历届全国大学生数学竞赛 决赛 参考解析 (非数类)

合集下载

全国大学生数学竞赛试题解答及评分标准非数学类

全国大学生数学竞赛试题解答及评分标准非数学类

全国大学生数学竞赛试题解答及评分标准非数学类Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2sin n ππ==……(2分);原式lim 1exp lim ln 1sin nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦………………………………………………………………………………………(2分);14exp lim exp n n n e →∞⎛⎫⎛⎫=== ⎝⎝……(2分) 2.证明广义积分0sin xdx x +∞⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分)而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x+'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分)将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y yx''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-, 故()01y =-为极大值,()21y -=为极小值。

第七届全国大学生数学竞赛非数学类决赛试题

第七届全国大学生数学竞赛非数学类决赛试题

第七届全国大学生数学竞赛决赛试题 答案(非数学类) 2016年3月27日一填空题(5×6分=30分)1.程微分方0)(y 3'''''=-y 的通解是_______解:令p ='y ,则'''y p =,则dx p dp 3=,积分得到1221-c x p -=-,即 ()x c y p -±==1'21,积分得)(2y 12x c c -±=(2,1c 为常数).2.设D:4122≤+≤y x ,则积分()()dxdy e y x I x D4y 222-+-⎰⎰+=的值是_______解:)52(22sin e 4341420212242-===⎰⎰⎰--e du ue e rdr e r d I u r ππθθπ(对称性和极坐标).()ds s f x t⎰=03.设()t f 二阶连续可导,且()t f 0≠,若()t f y = , 则______22=dxyd 解:()dt t f dx =,()dt t f dy'=,所以()()tf t f dx 'dy =,则得()()()()()()t f t f t f t f dx dt t f t f dt d dx y d 32''''22-=⎪⎪⎭⎫ ⎝⎛= 4.设1λ,2λ,…,n λ是n 阶方阵A 的特征值,()x f 为多项式,则矩阵()A f 的行列式的值为_______ 解:()()()()nf f f A f λλλ 21=5.极限[])!sin(lim e n n n π∞→的值为________解:()()⎪⎭⎫⎝⎛++++=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++++++=111!11!11!1!2111!!n o n a n o n n n e n n ππππ ,n a 为整数,所以结果ππ=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++=∞→)11(1sin lim n o n n n 。

2009-2011年全国大学生高等数学竞赛真题及答案(非数学类).

2009-2011年全国大学生高等数学竞赛真题及答案(非数学类).

2009年第一届全国大学生数学竞赛预赛试卷(非数学类)一、填空题(每小题5分,共20分)(x+y)ln(1+yxdy=____________,其中区域D由直线x+y=1与两) 1.计算⎰⎰D-x-y坐标轴所围成三角形区域.⎛0解令x+y=u,x=v,则x=v,y=u-v,dxdy=det 1⎝(x+y)ln(1+y)ulnu-ulnvD1⎫⎪dudv=dudv,⎪-1⎭⎰⎰D-x-yxdy=⎰⎰10-uudv==⎰(⎰10ulnu-uulnu-uu22⎰udv-u-u-u⎰ulnvdv)du-u(ulnu-u)du=⎰-udu (*)令t=-u,则u=1-t2,du=-2tdt,u2=1-2t2+t4,u(1-u)=t2(1-t)(1+t),24(*)=-2⎰(1-2t+t)dt=2⎰102315⎤16⎡24(1-2t+t)dt=2⎢t-t+t⎥=3515⎣⎦02.设f(x)是连续函数,且满足f(x)=3x2-解令A=A=⎰20f(x)dx-2, 则f(x)=____________.⎰20f(x)dx,则f(x)=3x-A-2,2⎰20(3x-A-2)dx=8-2(A+2)=4-2A,2解得A=432。

