第八章 图与网络分析

合集下载

运筹学 填空题 及基础知识

运筹学 填空题 及基础知识
7.线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y﹡= CBB-1。
8.若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡= Y﹡b。
9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。
10.若X﹡和Y﹡分别是线性规划的原问题和对偶问题的最优解,则有CX﹡=Y*b。
6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7.线性规划问题有可行解,则必有基可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9.满足非负条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
14.(单纯形法解基的形成来源共有三 种
15.在大M法中,M表示充分大正数。
七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。
第四章 线性规划的对偶理论
一、填空题
1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的线性规划问题与之对应,反之亦然。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
第五章 线性规划的灵敏度分析
一、填空题
1、灵敏度分析研究的是线性规划模型的原始、最优解数据变化对产生的影响。

《运筹学》第8章_图与网络分析

《运筹学》第8章_图与网络分析
V = {v1 ,v 2 , v 3 , v 4 , v 5 , v 6 }
v1 e1 e2 e5 e8 v5 e6 e7 v3 v2 e3 e v4 4
e 5 = { v1 , v 3 }
e9 = {v 6 , v 6 }
E = {e1 ,2 , e3 , e4 , e5 , e6 , e7 , e8 , e9 , e10 } e e1 = {v1 , v 2 } e 2 = { v1 , v 2 } e10 e 3 = {v 2 , v 3 } e = {v , v }

C

B A
D
图的基本概念与基本定理
在实际的生产和生活中,人们为了 反映事物之间的关系,常常在纸上用点 点 和线来画出各式各样的示意图。 和线 是我国北京、上海、重庆等十四个城 市之间的铁路交通图,这里用点表示城 市,用点与点之间的线表示城市之间的 铁路线。诸如此类还有城市中的市政管 道图,民用航空线图等等。

v6
v1 3 6
4 7 3
v2 2 v3 5
3
4 2
权矩阵
v1 0 v 2 4 v 3 0 A= v4 6 v5 4 v6 3 v1
v5
v4
邻接矩阵
v1 0 v 2 1 v 3 0 B= v 4 1 v 5 1 v 6 1 v1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 v 2 v 3 v4 v5 v6
4 3 4
e6 = {v 3 , v 5 }
e8 = {v 5 , v 6 } e10 = {v1 , v6 }
v6
e 7 = {v 3 , v 5 }

计算机网络安全第八章IDS

计算机网络安全第八章IDS
2 之 2
误用检测模型
目录>>IDS的分类>>按照分析方法分
2 之 1
网络数据
日志数据
误用检测
入侵行为
攻击模式描述库
规则匹配
动态产生新描述动态更新描述
特 点
目录>>IDS的分类>>按照分析方法分
2 之 2
误报率低,漏报率高。攻击特征的细微变化,会使得误用检测无能为力。
按照数据来源分
目录
10 之 8
建立预警机制采取灾备措施提高保障意识
从预警到保障
IDS发展过程
— 概念的诞生
目录
10 之 9
1980年4月,James P. Anderson为美国空军做了一份题为《Computer Security Threat Monitoring and Surveillance》(计算机安全威胁监控与监视):
异常检测模型
目录>>IDS的分类>>按照分析方法分
2 之 1
网络数据
日志数据
异常检测
入侵行为
正常行为描述库
规则不匹配
动态产生新描述动态更新描述
特 点
目录>>IDS的分类>>按照分析方法分
异常检测系统的效率取决于用户轮廓的完备性和监控的频率;因为不需要对每种入侵行为进行定义,因此能有效检测未知的入侵;系统能针对用户行为的改变进行自我调整和优化,但随着检测模型的逐步精确,异常检测会消耗更多的系统资源;漏报率低,误报率高。
统计分析
目录>>IDS的基本结构>>信息分析
统计分析方法首先给系统对象(如用户、文件、目录和设备等)创建一个统计描述,统计正常使用时的一些测量属性(如访问次数、操作失败次数和延时等)。 测量属性的平均值和偏差将被用来与网络、系统的行为进行比较,任何观察值在正常值范围之外时,就认为有入侵发生。

804运筹学考研大纲

804运筹学考研大纲
三、考试时间与试卷结构
考试时间为180分钟,满分150分。试题的类型含:计算题和建模题,或上述题型的综合。
四、参考书目
胡运权,运筹学教程(1998年版或2003年第二版),清华大学出版社
胡运权,运筹学习题集(第三版),清华大学出版社,2002年
一、考试要求
要求考生系统掌握运筹学的基本概念、主要理论和方法,各类模型的结构特点、实际含义及一般问题的建模技巧。
二、考试内容
第一章、第二章 线性规划及单纯形法、线性规划的对偶理论与灵敏度分析
1、基本内容:线性规划问题的数学模型;图解法;基本概念和基本定理;单纯形法原理与计算步骤;解的情况判别;线性规划问题的建模与应用。线性规划问题的原问题与对偶问题的对应关系,对偶问题的性质;影子价格;了解对偶单纯形法;价值系数cj和资源可用量bi变化时的灵敏度分析。
2、重点内容:M/M/l等待制排队系统的分析和优化
第十三章 决策分析
1、基本内容:决策分析的基本概念、基本类型;风险型决策问题的期望值和决策树方法;不确定型决策方法;熟悉效用函数方法和层次分析方法基本思想。
2、重点内容:决策问题益损系数矩阵的形成和决策问题的建立;风险型决策问题的期望值和决策树方法(包括多个决策点的决策树方法);不确定型决策方法;效用函数方法基本思想。
第七章 动态规划
1、基本内容:动态规划的基本概念;动态规划数学模型的特点及构建;离散确定型动态规划模型的求解;几个典型的动态规划问题建模和求解;一般数学规划模型的动态规划解法。
2、重点内容:最段路问题、资源分配问题、背包问题、复合系统可靠性问题等典型动态规划问题的建模和求解。
第八章 图与网络分析
1、基本内容:PERT网络图的要素与构建;PERT网络图时间参数的计算;网络的关键路线;最低成本日程(工期~成本优化)问题。

