九年级数学总复习专练《二次函数》全章复习与巩固(基础)知识讲解(含解析)

合集下载

初三数学《二次函数》知识点总结和经典习题(附答案)

初三数学《二次函数》知识点总结和经典习题(附答案)

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c=+上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =--3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。

苏教版九年级下册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

苏教版九年级下册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式: ①;②;③;④,其中;⑤.(以上式子a≠0)当(轴) (轴)(,)2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【课程名称:二次函数复习357019 :(1)-(2)问精讲】【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.二次函数2y ax bx c =++的图象如图1所示,反比例函数ay x=与正比例函数y =(b+c)x 在同一坐标系中的大致图象可能是( ).【答案】B ;【解析】由2y ax bx c =++的图象开口向上得a >0,又02ba->,∴ b <0. 由抛物线与y 轴负半轴相交得c <0. ∵ a >0,∴ ay x=的图象在第一、三象限. ∵ b+c <0,∴ y =(b+c)x 的图象在第二、四象限. 同时满足ay x=和()y b c x =+图象的只有B . 【点评】由图1得到a 、b 、c 的符号及其相互关系,去判断选项的正误.类型三、数形结合3.(2015•陕西模拟)已知二次函数y=ax 2+bx+c (a >0)经过点M (﹣1,2)和点N (1,﹣2),交x 轴于A ,B 两点,交y 轴于C .则: ①b=﹣2;②该二次函数图象与y 轴交于负半轴;③存在这样一个a ,使得M 、A 、C 三点在同一条直线上;④若a=1,则OA •OB=OC 2. 以上说法正确的有( )A .①②③④B .②③④C .①②④D .①②③ 【思路点拨】①二次函数y=ax 2+bx+c (a >0)经过点M (﹣1,2)和点N (1,﹣2),因而将M 、N 两点坐标代入即可消去a 、c 解得b 值.②根据图象的特点及与直线MN 比较,可知当﹣1<x <1时,二次函数图象在直线MN 的下方. ③同②理.④当y=0时利用根与系数的关系,可得到OA •OB 的值,当x=0时,可得到OC 的值.通过c 建立等量关系求证. 【答案】C ;【解析】①∵二次函数y=ax 2+bx+c (a >0)经过点M (﹣1,2)和点N (1,﹣2),∴,解得b=﹣2.故该选项正确.②方法一:∵二次函数y=ax2+bx+c,a>0∴该二次函数图象开口向上∵点M(﹣1,2)和点N(1,﹣2),∴直线MN的解析式为y﹣2=,即y=﹣2x,根据抛物线的图象的特点必然是当﹣1<x<1时,二次函数图象在y=﹣2x的下方,∴该二次函数图象与y轴交于负半轴;方法二:由①可得b=﹣2,a+c=0,即c=﹣a<0,所以二次函数图象与y轴交于负半轴.故该选项正确.③根据抛物线图象的特点,M、A、C三点不可能在同一条直线上.故该选项错误.④当a=1时,c=﹣1,∴该抛物线的解析式为y=x2﹣2x﹣1当y=0时,0=x2﹣2x+c,利用根与系数的关系可得x1•x2=c,即OA•OB=|c|,当x=0时,y=c,即OC=|c|=1=OC2,∴若a=1,则OA•OB=OC2,故该选项正确.总上所述①②④正确.故选C.【点评】本题是二次函数的综合题型,其中涉及到的知识点较多,熟练掌握所学函数的图象性质及特点对于解题很重要;同时也要灵活应对知识点彼此之间的联系.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y 轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键. 举一反三:【变式1】无论x 为何实数,二次函数的图象永远在x 轴的下方的条件是( )A .B .C .D .【答案】二次函数的图象与x 轴无交点,则说明y=0时,方程无解,即.又图象永远在x 轴下方,则. 答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x 叫做这个函数的零点,则二次函数(m 为实数)的零点的个数是( )A .1B .2C .0D .不能确定 【答案】当y=0时,,,即二次函数的零点个数是2. 故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元 (x 为正整数),每星期的利润为y 元. (1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由. (3)直接写出售价为多少时,每星期的利润不低于5000元? 【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x ,销售量=500+100x ,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x 的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润; (3)设当y=5000时x 有两个解,可推出0≤x≤5时,y≥5000. 【答案与解析】解:(1)依题意,得y=(50﹣40﹣x )•(500+100x )=﹣100x 2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x 2+500x+5000=﹣100(x ﹣)+5625,∵5600<5625,∴5600不是最大利润.(3)当y=5000时,y=﹣100x 2+500x+5000=5000,解得x 1=0,x 2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。

2019华东师大初中数学九年级下册《二次函数》全章复习与巩固—知识讲解(基础)

2019华东师大初中数学九年级下册《二次函数》全章复习与巩固—知识讲解(基础)

