主平面上的正应力称为主应力。正应力以拉应力为正,压 应力为负;切应力以绕单元体顺时针转动为正,逆时针为 负。
• 2.多数构件受力时的危险点均处于二向应力状态。在进行 强度计算时,通常需要确定在危险点处的主应力。
40M Pa
20 63.40,0 31.70
20M Pa
1
得到单元体的主平面及主应力情况如右图所示。
3.广义胡克定律
(1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
(2)纯剪切胡克定律
t G
y
x x
t
广义胡克定律的一般形式
x
1 E
[
x
( y
z )]
y
1 E
[
y
( z
x )]
解 由 x 60MPa, y 40MPa,t xy 20MPa
60M Pa
y 40M Pa
max min
60
2
40
(60 40)2 2
202
72.4 27.6
故 1 72.4MPa 2 27.6MPa
tan 20
2 20 60 40
2
y
x
60M Pa 2
20M Pa 31.70
2.几种常用的强度理论
1)脆性断裂的强度理论 分为最大拉应力理论和最大伸长线应变理论。
(1)最大拉应力理论(第一强度理论)。
最大拉应力是材料断裂的主要因素。 材料最大拉应力σ1达到材料在轴向拉伸试验脆性断裂时 的强度极限σjx,发生断裂破坏。 材料断裂破坏的条件为
1 jx
相应的强度条件为 σ1 [σ]
z
1 E
[
z
( x
y )]
三向应力2 状态的广义胡克定律-叠加 2法
3
1
1
1
E
1
1 E
1
2
3
2
1 E
2
3
1
3
1 E
3
1
2
1
2
E
3
3
E
例14-3 如图所示,已知一受力构件自由表面上某一点处在
表面内的主应变分别为
1 240 106 3 160106
弹性模量E=210GPa,泊松比为 =0.3, 试求该点处的主应
规定: 截面外法线同向为正; t 绕研究对象顺时针转为正; 逆时针为正。
列平衡方程
Fn 0
dA t xy (dAcos ) sin x
x (dAcos ) cos
y
y
ttxy
n
t yx (dAsin ) cos
Ox
t
y (dAsin ) sin 0
Ft 0
t dA t xy (dAcos ) cos x (dAcos ) sin
(1)任意斜截面上的应力为
x
y
2
x
y
2
cos 2
t xy sin 2
t
x
y
2
sin 2
t xy
cos 2
本章小结
(2)极值应力为 极值正应力
max min
x
y
2
(
x
2
y
)2
t
2 xy
极值切应力
t t
max min
(
x
2
y
)2
t
2 xy
本章小结
• 3.在受力构件的空间应力状态的单元体上可以找到三对互 相垂直的平面,在这些平面上而只有正应力,没有切应力。 按这样用三对平面截取的单元成为空间应力状态的主单元 体,相应的三个正应力成为主应力。
[]为对应于脆性断裂的许用拉应力,[]=jx/n,式中n
为安全因数。
(2)最大伸长线应变理论(第二强度理论)。
材料最大拉应变ε1达到材料在轴向拉伸试验中脆性断裂 时的极限拉应变值εjx,发生断裂破坏。 材料断裂破坏的条件为
1 jx
复杂应力状态下的最大拉应变为
ε1
1 E
[σ1
ν(σ 2
σ3 ห้องสมุดไป่ตู้]
2.极值应力
令d
d
0
x y
sin 20 2t xy cos 20
0
由此的两个驻点
01、(
01
2
)和两各极值
mm´´ainx
x
y
2
±(x
y
2
)2
t2 xy
t 0 0 极值正应力即是主应力
1 m ax ; 2 m in
相关文档
最新文档