离散时间系统时域特性分析实验总结报告(信号及系统)
信号与系统实验报告实验一 信号与系统的时域分析
实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MA TLAB求解LTI 系统响应,绘制相应曲线。
基本要求:掌握用MA TLAB描述连续时间信号和离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。
掌握线性时不变连续系统的时域数学模型用MATLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。
二、实验原理信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。
一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。
在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。
在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。
“数字信号处理”实验报告二
实验报告课程名称:数字信号处理实验任课教师:杨鉴实验名称:离散时间系统的时域分析年级、专业:2015级通信工程学号:**********姓名:***日期:2017 年10 月9 日云南大学信息学院一、实验1.通过MATLAB仿真一些简单的离散时间系统,并研究他们的时域特性。
2.掌握卷积在MATLAB的算法并理解滤波的概念。
二、实验内容1. 假定另一个系统为y[n]=x[n]x[n-1],修改程序P2.3,计算这个系统的输出序列y1[n],y2[n]和y[n]。
比较y[n]和yt[n]。
这两个序列是否相等?该系统是线性系统吗?2. 考虑另一个系统:y[n]=nx[n]+x[n-1],修改程序P2.4,以仿真上面的系统并确定该系统是否为时不变系统。
3.修改程序P2.7,计算长度为15的序列h[n]和长度为10的序列x[n]的卷积,重做问题Q2.28。
h[n]和x[n]的样本值你自己给定。
4.修改程序P2.9,将输入序列改变成扫频正弦序列(长度为301、最低频率为0、最高频率为0.5)。
那个滤波器能更好的抑制输入信号x[n]的高频分量?三、主要算法与程序Q2.11:clf;n = 0:40;a = 2;b = -3;f1=0.1;f2=0.4;x11=[0 cos(2*pi*f1*n) 0];x12=[0 0 cos(2*pi*f1*n)];x21=[0 cos(2*pi*f2*n) 0];x22=[0 0 cos(2*pi*f2*n)];x = a*x11 + b*x21;y1 = x11.*x12;y2 = x21.*x22;xd = a*x12+b*x22;y = x.*xd;yt = a*y1 + b*y2;d = y - yt; % Compute the difference output d[n]% Plot the outputs and the difference signalsubplot(3,1,1)stem([0 n 0],y);ylabel('Amplitude');title('Output Due to Weighted Input: a \cdot x_{1}[n] + b \cdot x_{2}[n]');subplot(3,1,2)stem([0 n 0],yt);ylabel('Amplitude');title('Weighted Output: a \cdot y_{1}[n] + b \cdot y_{2}[n]'); subplot(3,1,3)stem([0 n 0],d);xlabel('Time index n');ylabel('Amplitude');title('Difference Signal');Q2.17:clf;n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);xd = [zeros(1,D) x];nd=0:length(xd)-1;y=(n.*x)+[0 x(1:40)];yd=(nd.*xd)+[0 xd(1:length(xd)-1)];d = y - yd(1+D:41+D);subplot(3,1,1)stem(n,y);ylabel('振幅');title('输出 y[n]'); grid;subplot(3,1,2)stem(n,yd(1:41));ylabel('振幅');title('由于延时输入 x[n-10]的输出'); grid;subplot(3,1,3)stem(n,d);xlabel('时间序号 n'); ylabel('振幅');title('差值信号');grid;Q2.29:clf;h = [3 2 1 -2 1 0 -4 0 3 1 5 4 0 3 5]; % impulse responsex = [1 -2 3 -4 3 2 1 5 6 1]; % input sequencey = conv(h,x);n = 0:23;subplot(2,1,1);stem(n,y);xlabel('时间序号n');ylabel('振幅');title('用卷积得到的输出'); grid;x1 = [x zeros(1,14)];y1 = filter(h,1,x1);subplot(2,1,2);stem(n,y1);xlabel('时间序号 n'); ylabel('振幅');title('由滤波生成的输出'); grid;Q2.35:f=w/2pi=(2a*n+b)/2pi=[0,0.5],所以b=0,a*n<=0.5*pi,当n=300时,a取pi/600。