因此f(x)=3x-103。

3.曲面z=x22+y-2平行平面2x+2y-z=0的切平面方程是__________.x22解因平面2x+2y-z=0的法向量为(2,2,-1),而曲面z=2+y-2在2(x0,y0)处的法向量为(zx(x0,y0),zy(x0,y0),-1),故(zx(x0,y0),zy(x0,y0),-1)与(2,2,-1)平行,因此,由zx=x,zy=2y知2=zx(x0,y0)=x0,2=zy(x0,y0)=2y0,即x0=2,y0=1,又z(x0,y0)=z(2,1)=5,于是曲面2x+2y-z=0在(x0,y0,z(x0,y0))处的切平面方程是2(x-2)+2(y-1)-(z-5)=0,即曲面z=2x+2y-z=0的切平面方程是2x+2y-z-1=0。

前三届全国大学生高等数学竞赛真题及答案(大纲)非数学类,DOC

前三届全国大学生高等数学竞赛真题及答案(大纲)非数学类,DOC

中国大学生数学竞赛竞赛大纲为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。

一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。

“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。

123.4567891.2.3.4.5.6.7.)、函数图形的描绘.8.函数最大值和最小值及其简单应用.9.弧微分、曲率、曲率半径.三、一元函数积分学1.原函数和不定积分的概念.2.不定积分的基本性质、基本积分公式.3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4.不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli )方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y =),,(y x f y '=''),(y y f y '=''.4.5. 6. 7. 8. 1. 2. 3. 4. 5. 6. 7. 1. 2. 3. 4. 5. 6. 7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用. 七、多元函数积分学1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.5. 高斯(Gauss )公式、斯托克斯(Stokes )公式、散度和旋度的概念及计算.6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等) 八、无穷级数1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2. 几何级数与p 级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz )判别法.3. 任意项级数的绝对收敛与条件收敛.4. 函数项级数的收敛域与和函数的概念.5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数7. 8. [-l ,l]1解:令2.设(f 0解:令⎰=2d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

最近五届全国大学生高等数学竞赛真题及答案(非数学类)

最近五届全国大学生高等数学竞赛真题及答案(非数学类)

目录第一届全国大学生数学竞赛预赛试卷 ........................................................................................... 1 第二届全国大学生数学竞赛预赛试卷 ........................................................................................... 7 第三届全国大学生数学竞赛预赛试卷 ......................................................................................... 11 第四届全国大学生数学竞赛预赛试卷 ......................................................................................... 18 第五届全国大学生数学竞赛预赛试卷 .. (23)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u uvu u u y x yx x yy x DDd d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

第十二届全国大学生数学竞赛决赛试题(非数学类)参考答案及评分标准

第十二届全国大学生数学竞赛决赛试题(非数学类)参考答案及评分标准

F= (b) 0 . 对 F (x) 在[a,b] 上利
a
∫ 用洛尔定理,存在 x0 ∈ (a,b) ,使得 F′(x0 ) = 0 ,即 f (x0 ) =
x0 f (t)dt .
a
---------------- 3 分
3
2021 年 05 月决赛试题
x
∫ 再令 G= (x)
f (x) − f (t)dt ,则 G= (a) a

2 x32
= 0 . 由此解得 u
113
在定义域内的唯一驻点 P0 (24 , 22 , 24 ) ,且 u 在该点取得最小值 u(P0 ) = 4 4 2 ,这是
113
函数唯一的极值. 因此 u 的唯一极值点为 (24 , 22 , 24 ) .
【注】 也可用通常的充分性条件(海赛矩阵正定)判断驻点 P0 为极小值点.
1,2, ,s)
.
因为 p(D) = D 2021 ,所以
1
= p( A) p= (QDQT ) Q= p(D)QT Q= D 2021QT B .
--------------- 3 分
(3) 设另存在 n 阶实对称矩阵 C 使得 C2021=A ,则=B p= ( A) p(C2021) ,所以
1 2
(xn
+
yn
)