《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:当(轴) (轴)(,)2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【高清课程名称:二次函数复习高清ID 号: 357019 关联的位置名称(播放点名称):(1)-(2)问精讲】【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.二次函数2y ax bx c =++的图象如图1所示,反比例函数ay x=与正比例函数y =(b+c)x 在同一坐标系中的大致图象可能是( ).【答案】B ;【解析】由2y ax bx c =++的图象开口向上得a >0,又02ba->,∴ b <0. 由抛物线与y 轴负半轴相交得c <0. ∵ a >0,∴ ay x=的图象在第一、三象限. ∵ b+c <0,∴ y =(b+c)x 的图象在第二、四象限.同时满足ayx=和()y b c x=+图象的只有B.【点评】由图1得到a、b、c的符号及其相互关系,去判断选项的正误.类型三、数形结合3.(2015•陕西模拟)已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C.则:①b=﹣2;②该二次函数图象与y轴交于负半轴;③存在这样一个a,使得M、A、C三点在同一条直线上;④若a=1,则OA•OB=OC2.以上说法正确的有()A.①②③④B.②③④C.①②④D.①②③【思路点拨】①二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),因而将M、N两点坐标代入即可消去a、c解得b值.②根据图象的特点及与直线MN比较,可知当﹣1<x<1时,二次函数图象在直线MN的下方.③同②理.④当y=0时利用根与系数的关系,可得到OA•OB的值,当x=0时,可得到OC的值.通过c建立等量关系求证.【答案】C;【解析】①∵二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),∴,解得b=﹣2.故该选项正确.②方法一:∵二次函数y=ax2+bx+c,a>0∴该二次函数图象开口向上∵点M(﹣1,2)和点N(1,﹣2),∴直线MN的解析式为y﹣2=,即y=﹣2x,根据抛物线的图象的特点必然是当﹣1<x<1时,二次函数图象在y=﹣2x的下方,∴该二次函数图象与y轴交于负半轴;方法二:由①可得b=﹣2,a+c=0,即c=﹣a<0,所以二次函数图象与y轴交于负半轴.故该选项正确.③根据抛物线图象的特点,M、A、C三点不可能在同一条直线上.故该选项错误.④当a=1时,c=﹣1,∴该抛物线的解析式为y=x2﹣2x﹣1当y=0时,0=x2﹣2x+c,利用根与系数的关系可得x1•x2=c,即OA•OB=|c|,当x=0时,y=c,即OC=|c|=1=OC2,∴若a=1,则OA•OB=OC2,故该选项正确.总上所述①②④正确.故选C.【点评】本题是二次函数的综合题型,其中涉及到的知识点较多,熟练掌握所学函数的图象性质及特点对于解题很重要;同时也要灵活应对知识点彼此之间的联系.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y 轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.举一反三:【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( ) A.B.C.D.【答案】二次函数的图象与x轴无交点,则说明y=0时,方程无解,即.又图象永远在x轴下方,则.答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A .1B .2C .0D .不能确定 【答案】当y=0时,,,即二次函数的零点个数是2. 故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元 (x 为正整数),每星期的利润为y 元. (1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由. (3)直接写出售价为多少时,每星期的利润不低于5000元? 【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x,销售量=500+100x,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润;(3)设当y=5000时x有两个解,可推出0≤x≤5时,y≥5000.【答案与解析】解:(1)依题意,得y=(50﹣40﹣x)•(500+100x)=﹣100x2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x2+500x+5000=﹣100(x﹣)+5625,∵5600<5625,∴5600不是最大利润.(3)当y=5000时,y=﹣100x2+500x+5000=5000,解得x1=0,x2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。

人教版九年级上册期末专题复习:二次函数全章热门考点与重点题型解题技巧整理(含解析)

 人教版九年级上册期末专题复习:二次函数全章热门考点与重点题型解题技巧整理(含解析)