运筹学6(图与网络分析)

运筹学6(图与网络分析)

定义7:子图、生成子图(支撑子图)
图G1={V1、E1}和图G2={V2,E2}如果 V1 V2和E1 E2 称G1是G2的一个子图。
若有 V1=V2,E1 E2 则称 G1是G2的一 个支撑子图(部分图)。
图8-2(a)是图 6-1的一个子图,图8-2 (b)是图 8-1的支撑子图,注意支撑子图 也是子图,子图不一定是支撑子图。 e1
v2 ▲如果链中所有的顶点v0,v1,…,vk也不相
e1 e2 e4 v1 e3
v3 e5
同,这样的链称初等链(或路)。
e6
▲如果链中各边e1,e2…,ek互不相同称为简单链。
e7
e8
▲当v0与vk重合时称为回路(或圈),如果边不 v4
v5
重复称为简单回路,如果边不重复点也不重复
则称为初等回路。
图8-1中, μ1={v5,e8,v3,e3,v1,e2,v2,e4,v3,e7,v5}是一条链,μ1中因顶 点v3重复出现,不能称作路。
e1
e2 e4 v1 e3
v2
v3
e5
e6
e7
e8
v4
v5
定理1 任何图中,顶点次数的总和等于边数的2倍。
v1
v3
v2
定理2 任何图中,次为奇数的顶点必为偶数个。
e1
e2 e4 v1 e3
v2
v3
e5
e6
e7
e8
v4
v5
定义4 有向图: 如果图的每条边都有一个方向则称为有向图
定义5 混合图: 如何图G中部分边有方向则称为混合图 ② ⑤ ④
定理4 有向连通图G是欧拉图,当且仅当G中每个顶点的出 次等于入次。
② 15
9 10

管理运筹学判断题背诵讲义

管理运筹学判断题背诵讲义

管理运筹学判断题背诵讲义第一章 线性规划与单纯形表a)图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的; b) 线性规划模型中增加一个约束条件,可行域的范围般将缩小,减少一个约束条件,可行域的范围一般将扩大;c) 线性规划问题的每一个基解对应可行域的一个顶点; d)如线性规划问题存在可行域,则可行域定包含坐标的原点;e)对取值无约束的变量j x ,通常令'''j j j x x x =-其中'j x ≥0,''j x ≥0,在用单纯形法求得的最优解中有可能同时出现'j x >0,''j x >0;f)用单纯形法求解标准型的线性规划问题时,与j σ>0对应的变量都可以被选作换人变量;g)单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;h) 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,将使目标函数值得到最快的增长;i)一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从 单纯形表中删除,而不影响计算结果;j)线性规划问题的任-可行解都可以用全部基可行解的线性组合表示;k)若X 1,X 2分别是某一线性规划问题的最优解则X=1λX 1 +2λX 2也是该线性规划问题的最优解,其中1λ,2λ可以为任意正的实数;1)线性规划用两阶段法求解时,第一阶段的目标函数通常写为 minz=ai ix ∑(ai x 为人工变量),但也可写为minz=i ai ik x ,只要所有k i ,均为大于零的常数; m)对一个有n 个变量、m 个约束的标准型的线性规划问题,其可行域的顶点恰好为m n c 个;n) 单纯形法的迭代计算过 程是从一个可行解转换到目标函数值更大的另一个可行解;o)线性规划问题的可行解如为最优解,则该可行解定是基可行解;p)若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;q)线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;r) 将线性规划约束条件的“≤”号及“≥”号变换成“一”号,将使问题的最优目标函数值得到改善;s)线性规划目标函数中系数最大的变量在最优解中总是取正的值:t)一个企业利用3种资源生产4种产品建立线性规划模型求解得到的最优解中最多只含有3种产品的组合;u)若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解; v)一个线性规划问题求解时的选代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。

运筹学综合练习题

运筹学综合练习题

《运筹学》综合练习题第一章 线性规划及单纯形法1、教材43页——44页题2、教材44页题3、教材45页题4、教材46页题5、教材46页题6、补充:判断下述说法是否正确LP 问题的可行域是凸集。

LP 问题的基本可行解对应可行域的顶点。

LP 问题的最优解一定是可行域的顶点,可行域的顶点也一定是最优解。

若LP 问题有两个最优解,则它一定有无穷多个最优解.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中∶≥"'j j x x ,在用单纯形法求得的最优解中,不可能同时出现0"'j j x x .当用两阶段法求解带有大M 的LP 模型时,若第一阶段的最优目标函数值为零,则可断言原LP 模型一定有最优解。