---------------- 4 分
这只需证明:对任意 n

0
,都有
x+ 2
y
n

An (x, x) n +1

1 2
(xn
+
yn ) ,其中 0
<
x,

第三届全国大学生数学竞赛决赛试题(非数学类)+答案

第三届全国大学生数学竞赛决赛试题(非数学类)+答案

第三届全国大学生数学竞赛决赛试题(非数学类)+答案第三届全国大学生数学竞赛决赛试卷(非数学类,2012)本试卷共2页,共6题。

全卷满分100分。

考试用时150分钟。

一、(本大题共5小题,每小题6分,共30分)计算下列各题(要求写出重要步骤).(1) xx xx x x 222220sin cos sin lim -→解:x x x x x x 222220sin cos sin lim -→4222220cos sin lim x xx x x x x -+-=→2040)c o s 1)(cos 1(lim ))(sin (sin lim x x x x x x x x x x +-++-=→→221261?+?-=32=(2) [()]61311tan 21lim x e xx x x x +--++∞→解: [()]61311tan 21lim x e xx x xx +--++∞→ (令x t 1=)362201)t a n 21(l i m t t e t t t t t +--+=+→3620111)21(lim t t e t t t +-+-+=+→ 3201)21(l i m t e t tt -+=+→2206)22(lim te t t t t ++=+→+∞=(3) 设函数),(y x f 有二阶连续偏导数, 满足0222=+-yy y xy y x yy x f f f f f f f 且0≠y f ,),(z x y y =是由方程),(y x f z =所确定的函数. 求22xy解:依题意有,y 是函数,x 、z 是自变量。

将方程),(y x f z =两边同时对x 求导, x y ffyx+=0,则 yx f f x y-=??,于是 ()yx f f x x y -=??222)()(yyy yx x yxxx y f x yf f f x y f f f ??+-??+-=2)()(yyx yy yx x yx yxxx y f f f f f f f f f f f ----=3222yyyy xy y x yy x f f f f f f f f +--=0=(4) 求不定积分()dx e xx I x x 111+-+=?解:()dx e x x dx eI xx xx 12111++-+=?xx x x xdedx e 11+++=?()xx xe d 1+?=C xexx +=+1(5) 求曲面az y x =+22和222y x a z +-=)0(>a 所围立体的表面积解:联立az y x =+22,222y x a z +-=,解得两曲面的交线所在的平面为a z =,它将表面分为1S 与2S 两部分,它们在xoy 平面上的投影为222:a y x D ≤+,在1S 上 dxdy a y a x dS 2222441++=dxdy a y x a 2222)(4++=在2S 上 dxdy yx y y x x dS 2222221++++=dxdy 2= 则 d x d y ay x a S D )2)(4(2222+++=??22202024a r d r a r a d a πθπ+=?? )26155(2+-=a π 二、(本题13分)讨论dx xx x x220sin cos α+?∞+的敛散性,其中α是一个实常数. 解:记 xx x xx f 22sin cos )(α+=① 若0≤α,)1(2)(>?≥x xx f ;则dx x x x x 220sin cos α+?∞+发散② 若20≤<α,则11≤-α,而)1(2)(1≥?≥-x x x f α;所以dx xx x x220sin cos α+?∞+发散。

历年全国大学生数学竞赛初赛题目及答案解析全(2009-2019年非数学专业)

历年全国大学生数学竞赛初赛题目及答案解析全(2009-2019年非数学专业)

程,有 2x 2 2y 1 z 1 0 ,展开化简后有 2x 2y z 5 0.
(4) 设 y y(x) 由方程 xe f (y) ey ln 29 确定,其中 f 具有二阶导数,且 f 1 ,则
d2 y
=___________.
dx2
【参考答案】对等式两端分别关于
1 ab
1 b2]
0
523
1 π[
a2
1
a(1
a)
1
4
(1
a)2 ].
53
39
dv 2 1 2 8
5
3
令 π[ a a (1 a)] 0 ,得 a ,代入 b 的表达式 得 b .
da 5 3 3 27
4
2
所以y 0 。
d 2v
22 8 4
5
3
又因
da 2
|
5 a
π[ 5
3
] 27
证:
3
(1) xesiny d y yesinx d x xesiny d y yesinx d x;
L
L
(2) xesin y d y yesin x d x 5 π2 .
2
L
【参考证法一】由于区域 D 为一正方形,可以直接用对坐标曲线积分的计算法计算.
π
0
π
左边 πesin y d y πesin x d x π (esin x esin x ) d x ,