人教版九年级上册期末专题复习:二次函数全章热门考点与重点题型解题技巧整理(含解析)考点1:二次函数的图象与系数的关系考点分析:二次函数y=ax2+bx+c(a≠0)的系数a,b,c与图象有着密切的关系:a的取值决定了开口方向和开口大小,a,b的取值影响对称轴的位置,c的取值决定了抛物线与y轴的交点位置,所以a,b,c这三个系数共同决定着抛物线的位置和大小,反之也可以根据二次函数图象情况确定a,b,c的系数符号或大小.题型1 a与图象的关系 1.如图所示,四个函数的图象,分别对应的是①y=ax2;②y=bx2;③y=cx2;④y=dx2,则a,b,c,d的大小关系为( )A.a>b>c>d B.a>b>d>cC.b>a>c>d D.b>a>d>c2.在抛物线y=mx2与抛物线y=nx2中,若-m>n>0,则开口向上的抛物线是____,开口较大的抛物线是_____.3.抛物线y=ax2+c与抛物线y=bx2如图所示,则不等式-ax+b>0的解集是_______.题型2 b与图象的关系1.若二次函数y=3x2+(b-3)x-4的图象如图所示,则b的值是( )A.-5 B.0 C.3 D.42.当抛物线y =x 2-nx +2的对称轴是y 轴时,n ______0;当对称轴在y 轴左侧时,n ______0;当对称轴在y 轴右侧时,n ______0.(填“>”“<”或“=”)题型3 c 与图象的关系1.下列抛物线可能是y =ax 2+bx 的图象的是( )点拨:抛物线y =ax 2+bx 的图象一定经过原点2.若将抛物线y =ax 2+bx +c -3向上平移4个单位长度后得到的图象如图所示,则c =________.题型4 a ,b 与图象的关系1.二次函数y =ax 2+bx +c 的图象如图所示,则下列说法中不正确的是( )A .a >0B .b <0C .3a +b >0D .b >-2a2.如果抛物线y =x 2+(n +2)x -5的对称轴是x =-,则(3m -2n )2-的值为m2322n +43m ________.题型5 a ,c 与图象的关系1.二次函数y =(3-m )x 2-x +n +5的图象如图所示,试求+-|m +n |的(m -3)2n2值.题型6 a ,b ,c 与图象的关系1.在二次函数y =ax 2+bx +c 中,a <0,b >0,c <0,则符合条件的图象是( )2.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为直线x =-,下列结12论中正确的是( )A .abc >0B .a +c =0C .b =2aD .4a +c =2b考点2:求二次函数解析式的常见类型考点分析:求二次函数的解析式是解决二次函数问题的重要保证,在求解二次函数的解析式时一般选用待定系数法,但在具体题目中要根据不同条件,设出恰当的解析式,往往可以给解题过程带来简便.题型1 由函数的基本形式求解析式方法1 利用一般式求二次函数解析式1.已知一个二次函数的图象经过点A (1,0),点B (0,6)和点C (4,6),则这个抛物线的解析式为________.2.一个二次函数,当自变量x =-1时,函数值y =2;当x =0时,y =-1;当x =1时,y =-2.那么这个二次函数的解析式为_____.3.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (-2,-4),O (0,0),B (2,0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.方法2 利用顶点式求二次函数解析式1.已知二次函数y=ax2+bx+c,当x=1时,有最大值8,其图象的形状、开口方向与抛物线y=-2x2相同,则这个二次函数的解析式是( )A.y=-2x2-x+3 B.y=-2x2+4C.y=-2x2+4x+8 D.y=-2x2+4x+62.已知某个二次函数的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6).求二次函数解析式.方法3 利用交点式求二次函数解析式1.已知抛物线与x轴交于A(1,0),B(-4,0)两点,与y轴交于点C,且AB=BC,求此抛物线对应的函数解析式.方法4 利用平移式求二次函数解析式1.把二次函数y=2x2的图象向左平移1个单位,再向下平移2个单位长度,平移后抛物线的解析式是_______.2.已知y=x2+bx+c图象向右平移2个单位,再向下平移3个单位,得到图象的解析式为y=x2-2x-3.(1)b=________,c=________;(2)求原函数图象的顶点坐标;(3)求两个图象顶点之间的距离.方法5 利用对称轴法求二次函数解析式1.如图,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是_______.2.如图所示,抛物线与x 轴交于A ,B 两点,与y 轴交于C 点,点A 的坐标为(2,0),点C 的坐标为(0,3),抛物线的对称轴是直线x =-.12(1)求抛物线的解析式;(2)M 是线段AB 上的任意一点,当△MBC 为等腰三角形时,求点M 的坐标.方法6 灵活运用方法求二次函数的解析式1.已知抛物线的顶点坐标为(-2,4),且与x 轴的一个交点坐标为(1,0),求抛物线对应的函数解析式.题型2 由函数图象中的信息求解析式1.如图,是某个二次函数的图象,根据图象可知,该二次函数的解析式是( )A .y =x 2-x -2B .y =-x 2-x +21212C .y =-x 2-x +11212D .y =-x 2+x +22.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD ,线段CD 分别表示该产品每千克生产成本y 1(单位:元),销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义;(2)求线段AB 所表示的y 1与x 之间的函数解析式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?题型3 由表格信息求解析式1.若y=ax2+bx+c,则由表格中信息可知y与x之间的函数关系式是( )x-101ax21ax2+bx+c83A.y=x2-4x+3 B.y=x2-3x+4C.y=x2-3x+3 D.y=x2-4x+82.已知二次函数y=ax2+bx+c(a≠0)自变量x和函数值y的部分对应值如下表:x…-32-1-1212132…y…-54-2-94-2-5474…则该二次函数的解析式为______________.题型4 几何应用中求二次函数的解析式1.如图,直线y=x+2与x轴交于点A,与y轴交于点B,AB⊥BC,且点C在x轴上,若抛物线y=ax2+bx+c以C为顶点,且经过点B,求这条抛物线的解析式.题型5 实际问题中求二次函数解析式1.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x m,花园的面积为S .(1)求S 与x 之间的函数解析式;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积的最大值.考点3: 二次函数图象信息题的四种常见类型方法指导:利用图象信息解决二次函数的问题主要是运用数形结合思想将图象信息转换为数学语言,掌握二次函数的图象和性质,把握二次函数的特点是解决此类问题的关键.题型1 根据抛物线的特征确定a ,b ,c 及与其有关的代数式的符号1.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;②>0;③ac -b +1=0;④OA ·OB =-.其中正确结论的个数是( )b2-4ac4aca A .4B .3C .2D .1题型2 利用二次函数的图象比较大小2.二次函数y =-x 2+bx +c 的图象如图,若点A (x 1,y 1),B (x 2,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 2题型3 利用二次函数的图象求方程或不等式的解3.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则当函数值y >0时,x 的取值范围是( )A .x <-1B .x >3C.-1<x<3 D.x<-1或x>34.如图所示,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为( ) A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥95.如图,二次函数y=ax2+bx+3的图象经过点A(-1,0),B(3,0),那么一元二次方程ax2+bx=0的根是____.题型4 根据抛物线的特征确定其他函数的图象1.二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是( )7.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象上.(1)求m的值和二次函数的解析式.(2)设二次函数的图象交y轴于点C,求△ABC的面积.考点4:用二次函数解决问题的三种类型方法指导:利用二次函数解决实际问题时,要注意数形结合,巧妙地运用二次函数解析式实行建模,从而达到应用二次函数的某些性质来解决问题的目的.类型1 建立平面直角坐标系解决实际问题题型1 拱桥(隧道)问题1.