【配套K12]七年级数学下册 第4章《因式分解》培优测试题 (新版)浙教版

合集下载

最新浙教版七年级数学下册《第4章因式分解》测试试题(含答案)

最新浙教版七年级数学下册《第4章因式分解》测试试题(含答案)

第4章 测试卷一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为( )A .x (a -b )=ax -bxB .x 2-1+y 2=(x -1)(x +1)+y 2C .x 2-1=(x +1)(x -1)D .x 2+1=x ⎝ ⎛⎭⎪⎫x +1x 2.下列四个多项式,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +93.下列因式分解中,正确的是( )A .x 2-4y 2=(x -4y )(x +4y )B .ax +ay +a =a (x +y )C .x 2+2x -1=(x -1)2D.14x 2+2x +4=⎝ ⎛⎭⎪⎫12x +22 4.因式分解x 3-2x 2+x 正确的是( )A .(x -1)2B .x (x -1)2C .x (x 2-2x +1)D .x (x +1)25.多项式①16x 2-x ;②(x -1)2-4(x -1);③(x +1)2-4x (x +1)+4x 2;④-4x 2-1+4x ,分解因式后,结果中含有相同因式的是( )A .①和②B .③和④C .①和④D .②和③6.若多项式x 2+mx -28可因式分解为(x -4)(x +7),则m 的值为( )A .-3B .11C .-11D .37.已知a +b =2,则a 2-b 2+4b 的值是( )A .2B .3C .4D .68.已知三角形ABC 的三边长为a ,b ,c ,且满足a 2+b 2+c 2=ab +ac +bc ,则三角形ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.不论x ,y 为什么实数,代数式x 2+y 2+2x -4y +7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数10.如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )A .①②B .②③C .①③D .①②③二、填空题(每题3分,共24分)11.因式分解:a 3-ab 2=______________.12.一个正方形的面积为x 2+4x +4(x >0),则它的边长为________.13.若m -n =-2,则m 2+n 22-mn 的值是________.14.两名同学将同一个二次三项式分解因式,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是________.15.如果x 2+kx +64是一个整式的平方,那么常数k 的值是________.16.已知P =3xy -8x +1,Q =x -2xy -2,当x ≠0时,3P -2Q =7恒成立,则y=________.17.如图是两邻边长分别为a ,b 的长方形,它的周长为14,面积为10,则a 2b +ab 2的值为________.18.如果对于大于1的整数w,存在两个正整数x,y,使得w=x2-y2,那么这个数w叫做智慧数.把所有的智慧数按从小到大排列,那么第2 016个智慧数是________.三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分) 19.分解因式:(1)a2b-abc; (2)3a(x-y)+9(y-x);(3)(2a-b)2+8ab; (4)(m2-m)2+12(m2-m)+116.20.计算:(1)29×20.18+72×20.18+13×20.18-14×20.18;(2)1002-992+982-972+…+42-32+22-12. 21.先因式分解,再求值:(1)4a2(x+7)-3(x+7),其中a=-5,x=3;(2)(2x-3y)2-(2x+3y)2,其中x=16,y=18.22.已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.23.已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.24.阅读下列材料,然后解答问题:分解因式:x3+3x2-4.解答:把x=1代入多项式x3+3x2-4,发现此多项式的值为0,由此确定多项式x3+3x2-4中有因式(x-1),于是可设x3+3x2-4=(x-1)(x2+mx+n),分别求出m,n的值,再代入x3+3x2-4=(x-1)(x2+mx+n),就容易分解多项式x3+3x2-4.这种分解因式的方法叫“试根法”.(1)求上述式子中m,n的值;(2)请你用“试根法”分解因式:x3+x2-16x-16.答案一、1.C 2.D 3.D 4.B 5.D 6.D7.C 点拨:a 2-b 2+4b =(a +b )(a -b )+4b =2(a -b )+4b =2a +2b =2(a +b )=4.8.D 9.A10.D 点拨:图①中,左阴影S =a 2-b 2,右阴影S =(a +b )(a -b ),故能验证.图②中,左阴影S =a 2-b 2,右阴影S =12(2b +2a )(a -b )=(a +b )(a -b ),故能验证.图③中,左阴影S =a 2-b 2,右阴影S =(a +b )(a -b ),故能验证.二、11.a (a +b )(a -b )12.x +213.2 点拨:m 2+n 22-mn =m 2+n 2-2mn 2=(m -n )22=(-2)22=2.14.(x -3)215.±1616.2 点拨:∵P =3xy -8x +1,Q =x -2xy -2,∴3P -2Q =3(3xy -8x +1)-2(x -2xy -2)=7.∴9xy -24x +3-2x +4xy +4=7.∴13xy -26x =0,即13x (y -2)=0.∵x ≠0,∴y -2=0.∴y =2.17.70 点拨:由题意知,ab =10,a +b =142=7,故a 2b +ab 2=ab (a +b )=10×7=70.18.2 691 点拨:由计算可得智慧数按从小到大排列依次为3,5,7,8,9,11,12,13,15,16,17,19,20,…,∴以3个数为一组,从第2组开始每组第一个数都是4的倍数,∴2 016÷3=672,∴第2 016个智慧数是第672组的最后一个数,∴4×672+3=2 691.三、19.解:(1)原式=ab (a -c ).(2)原式=(x -y )(3a -9)=3(x -y )(a -3).(3)原式=4a 2-4ab +b 2+8ab =4a 2+4ab +b 2=(2a +b )2.(4)原式=(m 2-m )2+2·(m 2-m )·14+⎝ ⎛⎭⎪⎫142=(m 2-m +14)2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m -1222 =(m -12)4. 20.解:(1)原式=(29+72+13-14)×20.18=100×20.18=2 018;(2)原式=(100+99)(100-99)+(98+97)(98-97)+…+(2+1)(2-1) =100+99+98+… +3+2+1=101×50=5 050.21.解:(1)原式=(x +7)(4a 2-3).当a =-5,x =3时,(x +7)(4a 2-3)=(3+7)×[4×(-5)2-3]=970.(2)原式=[(2x -3y )+(2x +3y )]·[(2x -3y )-(2x +3y )]=-24xy .当x =16,y =18时,-24xy =-24×16×18=-12. 22.解:∵a 2+b 2+2a -4b +5=0,∴(a 2+2a +1)+(b 2-4b +4)=0,即(a +1)2+(b -2)2=0.∴a +1=0且b -2=0.∴a =-1,b =2.∴2a 2+4b -3=2×(-1)2+4×2-3=7.23.解:a 2+b 2-4a -6b +13=(a -2)2+(b -3)2=0,故a =2,b =3.当腰长为2时,则底边长为3,周长=2+2+3=7;当腰长为3时,则底边长为2,周长=3+3+2=8.所以这个等腰三角形的周长为7或8.24.解:(1)原式=(x -1)(x 2+mx +n )=x 3+mx 2+nx -x 2-mx -n =x 3+(m -1)x 2+(n -m )x -n ,根据题意得⎩⎨⎧m -1=3,n -m =0,-n =-4,解得⎩⎨⎧m =4,n =4. (2)把x =-1代入,发现多项式的值为0,∴多项式x 3+x 2-16x -16中有因式(x +1),于是可设x 3+x 2-16x -16=(x +1)(x 2+m x +n ),可化为x 3+mx 2+nx +x 2+mx +n =x 3+(m +1)x 2+(m +n )x +n ,可得⎩⎨⎧m +1=1,m +n =-16,n =-16,解得⎩⎨⎧n =-16,m =0,∴x 3+x 2-16x -16=(x +1)(x 2-16)=(x +1)(x +4)(x -4).。

七年级数学下册 第4章 因式分解综合测试题 (新版)浙教版

七年级数学下册 第4章 因式分解综合测试题 (新版)浙教版

第4章因式分解一、选择题1.因式分解的结果是A. B. C. D.2.有下列结论:对于两个实数x和y,若,则;对于两个实数x和y,若,则的最小值为;对于两个给定的实数x和y,若使达到最小,则.其中正确的有个.A. 0B. 1C. 2D. 33.边长为的长方形周长为12,面积为10,则的值为A. 120B. 60C. 80D. 404.下列分解因式中,正确的个数为;;.A. 3个B. 2个C. 1个D. 0个5.如果多项式可因式分解为,则a、b的值为A. B. C. D.6.设,且,则A. B. 23 C. D. 327.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:分别对应下列六个字;州、爱、我、福、游、美现将因式分解,结果呈现的密码信息可能是A. 我爱美B. 福州游C. 爱我福州D. 美我福州二、填空题8.分解因式:______.9.在实数范围内分解因式的结果是______.10.分解因式:______.11.因式分解:______.12.在实数范围内进行因式分解:______.13.分解因式:______.14.若将分解成,则n的值是______.15.两名同学将同一个二次三项式分解因式,甲因看错了一次项系数而分解成;乙因看错了常数项而分解成,则将原多项式因式分解后的正确结果应该是______.三、解答题16.因式分解:17.已知方程组,由于甲看错了方程中的a得到方程组的解为,乙看错了方程中的b得到方程组的解为,若按正确的a、b计算,则原方程组的解x与y的差的值是多少?已知实数x、y、z满足及,则的值为______.18.若求的值.19.阅读下列材料,然后解答问题:问题:分解因式:.解答:把代入多项式,发现此多项式的值为0,由此确定多项式中有因式,于是可设,分别求出的值,再代入,就容易分解多项式这种分解因式的方法叫“试根法”.求上述式子中的值;请你用“试根法”分解因式:.【答案】1. D2. C3. B4. C5. B6. C7. C8.9.10.11.12.13.14. 415.16. 解:;.17. 018. 解:.19. 解:把代入多项式,多项式的值为0,多项式中有因式,于是可设,,把代入,多项式的值为0,多项式中有因式,于是可设,,。

浙教版七年级数学(下册)第4章因式分解检测 (有答案)

浙教版七年级数学(下册)第4章因式分解检测 (有答案)

浙教版2019–2020学年度下学期七年级数学(下册)第4章因式分解检测题1(有答案)(时间:100分钟 满分:120分) 一、选择题 (每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案④2ax 2–4a 2x +2a =2a (x 2–ax );⑤(x +3y )2–(3x –y )2=4(2x +y )( 2y –x )其中是因式分解,且运算正确的个数是( )A .1B .2C .3D .42.把多项式a 3(x –5)+a (5–x )分解因式等于()A .(x –5)(a 3+a )B .(x –5)(a 3–a )C .a (x –5)(a 2–a )D .a (x –5)(a +1) (a –1)3.对于任意自然数n ,(n +8)2–(n –6)2一定能被( )整除.A .19B .28C .36D .48 4.不论a 为何值,代数式–a 2+6a –15值( )A .大于或等于0B .0C .大于0D .小于0 5.若x 2–2(m –3)x +16 是一个完全平方式,则m 的值是( )A .7或–1B .7C .–1D . –56.下列各式一定成立的是 ( )A .(x 2)0B .(x 2–1)0C .(x 2–x +1)0D .(x 2–4x +3)0 7.把a 2–a –6分解因式,正确的是( )A .a (a –1)–6B .(a –2)(a +3) C. (a +2)(a –3) D .(a –1)(a +6)8.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ).把余下的部分剪拼成一个长方形如图2.通过计算图形(阴影部分)的面积, 验证了公式,则这个公式是() A .a 2–b 2=(a +b )(a –b )B .a 2+2ab +b 2=(a+b)2C .a 2–2ab +b 2=(a –b )2D .a 2+b 2=(a +b ) 29.若a >b >0,a 2+b 2–6ab =0,则22)()(b a b a -+的值为( )A .6B . 3 C. 2 D .31 第8题图1 第8题图210.计算)10011)(9911()311)(211(2222----Λ的值是( ) A .101 B .201 C .100101 D .200101二、填空题 (每题3分,共30分)11.若(m 2–n 2–12)0无意义,且m +n =6,则n –m = .12.矩形的面积为6x 2+13x +5 (x >0),其中一边长为2x +1,则另为 . 13.在实数范围内分解因式(a 2–2a )2–1= . 14.方程(x –4)2+(x –2)(x +8)=0,的解是 . 15.已知a +b =2,则(a 2–b 2)2–8(a 2+b 2)的值为 .16.x a –y b =(x +y 3) (x –y 3) (x 2+y 6),则a =___ ____,b =___ ______.17.有两个正方形大正方形的周长比小正方形的周长长20厘米,其面积相差95平方厘米,则这两个正方形的边长分别为 .18.已知a ,b 满足等式M =a 2+16b 2+5,N =4(2b –a ),试判断M ,N 的大小关系 . 19. 多项式x 2+4y 2–6x +12y +26的最小值为 .20.已知(2019–a )(2020–a )=10,求(a –2019) 2+(2020–a ) 2的值 . 三、解答题(共6题 共60分) 21.(本题8分)分解因式:(1) (2x –7)(2x +1)+2(6x –1); (2) (m +n )2–3[2(m +n )–3] ;(3) (x 2+y 2)2–4x 2y 2; (4) x 4–16y 4–4x 3y +16xy 322. (本题10分)已知A =a 2+10b –2c ,B =b 2–4c +18,C =c 2+2a +17,若A +B +C =0,求A ,B ,C 的值.23.(本题10分)(1)已知x 2–2x –5=0,求代数式x 3–x 2–7x –3的值.(2)已知x =4–23,y =4+23,求代数式x 2–xy +y 2的平方根.24.(本题10分) 若a,b,c是互不相等是三个数,且p=a2–bc,q=b2–ac,m=c2–ab,试说明p,q,m 中至少有一个大于0.25.(本题10分)已知有足够多的如图1所示的正方形A,正方形C和长方形B卡片进行拼图:(1)若用4块A卡片,20块B卡片,25块C卡片,拼成一个正方形,求这个正方形的边长.(2)若要拼成一个长为(3a+7b),宽为(5a+2b)的长方形,求需要A类卡片,B类卡片,C类卡片各多少张?(3)根据图2将多项式2a2+7ab+6b2分解因式.26.(本题12分) 若a+b+c=0,a2+b2+c2=1,试求下列各式的值.(1)bc+ac+ab;(2) a4+b4+c4.第25题图1 第25题图2一、选择题(共10小题每3分共30分)11、–2 12、(2x+y)(3x+5y)13、(a–1)2(a+1+2)(a+1–2) 14、x=0或x=1 15、–1616、4,12 17、12,7 18、M≥N19、8 20、21三、解答题(共6题共60分)21.(本题8分)分解因式:(1) (2x–7)(2x+1)+2(6x–1);(2) (m+n)2–3[2(m+n)–3] ;(3) (x2+y2)2–4x2y2;(4)x4–16y4–4x3y+16xy3解:(1)原式=4x2+2x–14x–7+12x–2=4x2–9=(2x+3)(2x–3);(2)原式=(m+n)2-6(m+n)+9=(m+n-3)2;(3)原式=(x2+y2)2-(2xy)2=( x2+y2+2xy)( x2+y2–2xy)=( x+y) 2 ( x-y) 2;(4)原式= (x4–16y4)–(4x3y–16xy3)=(x2–4y2) (x2+4y2) –4xy(x2–4y2)=(x2–4y2) (x2+4y2–4xy)=(x+2y)(x–2y)(x–2y)2=(x+2y) (x–2y)3.22. (本题10分)已知A=a2+10b–2c,B=b2–4c+18,C=c2+2a+17,若A+B+C=0,求A,B,C的值.解:∵A+B+C=0,∴A+B+C=a2+10b–2c+b2–4c+18+c2+2a+17= (a2+2a +1)+ (b2+10b+25)+(c2–2c–4c+9)=(a+1)2+(b+5)2+(c–3)2=0∴a=–1,b=–5,c=3.将a=–1,b=–5,c=3分别代入A,B,C得.∴A= a2+10b–2c=(–1)2+10×(–5)–2×3=–55,∴B=b2–4c+18=(–5)2–4×3+18=31,解:∵x2–2x–5=0,∴x3–x2–7x–3=x(x2–2x–5)+(x2–2x–5)+2=0+0+2=2.(2)已知x=4–23,y=4+23,求代数式x2–xy+y2的平方根.解:x=4–23,y=4+23,x+y=4–23+4+23=8,xy=(4–23)(4+23)=4.x2–xy+y2= x2+2xy+y2–3xy=(x+y)2–3xy=82–3×4=52.代数式x2–xy+y2的平方根为132.24.(本题10分) 若a,b,c是互不相等是三个数,且p=a2–bc,q=b2–ac,m=c2–ab,试说明p,q,m 中至少有一个大于0.解:∵a,b,c是互不相等是三个数,∴p+q+m=a2–bc+b2–ac+c2–ab=21(2a2–2bc+2b2–2ac+2c2–2ab)=21[( a2–2ab +b2)+ (b2–2bc +c2)+ (c2–2ca+ a2)]=21[( a–b) 2+ (b–c) 2+ (c–a) 2]>0∴p,q,m中至少有一个大于0.25.(本题10分) 已知有足够多的如图1所示的正方形A,正方形C和长方形B卡片进行拼图:(1)若用4块A卡片,20块B卡片,25块C卡片,拼成一个正方形,求这个正方形的边长.(2)若要拼成一个长为(3a+7b),宽为(5a+2b)的长方形,求需要A类卡片,B类卡片,C类卡片各多少张?(3)根据图2将多项式2a2+7ab+6b2分解因式.解:(1) ∵4a2+20ab+25b2=(2a+5b) 2;∴这个正方形是边长为(2a+5b).(2) ∵(3a+7b)(5a+2b)= 15a2+6ab+35ab+14b2=15a2+41ab+14b2;∴需要A类卡片,B类卡片,C类卡片分别为15张,41张,14张;(3) 根据图形可得2a2+7ab+6b2=(2a+3b)(a+2b).26.(本题12分) 若a+b+c=0,a2+b2+c2=1,试求下列各式的值.第25题图1 第25题图2解(1)∵a +b +c =0,a 2+b 2+c 2=1∴(a +b +c )2=0∴a 2+b 2+c 2+2ab +2bc +2ca =0 ∴2ab +2bc +2ca = –(a 2+b 2+c 2)=–1 ∴ab +bc +ca =21-(2) ∵ab +bc +ca =21-∴(ab +bc +ca )2=(21-)2 ∴a 2b 2+b 2c 2+c 2a 2+2ab 2c +2abc 2+2a 2bc =41 ∴a 2b 2+b 2c 2+c 2a 2+2abc (b +c +a )=41 ∴a 2b 2+b 2c 2+c 2a 2=41 ∵a 2+b 2+c 2=1 ∴(a 2+b 2+c 2)2=12∴a 4+b 4+c 4+2a 2b 2+2b 2c 2+2c 2a 2=1∴a 4+b 4+c 4+2(a 2b 2+b 2c 2+c 2a 2)=1 ∴a 4+b 4+c 4+2×41=1 ∴a 4+b 4+c 4=21.。