7、补充:建立模型(1)某采油区已建有n 个计量站B 1,B 2…B n ,各站目前尚未被利用的能力为b 1,b 2…b n (吨液量/日)。

为适应油田开发的需要,规划在该油区打m 口调整井A 1,A 2…A m ,且这些井的位置已经确定。

根据预测,调整井的产量分别为a 1,a 2…a m (吨液量/日)。

考虑到原有计量站富余的能力,决定不另建新站,而用原有老站分工管辖调整井。

按规划要求,每口井只能属于一个计量站。

假定A i 到B j 的距离d ij 已知,试确定各调整井与计量站的关系,使新建集输管线总长度最短。

(2)靠近某河流有两个化工厂(见附图),流经第一个工厂的河流流量是每天500万立方米;在两个工厂之间有一条流量为每天200万立方米的支流。

第一个工厂每天排放工业污水2万立方米;第二个工厂每天排放工业污水1.4万立方米 。

从第一个工厂排出的污水流到第二个工厂之前,有20%可自然净化。

根据环保要求,河流中工业污水的含量不应大于%,若这两个工厂都各自处理一部分污水,第一个工厂的处理成本是1000元/万立方米,第二个工厂的处理成本是800元/万立方米。

图与网络分析到最短路问题

图与网络分析到最短路问题

武汉
南京
上海
第5页
引例3
有六支球队进行足球比赛,我们分别用点v1…v6 表示这六支球队,它们之间的比赛情况,也可以用 图反映出来,已知v1队战胜v2队,v2队战胜v3队,v3 队战胜v5队,如此等等。这个胜负情况,可以用下 图所示的有向图反映出来。
v2
v4
v1
v6
v3
v5
第6页
图的基本概念与模型
第4页
引例2
在实际的生产和生活中,人们为了反映事物之间的 关系,常常在纸上用点和线来画出各式各样的示意图。
天津
北京
塘沽
左图是我国北京、上海、重庆等
十四个城市之间的铁路交通图,
济南
青岛
这里用点表示城市,用点与点之
间的线表示城市之间的铁路线。
诸如此类还有城市中的市政管道
徐州
图,民用航空线图等等。
郑州
连云港
点:研究对象(车站、国家、球队); 点间连线:对象之间的特定关系(陆地间有桥、铁 路线、两球队比赛及结果)。 对称关系:桥、道路、边界;用不带箭头的连线表 示,称为边。 非对称关系:甲队胜乙队,用带箭头的连线表示, 称为弧。
图:点及边(或弧)组成。
注意:一般情况下,图中的相对位置如何,点与点之间线 的长短曲直,对于反映研究对象之间的关系,显的并不重 要,因此,图论中的图与几何图,工程图等本质上不同。
v3 A 2 3 0 8 5
v4

4
4
8
0
6

v5
7 0 5 6 0
注:当G为无向图时,权矩阵为对称矩阵。
图的矩阵表示
•邻接矩阵
图G=(V,E),p=n,构造矩阵

8.1__图与网络分析基本概念

8.1__图与网络分析基本概念

• 不连通图中的每个连通的部分,称为原图的连通分图. 链、圈、路、回路都是原图的连通分图.
16
5、连通图、连通分图、子图
• 给定图 G
(V , E )
,如果有 (V , E ),使得 V V,E E , G 为 则称 G 为 G 的一个子图.当 V V 时, 则称 G G 的一个
而 e i 是 v i , v j的关联边. • 同一条边的两个端点称为相邻顶点.具有共同端点的边 称为相邻边. • 一条边的两个端点相同,称为环.具有两个共同端点的
两条边称为多重边. • 既没有环也没有多重边的图称为简单图.
9
3、端点、关联边、相邻、次
• 一个没有环,但允许有多重边的图称为多重图. 今后若不加特别说明,所研究的图均为简单图. • 在无向图中,以顶点 v 为端点的边的数目,称为该顶点 的次,记作 d ( v ) . 次为1的点称为悬挂点,连接悬挂点的边称为悬挂边. 次为0的点称为孤立点. 仅有孤立点的图为零图. 次为奇数的点称为奇点,次为偶数的点称为偶点. 图中顶点均为偶点的图称为偶图.
链中没有重复点和重复边的链称为初等链. • 链 ( v i , v i , v i ) 中,若 v i v i ,则称此链为圈.
1 1 k
1
k
没有重复点和重复边的圈称为初等圈.
14
4、链、圈、路、回路
• 设D是一个有向图, G是它的基础图.若 ( v i , e i , ...., e i , v i )
6
无向图
有向图
混合图
• 图G或D的边数记作 m ( G ) 或 m ( D ) , 顶点个数记作n ( G ) 或 n ( D ) .在不引起混淆情况下,也简记为m , n .