有一拱桥呈抛物线形状,这个桥洞的最大高度是16 m ,跨度为40 m ,现把它的示意图(如图所示)放在坐标系中,则抛物线的解析式为( )A .y =x 2+xB .y =-x 2-x1255858125C .y =-x 2+x D .y =-x 2+x +161258512585 2.如图,拱桥呈抛物线形,其函数的解析式为y =-x 2,当水位线在AB 位置时,水14面的宽度为12米,这时拱顶距水面的高度h 是________米.3.如图是某地区一条公路上隧道入口在平面直角坐标系中的示意图,点A 和A 1、点B 和B 1分别关于y 轴对称.隧道拱部分BCB 1为一段抛物线,最高点C 离路面AA 1的距离为8 m ,点B 离路面AA 1的距离为6 m ,隧道宽AA 1为16 m .(1)求隧道拱部分BCB 1对应的函数解析式.(2)现有一大型货车,装载某大型设备后,宽为4m ,装载设备的顶部离路面均为7m ,问:它能否安全通过这个隧道?并说明理由.题型2 建筑物问题1.如图所示,某大学的楼门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距离地面4 m 高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高约为(精确到0.1 m ,水泥建筑物的厚度忽略不计)( )A .9.2 mB .9.1 mC .9.0 mD .8.9 m2.某公园草坪的防护栏由100段形状相同的抛物线组成,为了牢固,每段防护栏需要间距0.4 m 加设一根不锈钢的支柱,防护栏的最高点到底部距离为0.5 m (如图),则这条防护栏需要不锈钢支柱的总长度为( )A .50 mB .100 mC .160 mD .200 m题型3 物体运动类问题1.如图,小李推铅球,如果铅球运行时离地面的高度y (米)关于水平距离x (米)的函数解析式为y =-x 2+x +,那么铅球运动过程中最高点离地面的距离为________米.1812322.如图,在水平地面点A 处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B .有人在直线AB 上点C (靠点B 一侧)处竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB =4米,AC =3米,网球飞行最大高度OM =5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶,网球能不能落入桶内?(2)当竖直摆放多少个圆柱形桶时,网球可以落入桶内?类型2 建立二次函数模型解决几何最值问题题型1 利用二次函数解决图形高度的最值问题1. 某人从地面竖直向上抛出一小球,小球的高度h (单位:米)与小球的运动时间t (单位:秒)之间的关系式是h =9.8t -4.9t 2,那么小球运动中的最大高度为________.2.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的高度为________米.题型2 利用二次函数解决图形面积的最值问题1.用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是( )A . m 2B .m 2642543C . m 2 D .4 m 2832.如图所示,正方形ABCD 的边长为3a ,两动点E ,F 分别从顶点B ,C 同时开始以相同速度沿边BC ,CD 运动,与△BCF 相应的△EGH 在运动过程中始终保持△EGH ≌△BCF ,B ,E ,C ,G 在一条直线上.(1)若BE =a ,求DH 的长.(2)当E 点在BC 边上的什么位置时,△DHE 的面积取得最小值?并求该三角形面积的最小值.类型3 建立二次函数模型解决动点探究问题1.如图所示,直线y =x -2与x 轴、y 轴分别交于点A ,C ,抛物线过点A ,C 和点12B (1,0).(1)求抛物线的解析式;(2)在x 轴上方的抛物线上有一动点D ,当D 与直线AC 的距离DE 最大时,求出点D 的坐标,并求出最大距离.考点5: 函数中的决策问题方法指导:函数中的决策问题通常包括两类:一是利用一次函数进行决策,二是利用二次函数进行决策.其解题思路一般是先建立一次函数(二次函数)模型,将实际问题转化为函数问题,然后利用一次函数(二次函数)的图象和性质去分析、解决问题.类型1 利用一次函数作决策题型1 购买方案1.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更合算.题型2 生产方案2.某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品,甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)题型3 运输方案3.荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售.按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满.根据下表提供的信息,解答以下问题:鲢鱼草鱼青鱼每辆汽车装鱼量(吨)865每吨鱼获利(万元)0.250.30.2(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式.(2)如果装运每种鱼的车辆不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.类型2 利用二次函数作决策题型1 几何问题中的决策1.如图,有长为24 m的围栏,一面利用墙(墙的最大可用长度a为10 m),围成中间隔有一道栅栏的长方形鸡舍.设鸡舍的一边AB为x m,面积为S m2.(1)求S与x的函数关系式(不必写出x的取值范围).(2)如果围成面积为45 m2的鸡舍,AB的长是多少米?(3)能围成面积比45 m2更大的鸡舍吗?如果能,请求出最大面积;如果不能,请说明理由.2.如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P运动到B时,P,Q两点停止运动,设P点运动时间为t(s).(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm)2,求y关于t的函数解析式,当t取何值时,四边形APQC的面积最小?并求出最小值.题型2 实际问题中的决策1.某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y 1(元/台)与采购数量x 1(台)满足y 1=-20x 1+1 500(0<x 1≤20,x 1为整数);冰箱的采购单价y 2(元/台)与采购数量x 2(台)满足y 2=-10x 2+1 300(0<x 2≤20,x 2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的倍,且空调采购单价不低119于1 200元,问该商家共有几种进货方案?(2)该商家分别以1 760元/台和1 700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.7.某宾馆有50个房间供游客住宿.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的定价不得高于340元.设每个房间每天的定价增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 之间的函数解析式及自变量x 的取值范围;(2)设宾馆一天获得的利润为W 元,求W 与x 之间的函数解析式;(3)一天订住多少个房间时,宾馆获得的利润最大?最大利润是多少元?考点6:二次函数与几何的应用考点分析:二次函数与几何的应用非常广泛,解决这类问题的关键是要学会数形结合,一方面,抓住几何图形的特征,灵活运用点的坐标与线段长度之间的相互转化,从而解决与二次函数有关的问题;另一方面,已知二次函数解析式可求出特殊点的坐标,进而求出线段长度,从而解决有关几何问题.题型1 二次函数与三角形的综合1.如图,在直角坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC =90°,A (1,0),B (0,2),抛物线y =x 2+bx -2过点C .求抛物线的解析式.122.在平面直角坐标系中,将一块等腰直角三角板ABC 放在第二象限,一直角边靠在两坐标轴上,且有点A (0,2),点C (-1,0),如图所示,抛物线y =ax 2+ax -2经过点B .(1)求点B 的坐标.(2)求抛物线的表达式.(3)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.题型2 二次函数与平行四边形的综合1.如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2 cm,点A,C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A,B,且12a+5c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以2 cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1 cm/s的速度向点C移动.一点到达终点后另一点停止移动.①移动开始后第t s时,设S=PQ2(cm2),试写出S与t之间的函数解析式,并写出t 的取值范围.