浙教版七下数学第四章《因式分解》单元培优测试题

浙教版七下数学第四章《因式分解》单元培优测试题
最新浙教版初中数学七年级下册第四章《因式分解》
单元培优测试题及答案
考试时间:120 分钟 满分:120 分
一、选择题(本大题有 10 小题,每小题 3 分,共 30 分) 下面每小题给出的四个选项中,只有一个是正确的.
1.下列由左到右的变形,属于因式分解的是( )
A. (x+2)(x-2)=x2-4
一、单选题 1、 C 2、 A 3、 D 6、 D 7、C 8、 B 二、填空题 11、 8ab 12、 (a+b)(a-3b)
4、 A 9、 D
答案
5、 A 10、C
13、
14、3 15、0 16、1 三、简答题 17、解:(1)﹣8a2b+2a3+8ab2=2a(﹣4ab+a2+4b2)=2a(a﹣2b)2; (2)(x+y)2+2(x+y)+1=(x+y+1)2; (3)x2(x﹣y)+(y﹣x)=x2(x﹣y)﹣(x﹣y)=(x﹣y)(x+1)(x﹣1); (4)x2﹣2xy+y2﹣9=(x﹣y)2﹣32=(x﹣y﹣3)(x﹣y+3).
B. x2+4x-2=x(x+4)-2
C. x2-4=(x+2)(x-2)
D. x2-4+3x=(x+2)(x-2)+3x
2.多项式①2x2﹣x,②(x﹣1)2﹣4(x﹣1)+4,③(x+1)2﹣4x(x+1)+4,④﹣4x2﹣1+4x;分解
因式后,结果含有相同因式的是( )
A. ①④
B. ①②
C. ③④
D. ②③
3.当 a,b 互为相反数时,代数式 a2+ab﹣4 的值为( )

新浙教版数学七年级下册第四章《因式分解》培优题

新浙教版数学七年级下册第四章《因式分解》培优题

新浙教版数学七年级下册第四章《因式分解》培优题一.选择题〔共6小题〕1.以下各式,能直接运用完全平方公式进行因式分解的是〔〕A.4x2+8x+1 B.x2y2﹣xy+1 C.x2﹣4x+16 D.x2﹣6xy﹣9y22.已知x2+ax﹣12能分解成两个整数系数的一次因式的积,则整数a的个数有〔〕A.0 B.2 C.4 D.63.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q〔p≤q〕称为正整数n的最正确分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③假设n是一个完全平方数,则F 〔n〕=1;④假设n是一个完全立方数〔即n=a3,a是正整数〕,则.正确的个数为〔〕A.1个 B.2个 C.3个 D.4个4.已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值时,可以设另一个因式为x+n,则x2﹣4x+m=〔x+3〕〔x+n〕.即x2﹣4x+m=x2+〔n+3〕x+3n.∴解得,n=﹣7,m=﹣21,∴另一个因式为x﹣7,m的值为﹣21.类似地,二次三项式2x2+3x﹣k有一个因式是2x﹣5,则它的另一个因式以及k 的值为〔〕A.x﹣1,5 B.x+4,20 C.x,D.x+4,﹣45.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为〔〕×1016×1027×1056×10176.设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是〔〕A.4个 B.3个 C.2个 D.1个二.填空题〔共7小题〕7.已知x+y=10,xy=16,则x2y+xy2的值为.8.两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2〔x﹣1〕〔x﹣9〕;另一位同学因看错了常数项分解成2〔x﹣2〕〔x﹣4〕,请你将原多项式因式分解正确的结果写出来:.9.2m+2007+2m+1〔m是正整数〕的个位数字是.10.假设多项式x2+mx+4能用完全平方公式分解因式,则m的值是.11.假设a+b=5,ab=,则a2﹣b2=.12.定义运算a★b=〔1﹣a〕b,下面给出了关于这种运算的四个结论:①2★〔﹣2〕=3②a★b=b★a③假设a+b=0,则〔a★a〕+〔b★b〕=2ab④假设a★b=0,则a=1或b=0.其中正确结论的序号是〔填上你认为正确的所有结论的序号〕.13.假设m2=n+2,n2=m+2〔m≠n〕,则m3﹣2mn+n3的值为.三.解答题〔共5小题〕14.如图①,有足够多的边长为a的小正方形〔A类〕、长为a宽为b的长方形〔B类〕以及边长为b的大正方形〔C类〕,发现利用图①中的三种材料各假设干可以拼出一些长方形来解释某些等式.比方图②可以解释为:〔a+2b〕〔a+b〕=a2+3ab+2b2〔1〕取图①中的假设干个〔三种图形都要取到〕拼成一个长方形,使其面积为〔2a+b〕〔a+2b〕,在如图④虚框中画出图形,并根据图形答复〔2a+b〕〔a+2b〕=.〔2〕假设取其中的假设干个〔三种图形都要取到〕拼成一个长方形,使其面积为a2+5ab+6b2.①你画的图中需C类卡片张.②可将多项式a2+5ab+6b2分解因式为〔3〕如图③,大正方形的边长为m,小正方形的边长为n,假设用x、y表示四个矩形的两边长〔x>y〕,观察图案并判断,将正确关系式的序号填写在横线上〔填写序号〕①xy=②x+y=m ③x2﹣y2=m•n ④x2+y2=.15.小刚同学动手剪了如图①所示的正方形与长方形纸片假设干张.〔1〕他用1张1号、1张2号和2张3号卡片拼出一个新的图形〔如图②〕.根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是;〔2〕如果要拼成一个长为〔a+2b〕,宽为〔a+b〕的大长方形,则需要2号卡片张,3号卡片张;〔3〕当他拼成如图③所示的长方形,根据6张小纸片的面积和等于打纸片〔长方形〕的面积可以把多项式a2+3ab+2b2分解因式,其结果是;〔4〕动手操作,请你依照小刚的方法,利用拼图分解因式a2+5ab+6b2=画出拼图.16.如图1,把边长为a的大正方形纸片一角去掉一个边长为b的小正方形纸片,将余下纸片〔图1中的阴影部分〕按虚线裁开重新拼成一个如图2的长方形纸片〔图2中阴影部分〕.请解答以下问题:〔1〕①设图1中的阴影部分纸片的面积为S1,则S1=;②图2中长方形〔阴影部分〕的长表示为,宽表示为,设图2中长方形〔阴影部分〕的面积为S2,那么S2=〔都用含a、b的代数式表示〕;〔2〕从图1到图2,你得到的一个分解因式的公式是:;〔3〕利用这个公式,我们可以计算:〔2+1〕〔22+1〕〔24+1〕〔28+1〕〔216+1〕〔232+1〕.解:原式=〔2﹣1〕〔2+1〕〔22+1〕〔24+1〕〔28+1〕〔216+1〕〔232+1〕=〔22﹣1〕〔22+1〕〔24+1〕〔28+1〕〔216+1〕〔232+1〕=〔24﹣1〕〔28+1〕〔28+1〕〔216+1〕〔232+1〕=〔28﹣1〕〔28+1〕〔216+1〕〔232+1〕=〔216﹣1〕〔216+1〕〔232+1〕=〔232﹣1〕〔232+1〕=264﹣1阅读上面的计算过程,请计算:〔3+1〕〔32+1〕〔34+1〕〔38+1〕〔316+1〕+0.5.17.在对多项式进行因式分解时,有一种方法叫“十字相乘法”.如分解二次三项式:2x2+5x﹣7,具体步骤为:①首先把二次项的系数2分解为两个因数的积,即2=2×1,把常数项﹣7也分解为两个因数的积,即﹣7=﹣1×7;②按以下图示所示的方式书写,采用交叉相乘再相加的方法,使之结果恰好等于一次项的系数5,即2×〔﹣1〕+1×7=5.③这样,就可以按图示中虚线所指,对2x2+5x﹣7进行因式分解了,即2x2+5x﹣7=〔2x+7〕〔x﹣1〕.例:分解因式:2x2+5x﹣7解:2x2+5x﹣7=〔2x+7〕〔x﹣1〕请你仔细体会上述方法,并利用此法对以下二次三项式进行因式分解:〔1〕x2+4x+3〔2〕2x2+3x﹣20.18.先阅读以下材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.〔1〕分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=〔ax+bx〕+〔ay+by〕=x〔a+b〕+y〔a+b〕=〔a+b〕〔x+y〕2xy+y2﹣1+x2=x2+2xy+y2﹣1=〔x+y〕2﹣1=〔x+y+1〕〔x+y﹣1〕〔2〕拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=〔x+1〕2﹣22=〔x+1+2〕〔x+1﹣2〕=〔x+3〕〔x﹣1〕请你仿照以上方法,探索并解决以下问题:〔1〕分解因式:a2﹣b2+a﹣b;〔2〕分解因式:x2﹣6x﹣7;〔3〕分解因式:a2+4ab﹣5b2.新浙教版数学七年级下册第四章《因式分解》培优题参考答案与试题解析一.选择题〔共6小题〕1.以下各式,能直接运用完全平方公式进行因式分解的是〔〕A.4x2+8x+1 B.x2y2﹣xy+1 C.x2﹣4x+16 D.x2﹣6xy﹣9y2【分析】利用完全平方公式的结构特征判断即可.【解答】解:能直接运用完全平方公式进行因式分解的是x2y2﹣xy+1=〔xy﹣1〕2.故选B.【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解此题的关键.2.〔2008•淮安校级一模〕已知x2+ax﹣12能分解成两个整数系数的一次因式的积,则整数a的个数有〔〕A.0 B.2 C.4 D.6【分析】根据十字相乘法分解因式,﹣12可以分解成﹣1×12,1×〔﹣12〕,﹣2×6,2×〔﹣6〕,﹣3×4,3×〔﹣4〕,a等于分成的两个数的和,然后计算即可得解.【解答】解:∵﹣1×12,1×〔﹣12〕,﹣2×6,2×〔﹣6〕,﹣3×4,3×〔﹣4〕,∴a=﹣1+12=11,1+〔﹣12〕=﹣11,﹣2+6=4,2+〔﹣6〕=﹣4,﹣3+4=1,3+〔﹣4〕=﹣1,即a=±11,±4,±1共6个.故选D.【点评】此题主要考查了十字相乘法进行因式分解,准确分解﹣12是解题的关键.3.〔2010•拱墅区二模〕任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q〔p≤q〕称为正整数n的最正确分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③假设n是一个完全平方数,则F 〔n〕=1;④假设n是一个完全立方数〔即n=a3,a是正整数〕,则.正确的个数为〔〕A.1个 B.2个 C.3个 D.4个【分析】首先读懂这种新运算的方法,再以法则计算各式,从而判断.【解答】解:依据新运算可得①2=1×2,则,正确;②24=1×24=2×12=3×8=4×6,则,正确;③假设n是一个完全平方数,则F〔n〕=1,正确;④假设n是一个完全立方数〔即n=a3,a是正整数〕,如64=43=8×8,则F〔n〕不一定等于,故错误.故选C.【点评】此题考查因式分解的运用,此题的关键是读懂新运算,特别注意“把两个乘数的差的绝对值最小的一种分解”这句话.4.〔2015•张家口二模〕已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值时,可以设另一个因式为x+n,则x2﹣4x+m=〔x+3〕〔x+n〕.即x2﹣4x+m=x2+〔n+3〕x+3n.∴解得,n=﹣7,m=﹣21,∴另一个因式为x﹣7,m的值为﹣21.类似地,二次三项式2x2+3x﹣k有一个因式是2x﹣5,则它的另一个因式以及k 的值为〔〕A.x﹣1,5 B.x+4,20 C.x,D.x+4,﹣4【分析】所求的式子2x2+3x﹣k的二次项系数是2,因式是〔2x﹣5〕的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【解答】解:设另一个因式为〔x+a〕,得2x2+3x﹣k=〔2x﹣5〕〔x+a〕则2x2+3x﹣k=2x2+〔2a﹣5〕x﹣5a,,解得:a=4,k=20.故另一个因式为〔x+4〕,k的值为20.故选:B.【点评】此题考查因式分解的实际运用,正确读懂例题,理解如何利用待定系数法求解是解此题的关键.5.〔2015•河北模拟〕现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为〔〕×1016×1027×1056×1017【分析】根据题意得出一般性规律,写出第8个等式,利用平方差公式计算,将结果用科学记数法表示即可.【解答】解:根据题意得:第⑧个式子为5555555552﹣4444444452=〔555555555+444444445〕××1017.故选D.【点评】此题考查了因式分解﹣运用公式法,以及科学记数法﹣表示较大的数,熟练掌握平方差公式是解此题的关键.6.〔2014秋•博野县期末〕设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是〔〕A.4个 B.3个 C.2个 D.1个【分析】根据已知条件和三角形三边关系判断三角形的形状.三边相等的为等边三角形,且一定也是等腰三角形和三个角都为60度的锐角三角形,又由于三角形按照角形可以分为直角三角形和斜三角形,除了直角三角形就是斜三角形,包括锐角三角形和钝角三角形,等边三角形也属于斜三角形.【解答】解:由已知条件a2+b2+c2=ab+bc+ca化简得,则2a2+2b2+2c2=2ab+2bc+2ca,即〔a﹣b〕2+〔b﹣c〕2+〔a﹣c〕2=0∴a=b=c,此三角形为等边三角形,同时也是等腰三角形,锐角三角形,斜三角形故选A.【点评】此题要根据三角形三条边的关系判断三角形的形状,要知道两边相等的三角形为等腰三角形,三边相等的三角形为等边三角形,且等边三角形一定是等腰三角形、锐角三角形和斜三角形.另外还要知道平方差公式,如〔a﹣b〕2=a2﹣2ab+b2二.填空题〔共7小题〕7.〔2016秋•望谟县期末〕已知x+y=10,xy=16,则x2y+xy2的值为160.【分析】首先提取公因式xy,进而将已知代入求出即可.【解答】解:∵x+y=10,xy=16,∴x2y+xy2=xy〔x+y〕=10×16=160.故答案为:160.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8.〔2016秋•新宾县期末〕两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成2〔x﹣1〕〔x﹣9〕;另一位同学因看错了常数项分解成2〔x﹣2〕〔x﹣4〕,请你将原多项式因式分解正确的结果写出来:2〔x﹣3〕2.【分析】根据多项式的乘法将2〔x﹣1〕〔x﹣9〕展开得到二次项、常数项;将2〔x﹣2〕〔x﹣4〕展开得到二次项、一次项.从而得到原多项式,再对该多项式提取公因式2后利用完全平方公式分解因式.【解答】解:∵2〔x﹣1〕〔x﹣9〕=2x2﹣20x+18;2〔x﹣2〕〔x﹣4〕=2x2﹣12x+16;∴原多项式为2x2﹣12x+18.2x2﹣12x+18=2〔x2﹣6x+9〕=2〔x﹣3〕2.【点评】根据错误解法得到原多项式是解答此题的关键.二次三项式分解因式,看错了一次项系数,但二次项、常数项正确;看错了常数项,但二次项、一次项正确.9.2m+2007+2m+1〔m是正整数〕的个位数字是0.【分析】运用提公因式法进行因式分解,然后根据2n的个位数字的规律进行分析.【解答】解:∵2m+2007+2m+1=2m+1〔22006+1〕,2006÷4=501…2,∴22006+1的个位数字是4+1=5,又2n的个位数字是2或4或8或6,∴2m+2007+2m+1〔m是正整数〕的个位数字是0.故答案为0.【点评】此题综合考查了因式分解法和数字的规律问题.注意:2n的个位数字的规律是2、4、8、6四个一循环.10.〔2015春•昌邑市期末〕假设多项式x2+mx+4能用完全平方公式分解因式,则m的值是±4.【分析】利用完全平方公式〔a+b〕2=〔a﹣b〕2+4ab、〔a﹣b〕2=〔a+b〕2﹣4ab 计算即可.【解答】解:∵x2+mx+4=〔x±2〕2,即x2+mx+4=x2±4x+4,∴m=±4.故答案为:±4.【点评】此题主要考查了公式法分解因式,熟记有关完全平方的几个变形公式是解题关键.11.〔2015春•深圳校级期中〕假设a+b=5,ab=,则a2﹣b2=±20.【分析】将a+b=5两边平方,把ab=代入求出a2+b2的值,利用完全平方公式求出a﹣b的值,原式利用平方差公式分解,将各自的值代入计算即可求出值.【解答】解:已知等式a+b=5两边平方得:〔a+b〕2=a2+b2+2ab=25,把ab=代入得:a2+b2=25﹣=,∴〔a﹣b〕2=a2+b2﹣2ab=﹣=16,即a﹣b=±4,则原式=〔a+b〕〔a﹣b〕=±20,故答案为:±20.【点评】此题考查了因式分解﹣运用公式法,以及完全平方公式,熟练掌握公式是解此题的关键.12.〔2015秋•乐至县期末〕定义运算a★b=〔1﹣a〕b,下面给出了关于这种运算的四个结论:①2★〔﹣2〕=3②a★b=b★a③假设a+b=0,则〔a★a〕+〔b★b〕=2ab④假设a★b=0,则a=1或b=0.其中正确结论的序号是③④〔填上你认为正确的所有结论的序号〕.【分析】根据题中的新定义计算得到结果,即可作出判断.【解答】解:①2★〔﹣2〕=〔1﹣2〕×〔﹣2〕=2,本选项错误;②a★b=〔1﹣a〕b,b★a=〔1﹣b〕a,故a★b不一定等于b★a,本选项错误;③假设a+b=0,则〔a★a〕+〔b★b〕=〔1﹣a〕a+〔1﹣b〕b=a﹣a2+b﹣b2=﹣a2﹣b2=﹣2a2=2ab,本选项正确;④假设a★b=0,即〔1﹣a〕b=0,则a=1或b=0,本选项正确,其中正确的有③④.故答案为③④.【点评】此题考查了整式的混合运算,以及有理数的混合运算,弄清题中的新定义是解此题的关键.13.〔2012•市中区校级二模〕假设m2=n+2,n2=m+2〔m≠n〕,则m3﹣2mn+n3的值为﹣2.【分析】由已知条件得到m2﹣n2=n﹣m,则m+n=﹣1,然后利用m2=n+2,n2=m+2把m3﹣2mn+n3进行降次得到m〔n+2〕﹣2mn+n〔m+2〕,再去括号合并得到2〔m+n〕,最后把m+n=﹣1代入即可.【解答】解:∵m2=n+2,n2=m+2〔m≠n〕,∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m〔n+2〕﹣2mn+n〔m+2〕=mn+2m﹣2mn+mn+2n=2〔m+n〕=﹣2.故答案为﹣2.【点评】此题考查了因式分解的应用:运用因式分解可简化等量关系.三.解答题〔共5小题〕14.〔2016春•邗江区期中〕如图①,有足够多的边长为a的小正方形〔A类〕、长为a宽为b的长方形〔B类〕以及边长为b的大正方形〔C类〕,发现利用图①中的三种材料各假设干可以拼出一些长方形来解释某些等式.比方图②可以解释为:〔a+2b〕〔a+b〕=a2+3ab+2b2〔1〕取图①中的假设干个〔三种图形都要取到〕拼成一个长方形,使其面积为〔2a+b〕〔a+2b〕,在如图④虚框中画出图形,并根据图形答复〔2a+b〕〔a+2b〕= a2+3ab+2b2.〔2〕假设取其中的假设干个〔三种图形都要取到〕拼成一个长方形,使其面积为a2+5ab+6b2.①你画的图中需C类卡片6张.②可将多项式a2+5ab+6b2分解因式为〔a+2b〕〔a+3b〕〔3〕如图③,大正方形的边长为m,小正方形的边长为n,假设用x、y表示四个矩形的两边长〔x>y〕,观察图案并判断,将正确关系式的序号填写在横线上①②③④〔填写序号〕①xy=②x+y=m ③x2﹣y2=m•n ④x2+y2=.【分析】〔1〕根据题意画出图形,如下图,即可得到结果.〔2〕根据等式即可得出有6张,根据图形和面积公式得出即可;〔3〕根据题意得出x+y=m,m2﹣n2=4xy,根据平方差公式和完全平方公式判断即可.【解答】解:〔1〕〔a+b〕〔a+2b〕=a2+3ab+2b2,故答案为:a2+3ab+2b2;〔2〕①∵长方形的面积为a2+5ab+6b2,∴画的图中需要C类卡片6张,故答案为:6.②a2+5ab+6b2=〔a+2b〕〔a+3b〕,故答案为:〔a+2b〕〔a+3b〕.〔3〕解:根据图③得:x+y=m,∵m2﹣n2=4xy,∴xy=,x2﹣y2=〔x+y〕〔x﹣y〕=mn,∴x2+y2=〔x+y〕2﹣2xy=m2﹣2×=,∴选项①②③④都正确.故答案为:①②③④.【点评】此题考查了分解因式,长方形的面积,平方差公式,完全平方公式的应用,主要考查学生的观察图形的能力和化简能力.15.〔2015春•杭州期末〕小刚同学动手剪了如图①所示的正方形与长方形纸片假设干张.〔1〕他用1张1号、1张2号和2张3号卡片拼出一个新的图形〔如图②〕.根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是〔a+b〕2=a2+2ab+b2;〔2〕如果要拼成一个长为〔a+2b〕,宽为〔a+b〕的大长方形,则需要2号卡片2张,3号卡片3张;〔3〕当他拼成如图③所示的长方形,根据6张小纸片的面积和等于打纸片〔长方形〕的面积可以把多项式a2+3ab+2b2分解因式,其结果是〔a+2b〕•〔a+b〕;〔4〕动手操作,请你依照小刚的方法,利用拼图分解因式a2+5ab+6b2=〔a+2b〕〔a+3b〕画出拼图.【分析】〔1〕利用图②的面积可得出这个乘法公式是〔a+b〕2=a2+2ab+b2,〔2〕由如图③可得要拼成一个长为〔a+2b〕,宽为〔a+b〕的大长方形,即可得出答案,〔3〕由图③可知矩形面积为〔a+2b〕•〔a+b〕,利用面积得出a2+3ab+2b2=〔a+2b〕•〔a+b〕,〔4〕先分解因式,再根据边长画图即可.【解答】解:〔1〕这个乘法公式是〔a+b〕2=a2+2ab+b2,故答案为:〔a+b〕2=a2+2ab+b2.〔2〕由如图③可得要拼成一个长为〔a+2b〕,宽为〔a+b〕的大长方形,则需要2号卡片2张,3号卡片3张;故答案为:2,3.〔3〕由图③可知矩形面积为〔a+2b〕•〔a+b〕,所以a2+3ab+2b2=〔a+2b〕•〔a+b〕,故答案为:〔a+2b〕•〔a+b〕.〔4〕a2+5ab+6b2=〔a+2b〕〔a+3b〕,如图,故答案为:〔a+2b〕〔a+3b〕.【点评】此题主要考查了因式分解的应用,解题的关键是能运用图形的面积计算的不同方法得到多项式的因式分解.16.〔2015秋•万州区期末〕如图1,把边长为a的大正方形纸片一角去掉一个边长为b的小正方形纸片,将余下纸片〔图1中的阴影部分〕按虚线裁开重新拼成一个如图2的长方形纸片〔图2中阴影部分〕.请解答以下问题:〔1〕①设图1中的阴影部分纸片的面积为S1,则S1=a2﹣b2;②图2中长方形〔阴影部分〕的长表示为a+b,宽表示为a﹣b,设图2中长方形〔阴影部分〕的面积为S2,那么S2=〔a+b〕〔a﹣b〕〔都用含a、b的代数式表示〕;〔2〕从图1到图2,你得到的一个分解因式的公式是:a2﹣b2=〔a+b〕〔a﹣b〕;〔3〕利用这个公式,我们可以计算:〔2+1〕〔22+1〕〔24+1〕〔28+1〕〔216+1〕〔232+1〕.解:原式=〔2﹣1〕〔2+1〕〔22+1〕〔24+1〕〔28+1〕〔216+1〕〔232+1〕=〔22﹣1〕〔22+1〕〔24+1〕〔28+1〕〔216+1〕〔232+1〕=〔24﹣1〕〔28+1〕〔28+1〕〔216+1〕〔232+1〕=〔28﹣1〕〔28+1〕〔216+1〕〔232+1〕=〔216﹣1〕〔216+1〕〔232+1〕=〔232﹣1〕〔232+1〕=264﹣1阅读上面的计算过程,请计算:〔3+1〕〔32+1〕〔34+1〕〔38+1〕〔316+1〕+0.5.【分析】〔1〕利用大正方形面积减小正方形面积即可得到.〔2〕根据长方形面积公式即可求出.〔3〕为了可以利用平方差公式,前面添〔3﹣1〕即可.【解答】解:〔1〕①S1=大正方形面积﹣小正方形面积=a2﹣b2,故答案为a2﹣b2.②根据图象长为a+b,宽为a﹣b,S2=〔a+b〕〔a﹣b〕.故答案分别为a+b、a﹣b、〔a+b〕〔a﹣b〕.〔2〕由〔1〕可知a2﹣b2=〔a+b〕〔a﹣b〕,故答案为a2﹣b2=〔a+b〕〔a﹣b〕.〔3〕原式=〔3﹣1〕〔3+1〕〔32+1〕…〔316+1〕+=〔32﹣1〕〔32+1〕…〔316+1〕+=〔332﹣1〕+=×332.【点评】此题考查了正方形、长方形的面积公式以及利用面积法证明平方差公式,灵活运用平方差公式是解题的关键.17.〔2015秋•宜宾期中〕在对多项式进行因式分解时,有一种方法叫“十字相乘法”.如分解二次三项式:2x2+5x﹣7,具体步骤为:①首先把二次项的系数2分解为两个因数的积,即2=2×1,把常数项﹣7也分解为两个因数的积,即﹣7=﹣1×7;②按以下图示所示的方式书写,采用交叉相乘再相加的方法,使之结果恰好等于一次项的系数5,即2×〔﹣1〕+1×7=5.③这样,就可以按图示中虚线所指,对2x2+5x﹣7进行因式分解了,即2x2+5x﹣7=〔2x+7〕〔x﹣1〕.例:分解因式:2x2+5x﹣7解:2x2+5x﹣7=〔2x+7〕〔x﹣1〕请你仔细体会上述方法,并利用此法对以下二次三项式进行因式分解:〔1〕x2+4x+3〔2〕2x2+3x﹣20.【分析】〔1〕将常数项分解为3和1,进而分解因式得出答案;〔2〕利用ax2+bx+c〔a≠0〕型的式子的因式分解这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=〔a1x+c1〕〔a2x+c2〕,进而得出答案.【解答】解:〔1〕x2+4x+3=〔x+3〕〔x+1〕;〔2〕2x2+3x﹣20=〔x+4〕〔2x﹣5〕.【点评】此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.18.〔2015•巴南区一模〕先阅读以下材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.〔1〕分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=〔ax+bx〕+〔ay+by〕=x〔a+b〕+y〔a+b〕=〔a+b〕〔x+y〕2xy+y2﹣1+x2=x2+2xy+y2﹣1=〔x+y〕2﹣1=〔x+y+1〕〔x+y﹣1〕〔2〕拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=〔x+1〕2﹣22=〔x+1+2〕〔x+1﹣2〕=〔x+3〕〔x﹣1〕请你仿照以上方法,探索并解决以下问题:〔1〕分解因式:a2﹣b2+a﹣b;〔2〕分解因式:x2﹣6x﹣7;〔3〕分解因式:a2+4ab﹣5b2.【分析】仿照题中的方法,得到十字相乘法的技巧,分别将各项分解即可.【解答】解:〔1〕原式=〔a+b〕〔a﹣b〕+〔a﹣b〕=〔a﹣b〕〔a+b+1〕;〔2〕原式=〔x﹣7〕〔x+1〕;〔3〕原式=〔a﹣b〕〔a+5b〕.【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘法是解此题的关键.。