图与网络分析试题及答案

图与网络分析试题及答案

图与网络分析试题及答案一、填空题1.图的最基本要素是点、点与点之间构成的边2.在图论中,通常用点表示,用边或有向边表示研究对象,以及研究对象之间具有特定关系。

3.在图论中,通常用点表示研究对象,用边或有向边表示研究对象之间具有某种特定的关系。

4.在图论中,图是反映研究对象_之间_特定关系的一种工具。

5.任一树中的边数必定是它的点数减1。

6.最小树问题就是在网络图中,找出若干条边,连接所有结点,而且连接的总长度最小。

7.最小树的算法关键是把最近的未接_结点连接到那些已接结点上去。

8.求最短路问题的计算方法是从0≤f ij≤c ij开始逐步推算的,在推算过程中需要不断标记平衡和最短路线。

二、单选题1、关于图论中图的概念,以下叙述(B)正确。

A图中的有向边表示研究对象,结点表示衔接关系。

B图中的点表示研究对象,边表示点与点之间的关系。

C图中任意两点之间必有边。

D图的边数必定等于点数减1。

2.关于树的概念,以下叙述(B)正确。

A树中的点数等于边数减1 B连通无圈的图必定是树C含n个点的树是唯一的D任一树中,去掉一条边仍为树。

3.一个连通图中的最小树(B),其权(A)。

A是唯一确定的 B可能不唯一 C可能不存在 D一定有多个。

4.关于最大流量问题,以下叙述(D)正确。

A一个容量网络的最大流是唯一确定的B达到最大流的方案是唯一的C当用标号法求最大流时,可能得到不同的最大流方案D当最大流方案不唯一时,得到的最大流量亦可能不相同。

5.图论中的图,以下叙述(C)不正确。

A.图论中点表示研究对象,边或有向边表示研究对象之间的特定关系。

B.图论中的图,用点与点的相互位置,边的长短曲直来表示研究对象的相互关系。

C.图论中的边表示研究对象,点表示研究对象之间的特定关系。

D.图论中的图,可以改变点与点的相互位置。

只要不改变点与点的连接关系。

6.关于最小树,以下叙述(B)正确。

A.最小树是一个网络中连通所有点而边数最少的图B.最小树是一个网络中连通所有的点,而权数最少的图C.一个网络中的最大权边必不包含在其最小树内D.一个网络的最小树一般是不唯一的。

Python中的数据分析和统计方法

Python中的数据分析和统计方法

Python中的数据分析和统计方法Python是一门功能强大的编程语言,广泛应用于数据分析和统计方法。

本文将详细介绍Python中常用的数据分析和统计方法,并按类进行章节划分,深入探讨每个章节的具体内容。

第一章:数据预处理在进行数据分析之前,通常需要对原始数据进行清洗和预处理。

Python提供了很多用于数据预处理的库和方法。

其中,pandas是最常用的库之一。

pandas可以用于数据的读取、清洗、转换和合并等操作。

另外,NumPy库也提供了许多用于数组操作和数值运算的函数,可用于数据预处理过程中的一些计算。

第二章:数据可视化数据可视化是数据分析的重要环节,它可以使得数据更加直观和易于理解。

Python中有多个可视化库可以使用,如Matplotlib、Seaborn和Plotly等。

这些库可以生成各种类型的图表,如线图、散点图、柱状图和饼图等。

通过合理选择和使用可视化方法,可以更好地展示数据的分布和趋势。

第三章:统计描述统计描述是对数据进行摘要和概括的过程。

在Python中,可以使用pandas库的describe()函数来计算数据的基本统计量,如均值、标准差、最大值和最小值等。

此外,还可以使用scipy库中的一些函数来计算概率分布、置信区间和假设检验等统计指标。

第四章:回归分析回归分析是数据分析中常用的一种方法,用于探究变量之间的关系和预测未来趋势。

Python中的statsmodels库提供了许多回归分析的方法,如线性回归、逻辑回归和多元回归等。

通过回归分析,可以得到模型的参数估计和拟合优度等指标,进而对未知数据进行预测和推测。

第五章:聚类分析聚类分析是将数据按照相似性进行分组的一种方法。

在Python 中,可以使用scikit-learn库中的KMeans算法来进行聚类分析。

KMeans算法通过迭代计算将数据划分为K个簇,使得同一簇内的数据相似度最高,不同簇之间的相似度最低。

聚类分析可以帮助我们发现数据中潜在的模式和规律。

《商务数据分析》第八章——社会网络分析模型

《商务数据分析》第八章——社会网络分析模型
的融合理论和方法,来理解网络的属性、规律、特点、传播情况的
分析方法叫做社会网络分析(Social Network Analysis ,SNA)
商务数据分析
1. 基本结构
• 社会网络图由节点和边组成。
• 边表示了节点之间的某一种关系,边有不同的划分标准。
• 可以按照是否有权重来划分。边的权重代表着关系的重要程度。
要经过某一点,那么这一点在网络中很重要,这个点在一定程度上控制了网
络的信息的传递。
• 中间中心性便是衡量某节点对其他节点控制程度的指标。
• 点的中间中心度评价的是通过某个点的最短路径数,
• 具体来说,假设点j和点k之间存在的最短路径条数用 表示,点j和点k的全部的最短路
径中经过第三个点i的数目用 ()来表示。点i能够控制这两个点的交往能力用 ()
想来判定节点的重要性
• 可以理解为邻居节点重要性加权求和的结果。
• 著名的Google pagerank算法是特征向量中心性的一个变种算法。
商务数据分析
2.中心性
• (5)四种中心性的关系
• 度数中心度衡量的是网络中的节点的局部中心指数
• 度数中心度大但是中间中心度小,说明一个节点虽然与很多其他节点相连,但是其他节点之间的通信
示时,相应位置上的元素值是连接的权重。
商务数据分析
3. 路径
• 社会网络具有连接性,从而具有传播性。
• 路径(path)是一个有序节点集合,序列中任意两个相邻节点之
间都一条边相连,当然路径从另一角度可以定义为连接这些点的
边的集合。
• 路径也可以包含重复的点,一般情况下,不包含重复的点的路径
我们称之为简单路径。
准化中心度)和网络的度中心势。