②当S取得最小值时,在抛物线上是否存在点R,使得以P,B,Q,R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.题型3 二次函数与矩形、菱形、正方形的综合1.二次函数y =x 2的图象如图所示,点A 0位于坐标原点,点A 1,A 2,A 3,…,A n 在23y 轴的正半轴上,点B 1,B 2,B 3,…,B n ,在二次函数位于第一象限的图象上,点C 1,C 2,C 3,…,C n 在二次函数位于第二象限的图象上.四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3,…,四边形A n -1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 2=∠A 2B 3A 3=…=∠A n -1B n A n =60°,则菱形A n -1B n A nC n 的周长为__4n___.2.如图所示,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF =90°,且EF 交正方形外角的平分线CF 于点F .(1)图①中,若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE =EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明).(2)如图②,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE =EF 是否总成立?请给出证明.②在如图②所示的平面直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线y =-x 2+x +1上,求此时点F 的坐标.考点7 :探究二次函数中存在性问题方法指导:存在性问题是近年来中考的热点,这类问题的知识覆盖面广,综合性强,题型构思精巧,解题方法灵活,求解时常常要猜想或者假设问题的某种关系或结论存在,再经过分析、归纳、演算、推理找出最后的答案.常见的类型有:探索与特殊几何图形有关的存在性问题,探索与周长有关的存在性问题,探索与面积有关的存在性问题.题型1 探索与特殊几何图形有关的存在性问题1.如图,已知抛物线y =-x 2-2x +a (a ≠0)与y 轴相交于A 点,顶点为M ,直线y =x -a 分别与x 轴、y 轴相交于B ,C 两点,并且与直线MA 相交于N 点.12(1)若直线BC 和抛物线有两个不同交点,求a 的取值范围,并用a 表示点M ,A 的坐标.(2)将△NAC 沿着y 轴翻折,若点N 的对称点P 恰好落在抛物线上,AP 与抛物线的对称轴相交于点D ,连接CD ,求a 的值及△PCD 的面积.(3)在抛物线y =-x 2-2x +a (a >0)上是否存在点Q ,使得以Q ,A ,C ,N 为顶点的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,请说明理由.题型2 探索与周长有关的存在性问题2.如图,在直角坐标系中,点A 的坐标为(-2,0),OB =OA ,且∠AOB =120°.(1)求点B 的坐标.(2)求经过A ,O ,B 三点的抛物线的解析式.(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.题型3 探索与面积有关的存在性问题1.阅读材料:如图①,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部的线段的长度叫△ABC 的“铅垂高”(h ).我们可得出一种计算三角形面积的新方法:S △ABC =ah ,即三角形的面积等于12水平宽与铅垂高乘积的一半.解答下列问题:如图②,抛物线顶点为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 对应的函数表达式.(2)求△CAB 的铅垂高CD 及S △CAB .(3)抛物线上是否存在一点P ,使S △PAB =S △CAB ?若存在,求出P 点的坐标;若不存在,98请说明理由.2.如图,已知抛物线y =x 2+bx +c 经过A (1,0),B (0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将抛物线沿y 轴平移后经过点C (3,1),求平移后所得抛物线的解析式.(3)设(2)中平移后的抛物线与y 轴的交点为B 1,顶点为D 1,在此抛物线上是否存在点N ,使△NBB 1的面积是△NDD 1面积的2倍?若存在,求出点N 的坐标;若不存在,请说明理由.题型4 探索与平行四边形有关的存在性问题1.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线对应的函数表达式.(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.2.如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y 轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴.(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.3.如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)求抛物线及直线AC对应的函数表达式.(2)设点M(3,m),求使MN+MD的值最小时m的值.(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B、D、E、F为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由.(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.考点7 全章热门考点整合应用方法指导:二次函数是中考的必考内容,难度高,综合性强,既可以与代数知识相结合,也可以与几何知识相结合.有关二次函数的问题,中考一般以三种形式出现:一是以选择题或填空题出现,重在考查二次函数的基本概念和基本性质;二是以实际应用题的形式出现,重在考查函数建模思想;三是以综合题的形式出现,往往是压轴题,考查学生分析问题和解决问题的能力.题型1 一个概念——二次函数的定义21.已知函数y=(m+3)xm+3m-2是关于x的二次函数.(1)求m的值;(2)当m为何值时,该函数图象的开口向下?(3)当m为何值时,该函数有最小值?题型2 一个性质——二次函数的图象与性质1.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( D )A.函数有最小值B .对称轴是直线x =12C .当x <,y 随x 的增大而减小12D .当-1<x <2时,y >0题型3 两个关系关系1 抛物线的位置与二次函数各项系数的关系1.如图为二次函数y =ax 2+bx +c (a ≠0)的图象,则下列说法:①a >0;②2a +b =0;③a +b +c >0;④当-1<x <3时,y >0.其中正确的个数为( C )A .1B .2C .3D .4关系2 二次函数与一元二次方程的关系2.已知关于x 的函数y =(a 2+3a +2)x 2+(a +1)x +的图象与x 轴总有交点.14(1)求a 的取值范围;(2)设函数的图象与x 轴有两个不同的交点,分别为A (x 1,0),B (x 2,0),当+=a 2-3时,求a 的值.1x11x2题型4 三个应用应用1 最大面积的应用1.如图,△ABC 为等边三角形,边长为a ,DF ⊥AB 于D ,EF ⊥AC 于E ,(1)求证:△BDF ∽△CEF .(2)若a =4,设BF =m ,四边形ADFE 的面积为S ,求出S 与m 之间的函数关系,并探究当m 为何值时S 取最大值.应用2 “抛物线”型几何应用1.跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距(A 与B 间的距离)为6 m ,到地面的距离AO 和BD 均为0.9 m ,身高为1.4 m 的小丽站在距点O 的水平距离为1 m 的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线对应的函数表达式为y =ax 2+bx +0.9.(1)求该抛物线对应的函数表达式;(不考虑自变量的取值范围)(2)如果小华站在O ,D 之间,且离点O 的距离为3 m ,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4 m 的小丽站在O ,D 之间,且离点O 的距离为t m ,绳子甩到最高处时超过她的头顶,请结合图象,写出t 的取值范围.2.某跳水运动员进行10 m 高台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10 m ,入水处距池边的距离为4 m ,同时,运动员在距水面高度为5 m 以前,必须完成规23定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线对应的函数表达式.(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3 m ,问此次跳水会不会出现失误?35。