u,v
v2
1x y
u
所以由二重积分换元法的积分变换公式,原积分也就等于
D
(x
y)ln1 1x y
y x
dx
dy
2

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

0
n
n1
0
n0
n0
n1

f (t)dt f (n) 1 f (t)dt ,
0
0
n0

f (n) xn2 ,
n0
n0
ln 1
1
lim x lim x 1
x1 1 x x1 1
f (t)dt
xt2 dt
t2 ln 1
e x dt
0
0
0
1
et2 dt
10
1 , 12
0
0
3
a2
1
x
4
dt
4 a(1 a)
1
x
3dt
4 (1 a)2
1
x
2dt
0
3
0
9
0
1 a2 1 a(1 a) 4 (1 a)2
5
3
27

V (a) 1 a2 1 a(1 a) 4 (1 a)2
5
3
27

V (a) 2 a 1 (1 2a) 8 (1 a) 0,
det
0 1
11 dudv dudv ,
D
(x
y) ln(1 1 x y
y) x dxdy
D
u
ln
u u ln 1u
vdudv
1
(
u
ln
u
u
dv
u
u
ln vdv)du
0 1u 0
1u 0
1 u2 ln u u(u ln u u) du
0 1u
1u
1
u2
du (*)
0 1u
L

第13届非数学类决赛试题参考解答

第13届非数学类决赛试题参考解答

第十三届全国大学生数学竞赛决赛试题及参考解答(非数学类, 2023年3月25日)一、 填空题(本题满分30分,每小题6分)(1)已知a 和b 均为非零向量,且1=|b |,a 和b 的夹角,4π=a b ,则极限0||||limx x x→+−=a b a .【解】 利用条件:1=|b |,,4π=a b,得|||cos ,|⋅==a b a b |a b a ,所以222222||2||x x x x ++⋅+++a b a a b b a a .因此00||||lim lim x x x x →→+−=a b ax →. (2)极限20ln(1)lim 2xx x x →+−=. 【解】 利用L ’Hospital 法则,得2ln(1)1lim2x x x x →−+=,所以 222[ln(1)]ln(1)00ln(1)ln(1)lim 2lim 1x x x xx x x x x x x x e x x −+−+→→+−+−=+=.(3)积分=.【解】 作变换sec x θ=,则3344sec tan d d sec tan 3412ππππθθθπππθθθ===−=∫∫.(4)设函数()=y y x 由参数方程222,11=++t t x yt t 确定,则曲线()=y y x 在点23,处的曲率κ=.【解】 易知,对应点23,的参数=t . 利用参数方程求导法则,得2d 2d 1=−y t x t ,223223d 2(1)d (1)+=−y t x t . 所以,当=t时,d d =−y x ,223223d 2(1)227d (1)+==−×−y t x t ,因此曲线()=y y x 在23,处的曲率2κ.(5)设D是由曲线1=及两坐标轴围成的平面薄片型物件,其密度函数为(,)ρ=x y ,则薄片物件D 的质量=M .【解】d =+∫∫DMx y . 利用二重积分的对称性,得2(1203d 3d 3d =∫∫∫DM x y x yx .作变量代换:=t ,得1222013d 6(1)d 5==−=∫∫M x t t x . 二、(本题满分12分) 求区间[0,1]上的连续函数()f x ,使之满足1()1(1)()d (1)()d x xf x x yf y y x y f y y =+−+−∫∫.