数字信号处理实验报告一二
数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
实验一 时域离散信号、系统及系统响应
四、 思考题
• 1 在分析理想采样序列特性的实验中, 采样频率不同时, 相应 在分析理想采样序列特性的实验中, 采样频率不同时, 理想采样序列的傅里叶变换频谱的数字频率度量是否都相同? 理想采样序列的傅里叶变换频谱的数字频率度量是否都相同 它 们所对应的模拟频率是否相同? 为什么? 们所对应的模拟频率是否相同 为什么 • 2 在卷积定理验证的实验中, 如果选用不同的频域采样点数 值, 在卷积定理验证的实验中, 如果选用不同的频域采样点数M值 例如, 例如, 选M=10和M=20, 分别做序列的傅里叶变换, 求得 和 , 分别做序列的傅里叶变换,
• 3 调通并运行实验程序, 完成下述实验内容: 调通并运行实验程序, 完成下述实验内容: 分析采样序列的特性。 ① 分析采样序列的特性。 a. 取采样频率 s=1 kHz, 即T=1 ms。 取采样频率f 。 b. 改变采样频率 fs=300 Hz, 观察 改变采样频率, 的变化, , 观察|X(ejω)|的变化, 并 的变化 做记录(打印曲线 打印曲线); 进一步降低采样频率, 做记录 打印曲线 ; 进一步降低采样频率, fs=200 Hz, , 观察频谱混叠是否明显存在, 说明原因, 并记录(打印 打印) 观察频谱混叠是否明显存在, 说明原因, 并记录 打印 这时的|X(ejω)|曲线。 曲线。 这时的 曲线 • ② 时域离散信号、 系统和系统响应分析。 时域离散信号、 系统和系统响应分析。 a. 观察信号 b(n)和系统 b(n)的时域和频域特性; 利用 观察信号x 和系统h 的时域和频域特性; 和系统 的时域和频域特性 线性卷积求信号x 通过系统h 的响应y(n), 比较 线性卷积求信号 b(n)通过系统 b(n)的响应 通过系统 的响应 , 所求响应y(n)和hb(n)的时域及频域特性, 注意它们之 的时域及频域特性, 所求响应 和 的时域及频域特性 间有无差别, 绘图说明, 并用所学理论解释所得结果。 间有无差别, 绘图说明, 并用所学理论解释所得结果。 b. 观察系统 a(n)对信号 c(n)的响应特性。 观察系统h 对信号x 的响应特性。 对信号 的响应特性 ③ 卷积定理的验证
离散时间信号与系统的Z域分析
《信号与系统》课程实验报告变换。
zz z z z z F 2112)(232+++-=一、实验原理的验证 1、离散系统零极点图实验原理如下:离散系统可以用差分方程描述:∑∑==-=-Mm m Ni i m k f b i k y a 0)()(Z 变换后可得系统函数:NN MM z a z a a z b z b b z F z Y z H ----++++++==......)()()(110110 可以用root 函数可分别求零点和极点。
例7-4 求系统函数零极点图131)(45+-+=z z z z H实验结果如下:2、离散系统的频率特性实验原理如下:离散系统的频率特性可由系统函数求出,既令ωj e z =,函数freqz 可计算频率特性,调用格式是:[H ,W]=freqz(b,a,n),b 和a 是系统函数分子分母系数,n 是π-0范围内n 个等份点,默认值为512,H 是频率响应函数值,W 是相应频率点; 例7-5 系统函数z z z H 5.0)(-=10个频率点的计算结果为幅频特性曲线相频特性曲线freqz语句直接画图例7-7已知系统函数114/11)1(4/5)(----=z z z H ,画频率响应和零极点图。
零极点图幅频特性曲线相频特性曲线二、已知离散系统的系统函数如下所示:1422)(232+-++=z z z z z H试用MATLAB 实现下列分析过程: (1)求出系统的零极点位置;(2)绘出系统的零极点图,根据零极点图判断系统的稳定性; (3)绘出系统单位响应的时域波形,并分析系统稳定性与系统单位响应时域特性的关系。
(1)由计算结果可知:系统的极点为p0=-3.3028、p1=1、p2=0.3028。
由计算结果可知:系统的零点为z0=1.4142i 、z1=-1.4142i 。
(2)系统的零极点图如下:程序清单如下: a=[1 2 -4 1]; b=[1 0 2]; ljdt(a,b)p=roots(a)q=roots(b)pa=abs(p)由图可知:第一个极点(p0)在单位圆外部,第二个极点(p1)在单位圆上,第三个极点(p2)在单位圆内部,因为有一个极点在单位圆外部,故该系统是不稳定的系统(稳定系统要求极点全部在单位圆内)。
数字信号处理实验离散时间 LTI 系统的时域分析与 Z 域分析
实验一离散时间LTI系统的时域分析与Z域分析一、实验目的1、掌握用MATLAB求解离散时间系统的零状态响应、单位脉冲响应和单位阶跃响应;2、掌握离散时间系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的稳定性。
二、实验原理1、离散时间系统的时域分析(1)离散时间系统的零状态响应离散时间LTI系统可用线性常系数差分方程来描述,即MATLAB中函数filter可对式(1-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter的语句格式为:y=filter(b,a,x)其中,x为输入的离散序列;y为输出的离散序列;y的长度与x的长度一样;b与a分别为差分方程右端与左端的系数向量。