《图与网络分析》课件

《图与网络分析》课件

网络的定义与分类
总结词
网络的定义与分类是理解图与网络分析的关键。
详细描述
网络是由节点和边构成的集合,用于描述系统中各个组成部分之间的关系。根据 不同的分类标准,网络可以分为多种类型,如无向网络和有向网络、单层网络和 多层网络等。
图与网络的应用领域
总结词
图与网络的应用领域广泛,包括计算机科学、交通运输、生物信息学等。
从任意一个顶点开始,每次选择一条与已选顶点集合相连的边中权 重最小的边,将其加入最小生成树中。
最短路径算法
Dijkstra算法
01
用于求解图中从一个顶点到其他所有顶点的最短路径。
Bellman-Ford算法
02
用于求解图中所有顶点之间的最短路径。
Floyd-Warshall算法
03
用于求解图中所有顶点之间的最短路径,时间复杂度较低。
网络流算法
01
Ford-Fulkerson算法
用于求解最大网络流问题,通过不断寻找增广路径来增加网络的流量。
02
Dinic算法
基于层次搜索和增广路径的算法,用于求解最大网络流问题。
03
Edmonds-Karp算法
基于广度优先搜索的算法,用于求解最大网络流问题。
03
网络分析与应用
网络中心性分析
节点中心性
社区结构特征
包括社区大小、社区密度、社区连通性等。
社区结构分析的应用
在社交网络中识别用户群体,在组织结构中划分部门和团队等。
网络动态分析
网络动态模型
常见的网络动态模型有随机游走、马尔科夫链和自组 织映射等。
网络动态特征
包括节点的活跃度、网络的演化规律和网络的鲁棒性 等。
网络动态分析的应用

图与网络分析-(共34张PPT)

图与网络分析-(共34张PPT)
4、环:某一条孤起点=终点,称为环。 5、基础图:给定一个有向图D=(V,A) ,从D中去掉所有
弧上的箭头,所得到的无向图。记之为G(D)。
第九页,共34页。
6、链:设(vi1,ai1,vi2,ai2,…,vik-1,aik-1,vik)是D中的
一个点弧交错序列,如果这个序列在基础图G(D)中
所对应的点边序列是一条链,则称这个点弧交错序列
v(f) fij–fji= 0
–v(f)
i=s is,t
i=t
且使v(f)达到最大。
第二十三页,共34页。
3、增广链 给定可行流f={fij},使fij=cij的弧称为饱和弧,使
fij<cij的弧称为非饱和弧,把fij=0的弧称为零流弧, fij>0
的弧称为非零流弧。
若是网络中连接发点vs和收点vt的一条链,定义链
22
21
44
(0,Vvs)1
89
62
31
32 63
45
24
47
(44,V1) v4
37 27
(78,V3)
v6
32
v3 (31, V1) 34
第十九页,共34页。
v5 (62,V1)
第三节 最大流问题
如下是一运输网络,弧上的数字表示每条弧上 的容量,问:该网络的最大流量是多少?
4 vs
3
v1
3
1 2
2
v2
v3 3
2
vt
4 v4
第二十页,共34页。
一、基本概念和基本定理
1、网络与流
定义1:给定一个有向图D=(V,A),在V中有一个发点 vs和一收点vt,其余的点为中间点。对于每一条弧 (vi,vj),对应有一个c(vi,vj)0,(cij)称为弧的容量。这 样的有向图称为网络。记为D=(V,A,C)。

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第8章 图与网络分析

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第8章 图与网络分析

(a)
(b)
(c)
图 8-9 图、子图、支撑子图
(4)图的同构 设 G1 与 G2 是两个同阶图,若顶点集合 V1 和 V2 以及边集 E1 和 E2 之间在保持关联性
质条件下的一一对应,则称图 G1 和图 G2 同构。 例如:图 8-10(a)和图 8-10(b)就为同构。
(a)
(b)
图 8-10 同构图
(10)定理 8.1 对于图 G=(V ,E) ,其中 V = n , E = m ,则有:
∑d (v) = 2m
(8-2)
v∈V
证明:每条边都有两个端点,在计算顶点的次时,每个端点都要计算对应边次,故共有
2m 次。
通俗地讲,就是线有两头,共有 2m 个线头的意思。
(11)定理 8.2 奇次顶的总数是偶数。
第八章 图与网络分析
8.1 图与网络的基本知识
8.1.1 图与网络的基本概念 8.1.1.1 图的定义 自然界和人类社会中,大量的事物以及事物之间的关系,常可以用图形来描述。例如: 图 8-4 所示的我国北京、上海等十个城市间的交通图反映了这十个城市间铁路
分布情况。这里用点代表城市,用点和点之间的连线代表这两个城市之间有直通铁路。
图 8-7 一个无向图
G = (V, E) V= {v1, v2 ,v3 , v4} E={e1, e2 ,e3 , e4 ,e5 , e6 , e7}
其中
e1 = [v1 ,v2 ] , e2 = [v1 ,v2 ] , e3 = [v2 ,v3 ] , e4 = [v3 ,v4 ] ,
图 8-8 是一个有向图。该图可以表示为:
图 8-4 十个城市间铁路分布图
又如某单位储存五种化学药品,其中,某些药品是不能放在同一库房里的,为了反映这 种情况,可以用点 v1 、 v2 、 v3 、 v4 、 v5 分别代表这五种药品,若药品 vi 和药品 v j 是不能存 放在同一库房的,则在 vi 和 v j 之间连一条线,如图 8-5 所示。如果问题归结为寻求存放这种 化学药品的最少库房个数,则该问题就是染色问题。事实上,至少需要三个库房来存放这些 药品,即 v1 和 v5 、 v2 和 v4 、 v3 各存放在一个库房里。