【精编版】华东师大初中数学九年级下册398916《二次函数》全章复习与巩固—知识讲解(基础)

【精编版】华东师大初中数学九年级下册398916《二次函数》全章复习与巩固—知识讲解(基础)

《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)当(轴) (轴)(,)2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【高清课程名称:二次函数复习高清ID 号: 357019 关联的位置名称(播放点名称):(1)-(2)问精讲】【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.二次函数2y ax bx c =++的图象如图1所示,反比例函数ay x=与正比例函数y =(b+c)x 在同一坐标系中的大致图象可能是( ).【答案】B ;【解析】由2y ax bx c =++的图象开口向上得a >0,又02ba->,∴ b <0. 由抛物线与y 轴负半轴相交得c <0.∵ a>0,∴ayx=的图象在第一、三象限.∵ b+c<0,∴ y=(b+c)x的图象在第二、四象限.同时满足ayx=和()y b c x=+图象的只有B.【点评】由图1得到a、b、c的符号及其相互关系,去判断选项的正误.类型三、数形结合3.(2015•陕西模拟)已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C.则:①b=﹣2;②该二次函数图象与y轴交于负半轴;③存在这样一个a,使得M、A、C三点在同一条直线上;④若a=1,则OA•OB=OC2.以上说法正确的有()A.①②③④B.②③④C.①②④D.①②③【思路点拨】①二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),因而将M、N两点坐标代入即可消去a、c解得b值.②根据图象的特点及与直线MN比较,可知当﹣1<x<1时,二次函数图象在直线MN的下方.③同②理.④当y=0时利用根与系数的关系,可得到OA•OB的值,当x=0时,可得到OC的值.通过c建立等量关系求证.【答案】C;【解析】①∵二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),∴,解得b=﹣2.故该选项正确.②方法一:∵二次函数y=ax2+bx+c,a>0∴该二次函数图象开口向上∵点M(﹣1,2)和点N(1,﹣2),∴直线MN的解析式为y﹣2=,即y=﹣2x,根据抛物线的图象的特点必然是当﹣1<x<1时,二次函数图象在y=﹣2x的下方,∴该二次函数图象与y轴交于负半轴;方法二:由①可得b=﹣2,a+c=0,即c=﹣a<0,所以二次函数图象与y轴交于负半轴.故该选项正确.③根据抛物线图象的特点,M、A、C三点不可能在同一条直线上.故该选项错误.④当a=1时,c=﹣1,∴该抛物线的解析式为y=x2﹣2x﹣1当y=0时,0=x2﹣2x+c,利用根与系数的关系可得x1•x2=c,即OA•OB=|c|,当x=0时,y=c,即OC=|c|=1=OC2,∴若a=1,则OA•OB=OC2,故该选项正确.总上所述①②④正确.故选C.【点评】本题是二次函数的综合题型,其中涉及到的知识点较多,熟练掌握所学函数的图象性质及特点对于解题很重要;同时也要灵活应对知识点彼此之间的联系.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y 轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1 B.C.D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.举一反三:【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( ) A.B.C.D.【答案】二次函数的图象与x轴无交点,则说明y=0时,方程无解,即.又图象永远在x 轴下方,则. 答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x 叫做这个函数的零点,则二次函数(m 为实数)的零点的个数是( )A .1B .2C .0D .不能确定 【答案】当y=0时,,,即二次函数的零点个数是2. 故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x元(x为正整数),每星期的利润为y元.(1)求y与x的函数关系式并写出自变量x的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由.(3)直接写出售价为多少时,每星期的利润不低于5000元?【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x,销售量=500+100x,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润;(3)设当y=5000时x有两个解,可推出0≤x≤5时,y≥5000.【答案与解析】解:(1)依题意,得y=(50﹣40﹣x)•(500+100x)=﹣100x2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x2+500x+5000=﹣100(x﹣)+5625,∵5600<5625,∴5600不是最大利润.(3)当y=5000时,y=﹣100x2+500x+5000=5000,解得x1=0,x2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。

人教版数学九年级上学期课时练习- 《二次函数》全章复习与巩固(基础篇)(人教版)

人教版数学九年级上学期课时练习- 《二次函数》全章复习与巩固(基础篇)(人教版)