(2)离散时间系统的单位脉冲响应系统的单位脉冲响应定义为系统在 (n)激励下系统的零状态响应,用h(n)表示。
MATLAB求解单位脉冲响有两种方法:一种是利用函数filter;另一种是利用函数impz。
impz函数的常用语句格式为impz(b,a,n),其中b和a的定义见filter,n表示脉冲响应输出的序列个数。
(3)离散时间系统的单位阶跃响应系统的单位阶跃响应定义为系统在ε(n)激励下系统的零状态响应。
MATLAB求解单位脉冲响应有两种方法:一种是利用函数filter,另一种是利用函数stepz。
stepz函数的常用语句格式为stepz(b,a,N)其中,b和a的定义见filter,N表示脉冲响应输出的序列个数。
2、离散时间系统的Z域分析(1)系统函数的零极点分析离散时间系统的系统函数定义为系统零状态响应的z变换与激励的z变换之比,即如果系统函数H(z)的有理函数表示式为那么,在MATLAB中系统函数的零极点就可通过函数roots得到,也可借助函数tf2zp得到。
roots的语法格式为:Z=roots(b)%计算零点b=[b1b2…bmbm+1]P=roots(a)%计算极点a=[a1a2…anan+1]tf2zp的语句格式为[Z,P,K]=tf2zp(b,a)其中,b与a分别表示H(z)的分子与分母多项式的系数向量。
离散时间系统的时域分析
离散时间系统的时域分析离散时间系统是指系统输入和输出信号都是在离散的时间点上进行采样的系统。
时域分析是分析系统在时域上的性质和特征。
在离散时间系统的时域分析中,常用的方法包括冲击响应法、单位样值法和差分方程法等。
冲击响应法是通过对系统施加单个冲击信号,观察系统在输出上的响应来分析系统的时域特征。
冲击响应法的基本思想是将系统的输出表示为输入信号与系统的冲击响应之间的卷积运算。
冲击响应法适用于线性时不变系统,在实际应用中可以使用软件工具进行计算。
单位样值法是通过将系统输入信号取为单位样值序列,观察系统在输出上的响应来分析系统的时域特征。
单位样值法的基本思想是将系统的输出表示为输入信号与系统的单位样值响应之间的卷积运算。
单位样值法适用于线性时不变系统,可以用来计算系统的单位样值响应和单位样值响应序列。
差分方程法是通过建立系统输入和输出之间的差分方程来分析系统的时域特征。
差分方程法的基本思想是根据系统的差分方程,利用系统的初始条件和输入序列,递推计算系统的输出序列。
差分方程法适用于线性时不变系统,可以用来计算系统的单位样值响应和任意输入信号下的输出序列。
以上所述的方法是离散时间系统时域分析中常用的方法,通过这些方法可以获得系统的冲击响应、单位样值响应和任意输入信号下的输出序列,进而分析系统的时域特征和性质。
在实际应用中,根据系统的具体情况和需求,选择合适的方法进行时域分析,能够更好地理解离散时间系统的动态行为和响应特性。
离散时间系统的时域分析是研究系统在离散时间上的动态行为和响应特性的关键方法。
通过分析系统的时域特征,可以深入了解系统的稳定性、响应速度、频率选择性和滤波特性等方面的性能。
冲击响应法是离散时间系统常用的时域分析方法之一。
它通过施加一个单个的冲击信号,即输入信号序列中只有一个非零元素,然后观察系统在输出上的响应。
这样可以得到系统的冲击响应序列,它描述了系统对单位幕函数输入信号的响应情况。
冲击响应法的核心思想是将系统的输出表示为输入信号序列与系统的冲击响应序列之间的卷积运算。
离散时间系统的时域分析--一阶和二阶差分方程求解9页word文档
课程设计任务书目录1 引言 (1)2 Matlab7.0入门 (1)3 利用Matlab 7.0实现一阶和二阶差分方程求解的设计 (2)3.1 设计原理分析 (2)3.1.1 差分方程定义 (2)3.1.2 差分方程的意义与应用 (2)3.1.3 用MATLAB仿真时用的相关函数说明 (3)3.2 一阶和二阶差分方程求解的编程设计及实现 (4)3.2.1 设计函数思路 (4)3.2.2 理论计算 (4)3.2.3 设计过程记录及运行结果 (4)4 结论 (5)5 参考文献 (6)1引言人们之间的交流是通过消息的传播来实现的,信号则是消息的表现形式,消息是信号的具体内容。
《信号与系统》课程是一门实用性较强、涉及面较广的专业基础课,该课程是将学生从电路分析的知识领域引入信号处理与传输领域的关键性课程,对后续专业课起着承上启下的作用. 该课的基本方法和理论大量应用于计算机信息处理的各个领域,特别是通信、数字语音处理、数字图像处理、数字信号分析等领域,应用更为广泛。
近年来,计算机多媒体教序手段的运用逐步普及,大量优秀的科学计算和系统仿真软件不断涌现,为我们实现计算机辅助教学和学生上机实验提供了很好的平台。
通过对这些软件的分析和对比,我们选择MATLAB语言作为辅助教学工具,借助MATLAB 强大的计算能力和图形表现能力,将《信号与系统》中的概念、方法和相应的结果,以图形的形式直观地展现给我们,大大的方便我们迅速掌握和理解老师上课教的有关信号与系统的知识。
2Matlab7.0入门MATLAB的名称源自Matrix Laboratory,它是一种科学计算软件,专门以矩阵的形式处理数据。
MATLAB将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作,而且利用MATLAB产品的开放式结构,可以非常容易地对MATLAB的功能进行扩充,从而在不断深化对问题认识的同时,不断完善MATLAB产品以提高产品自身的竞争能力。
离散信号与系统的时域和频域分析
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明