浙教版七年级下册数学第四章 因式分解含答案(高分练习)

浙教版七年级下册数学第四章 因式分解含答案(高分练习)
3、下列因式分解中,结果正确的是( )
A.x2﹣4=(x+2)(x﹣2) B.1﹣(x+2)2=(x+1)(x+3) C.2m2n﹣8n3=2n(m2﹣4n2) D.
4、下列因式分解正确的是( )
A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1) D.2x+y=2(x+y)
一、单选题(共15题,共计45分)
1、B
2、D
3、A
4、C
5、D
6、A
7、B
8、B
9、C
10、C
11、B
12、
13、B
14、D
15、D
二、填空题(共10题,共计30分)
16、
17、
18、
19、
20、
21、
22、
23、
24、
25、
三、解答题(共5题,共计25分)
26、
27、
28、
29、
30、
28、已知实数 满足 且 ,求 的值.
29、分解因式:
(1)2a(y﹣z)﹣3b(z﹣y)
(2)﹣a4+16
(3)(a+b)2﹣12(a+b)+36
(4)(a+5)(a﹣5)+7(a+1)
30、化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.
Hale Waihona Puke 参考答案浙教版七年级下册数学第四章 因式分解含答案
一、单选题(共15题,共计45分)
1、下列因式分解正确的是( )
A.x2﹣y2=(x﹣y)2B.﹣a+a2=﹣a(1﹣a) C.4x2﹣4x+1=4x(x﹣1)+1 D.a2﹣4b2=(a+4b)(a﹣4b)

七年级数学下册 第4章 因式分解测试题 (新版)浙教版

七年级数学下册 第4章 因式分解测试题 (新版)浙教版

第4章 因式分解一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列多项式能分解因式的是( )A .2x +2y 2yB .﹣2x ﹣2yC .﹣2x +2xy ﹣2yD .2x ﹣xy+2y2.下列分解因式正确的是( )A .)(23a a a a a +-=+-B .)2(2242b a b a -=+-C .()2224-=-a aD .22)1(12-=+-a a a3.下列多项式中,含有因式()1+y 的多项式是( )A.2232x xy y --B.()22)1(1--+y yC.()()1122--+y yD.()()11212++++y y4.若()()q px x x x ++=+-243,那么q p ,的值是( )A .12,1-==q pB .12,1=-=q pC .12,7==q pD .12,7-==q p5.已知3=+b a ,2=ab ,计算:22ab b a +等于( )A .5B .6C .9D .16.下列分解因式正确的是( )A.32(1)x x x x -=-.B.2(3)(3)9a a a +-=-C. 29(3)(3)a a a -=+-.D.22()()x y x y x y +=+-.7.()2222)(4)(129b a b a b a ++-+-因式分解的结果是( )A.()25b a -B.()25b a +C.()()b a b a +-33D.()225b a -8.下列各多项式中: ①22y x -,② 23+x ,③x x 42+ ,④ 25102+-x x ,其中能直接运 用公式法分解因式的个数是( )A. 1B. 2C. 3D. 49.分解因式14-x 得( )A. ()()1122-+x xB.()()2211-+x xC. ()()()1112++-x x xD.()()311+-x x10.已知)13)(73()73)(212(-----x x x x 可分解因式为))(3(b x a x ++其中b a ,均为整数,则=+b a 3( )A. 30B. 30-C. 31D. 31-二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.把多项式a a 42-分解因式为12.如果()()n x x mx x --=++362,那么n m +的值为______________13.因式分解:43a ﹣122a +a 9=14.因式分39x x -=15.已知31=+a a ,则221a a +的值是__________16..分解因式:2215942____________x xy y --=三.解答题(共7题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题12分)分解因式:(1)2212bc abc - (2)()()22259b a b a --+(3) a a a 1812223+- (4)()()122++++y x y x(5)21222++x x (6))()3()3)((22a b b a b a b a -+++-18(本题8分).若0352=-+y x ,求y x 324⋅的值.19(本题8分)已知:a ,b ,c 为△ABC 的三边长,且2a 2+2b 2+2c 2=2ab +2ac +2bc ,试判断△ABC的形状,并证明你的结论.20(本题8分).201420152016310343⨯-⨯-能被13整除吗?为什么?21(本题8分).已知a -2b=12,a b=2,求42332444b a b a b a -+-的值.22(本题10分)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x≤4,x 为自然数),十位上的数字为y ,求y 与x 的关系式.23(本题12分)(1) 已知15,8==+mn n m 求22n mn m +-的值(2)已知012=-+a a 求2016223++a a 的值(3)已知71=+a a ,求a a 1-的值因式分解答案一.选择题:1.答案:C解析:因为2x +2y 2y 没有公因式,故不能分解因式,故A 选项错误;因为﹣2x ﹣2y =()22y x +-,故不能分解因式,故B 选项错误;因为﹣2x +2xy ﹣2y =()()2222y x y xy x --=+--,故可以分解因式,故C 选项正确;因为22y xy x +-不是完全平方式也没有公因式,故不能分解因式,故D 选项错误,故选择C2.答案:D解析:因为()231a a a a --=+-故A 选项错误;因为()122242+-=+-b a b a ,故B 选项错误;因为()()2242+-=-a a a ,故C 选项错误;因为22)1(12-=+-a a a ,故D 选项正确,故选择D3.答案:C解析:因为()()x y x y x xy y 33222-+=--,故A 选项中不含1+y 项; 因为()22)1(1--+y y =()()y y y y y 41111=-+++-+故B 选项中不含1+y 项; 因为()()1122--+y y =()())1(2)1(112+=-+-+y y y y ,故C 选项中含1+y 项; 因为()()11212++++y y =()22+y ,故D 选项中不含1+y 项; 故选择C4.答案:A解析:因为()()q px x x x x x ++=-+=+-221243,所以12,1-==q p ,故选择A5.答案:B解析:因为3=+b a ,2=ab ,所以()63222=⨯=+=+b a ab ab b a ,故选择B6.答案:C解析:因为()()32(1)11x x x x x x x -=-=+-,故A 选项错误; 因为2(3)(3)9a a a +-=-属于计算,故B 选项错误;因为29(3)(3)a a a -=+-,故C 选项正确;因为22()()x y x y x y +≠+-,故D 选项错误。