运筹学图与网络分析

运筹学图与网络分析
v6
07
含有奇点的连通图中不含欧拉圈,此时,最优的邮递路线是什么呢?
08
求解中国邮路问题的奇偶点图上作业法
奇偶点表上作业法
奇偶点表上作业法 (1)找出奇点(一定为偶数个),在每两个奇点之间找一条链,在这些链经过的所有边上增加一条边,这样所有的奇点变为偶点,一定存在欧拉圈,但是不一定是路线最短的,所以需要检验和调整。 (2)检验增加的边的权值是否是最小的。 定理3 假设M是使得图G中不含奇点的所有增加边,则M是权值总和为最小的增加边的充分必要条件是: 1)图G中每条边上最多增加一条边; 2)在图G的每个圈上,增加的边的总权值不超过该圈总权值的一半。 如果上述两个条件都满足则已经找到权值最小的欧拉圈 否则转入3) 3)调整增加边。如果1)不满足,则从该条边的增加边中去掉偶数条; 如果2)不满足,则将这个圈上的增加边去掉,将该圈的其余边上添加增 加边,转入(2)
v1
v2
v3
v4
v5
v1
v2
v3
v4
v5
图2
图3
如果在比赛中: A胜E, B胜C, A胜D, C胜A, E胜D, A胜B,
v1
v2
v3
v4
v5
注:本章所研究的图与平面几何中的图不 同,这里我们只关心图有几个点,点与点 之间有无连线,两条线有无公共顶点,点 与线是否有关联,至于连线的方式是直线 还是曲线,点与点的相对位置如何都是无 关紧要的。
求从v1到v8的最短路
(0)
(1,1)
(1,3)
(3,5)
(2,6)
(5,10)
(5,9)
(5,12)
注:在给顶点编号时,如果在多个为标号点均取得最小值Llk则对这多个点同时标号,这些点的第二个标号相同,但是第一个标号不一定相同。

运筹学—第八章 图与网络分析

运筹学—第八章 图与网络分析

v5 1 v6 7 1 v7 -5 -3
e1 {v1 , v2 }
e3 {v2 , v3 }
e2 {v1 , v2 }
e4 {v3 , v4 } e6 {v3 , v5 } e8 {v5 , v6 } e10 {v1 , v6 }
e5 {v1 , v3 }
e7 {v3 , v5 } e9 {v6 , v6 }
v1
第二节 树 一、 树的概念和性质 例8.3 已知有六个城市,它们之间 要架设电话线,要求 任意两个城市均可以互相通话,并且电话线的总长度最短。
v1 v6 v5 v2
v3
v4
定义9 一个连通的无圈的无向图叫做树。
作为树T的定义,下列定义是等价的: (1)T是一个树。(设其顶点数为n ,边数为 m ) (2)T无圈,且m=n-1。 (3)T连通,且m=n-1 。 (4)T无圈,但在树中不相邻的两个点之间加上一条边, 那么恰好得到一个圈。 (5)T中任意两个顶点之间有且仅有一条链。 (6)T连通,但去掉T的任一条边,T就不连通。
( vi , v j )
一、 狄克斯屈拉(Dijkstra)算法 适用于wij≥0,给出了从vs到任意一个点vj的最短路。
算法步骤: 1.给始点vs以P标号 P(vs ) 0 ,这表示从vs到 vs的最短距离 T 为0,其余节点均给T标号, (vi ) (i 2 , 3,, n) 。 2.设节点 vi 为刚得到P标号的点,考虑点vj,其中 (vi , v j ) E ,且vj为T标号。对vj的T标号进行如下修改:
e1 v1
e2 e5
e8 v5
v2
d(v1)= 4,d(v6)= 4
e10 v6 e9
e3 e v4 4 e6 e7 v3

《运筹学》 第八章图与网络分析习题及 答案

《运筹学》 第八章图与网络分析习题及 答案

《运筹学》第八章图与网络分析习题1.思考题(1)解释下列名词,并说明相互之间的区别与联系:①顶点,相邻,关联边;②环,多重边,简单图;③链,初等链;④圈,初等圈,简单拳;⑤ 回 路,初等路;⑥节点的次,悬挂点,孤立点;⑦)连通图,连同分图, 支 撑子图;⑧有向图,基础图,赋权图。

⑨子图,部分图,真子图.(2)通常用记号G=(V,E)表示一个图,解释V及E的涵义及这个表达式 的涵义.(3)通常用记号D=(V,A)表示一个有向图,解释V及A的涵义及这个表 达式的涵义.(4) 图论中的图与一般几何图形的主要区别是什么? (5) 试述树与图的区别与联系.(6) 试述 求最短路问题的Dijkstra 算法的基本思想及其计算步骤. (7) 试述寻求最大流的标号法的步骤与方法.(8) 简述最小费用最大流的概念及其求解的基本思想和方法.(9) 通常用记号N=(V,A,C)表示一个网络,试解释这个表达式的涵义. (10) 在最大流问题中,为什么当存在增广链时,可行流不是最大流? (11) 试叙述最小支撑树、最大流、最短路等问题能解决那些实际问题。