与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算
④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。
北京理工大学信号与系统实验报告6离散时间系统的z域分析
北京理工大学信号与系统实验报告6-离散时间系统的z域分析————————————————————————————————作者:————————————————————————————————日期:实验6 离散时间系统的z 域分析(综合型实验)一、 实验目的1) 掌握z 变换及其反变换的定义,并掌握MAT LAB实现方法。
2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。
3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、 实验原理与方法 1. z 变换序列(n)x 的z 变换定义为(z)(n)znn X x +∞-=-∞=∑ (1)Z 反变换定义为11(n)(z)z 2n rx X dz jπ-=⎰(2)MA TLA B中可采用符号数学工具箱z trans 函数和iz trans 函数计算z 变换和z 反变换: Z=ztran s(F)求符号表达式F的z 变换。
F=iztra ns(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换(z)(n)znn H h +∞-=-∞=∑ (3)此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到(z)(z)/X(z)H Y = (4)由(4)式描述的离散时间系统的系统时间函数可以表示为101101...(z)...MM NN b b z b z H a a z a z----+++=+++ (5) 3. 离散时间系统的零极点分析MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。
此外还可采用MATL AB 中zpl ane 函数来求解和绘制离散系统的零极点分布图,zp lane 函数的调用格式为:zplane(b,a) b、a 为系统函数分子分母多项式的系数向量(行向量) zplane (z,p) z 、p为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。
实验二离散时间系统的时域分析实验
数字信号处理——实验二武汉工程大学电气信息学院通信工程红烧大白兔一、实验目的1、在时域中仿真离散时间系统,进而理解离散时间系统对输入信号或延时信号进行简单运算处理,生成具有所需特性的输出信号的方法。
2、仿真并理解线性与非线性、时变与时不变等离散时间系统。
3、掌握线性时不变系统的冲激响应的计算并用计算机仿真实现。
4、仿真并理解线性时不变系统的级联、验证线性时不变系统的稳定特性。
二、实验设备计算机,MATLAB语言环境三、实验根底理论1、系统的线性线性性质表现为系统满足线性叠加原理:假设某一输入是由N个信号的加权和组成的,输出就是由系统对这N个信号中每一个的响应的相应加权和组成的。
设x1〔n〕和〔n〕分别作为系统的输入序列,其输出分别用y1(n)和y2(n)表示,即Y1(n)=T[x1(n)],y2(n)=T[x2(n)]假设满足T[a1x1(n)+a2x2(n)]=a1y1(n)+a2y2(n)x2那么那么该系统服从线性叠加原理,或者称为该系统为线性系统。
2、系统的时不变特性假设系统的变换关系不随时间变化而变化,或者说系统的输出随输入的移位而相应移位但形状不变,那么称该系统为时不变系统。
对于时不变系统,假设y(n)=T[x(n)]那么T[x(n-m)]=y(n-m)3、系统的因果性系统的因果性既系统的可实现性。
如果系统n时刻的输出取决于n时刻及n时刻以前的输入,而和以后的输入无关,那么该系统是可实现的,是因果系统。
系统具有因果性的充分必要条件是h(n)=0,n<04、系统的稳定性稳定系统是指有界输入产生有界输出〔BIBO)的系统。
如果对于输入序列x(n),存在一个不变的正有限值M,对于所有n值满足|x(n)|≤M<∞那么称该输入序列是有界的。
稳定性要求对于每个有界输入存在一个不变的正有限值K,对于所有n值,输出序列y(n)满足|y(n)|≤K<∞系统稳定的充分必要条件是系统的单位取样响应绝对可和,用公式表示为|h(n)|n5、系统的冲激响应设系统输入x(n)=δ(n),系统输出y(n)的初始状态为零,这时系统输出用即h(n)=T[δ(n)]那么称h(n)为系统的单位脉冲响应。
信号与系统实验实验报告材料
实验1 信号的时域描述与运算一、实验目的1. 掌握信号的MA TLAB表示及其可视化方法。
2. 掌握信号基本时域运算的MATLAB实现方法。
3. 利用MATLAB分析常用信号,加深对信号时域特性的理解。
二、实验原理与方法1. 连续时间信号的MA TLAB表示连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。
在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。
从严格意义上来说,MA TLAB并不能处理连续时间信号,在MA TLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。
表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。