浙教版七下数学第四章因式分解培优试题及答案

浙教版七下数学第四章因式分解培优试题及答案

最新浙教版初中数学七年级下册第四章因式分解培优试题及答案一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列等式从左到右的变形,属于因式分解的是( ) A .()()y x y x y x +-=+22422B .()2244aya ya -=-C .()130132-+==-+x x x x D .()222329124y x y xy x --=-+-2.多项式()()()2122+--+x x x 可以因式分解成()()n x m x ++2,则n m -的值是( ) A . 2 B . ﹣2 C . 4 D . ﹣43.下列各式分解因式正确的是( )A. 22269(3)x xy y x y ++=+B. 222249(23)x xy y x y -+=- C. 22282(4)(4)x y x y x y -=+- D. ()()()()x x y y y x x y x y -+-=-+ 4.把a a 43-多项式分解因式,结果正确的是( )A. ()4-a aB.()()22-+a aC. ()()22-+a a aD. ()422--a5.已知0136422=+-++y x y x ,则代数式y x +的值为( ) A . ﹣1 B . 1C . 25D . 366.要在二次三项式62-+kx x 分解成()()b x a x ++的形式,那么k 为( ) A .1,﹣1 B .5,﹣5 C .1,﹣1,5,﹣5 D .以上答案都不对 7.要使二次三项式x 2﹣5x+p 在整数范围内能进行因式分解,那么整数p 的取值可以有( ) A .2个 B .4个 C .6个D .无数个8.已知a 为实数,且0223=+-+a a a ,则()()()1098111+++++a a a 的值是( )A .﹣3B .3C .﹣1D .19.把多项式22344x y xy x --分解因式的结果是( )A .34()xy x y x -- B .2(2)x x y -- C .22(44)x xy y x -- D .22(44)x xy y x --++ 10.已知正数b a ,满足87222233-=+-+ab ab b a ab b a 则=-22b a ( ) A .1B .3C .5D .不能确定二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.若多项式b ax x ++2分解因式的结果为()()21-+x x ,则b a +的值为12.若4,1a b ab +==,则22a b ab +的值为____________________13.已知0.2,31x y x y +=+=,则代数式2243x xy y ++的值为________________ 14.若关于x 的二次三项式b kx x ++2因式分解为()()31--x x ,则b k +的值为__________15.已知()()520192018=--a a ,则()()_________2019201822=-+-a a16.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如22123-=,223516-=,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…则第2 019个“智慧数”是____________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题12分)因式分解下列各式:(1)()()x y b y x a -+-2249 (2)()()m m m 891+-+(3)411623++-x x x (4)x 2﹣2x ﹣2y 2+4y ﹣xy(5)2232y xy x +- (6)(m 2-2m -1)(m 2-2m +3)+4.18.(本题8分)学习了分解因式的知识后,老师提出了这样一个问题:设n 为整数,则(n +7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?19(本题8分).商贸大楼共有四层,第一层有商品(a +b)2种,第二层有商品a(a +b)种,第三层有商品b(a +b)种,第四层有商品(b +a)2种.若a +b =10,则这座商贸大楼共有商品多少种?20.(本题8分)(1)对于任意自然数n ,(n +7)2-(n -5)2是否能被24整除? (2)已知y x ,都是正实数,且满足012222=-++++y x y xy x ,求()y x -1的最小值21(本题10分)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙 数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数. (1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么? (3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.22(本题10分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×_________=__________×25;②__________×396=693×_______________a ≤9,写出表示“数字对称(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤ba,),并证明.等式”一般规律的式子(含b23(本题10分).先阅读下面的内容,再解决问题.如果一个整式A等于整式B与整式C之积,则称整式B和整式C为整式A的因式.如:①因为36=4×9,所以4和9是36的因数;因为x2﹣x﹣2=(x+1)(x﹣2),所以x+1和x+2是x2﹣x﹣2的因式.②若x+1是x2+ax﹣2的因式,则求常数a的值的过程如下:解:∵x+1是x2+ax﹣2的因式∴存在一个整式(mx+n),使得x2+ax﹣2=(x+1)(mx+n)∴当x=﹣1时,(x+1)(mx+n)=0∴当x=﹣1时,x2+ax﹣2=0∴1﹣a﹣2=0,∴a=﹣1(1)x+2是x2+x﹣6的因式吗?(填“是”或者“不是”);(2)若整式x2﹣1是3x4﹣ax2+bx+1的因式,求常数a,b的值.答案三.选择题:1. D2.C3.A4.C5.B6. C7.D8.D9.B 10. B四.填空题:11.3- 12. 4 13. 2.0 14.1- 15.11 16.2695三.解答题:17.解:(1)()()()()()b a b a y x x y b y x a 23234922-+-=-+-(2)()()()()33998889122-+=-=-+-=+-+m m m m m m m m m(3)4566411622323++--=++-x x x x x x x()()()()()()()()4312145614511622-+-=---=+---=x x x x x x x x x x(4)x 2﹣2x ﹣2y 2+4y ﹣xy ()()()y x y x y x y x y xy x 22242222---+=+---=()()22-+-=y x y x(5)()()y x y x y xy x --=+-23222(6)(m 2-2m -1)(m 2-2m +3)+4()()()()422222112412412-=+-=+--+--=m m m m m m m18.解:()()()()()()220102237373722+=⨯+=+-+-++=--+n n n n n n n n∴()()2237---n n 能被20整除19.解:(a +b)2+a(a +b)+b(a +b)+(b +a)2=2(a +b)2+(a +b)(a +b) =2(a +b)2+(a +b)2=3(a +b)2.因为a +b =10,所以3(a +b)2=300. 答:这座商贸大楼共有商品300种.20.解:(1)∵()()()()()()124121257575722+=⨯+=+-+-++=--+n n n n n n n n∴对于任意自然数n ,(n +7)2-(n -5)2能被24整除(2)∴012222=-++++y x y xy x ,∴()()0122=-+++y x y x ,∴()()043=++-+y x y x ,∵y x ,都是正实数,∴3=+y x ,∴y x -=3∴()()()()1214434131222--=-+-=+-=--=-y y y y y y y y x∵()022≥-y ,∴最小值为1-21.解:(1)15和40是奇妙数, 理由:15=42﹣12,40=72﹣32. (2)设这两个数为2n ﹣1,2n +1 ∵(2n +1)2﹣(2n ﹣1)2=8n ∴是8的倍数.(3)“奇妙数”从小到大排列为:3,5,7,8,9,11,12,13,15,16,17,19 ∴第12个奇妙数为1922.解:(1)等式的规律为:()()ba b b a a a b a b ab ⨯+=+⨯,∴①2557227552⨯=⨯,故答案为:275 572; ②3669339663⨯=⨯,故答案为:63 36;(2)∵左边两位数的十位数字为a ,个位数字为b ,∴左边的两位数是10a +b ,三位数是100b +10(a +b )+a , 右边的两位数是10b +a ,三位数是100a +10(a +b )+b ,∴一般规律的式子为:(10a +b )×[100b +10(a +b )+a ]=[100a +10(a +b )+b ]×(10b +a ), 证明:左边=(10a +b )×[100b +10(a +b )+a ]=(10a +b )(100b +10a +10b +a ) =(10a +b )(110b +11a )=11(10a +b )(10b +a )右边=[100a +10(a +b )+b ]×(10b +a )=(100a +10a +10b +b )(10b +a ) =(110a +11b )(10b +a )=11(10a +b )(10b +a ),左边=右边, ∴“数字对称等式”一般规律的式子为:(10a +b )×[100b +10(a +b )+a ]=[100a +10(a +b )+b ]×(10b +a ) 23.解:(1)x 2+x ﹣6=(x+3)(x ﹣2). 故x+2不是x 2+x ﹣6的因式;(2)∵x 2﹣1是3x 4﹣ax 2+bx+1的因式,∴存在一个整式(3x 2+mx ﹣1),使得3x 4﹣ax 2+bx+1=(x 2﹣1)(3x 2+mx ﹣1), ∴当x=1时,(x 2﹣1)(3x 2+mx ﹣1)=0,则3﹣a+b+1=0①, 当x=﹣1时,(x 2﹣1)(3x 2+mx ﹣1)=0,则3﹣a ﹣b+1=0②, 联立①②解得a=4,b=0. 故常数a 的值是4,b 的值是0. 故答案为:不是.。

2022年最新浙教版初中数学七年级下册第四章因式分解章节测试试题(含答案及详细解析)

2022年最新浙教版初中数学七年级下册第四章因式分解章节测试试题(含答案及详细解析)

初中数学七年级下册第四章因式分解章节测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形是因式分解为( )A.()()2111x x x +-=-B.()()2233x y x y x y -+=+-+C.()2242a a -=-D.()2321x y xy x y xy x x -+=-+ 2、已知2x y -=,12xy =,那么32233x y x y xy ++的值为( )A.3B.6C.132D.134 3、下列各式中与b 2﹣a 2相等的是( )A.(b ﹣a )2B.(﹣a +b )(a ﹣b )C.(﹣a +b )(a +b )D.(a +b )(a ﹣b ) 4、下列多项式:①224x y --;②()224x y --;③222a ab b +-;④214x x ++;⑤2244n m mn +-.能用公式法分解因式的是( )A.①③④⑤B.②③④C.②④⑤D.②③④⑤5、下列多项式中,能用平方差公式进行因式分解的是( )A.222a ab b ++B.22a b --C.22a b +D.22a b -6、下列四个式子从左到右的变形是因式分解的为( )A.(x ﹣y )(﹣x ﹣y )=y 2﹣x 2B.a 2+2ab +b 2﹣1=(a +b )2﹣1C.x 4﹣81y 4=(x 2+9y 2)(x +3y )(x ﹣3y )D.(a 2+2a )2﹣8(a 2+2a )+12=(a 2+2a )(a 2+2a ﹣8)+127、下列因式分解正确的是( )A.2224(2)x x x -+=-B.224(4)(4)x y x y x y -=+-C.221112164x x x ⎛⎫-+=- ⎪⎝⎭D.()432226969a b a b a b a b a a -+=-+8、下列因式分解正确的是( )A.3p 2-3q 2=(3p +3q )(p -q )B.m 4-1=(m 2+1)(m 2-1) C.2p +2q +1=2(p +q )+1 D.m 2-4m +4=(m -2)2 9、下列各选项中因式分解正确的是( )A.x 2-1=(x -1)2B.a 3-2a 2+a =a 2(a -2) C.-2y 2+4y =-2y (y +2) D.a 2b -2ab +b =b (a -1)2 10、下列各式从左到右的变形,因式分解正确的是( )A.x 2+4=(x +2)2B.x 2﹣10x +16=(x ﹣4)2C.x 3﹣x =x (x 2﹣1)D.2xy +6y 2=2y (x +3y ) 11、下列分解因式的变形中,正确的是( )A.xy (x ﹣y )﹣x (y ﹣x )=﹣x (y ﹣x )(y +1)B.6(a +b )2﹣2(a +b )=(2a +b )(3a +b ﹣1)C.3(n ﹣m )2+2(m ﹣n )=(n ﹣m )(3n ﹣3m +2)D.3a (a +b )2﹣(a +b )=(a +b )2(2a +b )12、下列多项式中有因式x ﹣1的是( )①x 2+x ﹣2;②x 2+3x +2;③x 2﹣x ﹣2;④x 2﹣3x +2A.①②B.②③C.②④D.①④ 13、把多项式x 3﹣9x 分解因式,正确的结果是( )A.x (x 2﹣9)B.x (x ﹣3)(x +3)C.x (x ﹣3)2D.x (3﹣x )(3+x )14、下面从左到右的变形中,因式分解正确的是( )A.﹣2x 2﹣4xy =﹣2x (x +2y )B.x 2+9=(x +3)2C.x 2﹣2x ﹣1=(x ﹣1)2D.(x +2)(x ﹣2)=x 2﹣4 15、多项式3254812x y x y -的公因式是( )A.x 2y 3B.x 4y 5C.4x 4y 5D.4x 2y 3二、填空题(10小题,每小题4分,共计40分)1、分解因式:xy ﹣3x +y ﹣3=______.2、如果(a + )2=a 2+6ab +9b 2,那么括号内可以填入的代数式是 ___.(只需填写一个)3、若223()()x x x a x b +-=--,则ab =______.4、因式分解:4244x x ++=_________________5、多项式33484x y xy xy -+各项的公因式是____________.6、分解因式:x 2﹣7xy ﹣18y 2=___.7、因式分解:23322212820x y x y x y -+=______.8、若220x x +-=,则3222020x x x +-+=_________.9、因式分解a 3﹣9a =______________.10、已知a =2b ﹣5,则代数式a 2﹣4ab +4b 2﹣5的值是_____.三、解答题(3小题,每小题5分,共计15分)1、分解因式:x 2﹣4x ﹣12.2、(1)分解因式:322x x x -+(2)计算:2323?(2)x y x y -3、在“整式乘法与因式分解“一章的学习中,我们采用了构造几何图形的方法研究问题,借助直观、形象的几何模型,加深对公式的认识和理解,从中感悟数形结合的思想方法,感悟几何与代数内在的统一性,根据课堂学习的经验,解决下列问题:(1)如图1,有若干张A 类、C 类正方形卡片和B 类长方形卡片(其中a <b ),若取2张A 类卡片、3张B 类卡片、1张C 类卡片拼成如图的长方形,借助图形,将多项式2a 2+3ab +b 2分解因式:2a 2+3ab +b 2= .(2)若现有3张A 类卡片,6张B 类卡片,10张C 类卡片,从其中取出若干张,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),则拼成的正方形的边长最大是 .(3)若取1张C 类卡片和4张A 类卡片按图3、4两种方式摆放,求图4中,大正方形中未被4个小正方形覆盖部分的面积(用含m 、n 的代数式表示).---------参考答案-----------一、单选题1、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A . ()()2111x x x +-=-,属于整式的乘法运算,故本选项错误;B . ()()2233x y x y x y -+=+-+,属于整式的乘法运算,故本选项错误;C . ()2242a a -≠-左边和右边不相等,故本选项错误;D . ()2321x y xy x y xy x x -+=-+,符合因式分解的定义,故本选项正确; 故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.2、D【分析】根据完全平方公式求出225x y +=,再把原式因式分解后可代入求值.【详解】解:因为2x y -=,12xy =, 所以()24x y -=, 22425x y xy +=+=所以32233x y x y xy ++()223xy x xy y =++115322134⎛⎫=+⨯ ⎪⎝⎭= 故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.3、C【分析】根据平方差公式直接把b 2﹣a 2分解即可.【详解】解:b 2﹣a 2=(b ﹣a )(b +a ),故选:C .【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a 2-b 2=(a +b )(a -b ).4、C【分析】根据公式法的特点即可分别求解.【详解】①224x y --不能用公式法因式分解;②()()()22224422x y x y x y x y --=-=+-,可以用公式法因式分解;③222a ab b +-不能用公式法因式分解; ④214x x ++=22111211242x x x ⎛⎫+⨯⨯+=+ ⎪⎝⎭,能用公式法因式分解; ⑤2244n m mn +-=()222442m mn n n m -+=+,能用公式法因式分解.∴能用公式法分解因式的是②④⑤故选C.【点睛】此题主要考查因式分解,解题的关键是熟知乘方公式的特点.5、D【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、a 2+2ab +b 2是三项,不能用平方差公式进行因式分解. B 、−a 2−b 2两平方项符号相同,不能用平方差公式进行因式分解;C 、a 2+b 2两平方项符号相同,不能用平方差公式进行因式分解;D 、a 2−b 2符合平方差公式的特点,能用平方差公式进行因式分解;故选:D .【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a 2−b 2=(a +b )(a −b ).6、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A 选项,B ,D 选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C 选项,符合因式分解的定义,符合题意;故选:C .【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.7、C【分析】利用平方差公式、完全平方公式、提公因式法分解因式,分别进行判断即可.【详解】解:A 、2244(2)x x x -+=-,故A 错误;B 、224(2)(2)x y x y x y -=+-,故B 错误;C 、221112164x x x ⎛⎫-+=- ⎪⎝⎭,故C 正确; D 、()43222226969(3)a b a b a b a b a a a b a -+=-+=-,故D 错误;故选:C .【点睛】此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a 2-b 2=(a +b )(a -b );完全平方公式:a 2±2ab +b 2=(a ±b )2.8、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A :3p 2−3q 2=3(p 2−q 2)=3(p +q )(p −q ),不符合题意; 选项B :m 4−1=(m 2+1)(m 2−1)=m 4−1=(m 2+1)(m +1)(m −1),不符合题意; 选项C :2p +2q +1不能进行因式分解,不符合题意;选项D :m 2−4m +4=(m −2)2,符合题意. 故选:D .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A 、()()21=11x x x -+-,选项错误;B 、()()23222211a a a a a a a a -+=-+=-,选项错误; C 、2242(2)y y y y -+=-- ,选项错误;D 、2222(21)(1)a b ab b b a a b a -+=-+=-,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.10、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4≠(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16≠(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.11、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C、3(n-m)2+2(m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.12、D【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x 2+x ﹣2=()()21x x +-; ②x 2+3x +2=()()21x x ++; ③x 2﹣x ﹣2=()()12x x +-; ④x 2﹣3x +2=()()21x x --. ∴有因式x ﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如2x px q ++的二次三项式,若能找到两数a b 、,使a b q ⋅=,且a b p +=,那么2x px q ++就可以进行如下的因式分解,即()()()22x px q x a b x ab x a x b ++=+++=++.13、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x 3﹣9x=x (x 2﹣9)=x (x +3)(x ﹣3).故选:B.本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.14、A【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A 、把一个多项式转化成两个整式乘积的形式,故A 正确;B 、等式不成立,故B 错误;C 、等式不成立,故C 错误;D 、是整式的乘法,故D 错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.15、D【分析】根据公因式的意义,将原式写成含有公因式乘积的形式即可.【详解】解:因为32542322328124243x y x y x y y x y x -=⋅-⋅,所以3254812x y x y -的公因式为234x y ,故选:D.【点睛】本题考查了公因式,解题的关键是理解公因式的意义是得出正确答案的前提,将各个项写成含有公因式积的形式.1、(y﹣3)(x+1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy﹣3x+y﹣3=x(y﹣3)+(y﹣3)=(y﹣3)(x+1).故答案为:(y﹣3)(x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.2、3b【分析】先根据展开式三项进行公式化变形,利用因式分解公式得出因式分解结果,再反过来即可得解.【详解】解:a2+6ab+9b2= a2+2×a×3b+(3b)2=(a+3b)2,∴(a+ 3b )2=a2+6ab+9b2,故答案为3b.【点睛】本题考查多项式的乘法公式,可反过来用因式分解公式来求解是解题关键.3、-3利用因式分解求出,a b 的值,再代入ab 中即可.【详解】解:223(3)(1)x x x x +-=+-,223()()x x x a x b +-=--,(3)(1)()()x x x a x b ∴+-=--,取3,1a b =-=或1,3a b ==-,将,a b 的值,再代入ab 中,3ab =-,故答案是:3-.【点睛】本题考查了因式分解,解题的关键是利用十字交叉相乘法进行因式分解,求出,a b .4、()222x + 【分析】根据完全平方公式分解即可.【详解】解: 4244x x ++=()222x +, 故答案为:()222x +. 【点睛】本题考查了用公式法进行因式分解,解题关键是熟练运用完全平方公式进行因式分解.【分析】根据公因式的定义,找出系数的最大公约数,相同字母的最低指数次幂,然后即可确定公因式.【详解】解:∵多项式33484x y xy xy -+系数的最大公约数是4,相同字母的最低指数次幂是x 和y , ∴该多项式的公因式为4xy ,故答案为:4xy .【点睛】本题考查多项式的公因式,掌握多项式每项公因式的求法是解题的关键.6、()()92x y x y -+【分析】根据十字相乘法因式分解即可.【详解】x 2﹣7xy ﹣18y 2()()92x y x y =-+,故答案为:()()92x y x y -+.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.7、()224325x y y x -+【分析】直接提取公因式224x y 整理即可.解:()23322222128204325x y x y x y x y y x -+=-+,故答案是:()224325x y y x -+.【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式.8、2022【分析】根据220x x +-=,得22x x +=,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】∵220x x +-=∴22x x +=∴3222020x x x +-+3222020x x x x =++-+()222020x x x x x =++-+222020x x x =+-+22020x x =++ 22020=+2022=故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本9、(3)(3)a a a +-;【分析】先提取公因式a ,再根据平方差公式进行二次分解即可求得答案.【详解】a 3﹣9a =2(9)a a -=(3)(3)a a a +-故答案为:(3)(3)a a a +-【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.10、20【分析】将a =2b -5变为a -2b =-5,再根据完全平方公式分解a 2-4ab +4b 2-5=(a -2b )2-5,代入求解.【详解】解:∵a =2b -5,∴a -2b =-5,∴a 2-4ab +4b 2-5=(a -2b )2-5=(-5)2-5=20.故答案为:20.【点睛】此题考查的是代数式求值,掌握完全平方公式是解此题的关键.三、解答题1、(x +2)(x ﹣6)因为﹣12=2×(﹣6),2+(﹣6)=﹣4,所以x 2﹣4x ﹣12=(x +2)(x ﹣6).【详解】解:x 2﹣4x ﹣12=(x +2)(x ﹣6).【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握十字相乘法.2、(1)2(1)x x -;(2)536x y -【分析】(1)利用提公因式法和完全平方公式因式分解;(2)根据单项式乘单项式的运算法则计算.【详解】解:(1)原式=x (x 2﹣2x +1)=x (x ﹣1)2;(2)原式=﹣6x 5y 3.【点睛】本题考查的是多项式的因式分解、单项式乘单项式,掌握提公因式法和完全平方公式因式分解的一般步骤、单项式乘单项式的运算法则是解题的关键.3、(1)(2a +b )(a +b );(2)a +3b ;(3)mn【分析】(1)用两种方法表示正方形的面积,即可得到答案;(2)先算出纸片的总面积,然后凑出完全平方公式,进而即可求解;(3)根据图(3)用含m ,n 的代数式表示a ,b ,进而即可求解.解:(1)∵长方形的面积=2a 2+3ab +b 2,长方形的面积=(2a +b )(a +b ),∴2a 2+3ab +b 2=(2a +b )(a +b ),故答案是:(2a +b )(a +b );(2)由题意可知:这些纸片的总面积=3a 2+6ab +10b 2,∵需要拼成正方形,∴取a 2+6ab +9b 2=(a +3b )2,此时正方形的边长为a +3b ,故答案是:a +3b ;(3)由图(3)可知:2a +b =m ,由图(4)可知:b -2a =n , ∴()14a m n =-,()12b m n =+, ∴大正方形中未被4个小正方形覆盖部分的面积=22424m n m n mn +-⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查完全平方公式和几何图形的面积,用代数式表示图形的面积,掌握完全平方公式,是解题的关键.。