2.判断下列说法是否正确(1) 图论中的图是为了研究问题中有哪些对象及对象之间的关系,它与图的几何形状无关。

(2) 一个图G 是树的充分必要条件是边数最少的无孤立点的图。

(3) 如果一个图G 从V 1到各点的最短路是唯一的,则连接V 1到各点的最短路,再去掉重复边,得到的图即为最小支撑树。

(4 )图G 的最小支撑树中从V 1到V n 的通路一定是图G 从V 1到V n 的最短路。

(5) {f ij =0}总是最大流问题的一个可行流。

(6 )无孤立点的图一定是连通图。

(7) 图中任意两点之间都有一条简单链,则该图是一棵树。

(8) 求网络最大流的问题总可以归结为求解一个线性规划问题。

(9)在图中求一点V1到另一点Vn 的最短路问题总可以归结为一个整数规划问题 (10) 图G 中的一个点V 1总可以看成是G 的一个子图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V4
16
赋权图 网络
赋权图:设图G=(V,E),对G的每一条边(vi,vj)相应赋 予数量指标 wij , wij 称为边 (vi,vj) 的权 , 赋予权的图 G 称 为赋权图。赋权图中的权可以代表距离、费用、通 过能力(容量)等等。 网络:若G=(V,E)为一赋权图,并在其顶点集合V中 指定了起点和终点,其余的点为中间点,这样的赋 权图称为网络图(简称网络)。
v2 9 v1 20
10
v3
15 7 v4 14 6 19 25
v5
v6
子图,支撑子图
图G1={V1、E1}和图G2={V2,E2},如果有
V1 V2和E1 E2 称G1是G2的一个子图。
若有 V1=V2,E1 E2 ,则称G1是G2的一个 支撑子图。 v2
v1 e4 e3 v3 e6 e8 e6 e2
第8章 图与网络优化
8.1 8.2 8.3 8.4 8.5 8.6 图的基本概念 树 最短路问题 网络最大流 最小费用最大流问题 中国邮递员问题
图论起源——哥尼斯堡七桥问题
A C B
问题:一个散步者能否从任一 块陆地出发,走过七座桥,且 每座桥只走过一次,最后回到 出发点?
A
D
C
B 欧拉证明了上述图形一笔画 是不可能的,因为图中每一个 点都只和奇数条线相关联. 他的结论是:图形能一笔画 的充要条件是图形的奇顶点 (连接奇数条线的顶点)的个 数为零
图的基本性质:
定理1 图G=(V,E),顶点次数之和等于所有边数的2 倍。
证明:由于每条边必与两个顶点关联,在计算点的次时,每 条边均被计算了两次,所以顶点次数的总和等于边数的2倍。
定理2 任何图中,次为奇数的顶点必为偶数个。
证明:设V1和V2分别为图G中奇点与偶点的集合。由定理1可 得:
vV1
e1 v1 e4 e5 e3 v3 e8
e4 v2 e5 e6 e8 v3 v2
e2
e7
v4
v5
(G图)
e7
v4 v5
v4
v5
(a)
(b)
图的矩阵描述: 1. 邻接矩阵
对于图G=(V,E),| V |=n, | E |=m,有nn阶方矩阵 A=(aij) nn,其中
1 当且仅当vi与v j之间有关联边时 aij 0 其它
v i 到v之间的距离,则可构造距离矩阵 A= a ij , j nn
其中
w ij a ij = 0 或
V5
[vi ,v j ] E 其他
如:以下图中的权表示点与点之间距离
7
V1
4 2
6
V4 4
v1 v1 0 v 2 9 A= v3 2 v4 4 v5 7
e3 v3 e8
e7
v5
图的次: 一个图的次等于各点的次之和。
出次与入次
有向图中,以vi为始点的边数称为点 vi的出 次,用d+(vi)表示;以vi为终点的边数称为点vi 的入次,用表示d-(vi) ;vi 点的出次和入次之 和就是该点的次。 有向图中,所有顶点的入次之和等于所有顶 点的出次之和。
v8 v7 v6 v5
v3 v4
8.1 图的基本概念
图是由点和线构成的。 图的基本概念: 边:图中不带箭头的连线叫做边(edge),边的集合记为E , 一条边可以用两点[ vi,vj ]表示,ej= [ vi,vj ]. 弧:图中带箭头的连线叫做弧 (arc) ,弧的集合记为 A,一 条弧也是用两点表示,ak= (vi,vj ),弧有方向:vi为始点,vj为 终点。 图的分类:无向图,有向图 无向图:由点和边所组成的图。表示为G=(V,E),其中V和 E是点集合和边集合。 有向图:由点和弧所组成的图。表示为D=(V,A),其中V和 A是点集合和弧集合。
V1
e4
V4
e5 e1
V2
e3 e2
V3
V5
e6 e9 e8
v1 ,v2 ,v3 ,v4 ,v5 ,v3 ,v6 ,v7
v1 ,v2 ,v3 ,v6 ,v7
V7
e7
是简单链
V6
是初等链
v1 ,v2 ,v3 ,v4 ,v1
v4 ,v1,v2 ,v3 ,v5 ,v7 ,v6 ,v3 ,v4
能否从某 一点出发, 一笔画出 这个图形, 最后回到 D出 发 点 而 不重复? 即一笔画 问题。
铁路交通图