【解】 根据题设条件及等式可推知,函数()f x 在[0,1]上二阶可导,且(0)(1)1f f ==. ------------ 4分对等式两边求导,得1()()d (1)()(1)()d (1)()xxf x yf y y x xf x y f y y x x f x ′=−+−+−−−∫∫1()d (1)()d x xyf y y y f y y =−+−∫∫,再对上式两边求导得 ()()(1)()()f x xf x x f x f x ′′=−−−=−,即 ()()0f x f x ′′+=. ------------ 4分这是二阶常系数齐次线性微分方程,易知其通解为 12()cos sin f x C x C x =+.分别取0x =和1x =代入上式,得11C =,21cos11tan sin12C −==,因此所求函数为 1()cos tan sin 2f x x x =+⋅ (01)x ≤≤. ------------ 4分三、 (本题满分12分) 设曲面∑是由锥面x =,平面1x =,以及球面2224x y z ++=围成的空间区域的外侧表面,计算曲面积分: 222()()d d ()d d d d f x I x y z y z x z y f xz y x z y f Σ=++ +++ ∫∫ , 其中()f u 是具有连续导数的奇函数.【解】 设2()f y P x x +=,2()f z Q y x +=,2()f z R z y +=,则[](()()2)P Q Rx y z y x y xy f yz zf ′′+∂∂∂++=+++∂∂∂. 因为奇函数()f u 的导数是偶函数,所以()()f xy f yz ′′+关于y 是偶函数.------------ 4分记Ω是以Σ为边界曲面的有界区域,根据Gauss 公式,并结合三重积分的对称性,得d d d 2d d d P Q R Ix y z x x y z x y z ΩΩ∂∂∂=++= ∂∂∂ ∫∫∫∫∫∫ ------------ 4分222410cos 2d d cos sin d ππϕθϕρϕρϕρ⋅∫∫∫44017cos sin 16d 4cos 22ππππϕϕϕπϕ=−=−=∫. ------------ 4分四、 (本题满分12分) 设()f x 是以2π为周期的周期函数,且,00,0()f x x x x ππ<< = −≤≤,试将函数()f x 展开成Fourier 级数,并求级数121(1)n n n −∞=−∑之和.【解】 函数()f x 在点(21)(012)x k k π=+=±±,,, 处不连续,在其他点处连续,根据收敛定理可知,()f x 的Fourier 级数收敛,并且当(21)x k π≠+时级数收敛于()f x ,当(21)x k π=+时级数收敛于(0)(0)22f f πππ−−++=.------------ 4分下面先计算()f x 的Fourier 系数. 0011()d d 2a f x x x x ππππππ−===∫∫,且 2011(1)1()cos d cos d n n a f x nx x x nx x n ππππππ−−−===∫∫,1,2,n = , 1011(1)()sin d sin d n n b f x nx x x nx x n πππππ+−−===∫∫,1,2,n = ,因此当(,)x ∈−∞+∞,且,3,x ππ≠±± 时,有121(1)1(1)()cos sin 4n n k f x nx nx n n ππ+∞= −−−=++∑. ------------ 4分 注意到0x =是()f x 的连续点,代入上式得21(1)104n n n ππ∞=−−+=∑, 即 2211(21)8n n π∞==−∑. 又22222111111111(21)(2)84n n n n n n n n π∞∞∞∞====+=+−∑∑∑∑,由此解得22116n n π∞==∑. 最后可得 1222222111(1)111(21)(2)84612n n n n n n n πππ−∞∞∞==−=−=−⋅=−∑∑∑. ------------ 4分【注】 对于最后一步,若只给出结果1221(1)12n n n π−∞=−=∑,则可得2分.五、(本题满分12分) 设数列{}n a 满足:12a π=,11sin 1n n n a a a n +=−+,1n ≥. 求证:数列{}n na 收敛.