浙教版2022-2023学年七下数学第四章 因式分解 培优测试卷

浙教版2022-2023学年七下数学第四章 因式分解 培优测试卷

浙教版2022-2023学年七下数学第四章因式分解培优测试卷考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列添括号正确的是()A.b+c=−(b+c)B.−2x+4y=−2(x−4y)C.a−b=+(a−b)D.2x−y−1=2x−(y−1)2.下列各式从左边到右边的变形,是因式分解且分解正确的是()A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C.a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)23.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2−1B.a2+aC.(a−1)2−a+1D.(a+2)2−2(a+2)+14.下列因式分解正确的是()A.x2−2x+4=(x−2)2B.4x2−y2=(4x+y)(4x−y)C.x2−12x+116=(x−14)2D.a4b−6a3b+9a2b=a2b(a2−6a+9)5.将m3n−mn进行因式分解,正确的是()A.m(m2n−n)B.mn(m−1)2C.mn(m+1)(m−1)D.mn(m2−1)6.若多项式4x2−6mx+9能用完全平方公式分解因式,则m的值是()A.m=±2B.m=±1C.m=2D.m=−27.计算101×1022−101×982=()A.404B.808C.40400D.808008.将多项式x2+4加上一个整式,使它成为完全平方式,则下列不满足条件的整式是()A.﹣4x B.4x C.116x4D.116x29.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016B.1.1111111×1027C.1.111111×1056D.1.1111111×101710.如图1,把一个长为2m,宽为2n(m>n)的长方形两次对折后展开,再用剪刀沿图中折痕剪开,把它分成四块完全相同的小长方形,最后按图2那样拼成一个正方形,则中间空白部分的面积是()A.2m B.(m+n)²C.(m-n)2D.m²-n²二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.因式分解:4x4−100x2y2=.12.x2+kx+9是完全平方式,则k=.13.多项式4x3y2+8x2y3−2x2y分解因式时所提取的公因式是.14.设P=a2(−a+b−c),Q=−a(a2−ab+ac),则P与Q的关系是.15.已知x2﹣3x=2,那么多项式x3﹣x2﹣8x+9的值是.16.若M=101×2020×2029,N=2028×2021×101,则M−N=.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.分解因式:(1)2a(y﹣z)﹣3b(z﹣y)(2)﹣a4+16(3)a2b﹣2ab+b (4)3(x﹣2y)2﹣3x+6y.18.已知m、n互为相反数,且满足(m+4)2−(n+4)2=16,求m2+n2−mn的值.19.如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.20.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如x2−2xy+y2−16.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解,过程如下:x2−2xy+y2−16=(x−y)2−16=(x−y+4)(x−y−4).这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:a2−6ab+9b2−25;(2)因式分解:x2−4y2−2x+4y.21.(1)已知y(2x+1)−x(2y+1)=−3,求6x2+6y2−12xy的值;(2)已知a2−a−1=0,求a3−2a+2019的值.22.观察下列式子的因式分解做法:①x2-1=(x-1)(x+1);②x3﹣1=x3﹣x+x﹣1=x(x2﹣1)+x﹣1=x(x﹣1)(x+1)+(x﹣1)=(x﹣1)[x(x+1)+1]=(x﹣1)(x2+x+1);③x4﹣1=x4﹣x+x﹣1=x(x3﹣1)+x﹣1=x(x﹣1)(x2+x+1)+(x﹣1)=(x﹣1)[x(x2+x+1)+1]=(x﹣1)(x3+x2+x+1);…(1)模仿以上做法,尝试对x5﹣1进行因式分解;(2)观察以上结果,猜想x n﹣1=;(n为正整数,直接写结果,不用验证)(3)根据以上结论,试求45+44+43+42+4+1的值.45+44+43+42+4+1= 13×(4﹣1)(45+44+43+42+4+1)= 13×(46﹣1)= 46−13.23.【学习材料】﹣﹣﹣拆项添项法在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项例1分解因式:x 4+4解:原式=x 4+4x 2+4﹣4x 2=(x 2+2)2﹣4x 2=(x 2﹣2x +2)(x 2+2x +2)例2分解因式:x 3+5x ﹣6解:原式=x 3﹣x +6x ﹣6=x (x 2﹣1)+6(x ﹣1)=(x ﹣1)(x 2+x +6)【知识应用】请根据以上材料中的方法,解决下列问题:(1)分解因式:x 2+16x ﹣36= .(2)运用拆项添项法分解因式:x 4+4y 4.(3)化简: x 3−x 2−4x−2 .24.已知下列等式:( 1 )32﹣12=8,( 2 )52﹣32=16,( 3 )72﹣52=24,……(1)请仔细观察,写出第四个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立;(3)利用(2)中发现的规律计算:8+16+24+…+792+800.。

[K12学习]七年级数学下册 第4章《因式分解》培优测试题 (新版)浙教版

[K12学习]七年级数学下册 第4章《因式分解》培优测试题 (新版)浙教版

第4章《因式分解》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10 C﹒x2-8x+16=(x-4)2 D﹒6ab=2a·3b2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1 B﹒a2+a-2 C﹒a2+a D﹒(a-2)2-2(a+2)+1 3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2 C﹒5m2n D﹒5mn24﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b) B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x) D﹒a3-4a2=a2(a-4)5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2 B﹒4m2-m+14C﹒9-6y+y2 D﹒x2-2xy-y26﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5 B﹒5 C﹒1 D﹒-18﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1 B﹒1 C﹒-2 D﹒29﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490 B﹒245C﹒140 D﹒196010.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0 B﹒1 C﹒2 D﹒3二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其12.用简便方法计算:20172-34×2017+289=_________﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=___________﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(8分)分解因式:(1)-18a3b2-45a2b3+9a2b2﹒(2)5a3b(a-b)3-10a4b2(b-a)2﹒18.(10分)分解因式:(1)(x2+16y2)2-64x2y2﹒(2)9(x-y)2-12x+12y+4﹒19.(10分)分解因式:(1)ac-bc-a2+2ab-b2﹒(2)1-a2-4b2+4ab﹒20.(8分)已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒21.(8分)如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒22.(10分)设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2?若能,请求所有满足条件的k的值;若不能,请说明理由﹒23.(12分)如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?浙教版七下数学第4章《因式分解》单元培优测试题参考答案Ⅰ﹒答案部分:一、选择题11﹒答案不唯一,如:4a2-16=4(a+2)(a-2)﹒ 12﹒ 4000000﹒ 13﹒ 7﹒14﹒14﹒ 15﹒a2015(a-2)2﹒ 16﹒ 2a+b,a+b﹒三、解答题17.(1)解:-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)解:5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.(1)解:(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)解:9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.(1)解:ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)解:1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.解:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0 ①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.解:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.解:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.解:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒一、选择题1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10 C﹒x2-8x+16=(x-4)2 D﹒6ab=2a·3b解答:A﹒右边2x(x+4)-1不是积的形式,故A项错误;B﹒(x+5)(x-2)=x2+3x-10,是多项式乘法,不是因式分解,故B项错误;C﹒x2-8x+16=(x-4)2,运用了完全平方公式,符合因式分解的定义,故C正确;D﹒6ab=2a·3b,左边不是多项式,故D错误﹒故选:C﹒2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1 B﹒a2+a-2 C﹒a2+a D﹒(a-2)2-2(a+2)+1解答:因为A﹒a2-1=(a+1)(a-1);B﹒a2+a-2=(a+2)(a-1); C﹒a2+a=a(a+1);D﹒(a-2)2-2(a+2)+1=(a+2-1)2=(a+1)2,所以结果中不含有因式a+1的选项是B﹒故选:B﹒3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2 C﹒5m2n D﹒5mn2解答:多项式15m3n2+5m2n-20m2n3中,各项系数的最大公约数是5,各项都含有相同字母m,n,字母m的指数最低是2,字母n的指数最低是1,所以多项式的公因式是5m2n﹒故选:C﹒4﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b) B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x) D﹒a3-4a2=a2(a-4)解答:A﹒-a2-b2=-(a2+b2),不能进行因式分解,故A项错误;B﹒多项式x2+9不能进行因式分解,故B项错误;C﹒1-4x2=(1+2x)(1-2x),故C项错误;D﹒a3-4a2=a2(a-4),故D项正确﹒故选:D﹒5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2 B﹒4m2-m+14C﹒9-6y+y2 D﹒x2-2xy-y2解答:A﹒a2-2ab+4b2中间乘积项不是这两数的2倍,故A项错误;B﹒4m2-m+14中间乘积项不是这两数的2倍,故B项错误;C﹒9-6y+y2=(3-y)2,故C项正确;D﹒x2-2xy-y2不是两数的平方和,不能用完全平方公式,故D项错误﹒故选:C.6﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定解答:∵M=x2+y2,N=2xy,∴M-N=x2+y2-2xy=(x+y)2≥0,则M≥N.故选:B.7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()解答:∵(x+1)(x-3)=x2-3x+x-3=x2-2x-3,∴x2+ax+b=x2-2x-3,∴a=-2,b=-3,∴a+b=-5,故选:A﹒8﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1 B﹒1 C﹒-2 D﹒2解答:∵x2-x-1=0,∴x2-x=1,∴x3-2x+1=x3-x2+ x2-2x+1=x(x2-x) + x2-2x+1=x+ x2-2x+1=x2-x+1=1+1=2﹒故选:D﹒9﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490 B﹒245C﹒140 D﹒1960解答:由题意,知:a+b=7,ab=10,则a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=10×49=490﹒故选:A.10.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0 B﹒1 C﹒2 D﹒3解答:∵a=2017x+2015,b=2017x+2016,c=2017x+2017,∴a-b=-1,b-c=-1,a-c=-2,∴a2+b2+c2-ab-ac-bc=12[( a-b)2+( b-c)2+( a-c)2]=12×(1+1+4)=3﹒故选:D.二、填空题11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒解答:答案不唯一,如:4a2-16=4(a+2)(a-2),故答案为:4a2-16=4(a+2)(a-2)﹒12.用简便方法计算:20172-34×2017+289=_________﹒解答:20172-34×2017+289=20172-2×17×2017+172-172+289=(2017-17)2=20002=4000000,故答案为:4000000﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒解答:∵m-n=2,∴2m2-4mn+2n2-1=2(m-n)2-1=2×4-1=7﹒故答案为:7﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=_______﹒解答:∵x2-2xy+2y2+4y+4=x2-2xy+ y2+y2+4y+4=(x-y)2+(y+2)2=0,∴20x yy-=⎧⎨+=⎩,解得:22xy=-⎧⎨=-⎩,∴y x=(-2)-2=14,故答案为:14﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒解答:a2017-4a2016+4a2015=a2015·a2-a2015·4a+4a2015=a2015(a2-4a+4)=a2015(a-2)2,故答案为:a2015(a-2)2﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒解答:所画示意图如下,∵ 2a2+3ab+b2=a2+2ab+b2+a2+ab=(a+b)2+a(a+b)=(a+b)(a+b+a)=(a+b)(2a+b),∴所画长方形的长为2a+b,宽为a+b;故答案为:2a+b,a+b﹒三、解答题17.分解因式:(1)-18a3b2-45a2b3+9a2b2(2)5a3b(a-b)3-10a4b2(b-a)2解答:(1)-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)218.分解因式:(1)(x2+16y2)2-64x2y2(2)9(x-y)2-12x+12y+4解答:(1)(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.分解因式:(1)ac-bc-a2+2ab-b2(2)1-a2-4b2+4ab解答:(1)ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒解答:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0 ①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2 ②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有K12学习教育资源K12学习教育资源 解答:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a 2+5ab +2b 2可分解为(2a +b )(a +2b ),故答案为:(2a +b )(a +2b )﹒(2)由题意,知:2a 2+2b 2=58,ab =10,则a 2+b 2=29,∴(a +b )2=a 2+2ab +b 2=29+20=49,∵a +b >0,∴a +b =7,则6a +6b =6(a +b )=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.设y =kx ,是否存在实数k ,使得多项式(x -y )(2x -y )-3x (2x -y )能化简5x 2?若能,请求所有满足条件的k 的值;若不能,请说明理由﹒解答:能,假设存在实数k ,(x -y )(2x -y )-3x (2x -y )=(2x -y )(-2x -y )=-(2x -y )(2x +y )=-(4x 2-y 2)=-4x 2+y 2,把y =kx 代入,原式=-4x 2+(kx )2=-4x 2+k 2x 2=(k 2-4)x 2,∵多项式(x -y )(2x -y )-3x (2x -y )能化简5x 2,∴(k 2-4)x 2=5x 2,∴k 2-4=5,解得k =±3,故满足条件的k 的值有3或-3﹒23.如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k +2和2k (其中k 取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?解答:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k +2)2-(2k )2=(2k +2+2k )(2k +2-2k )=4(2k +1),∴2k +2和2k 这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k +1和2k -1(k 取正整数),则(2k +1)2-(2k -1)2=(2k +1+2k -1)(2k +1-2k +1)=4k ×2=8k ,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数, 所以两个连续奇数的平方差不是“神秘数”﹒。

最新浙教版初中数学七年级下册第四章因式分解专项测试试题(含解析)

最新浙教版初中数学七年级下册第四章因式分解专项测试试题(含解析)