例如一个正弦信号可以表示如下:>> t=0:0.01:10;>> x=sin(t);利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。
如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。
例如对于上述正弦信号,可以用符号对象表示如下:>> x=sin(t);>> ezplot(X);利用ezplot(x)命令可以绘制上述信号的时域波形Time(seconds)图1 利用向量表示连续时间信号t图 2 利用符号对象表示连续时间信号sin(t)2.连续时间信号的时域运算对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。
1)相加和相乘信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。
采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。
离散信号与系统的时域分析实验报告
离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。
本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。
在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。
2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。
通过设置函数发生器的频率和振幅,我们可以产生不同的信号。
接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。
使用合适的采样率,我们可以准确地获取模拟信号的离散样本。
最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。
2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。
通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。
通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。
2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。
例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。
通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。
此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。
3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。
例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。
而当信号频率小于采样率的一半时,可以还原原始信号。
此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。
4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。
《信号与系统》实验报告
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
离散时间信号的时域分析实验报告剖析
x (n ) = ⎡2n -1- (-2) ⎤ u (n )Z - 5Z + 6Z (2Z -11Z + 12)(Z -1)(Z - 2) 18+3Z -4Z -2 -Z -3 进行部分分式展开,并求出其反变换。
⎛ 1 ⎫ x (n ) = ⎪ u (n ),,1 (s ) =ZZ,, 5 (s ) = H 6 (s ) = Z Z一、 实验目的:1、学会运用 MATLAB 表示常用的离散时间信号及基本运算;2、学会运用 MATLAB 实现离散时间信号的变换和反变换;n -1 ⎣ ⎦5、求下列信号的 Z 反变换(iztrans)。
3、学会运用 MATLAB 分析离散时间信号的零极点分布与其时域特性的关系;4、学会运用 MATLAB 求解离散时间信号的零状态响应。
X (Z ) = 8Z -19 2X (Z ) =2 3二、 实验内容:(请将实验的题目内容、实验及过程代码、实验结果(必要时可以进行拷屏)、6、对函数(residuez)X (Z ) = 18-1实验体会等填写到此处。
页面空间不够,可另附页或另附文件。
1、试用 MA TLAB 的绘出单位取样序列、单位阶跃序列、矩形序列、单边指数序列、正弦序列、负指数序列的波形图。
7、已知一离散因果 L TI 系统的系统函数为 H (Z ) =Z +0.32 Z 2+ Z + 0.16 求出该系统的零极点。
(tf2zp)2、已知某 LTI 系统的差分方程为3 y (n ) -4 y (n - 1) + 2 y (n - 2) = x (n ) + 2 x (n - 1) 试用2MATLAB 命令绘出当激励信号为⎝ 2 ⎭时,该系统的零状态响应。
8、已知一离散因果 L TI 系统的系统函数为(zplane)。
H (Z ) = Z 2-0.36Z 2-1.52Z +0.68 绘出该命令的零极点分布图。