此图是我国北京,上海等十 个城市间的交通图,反映了 这十个城市间的铁路分布情 况。 点表示城市,点间的连线表示 两个城市间的铁路线。 诸如此类问题还有电话线分 布图或煤气管道分布图等。
北京天津济南Fra bibliotek青岛郑州
徐州
连云港
南京 上海
武汉
球队比赛图
五个球队比赛,比过的两个队之间用连 线相连,还没有比赛的队之间没有连线
v5
v1
v4
v2
v3
例3 某单位储存8种化学药品,其中某些药品是不能存放在 同一个库房里的。为了反映这个情况,可以用v1,v2...,v8分别 代表这8种药品,若药品vi和药品vj是不能存放在同一库房的 ,则在vi和vj之间有连一条线,如图所示。从这个图中可以看 到,至少要有 4个库房的,因为 v 1,v 2,v 5,v 8必须存放在不同的 库房里。 v1 {v1},{v2,v4,v7},{v3,v5},{v6,v8} v2
d (v) d (v) d (v) 2q
vV2 vV
vV2
2q为偶数,且偶点的次之和 d (v也为偶数,所以 ) d (v ) 必 为偶数,即奇数点的个数必为偶数。
vV1
链:点边交替序列称为链; 圈:首尾相连的链称为圈; 初等链:链中各点均不同的链; 初等圈:圈中各点均不同的圈; 简单链:链中边均不同的链; 简单圈:圈中边均不同的圈。 连通图:任意两点之间至少有一条链的图。 连通分图:对不连通的图,每一连通的部分称为一个连通 分图。 支撑子图:对G=(V,E),若G’=(V’,E’),使V’=V, E’包含于E ,则G’是G的一个支撑子图。 赋权图:在图中,如果每一条边(弧)都被赋予一个权值 wij,则称图G为赋权图。 路:在有向图中,如果链上每条弧的箭线方向与链行进方 向相同,则称之为路。 回路:首尾相接的路称回路
V2
v1 v 2 v3 v 4 v5
V3
V1
V4 V5
v1 0 v 2 1 A= v3 0 v 4 0 v5 0
1 0 0 0 1
0 1 0 0 1
1 1 0 0 0
0 0 0 1 0
2. 距离矩阵:
w ij 为边 [v ,v ] 设图 G= V,E, i j 上的权,表示点
v2 9 0 3 4 +
v3 2 3 0 8 5
v4 4 4 8 0 6
v5 7 + 5 6 0
20
9 5
V2
8
3
V3
8.2 树
8.2.1树及其性质
树的定义:设 G= V,E ,若G连通,并且没有圈,则称G为树, 记作 T= V,E 。 · 比如有六个顶点的树有6种,
如无向图: G= V,E
e1
V1 V2
V= v1 ,v2 ,v3 ,v4
e2 e5
V4
E= e1,e2 ,e3 ,e4 ,e5 ,e6 ,e7
e3
e6
e1 = v1 ,v2 ,e2 = v1 ,v2 ,e3 = v 2 ,v3 , e4 = v3 ,v4 ,e5 = v1 ,v 4 ,e6 = v1 ,v3 ,e7 = v 4 ,v 4
是简单圈
15
是初等圈
连通图:在一个图G 中,若任意两点之间至少存在一条链,
则称该图G为连通图,否则称之为不连通图。 如:
V1 a3 V3 V5
a1 a2
a4
V4
a5
V2
V6
左图为不连通图。 因为在顶点v1, v2,v3,v4和 v5,v6之间不存在任何一条链 将它们相连接。
V2 V1 V5
V3
右图为有向连通图
求支撑树的方法: 破圈法:即任取一个圈,从圈中去掉 一条边,对余下的图重复这个步骤,直 至图中不含圈为止。 避圈法:在图中每次任取一条边,与 已经取得的任何一些边不够成圈,重复 这个过程,直到不能进行为止。 由定理 4 和 5 知,再破圈法中去掉的边数 必是q(G)-p(G) +1条,在避圈法中取出的边 数必定是p(G) +1条
e7
e4
V3
7
如有向图:D= V,A
V=v1,v2 ,v3 ,v4 ,v5 ,v6 ,v7
V3 a2 a8 V5 a10 V7
A= a1 ,a 2 ,a 3 ,,a11
a11 V6
V1
a1
a3
a6
a4
a9 a7
a1 = v1 ,v2 ,a 2 = v1 ,v3 ,a 3 = v3 ,v2 , a 4 = v3 ,v4 ,a 5 = v2 ,v4 ,a 6 = v4 ,v5 , a 7 = v4 ,v6 ,a 8 = v5 ,v3 , a 9 = v5 ,v4 , a10 = v5 ,v6 a11 = v6 ,v7
如下图中,(b)图是(a) 图的支撑树
V3 V1 V5 V6 V3 V5 V6
V2 ( a)
V4
V2 (b)
V4
24
定理7:图G有支撑树的充要条件是图G是连通的。 证明:必然性是显然的。 充分性 设图G是连通图,如果G不含圈,那么G本身 是一个树,从而G是它自身的一个支撑树。现设G含 圈,任取一个圈,从圈中任意地去掉一条边,得到 图G的一个支撑子图 G1。如果G1不含圈,那么G1是G 的一个支撑树,如此重复,最终可以得到G的一个支 撑子图Gk,它不含圈,于是Gk是G的一个支撑树。 定理7充分性证明,提供了一个寻求连通图的支撑树 的方法。这就是任取一个圈,从圈中去掉一条边, 对余下的图重复这个步骤,直到不含圈时为止,即 得到一个支撑树 ,称这种方法为“破圈法”。
相关文档
最新文档