初中数学七年级下册第四章因式分解专项测试(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列分解因式中,①x 2+2xy +x =x (x +2y );②x 2+4x +4=(x +2)2;③﹣x 2+y 2=(x +y )(x ﹣y ).正确的个数为( ) A.3B.2C.1D.02、下列各式从左到右的变形属于因式分解的是( )A.()()2111a a a +-=-B.()2422x y x y -=-C.()2111x x x x -+=-+D.2323623x y x y =⋅3、下列各式由左到右的变形中,属于因式分解的是( ).A.()()2212+-=+-x x x xB.()2111x x x x ++=++C.()2a ab ac a a b c ---=-++ D.()2222a b a b ab +=+-4、已知2x y -=,12xy =,那么32233x y x y xy ++的值为( )A.3B.6C.132D.1345、下列各式中与b 2﹣a 2相等的是( ) A.(b ﹣a )2B.(﹣a +b )(a ﹣b )C.(﹣a +b )(a +b )D.(a +b )(a ﹣b )6、下列各式变形中,是因式分解的是( ) A.22221()1a ab b a b -+-=--B.2212221x x x x ⎛⎫+=+ ⎪⎝⎭C.2(2)(2)4x x x +-=-D.()4211(1)(1)-=++-x x x x7、对于有理数a ,b ,c ,有(a +100)b =(a +100)c ,下列说法正确的是( ) A.若a ≠﹣100,则b ﹣c =0 B.若a ≠﹣100,则bc =1 C.若b ≠c ,则a +b ≠cD.若a =﹣100,则ab =c8、下列等式从左到右的变形,属于因式分解的是( ) A.m (a +b )=ma +mb B.x 2+2x +1=x (x +2)+1 C.x 2+x =x 2(1+1x)D.x 2﹣9=(x +3)(x ﹣3)9、多项式(2)(22)(2)x x x +--+可以因式分解成()(2)x m x n ++,则m n -的值是( ) A.-1B.1C.-5D.510、下列各式中不能用平方差公式分解的是( ) A.24x -B.22x y -+C.221x y +D.214x -11、下列等式中,从左到右的变形是因式分解的是( ) A.2x (x ﹣1)=2x 2﹣2x B.4m 2﹣n 2=(4m +n )(4m ﹣n ) C.﹣x 2+2x =﹣x (x ﹣2)D.x 2﹣2x +3=x (x ﹣2)+312、下列各式由左边到右边的变形,是因式分解的是( ) A.22()()x y x y x y -+=-B.241254(3)5x x x x +-=+-C.22()()x y x x y x y x -+=+-+D.2224484()x y xy x y +-=-13、下列因式分解正确的是( ) A.x 2+9=(x +3)(x ﹣3) B.x 2+x ﹣6=(x ﹣2)(x +3) C.3x ﹣6y +3=3(x ﹣2y )D.x 2+2x ﹣1=(x ﹣1)214、()()()()()()()()()()444444444454941341744143474114154394++++++++++的值为( )A.3941B.4139C.1353D.35315、下列由左边到右边的变形中,属于因式分解的是( ) A.(a +1)(a ﹣1)=a 2﹣1 B.a 2﹣6a +9=(a ﹣3)2C.a 2+2a +1=a (a +2)+1D.a 2﹣5a =a 2(1﹣5a)二、填空题(10小题,每小题4分,共计40分)1、若多项式9x 2+kxy +4y 2能用完全平方公式进行因式分解,则k =________.2、利用平方差公式计算222222221234562019202037114039----+++⋅⋅⋅+的结果为______. 3、因式分解:m 2+2m =_________. 4、分解因式:269b b -+=________.5、因式分解(a ﹣b )2﹣a +b 的结果是_______________.6、边长为a 、b 的长方形,它的周长为14,面积为10,则22a b ab +的值为__.7、若多项式229x kxy y ++可以分解成()23x y -,则k 的值为______. 8、已知ab =5,a ﹣b =﹣2,则﹣a 2b +ab 2=_____.9、若多项式x 2+ax +b 可分解为(x +1)(x +4),则a =________,b =________. 10、d =x 4﹣2x 3+x 2﹣10x ﹣4,则当x 2﹣2x ﹣4=0时,d =___. 三、解答题(3小题,每小题5分,共计15分)1、分解因式 (1)24a a -; (2)()24x y xy -+. 2、因式分艛: (1)225101x x -+ (2)3218x y xy - 3、把下列各式因式分解 (1)224()25()x x y y y x -+-;(2)22(1)(1)x y x y ++--+.---------参考答案----------- 一、单选题 1、C 【分析】直接利用提取公因式法以及公式法分别分解因式判断即可. 【详解】解:①x 2+2xy +x =x (x +2y +1),故①错误; ②x 2+4x +4=(x +2)2,故②正确; ③-x 2+y 2=(y +x )(y -x ),故③错误; 故选:C. 【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键. 2、B 【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案. 【详解】解:A 、()()2111a a a +-=-,属于整式乘法;B 、()2422x y x y -=-,属于因式分解;C 、()2111x x x x -+=-+,没把一个多项式转化成几个整式积的形式,不属于因式分解;D 、2323623x y x y =⋅,等式左边不是多项式,不属于因式分解; 故选:B. 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解. 3、C 【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案. 【详解】解:A 、是整式的乘法,故A 不符合;B 、没把一个多项式转化成几个整式积,故B 不符合;C 、把一个多项式转化成几个整式积,故C 符合;D 、没把一个多项式转化成几个整式积,故D 不符合; 故选:C. 【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积. 4、D 【分析】根据完全平方公式求出225x y +=,再把原式因式分解后可代入求值. 【详解】解:因为2x y -=,12xy =,所以()24x y -=,22425x y xy +=+=所以32233x y x y xy ++()223xy x xy y =++115322134⎛⎫=+⨯ ⎪⎝⎭=故选:D 【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键. 5、C 【分析】根据平方差公式直接把b 2﹣a 2分解即可. 【详解】解:b 2﹣a 2=(b ﹣a )(b +a ), 故选:C . 【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a 2-b 2=(a +b )(a -b ). 6、D 【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案. 【详解】解:A 、等式的右边不是整式的积的形式,故A 错误; B 、等式右边分母含有字母不是因式分解,故B 错误; C 、等式的右边不是整式的积的形式,故C 错误; D 、是因式分解,故D 正确; 故选D. 【点睛】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式. 7、A 【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得. 【详解】解:()()100100a b a c +=+,()()1001000a b a c+-+=,()()1000a b c+-=,∴1000a+=或0b c-=,即:100a=-或b c=,A选项中,若100a≠-,则0b c-=正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.8、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变形,可得答案. 【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、因为1x的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.9、D 【分析】先提公因式()2x +,然后将原多项式因式分解,可求出m 和 n 的值,即可计算求得答案. 【详解】解:∵()()()()()()()22222221223x x x x x x x +--+=+--=+-, ∴2m =,3n =-, ∴()235m n -=--=. 故选:D . 【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键. 10、C 【分析】分别利用平方差公式分解因式进而得出答案. 【详解】解:A 、24x -=(2+x )(2﹣x ),可以用平方差公式分解因式,故此选项错误;B 、22x y -+=(y +x )(y ﹣x ),可以用平方差公式分解因式,故此选项错误;C 、221x y +,不可以用平方差公式分解因式,故此选项正确;D 、214x -=(1+2x )(1﹣2x ),可以用平方差公式分解因式,故此选项错误;故选:C . 【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.11、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x﹣1)=2x2﹣2x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2﹣n2=(2m+n)(2m﹣n),故此选项不符合题意;C.﹣x2+2x=﹣x(x﹣2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;D.x2﹣2x+3=x(x﹣2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.12、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.13、B【分析】利用公式法对A、D进行判断;根据十字相乘法对B进行判断;根据提公因式对C进行判断.【详解】解:A、x2+9不能分解,所以A选项不符合题意;B、x2+x﹣6=(x﹣2)(x+3),所以B选项符合题意;C、3x﹣6y+3=3(x﹣2y+1),所以C选项不符合题意;D、x2+2x﹣1在有理数范围内不能分解,所以D选项不符合题意.故选:B.【点睛】本题考查了因式分解﹣十字相乘法等:对于x2+(p+q)x+pq型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q).14、D【分析】观察式子中有4次方与4的和,将44x+因式分解,再根据因式分解的结果代入式子即可求解【详解】422222224(2)(2)(22)(22)[(1)1][(1)1]x x x x x x x x x+=+-=++-+=++-+原式222222222222 (41)(61)(81)(101)(401)(421) (21)(41)(61)(81)(381)(401)++++++++ =++++++++2242135321+==+ 故答案为:353【点睛】本题考查了因式分解的应用,找到4224[(1)1][(1)1]x x x +=++-+是解题的关键.15、B【分析】根据因式分解的定义逐个判断即可.【详解】解:A.由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积的形式,即由左边到右边的变形不属于因式分解,故本选项不符合题意; 故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题1、±12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】解:∵9x 2+kxy +4y 2=(3x )2+kxy +(2y )2,∴kxy=±2•3x•2y=±12xy,解得k=±12.故答案为:±12.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.2、-1010【分析】把分子利用平方差公式分解因式,然后约分化简.【详解】解:原式(12)(12)(34)(34)(56)(56)3711+⨯-+⨯-+⨯-=+++⋅⋅⋅(20192020)(20192020)4039+⨯-+(1)(1)(1)(1)=-+-+-+⋅⋅⋅+-(1)1010=-⨯1010=-,故答案为:-1010.【点睛】本题考查了利用平方差公式进行因式分解,熟练掌握a2-b2=(+b) (a-b)是解答本题的关键.3、(2)m m+【分析】根据提公因式法因式分解即可.【详解】22(2)m m m m+=+.m m+.故答案为:(2)【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.4、()23b-##【分析】根据完全平方公式进行因式分解即可.【详解】解:原式()23=-,b故答案为:()23b-.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.5、(a﹣b)(a﹣b﹣1)【分析】先整理,再根据提取公因式法分解因式即可得出答案.【详解】解:(a﹣b)2﹣a+b=(a﹣b)2﹣(a﹣b)=(a﹣b)(a﹣b﹣1).故答案为:(a﹣b)(a﹣b﹣1).【点睛】本题考查了分解因式,熟练掌握提取公因式法分解因式是解题的关键.6、70【分析】直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可.【详解】解:依题意:2a+2b=14,ab=10,则a+b=7∴a2b+ab2=ab(a+b)=70;故答案为:70【点睛】此题主要考查了提取公因式法分解因式,正确得出a+b和ab的值是解题关键.7、-6【分析】直接利用完全平方公式完全平方公式:a2±2ab+b2=(a±b)2,得出k的值. 【详解】解:∵多项式x2+kxy+9y2可以分解成(x-3y)2,∴x2+kxy+9y2=(x-3y)2=x2-6xy+9y2.∴k=-6.故答案为:-6.【点睛】此题主要考查了公式法分解因式,正确运用乘法公式分解因式是解题关键. 8、10【分析】先用提公因式法将﹣a2b+ab2变形为ab(a﹣b),然后代值计算即可得到答案.【详解】解:﹣a2b+ab2=ab(﹣a+b)=﹣ab(a﹣b).∵ab=5,a﹣b=﹣2,∴﹣a2b+ab2=﹣ab(a﹣b)=﹣5×(﹣2)=10.故答案为:10.【点睛】本题主要考查了用提公因式法因式分解,解题的关键在于能够熟练掌握因式分解的方法.9、5 4【分析】把(x+1)(x+4)展开,合并同类项,可确定a、b的值.【详解】解:∵(x+1)(x+4),=244+++,x x x=254++,x x∴54,;==a b故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.10、16【分析】先将x2-2x-4=0化为x2-2x=4,再将d化为x2(x2-2x)+x2-2x-8x-4后整体代入计算可求解.【详解】解:∵x2﹣2x﹣4=0,∴x2﹣2x=4,∴d=x4﹣2x3+x2﹣10x﹣4=x2(x2﹣2x)+x2﹣2x﹣8x﹣4=4x2+4﹣8x﹣4=4(x2﹣2x)=16.故答案为:16.【点睛】本题主要考查因式分解的应用,将d化x2(x2-2x)+x2-2x-8x-4是解题的关键.三、解答题1、(1)a(a-4);(2)(x+y)2【分析】(1)提取公因式a,即可得出答案;(2)原式可化为x2-2xy+y2+4xy,再合并同类项,再根据完全平分公式进行因式分解即可得出答案. 【详解】解:(1)原式=a(a-4);(2)原式=x2-2xy+y2+4xy=x 2+2xy +y 2=(x +y )2.【点睛】本题主要考查了提公因式及公式法因式分解,熟练应用提取公因式及公式法进行因式分解是解决本题的关键.2、(1)()251x -;(2)()()233xy x x +- 【分析】(1)利用完全平方公式,即可求解;(2)先提取公因式,再利用平方差公式,即可求解.【详解】解:(1)原式=()251x -;(2)原式=()229xy x -=()()233xy x x +-. 【点睛】本题蛀牙考查分解因式,熟练掌握提取公因式法和公式法分解因式,是解题的关键.3、(1)()()()2525x y x y x y +--;(2)()41y x +【分析】(1)直接提取公因式(x -y ),进而利用平方差公式分解因式即可;(2)直接利用平方差公式分解因式,进而提取公因式即可.【详解】解:(1)224()25()x x y y y x -+-=224()25()x x y y x y ---=()()22425x y x y --=()()()2525x y x y x y +--;(2)22(1)(1)x y x y ++--+=[][](1)(1)(1)(1)x y x y x y x y +++-++++--=()222y x +=()41y x +【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.。

最新浙教版初中数学七年级下册第四章因式分解专项测评试题(含详细解析)

最新浙教版初中数学七年级下册第四章因式分解专项测评试题(含详细解析)