3、已知某系统的单位取样响应为h (n ) = 0.8n[u (n ) - u (n - 8)] 试用 MATLAB 求9、画出下列函数的零极点分布图以及对应的时域单位取样响应 形的影响。
离散信号与系统的频谱分析实验报告
实验二 离散信号与系统的频谱分析一、实验目的1.掌握离散傅里叶变换(DFT )及快速傅里叶变换(FFT )的计算机实现方法。
2.检验序列DFT 的性质。
3.掌握利用DFT (FFT )计算序列线性卷积的方法。
4.学习用DFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT 。
5.了解采样频率对谱分析的影响。
6.了解利用FFT 进行语音信号分析的方法。
二、实验设备1.计算机2.Matlab 软件7.0以上版本。
三、实验内容1.对不同序列进行离散傅里叶变换并进行分析;DFT 共轭对称性质的应用(通过1次N 点FFT 计算2个N 点实序列的DFT )。
2.线性卷积及循环卷积的关系,以及利用DFT (FFT )进行线性卷积的方法。
3.比较计算序列的DFT 和FFT 的运算时间。
4.利用FFT 实现带噪信号检测。
5.利用FFT 计算信号频谱及功率谱。
6.扩展部分主要是关于离散系统采样频率、时域持续时间、谱分辨率等参数之间的关系,频谱的内插恢复,对语音信号进行简单分析。
四、实验原理1.序列的离散傅里叶变换及性质离散傅里叶变换的定义:10, )()]([)(102-≤≤==∑-=-N k en x n x DFT k X N n nk Nj π离散傅里叶变换的性质:(1)DFT 的共轭对称性。
若)()()(n x n x n x op ep +=,[])()(n x DFT k X =,则:)()]([k X n x DFT R ep =, )()]([k jX n x DFT I op =。
(2)实序列DFT 的性质。
若)(n x 为实序列,则其离散傅里叶变换)(k X 为共轭对称,即10),()(*-≤≤-=N k k N X k X 。
(3)实偶序列DFT 的性质。
若)(n x 为实偶序列,则其离散傅里叶变换)(k X 为实偶对称,即10),()(-≤≤-=N k k N X k X 。
数字信号处理实验报告
实验报告课程名称:数字信号处理授课班级:学号:姓名:指导老师:实验一离散时间信号及系统的时域分析实验类别:基础性实验1实验目的:(1)了解MA TLAB 程序设计语言的基本特点,熟悉MA TLAB软件运行环境。
(2)熟悉MA TLAB中产生信号和绘制信号的基本命令,学会用MA TLAB在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本的运算。
(3)通过MA TLAB仿真一些简单的离散时间系统,并研究它们的时域特性。
(4)通过MA TLAB进行卷积运算,利用卷积方法观察分析系统的时域特性。
2. 实验报告要求●简述实验原理及目的。
●结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。
●记录调试运行情况及所遇问题的解决方法。
3.实验内容:思考题:9.2.1 运行程序P9.2.1,哪个参数控制该序列的增长或衰减:哪个参数控制该序列的振幅?若需产生实指数序列,应对程序作何修改?9.2.2运行程序P9.2.1,该序列的频率是多少?怎样改变它?哪个参数控制该序列的相位?哪个参数可以控制该序列的振幅?该序列的周期是多少?9.2.3 运行程序P9.2.3,对加权输入得到的y(n)与在相同权系数下输出y1(n)和y2(n)相加得到的yt(n)进行比较,这两个序列是否相等?该系统是线性系统吗?9.2.4 假定另一个系统为y(n)=x(n)x(n-1)修改程序,计算这个系统的输出序列y1(n),y2(n)和y(n)。
比较有y(n)和yt(n)。
这两个序列是否相等?该系统是线性系统吗?(提高部分)9.2.5运行程序P9.2.4,并比较输出序列y(n)和yd(n-10)。
这两个序列之间有什么关系?该系统是时不变系统吗?9.2.6 考虑另一个系统:修改程序,以仿真上面的系统并确定该系统是否为时不变系统。
(选做)n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);[x1,n1]=sigmult(n,n,x,n)[x2,n2]=sigshift(x,n,1)[y,ny1]= sigadd(x1,n1,x2,n2)[y1,ny11]= sigshift(y,ny1,D)[sx,sn]= sigshift(x,n,D)[sx1,sn1]=sigmult(n,n, sx,sn)[sx2,sn2]=sigshift(sx,sn,1)[y2,ny2]= sigadd(sx1,sn1,sx2,sn2)D= sigadd(y1,ny11,y2,ny22)六、实验心得体会:实验时间批阅老师实验成绩实验二 FFT 实现数字滤波实验类别:提高性实验 1.实验目的(1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。
离散时间信号与系统的傅立叶分析 (实验报告)
电子信息工程系实验报告课程名称:数字信号处理实验项目名称:离散时间信号与系统的傅立叶分析 实验时间:班级:通信091 姓名:刘跃维 学号:实 验 目 的:用傅立叶变换对离散时间信号和系统进行频域分析实 验 环 境:计算机 MATLAB 软件原理说明:对信号进行频域分析就是对信号进行傅立叶变换。
对系统进行频域分析即对它的单位脉冲响应进行傅立叶变换,得到系统的传输函数;也可以由差分方程经过傅立叶变换直接求它的传输函数;传输函数代表的就是系统的频率响应特性。