专题22.36 《二次函数》全章复习与巩固(基础篇)(专项练习)一、单选题1.下列函数中,是二次函数的是( ) A .223y x x=-- B .22(1)y x x =--+ C .21129y x x =+ D .2y ax bx c =++2.抛物线()2218y x =--+的顶点坐标是( ) A .()1,8B .()1,8-C .()1,8--D .()1,8-3.二次函数23324y x ⎛⎫=-+ ⎪⎝⎭的图象()13x ≤≤如图所示,则该函数在所给自变量的取值范围内,函数值y 的取值范围是( )A .1y ≥B .13y ≤≤C .334y ≤≤ D .03≤≤y4.已知函数()()y x m x n =--(其中m n <)的图象如图所示,则函数y nx m =+的图象可能正确的是( )A .B .C .D .5.如图,抛物线21y ax bx c =++与直线2y mx n =+相交于点()3,0和()0,3,若2ax bx c mx n ++>+,则x 的取值范围是( )A .03x <<B .13x <<C .0x <戓3x >D .1x <戓3x >6.如图,铅球运动员掷铅球的高度y (m )与水平距离x (m )之间的函数解析式是21251233y x x =-++,则该运动员此次掷铅球的成绩是( )A .6mB .12mC .8mD .10m7.在平面直角坐标系中,已知,点A (1,m )和点B (3,n )(其中mn <0)在抛物线y =ax 2+bx (a >0)上.若点(−1,y 1),(2,y 2),(4,y 3)也在该抛物线上,则y 1,y 2,y 3的大小关系是( )A .231y y y >>B .213y y y >>C .312y y y >>D .123y y y >>8.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列说法中,错误的是( )A .对称轴是直线12x = B .当12x -<<时,0y < C .a c b +=D .a b c +>-9.如图,四边形ABCD 中,AB=AD ,CE ⊥BD ,CE =12BD .若△ABD 的周长为20cm ,则△BCD的面积S (cm 2)与AB 的长x (cm )之间的函数关系式可以是( )A .21101004S x x =-+ B .2240200S x x =-+ C .220100S x x =-+D .220100S x x =++10.如图,抛物线y =ax 2+bx +c 的对称轴为12x =-,经过点(﹣2,0),下列结论:①a =b ;②abc <0;③02a c +=;④点A (x 1,y 1),B (x 2,y 2)在抛物线y =ax 2+bx +c 上,当1212x x >≥-时,y 1<y 2;⑤若ax 12+bx 1=ax 22+bx 2且x 1≠x 2,则x 1+x 2=﹣1.其中正确结论的个数有( )A .2个B .3个C .4个D .5个二、填空题11.已知函数27(3)m y m x -=-是二次函数,则m =________. 12.抛物线()()y 2x 1x 3=+-的对称轴是______.13.二次函数y =12x 2—2x 一2的图象向右平移2个单位长度后,再向上平移5个单位长度,平移后的图象对应的二次函数解析式为_______.14.如图,抛物线()20y ax bx c a =++>的对称轴是过点(1,0)且平行于y 轴的直线,若点(4,0)P在该抛物线上,则42a b c -+的值为____.15.已知二次函数2(2)y a x b =++有最大值12,则a ,b 的大小关系为________.16.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.17.如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将OCG ∆沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数12y x=经过点B .二次函数2(0)y ax bx c a =++≠的图象经过(0,3)C 、G 、A 三点,则该二次函数的解析式为_______.(填一般式)18.如图抛物线21322y x x =--+与x 轴相交于点A ,B ,与y 轴相交于点C ,则ABC 的面积为______.19.如图抛物线y =ax 2+bx+c 的对称轴是x =﹣1,与x 轴的一个交点为(﹣5,0),则一元二次方程ax 2+bx+c =0的另一根为______.20.如图,抛物线y=ax 2+bx+c 与直线y=mx+n 交于点A (﹣1.5,1),B (3,4),则关于x 、y 的方程组200ax bx c mx y n ⎧++=⎨-+=⎩的解为_____.21.2013年5月26日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y (米)与水平距离x (米)之间满足关系22810y x x 999=-++,则羽毛球飞出的水平距离为 米.22.下列说法中正确的序号是_____________ ⊥在函数y =﹣x 2中,当x =0时y 有最大值0; ⊥在函数y =2x 2中,当x >0时y 随x 的增大而增大⊥抛物线y =2x 2,y =﹣x 2,y =﹣212x 中,抛物线y =2x 2的开口最小,抛物线y =﹣x 2的开口最大⊥不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点 三、解答题23.如图,已知经过原点的抛物线22y x mx =+与x 轴交于另一点A (2,0). (1)求m 的值和抛物线顶点M 的坐标; (2)求直线AM 的解析式.24.已知二次函数的图象的顶点在原点O ,且经过点A (1,14).(1)求此函数的解析式;(2)将该抛物线沿着y 轴向上平移后顶点落在点P 处,直线x=2分别交原抛物和新抛物线于点M 和N ,且S △PMN =, 求:MN 的长以及平移后抛物线的解析式.25.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C .(1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC △的周长最小时,直接写出点P 的坐标和周长最小值;(3)点Q 为抛物线上一点,若8QABS=,求出此时点Q 的坐标.26.已知抛物线的解析式为21y x 4x 62=-+-()1求抛物线的顶点坐标;()2求出抛物线与x 轴的交点坐标; ()3当x 取何值时y 0>?27.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y关于x的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?参考答案1.C【分析】函数解析式中只含有一个未知数,并且未知数的最高次数是2的函数是二次函数,根据定义解答.