【解】 利用不等式:3sin 6x x x x −<<02x π <<.首先,易知1160n n a a a π+<<<< (2)n ≥. ------------ 4分故由题设等式得1(1)sin n n n n n n a na a a na +++−>,所以{}n na 是严格递增数列. ------------ 4分其次,由于31122221(1)sin 111(1)()()6()6n n n n n n n n n n n a na a a a a na n a na na na n +++−−−<=<⋅≤+, 所以 12111111(1)6nn k k kk a ka k a k ==+ −< + ∑∑,即 2112111111(1)666n k n a a a n a k π=+−<<⋅+∑,解得 1121(1)16n a n a a π++<−.这就证明了数列{}n na 严格递增且有上界,因而收敛. ------------ 4分六、(本题满分10分)证明:b a a b a b a b +≤+≤+,其中0>a ,0b >,1a b +=.【证】 不妨设1012a b <≤≤<,考虑函数1()x x f x a b −=+,如能证明()f x 在区间(0,]b 上单调减少,则有1()()()2f b f f a ≤≤,不等式得证. ------------ 3分对于(0,]∈x b ,因为1()ln ln x x f x a a b b −′⋅−⋅,221()ln ln 0x x f x a a b b −′′=⋅+⋅>,所以()()f x f b ′′<,故只需证()0f b ′≤,即ln ln baa ab b ⋅≤⋅或ln ln a ba b a b a b≤.------------ 4分容易证明ln xx是(0,]e 上的单调增函数,问题归结为证0a b a b e <<≤,这等价于证ln ln 11a b a b <−−,而这由函数ln 1xx−在(0,1)上单调增加即得. ------------ 3分 【注】 补证函数ln ()1xg x x=−在(0,1)上单调增加. 利用ln(1)x x +<(0)x >,有2111()1ln 1(1)0(1)′=−−+−> −g x x x x , 所以()g x 在(0,1)上单调增加.七、 (本题满分12分) 设)(=ij A a 为n 阶实矩阵,12,,,ααα n 为A 的n 个列向量,且均不为零. 证明:矩阵A 的秩满足2T1()αα=≥∑niii i ia r A .【证】 注意到用非零常数乘矩阵的列向量不改变矩阵的秩()r A ,故可设T 1αα=i i ,1,2,,= i n ,所以只需证明21()=≥∑n iii r A a ,也即T 21()()α=≥∑ni i i r A e .其中T (0,,0,1,0,,0)= i e 是第i 个分量为1其余分量均为0的n 维列向量.------------ 4分令()=r A k ,则由12,,,ααα n 的任一极大无关组并利用Schmidt 正交化方法,可得标准正交向量组12,,,βββ k . 易知,向量组12,,,ααα n 与12,,,βββ k 等价.对任意1,2,,= i n ,令1αβ==∑ki j j j x ,则由12,,,βββ k 的标准正交性可知,Tβα=j ji x ,1,2,,= j k ,所以T 1()αβαβ==∑ki j i j j ,于是T 1T T()()βααβ==∑ii i kj i j j e e .------------ 4分根据 Cauchy-Schwarz 不等式,并注意到T 2T 1()1βααα===∑kj i i ij ,可得 2T 2T T 222T T 1111T ()())(()()()βαβαβαββ==== =≤=∑∑∑∑k k k k j i j j i j j j i i i j j j i i e e e e ,22T2TT1111()()()()αβββ=======≤∑∑∑∑n k nkj j j i ii i j i j k r eA e .------------ 4分。