但传输函数是w 的连续函数,计算机只能计算出有限个离散频率点的传输函数值,因此得到传输函数以后,应该在π2~0之间取许多点,计算这些点的传输函数的值,并取它们的包络,该包络才是需要的频率特性。
当然,点数取得多一些,该包络才能接近真正的频率特性。
注意:非周期信号的频率特性是w 的连续函数,而周期信号的频率特性是离散谱,它们的计算公式不一样,响应的波形也不一样。
实验内容和步骤1.已知系统用下面差分方程描述:)1()()(-+=n ay n x n y试在95.0=a 和5.0=a 两种情况下用傅立叶变换分析系统的频率特性。
要求写出系统的传输函数,并打印w e H jw ~)(曲线。
MATLAB 代码如下:B=1;A=[1,-0.95];subplot(2,3,3);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)+0.95y(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(2,3,1);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2.5]);subplot(2,3,2);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-1.5,1.5]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');B=1;A=[1,0.5];subplot(2,3,6);zplane(B,A);xlabel('实部Re');ylabel('虚部Im');title('y(n)=x(n)-0.5y(n-1)传输函数零、极点分布');grid on[H,w]=freqz(B,A,'whole');subplot(2,3,4);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2.5]);subplot(2,3,5);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-1.5,1.5]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('相频响应特性');运行结果如下图所示:2.已知两系统分别用下面差分方程描述:)1()()(1-+=n x n x n y)1()()(2--=n x n x n y 试分别写出它们的传输函数,并分别打印w e H jw ~)(曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学实验报告(信号与系统)学生姓名:学号:专业班级:通信实验类型:□验证□综合□设计□创新实验日期:2012.5.17 实验成绩:离散时间系统的时域特性分析一、实验项目名称: 离散时间系统的时域特性分析二、实验目的:线性时不变离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应序列可以刻画其时域特性。
本实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应系统的线性和时不变特性的理解。
三、实验基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。
若以T[·]表示这种运算,则一个离散时间系统可由图1-1来表示,即x(n) T[·] y(n)图1-1离散时间系统离散时间系统最重要的,最常用的是“线性时不变系统”。
1.线性系统4. 实验用matlab语言工具函数简介(1)产生N个元素矢量函数x=zeros(1,N)(2)计算系统的单位冲激响应h(n)的两种函数y=impz(b,a,N)功能:计算系统的激励响应序列的前N个取样点y=filter(b,a,x)功能:系统对输入进行滤波,如果输入为单位冲激序列δ(n),则输出y即为系统的单位冲激响应h(n).四、实验说明例1.1产生一个N=100的单位冲激序列。
>> N=100;>> u=[1 zeros(1,N-1)];>> Stem(0:N-1,u)>>例1.2产生一个长度为N=-100的单位阶跃响应>> N=100;>> s=[ones(1,N)];>> Stem(0:99,s);>> axis([0 100 0 2])例1.3产生一个正弦序列>> n=0:40;>> f=0.1;>> phase=0;>> A=1.5;>> arg=2*pi*f*n-phase; >> x=A*cos(arg);>> stem(n,x);>> axis([0 40 -2 2]); >> grid例1.4产生一个复指数序列>> c=-(1/12)+(pi/6)*i; >> k=2;>> n=0:40;>> x=k*exp(c*n);>> subplot(2,1,1);>> stem(n,imag(x)); >> subplot(2,1,2);>> stem(n,imag(x)); >> xlabel('时间序列n'); >> ylabel('信号幅度'); >> title('虚部');例1.5假设系统为y(n)-0.4y(n-1)+0.75y(n-2)=2.2403x(n)+2.4908x(n-1)+2.2403x(n-2),输入三个不同的序列x1(n),x2(n)和x9n)=ax1(n)+bx2(n),求y1(n),y2(n)和y(n),并判断此系统是否为线性系统。