第四章因式分解章节同步练习2022年·浙教版初中数学七年级下册知识点习题·定向攻克·含答案及详细解析浙教版初中数学七年级下册第四章因式分解专项测评(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、下列因式分解正确的是( )A.x 2-4=(x +4)(x -4)B.x 2+2x +1=x (x +2)+1C.3mx -6my =3m (x -6y )D.x 2y -y 3=y (x +y )(x -y )2、若多项式236x kx -+能因式分解为()2x a -,则k 的值是( )A.±12B.12C.6±D.63、下列等式中,从左到右是因式分解的是( )A.2111111x x x ⎛⎫⎛⎫-=+⋅- ⎪ ⎪⎝⎭⎝⎭B.2222()a ab b a b ++=+C.1()1am bm m a b +-=+-D.22()()a b a b a b +-=-4、下列各式从左边到右边的变形中,属于因式分解的是( )A.2(1)(1)1a a a -+=-B.2211()42a a a ++=+ C.231(3)1a a a a +-=+- D.26222(3)a ab a a a b ++=+5、下列各式从左到右的变形,因式分解正确的是( )A.x 2+4=(x +2)2B.x 2﹣10x +16=(x ﹣4)2C.x 3﹣x =x (x 2﹣1)D.2xy +6y 2=2y (x +3y )6、下列各式中,能用完全平方公式因式分解的是( )A.2161x +B.221x x +-C.214x x -+ D.2224a ab b +-7、下列各式从左到右的变形是因式分解为( )A.()()2111x x x +-=-B.()()2233x y x y x y -+=+-+C.()2242a a -=-D.()2321x y xy x y xy x x -+=-+ 8、下列多项式能用公式法分解因式的是( )A.m 2+4mnB.m 2+n 2C.a 2+ab +b 2D.a 2﹣4ab +4b 29、已知3ab =-,2a b +=,则22a b ab +的值是( )A.6B.﹣6C.1D.﹣110、下列因式分解正确的是( )A.x 2﹣4=(x +4)(x ﹣4)B.4a 2﹣8a =a (4a ﹣8)C.a 2+2a +2=(a +1)2+1D.x 2﹣2x +1=(x ﹣1)2 11、把多项式x 3﹣9x 分解因式,正确的结果是( )A.x (x 2﹣9)B.x (x ﹣3)(x +3)C.x (x ﹣3)2D.x (3﹣x )(3+x )12、下列分解因式的变形中,正确的是( )A.xy (x ﹣y )﹣x (y ﹣x )=﹣x (y ﹣x )(y +1)B.6(a +b )2﹣2(a +b )=(2a +b )(3a +b ﹣1)C.3(n ﹣m )2+2(m ﹣n )=(n ﹣m )(3n ﹣3m +2)D.3a (a +b )2﹣(a +b )=(a +b )2(2a +b )13、下列各式由左到右的变形中,属于因式分解的是( )A.﹣a 2﹣ab ﹣ac =﹣a (a +b +c )B.x 2+x +1=(x +1)2﹣x C.(x +2)(x ﹣1)=x 2+x ﹣2 D.a 2+b 2=(a +b )2﹣2ab 14、多项式235232346a b c a b a bc ++的各项的公因式是( )A.2a bB.53212a b cC.212a bcD.22a b 15、下列多项式因式分解正确的是( )A.24(4)x x x x -+=-+B.2()x xy x x x y ++=+C.2()()()x x y y y x x y -+-=-D.22()()(2)()x y x z x y z y z +--=+--二、填空题(10小题,每小题4分,共计40分)1、分解因式:216y -=______.2、因式分解:22416a b _______.3、分解因式:x 4﹣1=__________________.4、若mn =3,m ﹣n =7,则m 2n ﹣mn 2=___.5、因式分解a 3﹣9a =______________.6、若20x y +-=,则代数式224x y y +-的值等于________.7、因式分解(a ﹣b )2﹣a +b 的结果是_______________.8、分解因式:22a b -=_________;322x y x y xy ++=______________.9、分解因式:xy ﹣3x +y ﹣3=______.10、6x 3y 2-3x 2y 3分解因式时,应提取的公因式是_________三、解答题(3小题,每小题5分,共计15分)1、发现与探索.(1)根据小明的解答将下列各式因式分解小明的解答:()()()2226569953451a a a a a a a -+=-+-+=--=--①2718a a +-=②()21817a a ---+()= ③2265a ab b -+=(2)根据小丽的思考解决下列问题:小丽的思考:代数式()234a -+,再加上4,则代数式()a -+≥2344,则()234a -+有最小值为4①说明:代数式21821a a -+的最小值为-60.②请仿照小丽的思考解释代数式216a -++()的最大值为6,并求代数式2126a a -+-的最大值. 2、因式分解:(1)216a -;(2)32288x x x -+-3、(1)因式分解:()()29x m n n m -+-(2)解方程组:92153410x y x y +=⎧⎨+=⎩---------参考答案-----------一、单选题1、D【分析】根据提公因式法、公式法逐项进行因式分解,再进行判断即可.【详解】解:A.x 2-4=(x +2)(x -2),因此选项A 不符合题意;B.x 2+2x +1=(x +1)2,因此选项B 不符合题意;C.3mx -6my =3m (x -2y ),因此选项C 不符合题意;D.x 2y -y 3=y (x 2-y 2)=y (x +y )(x -y ),因此选项D 符合题意;故选:D.【点睛】本题考查提公因式法、公式法分解因式,掌握a 2-b 2=(a +b )(a -b ),a 2±2ab +b 2=(a ±b )2是正确应用的前提.2、A【分析】根据完全平方公式先确定a ,再确定k 即可.【详解】解:解:因为多项式236x kx -+能因式分解为()2x a -,所以a =±6.当a =6时,k =12;当a =-6时,k =-12.故选:A.【点睛】本题考查了完全平方式.掌握完全平方公式的特点,是解决本题的关键.本题易错,易漏掉k =-12.3、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A 、2111111x x x ⎛⎫⎛⎫-=+⋅- ⎪ ⎪⎝⎭⎝⎭,不是整式积的形式,不是因式分解,不符而合题意; B 、2222()a ab b a b ++=+,是因式分解,符合题意;C 、1()1am bm m a b +-=+-,不是乘积的形式,不是因式分解,不符合题意;D 、22()()a b a b a b +-=-,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.4、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可.【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;B、符合因式分解的定义,是因式分解,故此选项符合题意;C、右边不是整式积的形式,不是因式分解,故此选项不符合题意;D、26222(31)++=++,分解错误,故此选项不符合题意;a ab a a a b故选:B.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.5、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4≠(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16≠(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.6、C【分析】根据完全平方公式的特点判断即可;【详解】2161x +不能用完全平方公式,故A 不符合题意;221x x +-不能用完全平方公式,故B 不符合题意;221142x x x ⎛⎫-+=- ⎪⎝⎭,能用完全平方公式,故C 符合题意; 2224a ab b +-不能用完全平方公式,故D 不符合题意;故答案选C .【点睛】本题主要考查了因式分解公式法的判断,准确判断是解题的关键.7、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A . ()()2111x x x +-=-,属于整式的乘法运算,故本选项错误;B . ()()2233x y x y x y -+=+-+,属于整式的乘法运算,故本选项错误;C . ()2242a a -≠-左边和右边不相等,故本选项错误;D . ()2321x y xy x y xy x x -+=-+,符合因式分解的定义,故本选项正确; 故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.8、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解:A 、原式=m (m +4n ),不符合题意;B 、原式不能分解,不符合题意;C 、原式不能分解,不符合题意;D 、原式=(a ﹣2b )2,符合题意.故选:D .【点睛】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.9、B【分析】首先将22a b ab + 变形为()ab a b +,再代入计算即可.【详解】解:∵32ab a b =-+=,,∴22a b ab +()ab a b =+32=-⨯6=- ,【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.10、D【分析】各式分解得到结果,即可作出判断.【详解】解:A、原式=(x+2)(x﹣2),不符合题意;B、原式=4a(a﹣2),不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3).故选:B.本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.12、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C、3(n-m)2+2(m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.13、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;B、没把一个多项式转化成几个整式积,故B不符合题意;C、是整式的乘法,故C不符合题意;D、没把一个多项式转化成几个整式积,故D不符合题意;【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.14、A【分析】公因式的定义:一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.由公因式的定义求解.【详解】解:这三个单项式的数字最大公因数是1,三项含有字母是a ,b ,其中a 的最低次幂是a 2,b 的最低次幂是b ,所以多项式235232346a b c a b a bc ++的公因式是2a b .故选A.【点睛】本题主要考查了公因式,关键是掌握确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.15、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. ()()()()222x y x z x y z y z +--=+-+,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.二、填空题1、()()44y y +-【分析】根据平方差公式——22()()a b a b a b -=+- 进行因式分解,即可.【详解】解:222164(4)(4)-=-=+-y y y y ,故答案为:()()44y y +-【点睛】本题主要考查了因式分解的方法,解题的关键是根据多项式的特点选合适的方法进行因式分解. 2、422a b a b【分析】先提公因式4,再利用平方差公式分解.【详解】解:22416a b -=2244a ba b a b=422a b a b.故答案为:422【点睛】本题考查提公因式法和公式法进行因式分解,掌握提平方差公式是解题关键. 3、2(1)(1)(1)++-.x x x【分析】首先把式子看成x2与1的平方差,利用平方差公式分解,然后再利用一次即可. 【详解】解:x4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1).故答案是:(x2+1)(x+1)(x﹣1).【点睛】本题主要考查了平方差公式,熟练公式是解决本题的关键.4、21【分析】把所求的式子提取公因式mn,得mn(m-n),把相应的数字代入运算即可.【详解】解:∵mn=3,m-n=7,∴m2n-mn2=mn(m-n)=3×7=21.故答案为:21.本题主要考查因式分解-提公因式法,解答的关键是把所求的式子转化成含已知条件的式子的形式.5、(3)(3)a a a +-;【分析】先提取公因式a ,再根据平方差公式进行二次分解即可求得答案.【详解】a 3﹣9a =2(9)a a -=(3)(3)a a a +-故答案为:(3)(3)a a a +-【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.6、4【分析】直接利用已知代数式将原式得出x +y =2,再将原式变形把数据代入求出答案.【详解】解:∵x +y -2=0,∴x +y =2,则代数式x 2+4y -y 2=(x +y )(x -y )+4y=2(x -y )+4y=2(x +y )=4.故答案为:4.此题主要考查了公式法的应用,正确将原式变形是解题关键.7、(a ﹣b )(a ﹣b ﹣1)【分析】先整理,再根据提取公因式法分解因式即可得出答案.【详解】解:(a ﹣b )2﹣a +b=(a ﹣b )2﹣(a ﹣b )=(a ﹣b )(a ﹣b ﹣1).故答案为:(a ﹣b )(a ﹣b ﹣1).【点睛】本题考查了分解因式,熟练掌握提取公因式法分解因式是解题的关键.8、()()a b a b +- 2(1)xy x +【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:22()()a b a b a b -=+-; 32222(21)(1)x y x y xy xy x x xy x ++=++=+;故答案为:()()a b a b +-;2(1)xy x +.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9、(y﹣3)(x+1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy﹣3x+y﹣3=x(y﹣3)+(y﹣3)=(y﹣3)(x+1).故答案为:(y﹣3)(x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.10、3x2y2【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故答案为:3x2y2.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.三、解答题1、(1)①()()29a a -+;②()()a a --28;③()()5a b a b --;(2)①见解析;②30【分析】(1)仿照小明的解答过程、利用完全平方公式、平方差公式计算;(2)仿照小丽的思考过程,利用完全平方公式、平方差公式计算、偶次方的非负性解答.【详解】解:(1)①2718a a +-24714a a =-+-()()()2272a a a =+-+-()()=227a a -++()()=29a a -+②()()21817a a ---+()()218116167a a =---+-+()2149a =--- ()()=5353a a ---+()()28a a =--③2265a ab b +-22226995a ab b b b =-++-()2234a b b =--()()3232a b b a b b =-+--()()=5a b a b --(2)解:代数式()222182118818121960a a a a a -+=-+-+=--无论a 取何值()290a -≥再减去60,则代数式()29-60-60a -≥,则()29-60a -有最小值-60∴代数式21821a a -+的最小值为-60. ②解释:无论a 取何值()210a -+≤,再加上6,则代数式()2166a -++≤,则()216a -++有最大值6求值:()221261236366a a a a -+-=--+-- ()26366a =--+- ()2630a =--+ ()260a --≤ ()263030a ∴--+≤∴代数式2126a a -+-有最大值30. 【点睛】本题考查的是因式分解的应用、偶次方的非负性,掌握完全平方公式、平方差公式、偶次方的非负性是解题的关键.2、(1)()()44a a +-;(2)()222x x --(1)直接运用平方差公式进行分解即可;(2)先提取公因式2x -,然后运用完全平方公式因式分解即可.【详解】解:(1)原式=()()44a a +- ;(2)原式=()2244x x x --+=()222x x --.【点睛】本题考查了公式法因式分解以及提公因式法因式分解,熟练掌握乘法公式的结构特点是解本题的关键.3、(1)()()()33m n x x -+-;(2)4332x y ⎧=⎪⎪⎨⎪=⎪⎩ 【分析】(1)先提公因式()m n -,再利用平方差公式即可;(2)利用加减消元法先消去x ,求出y ,再将y 的值代入求出x ,进而确定方程组的解即可.【详解】解:(1)原式2()9()x m n m n =---2()(9)m n x =--()(3)(3)m n x x =-+-;(2)92153410x y x y +=⎧⎨+=⎩①②, ②3⨯-①得,32y ∴=, 把32y =代入②得.3610x +=, 43x ∴=, ∴原方程组的解为4332x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题考查提公因式法、公式法分解因式,二元一次方程组的解,掌握平方差公式的结构特征以及二元一次方程组的解法是正确解答的关键.。

最新浙教版初中数学七年级下册第四章因式分解专题训练试题(含答案解析)

最新浙教版初中数学七年级下册第四章因式分解专题训练试题(含答案解析)

初中数学七年级下册第四章因式分解专题训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)1、把代数式ax 2﹣8ax +16a 分解因式,下列结果中正确的是( )A.a (x +4)2B.a (x ﹣4)2C.a (x ﹣8)2D.a (x +4)(x ﹣4) 2、下列从左边到右边的变形,属于因式分解的是( )A.()()2224x x x +-=-B.()2444x x x x ++=+C.()22211x x x -+=-D.()m x y mx my -=-3、下列各式由左到右的变形中,属于因式分解的是( )A.﹣a 2﹣ab ﹣ac =﹣a (a +b +c )B.x 2+x +1=(x +1)2﹣xC.(x +2)(x ﹣1)=x 2+x ﹣2D.a 2+b 2=(a +b )2﹣2ab 4、多项式x 2y (a ﹣b )﹣y (b ﹣a )提公因式后,余下的部分是( )A.x 2+1B.x +1C.x 2﹣1D.x 2y +y 5、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a +1)(a -1)=a 2-1B.ab +ac +1=a (b +c )+1C. a 2-2a -3=(a -1)(a -3)D.a 2-8a +16=(a -4)26、下列各式中,不能用完全平方公式分解的个数为( )①21025x x -+;②2441a a +-;③221x x --;④214m m -+-;⑤42144x x -+.A.1个B.2个C.3个D.4个7、若多项式236x kx -+能因式分解为()2x a -,则k 的值是( )A.±12B.12C.6±D.68、下列因式分解正确的是( )A.()()2999x x x -=-+B.()322a a a a a a -+=-C.()()()2212111x x x ---+=-D.()22228822x xy y x y -+=-9、下列因式分解结果正确的是( )A.24(4)x x x x -+=-+B.224(4)(4)x y x y x y -=+-C.2221(1)x x x ---=-+D.256(2)(3)x x x x --=--10、下列等式从左到右的变形中,属于因式分解的是( )A.2222()a ab b a b -+=-B.2(1)(2)2x x x x -+=+-C.()11ma mb m a b +-=+-D.3232824x y x y =⋅11、如果多项式x 2﹣5x +c 可以用十字相乘法因式分解,那么下列c 的取值正确的是()A.2B.3C.4D.512、把多项式x 2+ax +b 分解因式,得(x +3)(x ﹣4),则a ,b 的值分别是( )A.a =﹣1,b =﹣12B.a =1,b =12C.a =﹣1,b =12D.a =1,b =﹣1213、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为( )A.6858B.6860C.9260D.9262 14、下列各式由左边到右边的变形,是因式分解的是( )A.x 2+xy ﹣4=x (x +y )﹣4B.2(1)y x x y x x x ++=++C.(x +2)(x ﹣2)=x 2﹣4D.x 2﹣2x +1=(x ﹣1)215、已知23m m -的值为5,那么代数式2203026m m -+的值是( )A.2030B.2020C.2010D.2000二、填空题(10小题,每小题4分,共计40分)1、边长为a 、b 的长方形,它的周长为14,面积为10,则22a b ab +的值为__.2、因式分解x 2+ax +b 时,李明看错了a 的值,分解的结果是(x +6)(x ﹣2),王勇看错了b 的值,分解的结果是(x +2)(x ﹣3),那么x 2+ax +b 因式分解正确的结果是_______.3、因式分解:22421x y y ---=__________.4、因式分解:4224100x x y -=________.5、若m 2=n +2021,n 2=m +2021(m ≠n ),那么代数式m 3-2mn +n 3的值 _________.6、因式分解:x 3y 2-x =________7、分解因式:22a b -=_________;322x y x y xy ++=______________.8、分解因式:﹣x 2y +6xy ﹣9y =___.9、若ab =2,a -b =3,则代数式ab 2-a 2b =_________.10、将多项式因式分解39x x -=______.三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1)5a a -; (2)22363ax axy ay ---.2、因式分解:22496m n mn ---.3、因式分解:(1)x 3﹣16x ;(2)﹣2x 3y +4x 2y 2﹣2xy 3.---------参考答案-----------一、单选题1、B【分析】直接提取公因式a ,再利用完全平方公式分解因式即可.【详解】解:ax 2﹣8ax +16a=a (x 2﹣8x +16)=a (x ﹣4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.2、C根据因式分解的定义判断即可.【详解】解:A,D选项的等号右边都不是积的形式,不符合题意;B选项,x2+4x+4=(x+2)2,所以该选项不符合题意;C选项,x2-2x+1=(x-1)2,符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟练掌握因式分解的定义是解题的关键,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.3、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;B、没把一个多项式转化成几个整式积,故B不符合题意;C、是整式的乘法,故C不符合题意;D、没把一个多项式转化成几个整式积,故D不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.4、A直接提取公因式y(a﹣b)分解因式即可.【解答】解:x2y(a﹣b)﹣y(b﹣a)=x2y(a﹣b)+y(a﹣b)=y(a﹣b)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.6、C分别利用完全平方公式分解因式得出即可.【详解】解:①x 2-10x +25=(x -5)2,不符合题意;②4a 2+4a -1不能用完全平方公式分解;③x 2-2x -1不能用完全平方公式分解;④−m 2+m −14=-(m 2-m +14)=-(m -12)2,不符合题意;⑤4x 4−x 2+14不能用完全平方公式分解. 故选:C.【点睛】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.7、A【分析】根据完全平方公式先确定a ,再确定k 即可.【详解】解:解:因为多项式236x kx -+能因式分解为()2x a -,所以a =±6.当a =6时,k =12;当a =-6时,k =-12.故选:A.【点睛】本题考查了完全平方式.掌握完全平方公式的特点,是解决本题的关键.本题易错,易漏掉k=-12.8、D【分析】A.直接利用平方差公式分解因式得出答案;B.直接提取公因式a,进而分解因式即可;C.直接利用完全平方公式分解因式得出答案;D.首先提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:A.x2-9=(x-3)(x+3),故此选项不合题意;B.a3-a2+a=a(a2-a+1),故此选项不合题意;C.(x-1)2-2(x-1)+1=(x-2)2,故此选项不合题意;D.2x2-8xy+8y2=2(x-2y)2,故此选项符合题意;故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.9、C【分析】根据提公因式法、平方差公式以及十字相乘法进行解答.【详解】解:A、原式=﹣x(x﹣4),故本选项不符合题意;B、原式=(2x+y)(2x﹣y),故本选项不符合题意;C、原式=﹣(x+1)2,故本选项符合题意;D、原式=(x+1)(x﹣6),故本选项不符合题意,故选:C.【点睛】本题主要考查了提公因式法、平方差公式以及十字相乘法因式分解,属于基础题.10、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A . 2222()a ab b a b -+=-是因式分解,故选项A 正确;B . 2(1)(2)2x x x x -+=+-是多项式乘法,故选项B 不正确;C . ()11ma mb m a b +-=+-不是因式分解,故选项C 不正确;D . 3232824x y x y =⋅是单项式乘的逆运算,不是因式分解,故选项D 不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.11、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A 、252x x -+,不能用十字相乘法进行因式分解,不符合题意;B 、253x x -+,不能用十字相乘法进行因式分解,不符合题意;C 、()()25414x x x x -+=--,能用十字相乘法进行因式分解,符合题意;D、255x x,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.12、A【分析】首先利用多项式乘法将原式展开,进而得出a,b的值,即可得出答案.【详解】解:∵多项式x2+ax+b分解因式的结果为(x+3)(x-4),∴x2+ax+b=(x+3)(x-4)=x2-x-12,故a=-1,b=-12,故选:A.【点睛】此题主要考查了多项式乘法,正确利用乘法公式用将原式展开是解题关键.13、B【分析】根据“和谐数”的概念找出公式:(2k+1)3﹣(2k﹣1)3=2(12k2+1)(其中k为非负整数),然后再分析计算即可.【详解】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12 k2+1)(其中k 为非负整数),由2(12k2+1)≤2019得,k≤9,∴k=0,1,2,…,8,9,即得所有不超过2019的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.【点睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.14、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A .从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B .等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C .从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D .从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.15、B【分析】将2203026m m -+化简为220302(3)m m --,再将235m m -=代入即可得.【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.二、填空题1、70【分析】直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可.【详解】解:依题意:2a+2b=14,ab=10,则a+b=7∴a2b+ab2=ab(a+b)=70;故答案为:70【点睛】此题主要考查了提取公因式法分解因式,正确得出a+b和ab的值是解题关键.2、(x﹣4)(x+3)【分析】根据甲、乙看错的情况下得出a、b的值,进而再利用十字相乘法分解因式即可. 【详解】解:因式分解x2+ax+b时,∵李明看错了a的值,分解的结果是(x+6)(x﹣2),∴b=6×(﹣2)=﹣12,又∵王勇看错了b的值,分解的结果为(x+2)(x﹣3),∴a =﹣3+2=﹣1,∴原二次三项式为x 2﹣x ﹣12,因此,x 2﹣x ﹣12=(x ﹣4)(x +3),故答案为:(x ﹣4)(x +3).【点睛】本题主要考查了十字相乘分解因式,解题的关键在于能够熟练掌握十字相乘法.3、(21)(21)x y x y ++--【分析】先分组,然后根据公式法因式分解.【详解】22421x y y --- 224(21)x y y =-++22(2)(1)x y =-+(21)(21)x y x y =++--.故答案为:(21)(21)x y x y ++--.【点睛】本题考查了分组分解法,公式法分解因式,掌握因式分解的方法是解题的关键.4、24(5)(5)x x y x y +-【分析】先提公因式,再用平方差公式分解即可.【详解】422222241004(25)4(5)(5)x x y x x y x x y x y -=-=+-故答案为:24(5)(5)x x y x y +-【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.5、-2021【分析】将两式m 2=n +2021,n 2=m +2021相减得出m +n =-1,将m 2=n +2021两边乘以m ,n 2=m +2021两边乘以n 再相加便可得出.【详解】解:将两式m 2=n +2021,n 2=m +2021相减,得m 2-n 2=n -m ,(m +n )(m -n )=n -m ,(因为m ≠n ,所以m -n ≠0), m +n =-1,将m 2=n +2021两边乘以m ,得m ³=mn +2021m ①,将n 2=m +2021两边乘以n ,得n ³=mn +2021n ②,由①+②得:m ³+n ³=2mn +2021(m +n ), m ³+n ³-2mn =2021(m +n ),m ³+n ³-2mn =2021×(-1)=-2021.故答案为-2021.【点睛】本题考查因式分解的应用,代数式m 3-2mn +n 3的降次处理是解题关键.6、x (xy +1)(xy -1)【分析】先提公因式x ,再根据平方差公式进行分解,即可得出答案.【详解】解: x 3y 2-x =x (x 2y 2-1)=x (xy +1)(xy -1)故答案为x (xy +1)(xy -1).【点睛】此题考查了因式分解的方法,涉及了平方差公式,熟练掌握因式分解的方法是解题的关键. 7、()()a b a b +- 2(1)xy x +【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:22()()a b a b a b -=+-; 32222(21)(1)x y x y xy xy x x xy x ++=++=+;故答案为:()()a b a b +-;2(1)xy x +.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8、()23y x --【分析】根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:﹣x 2y +6xy ﹣9y()()22=693y x x y x --+=--故答案为:()23y x --.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.9、6【分析】用提公因式法将ab 2-a 2b 分解为含有ab ,a -b 的形式,代入即可.【详解】解:∵ab =2,a -b =3,∴ab 2-a 2b =-ab (a -b )=2×3=6,故答案为:6.【点睛】本题考查了用提公因式法因式分解,解题的关键是将ab 2-a 2b 分解为含有ab ,a -b 的形式,用整体代入即可.10、()()33x x x +-【分析】先提取公因式,x 再利用平方差公式分解因式即可得到答案.【详解】解:()()()329933.x x x x x x x -=-=+-故答案为:()()33x x x +-【点睛】本题考查的是综合提公因式与公式法分解因式,熟练“一提二套三交叉四分组”的分解因式的方法与顺序是解题的关键.三、解答题1、(1)2(1)(1)(1)a a a a ++-;(2)23()a x y -+.【分析】(1)先提公因式a ,然后再利用平方差公式分解即可;(2)先提公因式-3a ,然后再利用完全平方公式进行分解即可.【详解】解:(1)5a a -=4(1)a a -=22(1)(1)a a a +-=()2(1)(1)1a a a a ++-;(2)22363ax axy ay ---=223(2)a x xy y -++=23()a x y -+.【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握并灵活运用提公因式法和公式法.2、(23)(23)++--m n m n【分析】首先对后面三项利用完全平方公式进行因式分解,然后利用平方差公式因式分解即可.【详解】解:原式22=-++4(96)m n mn22=-+2(3)m n=++--.m n m n(23)(23)【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.3、(1)x(x+4)(x﹣4);(2)﹣2xy(x﹣y)2.【分析】(1)先提公因式,再利用平方差公式;(2)先提公因式,再利用完全平方公式.【详解】解:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=﹣2xy(x2﹣2xy+y2)=﹣2xy(x﹣y)2.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.。