最新前三届全国大学生高等数学竞赛真题及答案(大纲)非数学类资料

最新前三届全国大学生高等数学竞赛真题及答案(大纲)非数学类资料

中国大学生数学竞赛竞赛大纲为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。

一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。

“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。

二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。

中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1.原函数和不定积分的概念.2.不定积分的基本性质、基本积分公式.3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz )公式. 4. 不定积分和定积分的换元积分法与分部积分法. 5. 有理函数、三角函数的有理式和简单无理函数的积分. 6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli )方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y =),,(y x f y '='' ),(y y f y '=''.4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积 7. 欧拉(Euler )方程. 8. 微分方程的简单应用 五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程. 六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

前三届全国大学生高等数学竞赛真题及答案大纲非数学类

前三届全国大学生高等数学竞赛真题及答案大纲非数学类

中国大学生数学竞赛竞赛大纲为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。

一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。

“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。

二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。

中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n 阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L ’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用. 9. 弧微分、曲率、曲率半径. 三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y = ),,(y x f y '='' ),(y y f y '=''. 4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler)方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1.多元函数的概念、二元函数的几何意义.2.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4.多元复合函数、隐函数的求导法.5.二阶偏导数、方向导数和梯度.6.空间曲线的切线和法平面、曲面的切平面和法线.7.二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a1 a1 …
an an …
⎞ ⎟ ⎟ ⎟
=
⎛ ⎜ ⎜ ⎜
2a0 a0 …
a1 2a1 …

an an
⎞ ⎟ ⎟
…⎟
⎟⎜
⎟⎜

an ⎠ ⎝ 0 0 0 an ⎠ ⎝ a0 a1
2an ⎠
(n + 2)(1+ a1 + a2 +
+
an
)
=
(n
+
2) ⎛⎜⎝1+
n 1!
+
n2 2!
+
... +
nn n!
=1+
1 ln c + o(1)
(n
→ +∞)
n
n
因此,
( ) 1
a1 n
+ b1n
+
c1 n
= 1+ 1 ln 3 abc + o(1 ) (n → +∞) ,
3
n
n
⎛ ⎜ ⎜⎜⎝
1
an
1
+ bn
3
+
1
cn
⎞n ⎟ ⎟⎟⎠
=
⎡⎢⎣1 +
1 n
ln
3
abc
+
1 ⎤n o( n)⎥⎦
.
令α n
=
1 n
⎞n
⎟ ⎟⎟⎠
,
其中 a > 0,b > 0, c > 0 .
解 (1) 我们有
⎛ ⎜⎝1
+
1 n
⎞n ⎟⎠

e
=
1− 1 +o( 1 )
e 2n n
−e
=
e
⎡ − 1 +o(1) ⎢e 2n n ⎣

⎤ 1⎥

=
e ⎡⎢⎣{1−
1 2n
+
o(
1 n
)}
−1⎤⎥⎦
=
e ⎡⎢⎣−
1 2n
+
o(
1 n
)⎤⎥⎦
ln
3
abc
+
o( 1 ) n
,上式可改写成
( ) ⎛
⎜ ⎜⎜⎝
1
an
1
+ bn
3
+
1
cn
⎞n ⎟ ⎟⎟⎠
=
⎡⎣
1+αn
⎤⎦ 1αn nαn
显然,
( ) α 1+ 1αn n

e
(n

+∞) ,
所以,

lim
n→∞
⎜ ⎜⎜⎝
1
an
+
1
bn
3
+
1
cn
⎞n ⎟ ⎟⎟⎠
=
3
abc
.
nαn → ln 3 abc (n → +∞)
x2 + y2 + z2
常数.
3)现要设计一个容积为V 的一个圆柱体的容器.已知上下两底的材料费为单位面积 a 元,而侧面的 材料费为单位面积 b 元.试给出最节省的设计方案:即高与上下底的直径之比为何值时所需费用最
少?
4)已知
f
(x)
在(1 4
,
1 ) 内满足 2
f
′( x)
=
sin3
x
1 + cos3
ln
1+ 1−
t t
+
2 arctan
2t
⎤ ⎥⎦
+
C
=−
2 6
ln
1+
π sin(
4
1

π sin(
− −
x) x)