>> n=0:40;>> a=2;>> b=-3;>> x1=cos(2*pi*0.1*n);>> x2=cos(2*pi*0.4*n);>> x=a*x1+b*x2;>> num=[2.2403 2.4908 2.2403];>> den=[1 0.4 0.75];>> y1=filter(num,den,x1);>> y2=filter(num,den,x2);>> y=filter(num,den,x2);>> yt=a*y1+b*y2;>> subplot(2,1,1);>> stem(n,y);>> ylabel('信号幅度');>> subplot(2,1,2);>> stem(n,yt);>> ylabel('信号幅度');由图上可知,上下两个图完全一样,即y(n)=T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)],所以此系统是个线性系统。
注意上式中的T是算子。
例1.6用MATLAB命令y=impz(num,den,N) 计算因果系统线性时不变离散时间系统的冲激响应的前N个样本。
系统仍采用前两个例子的系统。
>> N=40;>> num=[2.2403 2.4908 2.2403];>> den=[1 0.4 0.75];>> y=impz(num,den,N);>> stem(y);>> xlabel('时间序列n');>> ylabel('信号幅度');>> title('冲激响应');>> grid>>四、实验步骤实验内容及要求产生下列离散序列(1) x(n)= 3sin 2004(≤≤n n π >> n=0:20;>> a=3;>> arg=0.25*pi*n;>> x=a*sin(arg);>> stem(n,x);>> axis([0 20 -7/2 7/2]);>> grid(2)160,)()6.11.0(≤≤=+n e n x n j π>> n=0:16;>> c=0.1+(1.6*pi)*i;>> x=exp(c*n);>> subplot(2,1,1);>> stem(n.real(x));??? Attempt to reference field of non-structure array.>> subplot(2,1,2);>> stem(n,imag(x));>> xlabel('时间序列');>> ylabel('信号幅度');>> title('虚部');>>2.考虑如下差分方程的两个离散时间系统:系统(1):y(n) =0.5x(n)+0.27x(n-1)+0.77x(n-2)系统(2):y(n) =0.45x(n)+0.45x(n-1)+0.46x(n-2) +0.53y(n-1)-0.46y(n-2)输入x(n)=cos 2990),256200cos()25620(≤≤+n n n ππ求:冲激响应序列并画出波形,判断系统是否为线性时不变系统?(1)>> n=0:299;>> x1=cos(20*pi*n/256);>> x2=cos(200*pi*n/256);>> x=x1+x2;>> num=[0.5 0.27 0.77];>> den=[1];>> y1=filter(num,den,x1);>> y2=filter(num,den,x2);>> y=filter(num,den,x);>> yt=y1+y2;>> subplot(2,1,1);>> stem(n,y);>> ylabel('信号幅度');>> subplot(2,1,2);>> stem(n,yt);>> ylabel('信号幅度');>>由图上可知,上下两个图完全一样,即y(n)=T[x1(n)+ x2(n)]= T[x1(n)]+ T[x2(n)],所以此系统是个线性系统。
注意上式中的T是算子。
冲激响应的计算>> n=299;>> num=[0.5 0.27 0.77];>> den=[1];>> y=impz(num,den,n);>> stem(y);>> xlabel('时间序列');>> ylabel('冲激响应');>> title('冲激响应');.>> grid(2)>> n=0:299;>> x1=cos(20*pi*n/256); >> x2=cos(200*pi*n/256); >> x=x1+x2;>> num=[0.45 0.53 0.45]; >> den=[1 -0.53 0.46]; >> y1=filter(num,den,x1); >> y2=filter(num,den,x2); >> y=filter(num,den,x); >> yt=y1+y2;>> subplot(2,1,1);>> stem(n,y);>> ylabel('信号幅度'); >> subplot(2,1,2);>> stem(n,yt);>> ylabel('信号幅度'); >>由图上可知,上下两个图完全一样,即y(n)=T[x1(n)+ x2(n)]= T[x1(n)]+ T[x2(n)],所以此系统是个线性系统。
注意上式中的T是算子。
冲激响应的计算>> n=299;>> num=[0.45 0.5 0.45];>> den=[1 -0.53 0.46];>> y=impz(num,den,n);>> stem(y);>> xlabel('时间序列');>> ylabel('冲激响应');>> title('冲激响应');>> grid>>五、实验数据及处理结果看步骤四.实验说明六、思考讨论题或体会或对改进实验的建议通过这次实验我学会了用MATLAB函数实现在时域中用常系数线性差分方程来描述线性时不变离散时间系统,同时巩固了前次实验中方程的表示。