七年级数学下册 第4章《因式分解》培优测试题 (新版)浙教版

七年级数学下册 第4章《因式分解》培优测试题 (新版)浙教版

第4章《因式分解》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10 C﹒x2-8x+16=(x-4)2 D﹒6ab=2a·3b2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1 B﹒a2+a-2 C﹒a2+a D﹒(a-2)2-2(a+2)+1 3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2 C﹒5m2n D﹒5mn24﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b) B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x) D﹒a3-4a2=a2(a-4)5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2 B﹒4m2-m+14C﹒9-6y+y2 D﹒x2-2xy-y26﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5 B﹒5 C﹒1 D﹒-18﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1 B﹒1 C﹒-2 D﹒29﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490 B﹒245C﹒140 D﹒196010.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0 B﹒1 C﹒2 D﹒3二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其12.用简便方法计算:20172-34×2017+289=_________﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=___________﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(8分)分解因式:(1)-18a3b2-45a2b3+9a2b2﹒(2)5a3b(a-b)3-10a4b2(b-a)2﹒18.(10分)分解因式:(1)(x2+16y2)2-64x2y2﹒(2)9(x-y)2-12x+12y+4﹒19.(10分)分解因式:(1)ac-bc-a2+2ab-b2﹒(2)1-a2-4b2+4ab﹒20.(8分)已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒21.(8分)如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒22.(10分)设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2?若能,请求所有满足条件的k的值;若不能,请说明理由﹒23.(12分)如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?浙教版七下数学第4章《因式分解》单元培优测试题参考答案Ⅰ﹒答案部分:一、选择题11﹒答案不唯一,如:4a2-16=4(a+2)(a-2)﹒ 12﹒ 4000000﹒ 13﹒ 7﹒14﹒14﹒ 15﹒a2015(a-2)2﹒ 16﹒ 2a+b,a+b﹒三、解答题17.(1)解:-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)解:5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.(1)解:(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)解:9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.(1)解:ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)解:1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.解:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0 ①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.解:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.解:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.解:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒一、选择题1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10 C﹒x2-8x+16=(x-4)2 D﹒6ab=2a·3b解答:A﹒右边2x(x+4)-1不是积的形式,故A项错误;B﹒(x+5)(x-2)=x2+3x-10,是多项式乘法,不是因式分解,故B项错误;C﹒x2-8x+16=(x-4)2,运用了完全平方公式,符合因式分解的定义,故C正确;D﹒6ab=2a·3b,左边不是多项式,故D错误﹒故选:C﹒2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1 B﹒a2+a-2 C﹒a2+a D﹒(a-2)2-2(a+2)+1解答:因为A﹒a2-1=(a+1)(a-1);B﹒a2+a-2=(a+2)(a-1); C﹒a2+a=a(a+1);D﹒(a-2)2-2(a+2)+1=(a+2-1)2=(a+1)2,所以结果中不含有因式a+1的选项是B﹒故选:B﹒3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2 C﹒5m2n D﹒5mn2解答:多项式15m3n2+5m2n-20m2n3中,各项系数的最大公约数是5,各项都含有相同字母m,n,字母m的指数最低是2,字母n的指数最低是1,所以多项式的公因式是5m2n﹒故选:C﹒4﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b) B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x) D﹒a3-4a2=a2(a-4)解答:A﹒-a2-b2=-(a2+b2),不能进行因式分解,故A项错误;B﹒多项式x2+9不能进行因式分解,故B项错误;C﹒1-4x2=(1+2x)(1-2x),故C项错误;D﹒a3-4a2=a2(a-4),故D项正确﹒故选:D﹒5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2 B﹒4m2-m+14C﹒9-6y+y2 D﹒x2-2xy-y2解答:A﹒a2-2ab+4b2中间乘积项不是这两数的2倍,故A项错误;B﹒4m2-m+14中间乘积项不是这两数的2倍,故B项错误;C﹒9-6y+y2=(3-y)2,故C项正确;D﹒x2-2xy-y2不是两数的平方和,不能用完全平方公式,故D项错误﹒故选:C.6﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定解答:∵M=x2+y2,N=2xy,∴M-N=x2+y2-2xy=(x+y)2≥0,则M≥N.故选:B.7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()解答:∵(x+1)(x-3)=x2-3x+x-3=x2-2x-3,∴x2+ax+b=x2-2x-3,∴a=-2,b=-3,∴a+b=-5,故选:A﹒8﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1 B﹒1 C﹒-2 D﹒2解答:∵x2-x-1=0,∴x2-x=1,∴x3-2x+1=x3-x2+ x2-2x+1=x(x2-x) + x2-2x+1=x+ x2-2x+1=x2-x+1=1+1=2﹒故选:D﹒9﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490 B﹒245C﹒140 D﹒1960解答:由题意,知:a+b=7,ab=10,则a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=10×49=490﹒故选:A.10.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0 B﹒1 C﹒2 D﹒3解答:∵a=2017x+2015,b=2017x+2016,c=2017x+2017,∴a-b=-1,b-c=-1,a-c=-2,∴a2+b2+c2-ab-ac-bc=12[( a-b)2+( b-c)2+( a-c)2]=12×(1+1+4)=3﹒故选:D.二、填空题11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒解答:答案不唯一,如:4a2-16=4(a+2)(a-2),故答案为:4a2-16=4(a+2)(a-2)﹒12.用简便方法计算:20172-34×2017+289=_________﹒解答:20172-34×2017+289=20172-2×17×2017+172-172+289=(2017-17)2=20002=4000000,故答案为:4000000﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒解答:∵m-n=2,∴2m2-4mn+2n2-1=2(m-n)2-1=2×4-1=7﹒故答案为:7﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=_______﹒解答:∵x2-2xy+2y2+4y+4=x2-2xy+ y2+y2+4y+4=(x-y)2+(y+2)2=0,∴20x yy-=⎧⎨+=⎩,解得:22xy=-⎧⎨=-⎩,∴y x=(-2)-2=14,故答案为:14﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒解答:a2017-4a2016+4a2015=a2015·a2-a2015·4a+4a2015=a2015(a2-4a+4)=a2015(a-2)2,故答案为:a2015(a-2)2﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒解答:所画示意图如下,∵ 2a2+3ab+b2=a2+2ab+b2+a2+ab=(a+b)2+a(a+b)=(a+b)(a+b+a)=(a+b)(2a+b),∴所画长方形的长为2a+b,宽为a+b;故答案为:2a+b,a+b﹒三、解答题17.分解因式:(1)-18a3b2-45a2b3+9a2b2(2)5a3b(a-b)3-10a4b2(b-a)2解答:(1)-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)218.分解因式:(1)(x2+16y2)2-64x2y2(2)9(x-y)2-12x+12y+4解答:(1)(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.分解因式:(1)ac-bc-a2+2ab-b2(2)1-a2-4b2+4ab解答:(1)ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒解答:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0 ①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2 ②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有解答:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2?若能,请求所有满足条件的k的值;若不能,请说明理由﹒解答:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?解答:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章《因式分解》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10 C﹒x2-8x+16=(x-4)2 D﹒6ab=2a·3b2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1 B﹒a2+a-2 C﹒a2+a D﹒(a-2)2-2(a+2)+1 3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2 C﹒5m2n D﹒5mn24﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b) B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x) D﹒a3-4a2=a2(a-4)5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2 B﹒4m2-m+14C﹒9-6y+y2 D﹒x2-2xy-y26﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5 B﹒5 C﹒1 D﹒-18﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1 B﹒1 C﹒-2 D﹒29﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490 B﹒245C﹒140 D﹒196010.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0 B﹒1 C﹒2 D﹒3二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其12.用简便方法计算:20172-34×2017+289=_________﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=___________﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(8分)分解因式:(1)-18a3b2-45a2b3+9a2b2﹒(2)5a3b(a-b)3-10a4b2(b-a)2﹒18.(10分)分解因式:(1)(x2+16y2)2-64x2y2﹒(2)9(x-y)2-12x+12y+4﹒19.(10分)分解因式:(1)ac-bc-a2+2ab-b2﹒(2)1-a2-4b2+4ab﹒20.(8分)已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒21.(8分)如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒22.(10分)设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2?若能,请求所有满足条件的k的值;若不能,请说明理由﹒23.(12分)如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?浙教版七下数学第4章《因式分解》单元培优测试题参考答案Ⅰ﹒答案部分:一、选择题11﹒答案不唯一,如:4a2-16=4(a+2)(a-2)﹒ 12﹒ 4000000﹒ 13﹒ 7﹒14﹒14﹒ 15﹒a2015(a-2)2﹒ 16﹒ 2a+b,a+b﹒三、解答题17.(1)解:-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)解:5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.(1)解:(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)解:9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.(1)解:ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)解:1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.解:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0 ①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.解:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.解:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.解:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒一、选择题1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10 C﹒x2-8x+16=(x-4)2 D﹒6ab=2a·3b解答:A﹒右边2x(x+4)-1不是积的形式,故A项错误;B﹒(x+5)(x-2)=x2+3x-10,是多项式乘法,不是因式分解,故B项错误;C﹒x2-8x+16=(x-4)2,运用了完全平方公式,符合因式分解的定义,故C正确;D﹒6ab=2a·3b,左边不是多项式,故D错误﹒故选:C﹒2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1 B﹒a2+a-2 C﹒a2+a D﹒(a-2)2-2(a+2)+1解答:因为A﹒a2-1=(a+1)(a-1);B﹒a2+a-2=(a+2)(a-1); C﹒a2+a=a(a+1);D﹒(a-2)2-2(a+2)+1=(a+2-1)2=(a+1)2,所以结果中不含有因式a+1的选项是B﹒故选:B﹒3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2 C﹒5m2n D﹒5mn2解答:多项式15m3n2+5m2n-20m2n3中,各项系数的最大公约数是5,各项都含有相同字母m,n,字母m的指数最低是2,字母n的指数最低是1,所以多项式的公因式是5m2n﹒故选:C﹒4﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b) B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x) D﹒a3-4a2=a2(a-4)解答:A﹒-a2-b2=-(a2+b2),不能进行因式分解,故A项错误;B﹒多项式x2+9不能进行因式分解,故B项错误;C﹒1-4x2=(1+2x)(1-2x),故C项错误;D﹒a3-4a2=a2(a-4),故D项正确﹒故选:D﹒5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2 B﹒4m2-m+14C﹒9-6y+y2 D﹒x2-2xy-y2解答:A﹒a2-2ab+4b2中间乘积项不是这两数的2倍,故A项错误;B﹒4m2-m+14中间乘积项不是这两数的2倍,故B项错误;C﹒9-6y+y2=(3-y)2,故C项正确;D﹒x2-2xy-y2不是两数的平方和,不能用完全平方公式,故D项错误﹒故选:C.6﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定解答:∵M=x2+y2,N=2xy,∴M-N=x2+y2-2xy=(x+y)2≥0,则M≥N.故选:B.7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()解答:∵(x+1)(x-3)=x2-3x+x-3=x2-2x-3,∴x2+ax+b=x2-2x-3,∴a=-2,b=-3,∴a+b=-5,故选:A﹒8﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1 B﹒1 C﹒-2 D﹒2解答:∵x2-x-1=0,∴x2-x=1,∴x3-2x+1=x3-x2+ x2-2x+1=x(x2-x) + x2-2x+1=x+ x2-2x+1=x2-x+1=1+1=2﹒故选:D﹒9﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490 B﹒245C﹒140 D﹒1960解答:由题意,知:a+b=7,ab=10,则a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=10×49=490﹒故选:A.10.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0 B﹒1 C﹒2 D﹒3解答:∵a=2017x+2015,b=2017x+2016,c=2017x+2017,∴a-b=-1,b-c=-1,a-c=-2,∴a2+b2+c2-ab-ac-bc=12[( a-b)2+( b-c)2+( a-c)2]=12×(1+1+4)=3﹒故选:D.二、填空题11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒解答:答案不唯一,如:4a2-16=4(a+2)(a-2),故答案为:4a2-16=4(a+2)(a-2)﹒12.用简便方法计算:20172-34×2017+289=_________﹒解答:20172-34×2017+289=20172-2×17×2017+172-172+289=(2017-17)2=20002=4000000,故答案为:4000000﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒解答:∵m-n=2,∴2m2-4mn+2n2-1=2(m-n)2-1=2×4-1=7﹒故答案为:7﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=_______﹒解答:∵x2-2xy+2y2+4y+4=x2-2xy+ y2+y2+4y+4=(x-y)2+(y+2)2=0,∴20x yy-=⎧⎨+=⎩,解得:22xy=-⎧⎨=-⎩,∴y x=(-2)-2=14,故答案为:14﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒解答:a2017-4a2016+4a2015=a2015·a2-a2015·4a+4a2015=a2015(a2-4a+4)=a2015(a-2)2,故答案为:a2015(a-2)2﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒解答:所画示意图如下,∵ 2a2+3ab+b2=a2+2ab+b2+a2+ab=(a+b)2+a(a+b)=(a+b)(a+b+a)=(a+b)(2a+b),∴所画长方形的长为2a+b,宽为a+b;故答案为:2a+b,a+b﹒三、解答题17.分解因式:(1)-18a3b2-45a2b3+9a2b2(2)5a3b(a-b)3-10a4b2(b-a)2解答:(1)-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)218.分解因式:(1)(x2+16y2)2-64x2y2(2)9(x-y)2-12x+12y+4解答:(1)(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.分解因式:(1)ac-bc-a2+2ab-b2(2)1-a2-4b2+4ab解答:(1)ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒解答:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0 ①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2 ②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有K12教育资源学习用资料K12教育资源学习用资料 解答:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a 2+5ab +2b 2可分解为(2a +b )(a +2b ),故答案为:(2a +b )(a +2b )﹒(2)由题意,知:2a 2+2b 2=58,ab =10,则a 2+b 2=29,∴(a +b )2=a 2+2ab +b 2=29+20=49,∵a +b >0,∴a +b =7,则6a +6b =6(a +b )=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.设y =kx ,是否存在实数k ,使得多项式(x -y )(2x -y )-3x (2x -y )能化简5x 2?若能,请求所有满足条件的k 的值;若不能,请说明理由﹒解答:能,假设存在实数k ,(x -y )(2x -y )-3x (2x -y )=(2x -y )(-2x -y )=-(2x -y )(2x +y )=-(4x 2-y 2)=-4x 2+y 2,把y =kx 代入,原式=-4x 2+(kx )2=-4x 2+k 2x 2=(k 2-4)x 2,∵多项式(x -y )(2x -y )-3x (2x -y )能化简5x 2,∴(k 2-4)x 2=5x 2,∴k 2-4=5,解得k =±3,故满足条件的k 的值有3或-3﹒23.如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k +2和2k (其中k 取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?解答:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k +2)2-(2k )2=(2k +2+2k )(2k +2-2k )=4(2k +1),∴2k +2和2k 这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k +1和2k -1(k 取正整数),则(2k +1)2-(2k -1)2=(2k +1+2k -1)(2k +1-2k +1)=4k ×2=8k ,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数, 所以两个连续奇数的平方差不是“神秘数”﹒。

相关文档
最新文档