2 arctan(
3
π 2 sin(

x)) + C

4
4
二、求下列极限
(1)
lim n[(1+ 1 )n
n→∞
n
⎛1

e]
;(2)
lim
n→∞
⎜ ⎜⎜⎝
a
n
1
+ bn
3
1
+ cn
.
证明:方程
F ( x)
=
n 2

(n 2
, n)
内至少有一个根.
证明:因为
e−t
⎛ ⎜⎝1
+
t 1!
+
t2 2!
+
...
+
tn ⎞ n ! ⎟⎠
<
1,
∀t > 0,
故有
∫ F
⎛⎜⎝
n 2
⎞⎟⎠
=
n
2 e−t
⎛ ⎜1
+
t
+
t2
+ ... +
tn
⎞ ⎟dt
<
n
0 ⎝ 1! 2!
n!⎠ 2
下面只需证明 F (n) > n 即可。 我们有 2
⎞ ⎟⎠
+...
+
1

e−
n
⎛⎜⎝1
+
n 1!
⎞⎟⎠
+
1

e−
n
第 5 页( 共 9 页)
记 ai
=
ni i!
,那么 a0
=1<
a1
<
a2
<
... <
an
。我们观察下面的方阵
⎛ ⎜ ⎜
a0 a0
0 a1
⎜… …

⎝ a0 a1
整个矩阵的所有元素之和为
0 0 0
⎞ ⎟ ⎟ ⎟
+
⎛ ⎜ ⎜ ⎜
a0 0 0
f (0) =
f (1) = 0,
f (1) 2
= 1 .证明:(1)
存在一
个ξ ∈ (1 ,1) 使得 2
f (ξ ) = ξ
;(2)
存在一个η ∈ (0,ξ ) 使得
f
' (η) =
f
(η) −η +1.
证明 (1) 令 F (x) = f (x) − x , 则 F (x) 在[0,1] 上连续,且有
可见,
lim
x→0
f
(sin2 x + cos x) x2 + x tan x
=

lim
x→0
⎜⎝
f (sin2 x + cos x) sin2 x + cos x −1
×
sin2 x + cos x − x2 + x tan x
1
⎞ ⎟⎠
=
2 lim x→0
sin2 x + cos x −1 x2 + x tan x
第 4 页( 共 9 页)
G' (η) = e−η [ f ' (η) −1] − e−η [ f (η) −η] = 0 . 也即 f ' (η) = f (η) −η +1. 证毕。 六、设 n > 1 为整数,
∫ F (x) =
x 0
e
−t
(1
+
t 1!
+
t2 2!
+
...
+
tn )dt
n!
解 不存在。
假设存在 R1 中的可微函数 f (x) 使得 f ( f (x)) = 1+ x2 + x4 − x3 − x5 。
考虑方程 f ( f (x)) = x , 即 1+ x2 + x4 − x3 − x5 = x , 或 (x −1)(x4 + x2 +1) = 0 。 此方程有惟一实数根 x = 1 ,即 f ( f (x)) 有惟一不动点 x = 1 。 下面说明 x = 1 也是 f (x) 的不动点。 事实上,令 f (1) = t ,则 f (t) = f ( f (1)) = 1, f ( f (t)) = f (1) = t ,因此 t = 1。如所需。
0
根据洛比达法则和变上限积分的求导公式,不难看出
∫ lim 1 y F (x)dx = lim F ( y) = l
y y→+∞ 0
y → +∞
∫ 因此, lim 1 y xf (x)dx = l − l = 0 。
y y→+∞ 0
五、设函数
f (x) 在[0,1] 上连续,在 (0,1) 内可微,且
首届全国大学生数学竞赛决赛试卷参考答案 (非数学类,2010)
∑ 1)求极限 lim n→∞
n −1
(1 +
k =1
k kπ ) sin
n n2
.
∫∫ 2)计算 axdydz + (z + a)2 dxdy ,其中 ∑ 为下半球面 z = − a2 − y2 − x2 的上侧, a 为大于 0 的

⎞ ⎟⎠
基于上述观察,由(*)式我们便得到
F
(n)
>
n
+
1

(
2
+ 2
n
)
e−n
⎛ ⎜⎝1
+
n 1!
+
n2 2!
+
...
+
nn n!
⎞ ⎟⎠
相关文档
最新文档