解:A 、223y x x =--中含有分式,故不是二次函数; B 、22(1)y x x =--+=2x -1,不符合定义,故不是二次函数; C 、21129y x x =+符合定义,故是二次函数;D 、2y ax bx c =++中a 不确定不等于0,故不是二次函数; 故选:C .【点拨】此题考查二次函数的定义,熟记定义是解题的关键. 2.A 【分析】根据抛物线的顶点式()()20y a x m k a =++≠所对应的顶点坐标是(),m k -,可作出选择.解:对照抛物线的顶点式()()20y a x m k a =++≠可得1m =-,8k ,把1m =-,8k 代入顶点坐标公式(),m k -中,得此抛物线的顶点坐标为()1,8, 故选:A .【点拨】本题考查的是二次函数的基础知识:会根据顶点式写出顶点坐标.需要强调的是:公式要记清楚.顶点式()()20y a x m k a =++≠中的m 与顶点坐标(),m k -中的-m 是互为相反数的关系.3.C 【分析】先根据二次函数是顶点式,开口向上,可求出二次函数的最小值,然后结合函数图像求出最大值即可得到答案.解:⊥二次函数的解析式为23324y x ⎛⎫=-+ ⎪⎝⎭()13x ≤≤,1>0,⊥当32x =时,二次函数有最小值34, ⊥由函数图像可知,二次函数的最大值为3,⊥当13x ≤≤时,334y ≤≤, 故选C .【点拨】本题主要考查了二次函数图像的性质,解题的关键在于能够利用数形结合的思想进行求解.4.D 【分析】根据题意可得二次函数与x 轴的交点为(m ,0),(n ,0),从而得到1,01m n <-<<,进而得到函数y nx m =+经过第一三四象限,且与y 轴的交点位于点(0,-1)的下方,即可求解.解:令y =0,则()()0x m x n --=,解得:12,x m x n ==,⊥二次函数与x 轴的交点为(m ,0),(n ,0), ⊥m n <,⊥1,01m n <-<<,⊥函数y nx m =+经过第一、三、四象限,且与y 轴的交点位于点(0,-1)的下方. 故选:D【点拨】本题主要考查了二次函数和一次函数的图象和性质,熟练掌握二次函数和一次函数的图象和性质是解题的关键.5.C 【分析】根据函数图象写出抛物线在直线上方部分的x 的取值范围即可.解:抛物线21y ax bx c =++与直线2y mx n =+相交于点()3,0和()0,3,2ax bx c mx n ++>+则2ax bx c mx n ++>+的解集为:0x <戓3x >. 故选C .【点拨】本题考查了二次函数与不等式,数形结合是数学中的重要思想之一,解决函数问题更是如此.6.D 【分析】根据铅球落地时,高度y =0,把实际问题可理解为当y =0时,求x 的值即可.解:令21251233y x x =-++=0, 整理得:x 2−8x −20=0, (x −10)(x +2)=0, 解得x 1=10,x 2=−2(舍去), 故该运动员此次掷铅球的成绩是10m , 故选:D .【点拨】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.7.C 【分析】分类讨论b 的正负情况,根据mn <0可得对称轴在x =32与直线x =12之间,再根据各点到对称轴的距离判断y 值大小.解:⊥y =ax 2+bx (a >0),⊥抛物线开口向上且经过原点,当b =0时,抛物线顶点为原点,x >0时y 随x 增大而增大,n >m >0不满足题意, 当b >0时,抛物线对称轴在y 轴左侧,同理,n >m >0不满足题意, ⊥b <0,抛物线对称轴在y 轴右侧,x =1时m <0,x =3时n >0, 即抛物线和x 轴的2个交点,一个为(0,0),另外一个在1和3之间, ⊥抛物线对称轴在直线x =32与直线x =12之间,即12<-2b a <32, ⊥点(2,y 2)与对称轴距离最近,点(4,y 3)与对称轴距离最远, ⊥y 2<y 1<y 3. 故选:C .【点拨】本题考查的是二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键. 8.D 【分析】由与x 轴的交点和中点公式求对称轴判断选项A ;结合函数图象判断选项B ;令x =-1,判断选项C ;令x =1,判断选项D ,即可解答.解:A 、对称轴为:直线12122x -+== ,故选项A 正确,不符合题意; B 、由函数图象知,当-1<x <2时,函数图象在x 轴的下方, ⊥当-1<x <2时,y <0,故选项B 正确,不符合题意; C 、由图可知:当x =-1时,y =a -b +c =0, ⊥a +c =b ,故选项C 正确,不符合题意; D 、由图可知:当x =1时,y =a +b +c <0 ⊥a +b <-c ,故选项D 错误,不符合题意; 故选:D .【点拨】本题主要考查了二次函数对称性、二次函数图象与系数之间的关系和二次函数图象上点的坐标特征,解题的关键理解函数图象与不等式之间以及方程的关系.9.C 【分析】先求解,BD CE 的长度,再利用三角形的面积公式列二次函数关系式即可. 解: AB=AD ,⊥ABD 的周长为20cm ,设,AB x =202,BD x1,2CE BD 120210,2CE x x,CEBD2112021020100,22BDCSBD CE x x x x故选:C【点拨】本题考查的是二次函数的几何应用,列二次函数关系式,掌握“利用图形面积公式列二次函数关系式”是解题的关键.10.C 【分析】 根据对称轴122b xa即可判断⊥,根据开口方向以及与y 轴的交点位置,即可判断⊥,根据经过点(﹣2,0)即可判断③,根据函数图象即可判断④,根据对称性即可判断⑤.解:⊥抛物线y =ax 2+bx +c 的对称轴为122b xa,则a b =, 故①正确;抛物线开口向上,与y 轴交点在y 轴的负半轴,则0a >,0c <, a b =,0b ∴>,0abc ∴<,故⊥正确;经过点(﹣2,0),420a b c ∴-+=,a b =,∴20a c +=,∴02a c+=, 故⊥正确;点A (x 1,y 1),B (x 2,y 2)在抛物线y =ax 2+bx +c 上,对称轴为12x =-, 当1212x x >≥-时,y 随x 的增大而增大,∴y 1>y 2;故④不正确,ax 12+bx 1+c =ax 22+bx 2+c 且x 1≠x 2, 对称轴为12x =-,即12122x x +=-, ∴x 1+x 2=﹣1.故⑤正确,其中正确结论的个数有4个. 故选C .【点拨】本题考查了二次函数图象与系数之间的关系,二次函数图象的性质,数形结合是解题的关键.11.3- 【分析】根据二次函数的定义得出30m -≠且272m -=,求出即可. 解:函数27(3)m y m x -=-是二次函数,30m ∴-≠且272m -=,解得:3m =-. 故答案为:3-.【点拨】本题考查了二次函数的定义,解题的关键是能熟记二次函数的定义即:表示形式为2(0)y ax bx c a =++≠.12.x 1= 【分析】函数与x 轴交点是()3,0,()1,0-,即可求解. 解:令y 0=,则:x 1=-或x 3=,即:函数与x 轴交点是()3,0,()1,0-, 故:对称轴是()1x 33112=-+= 答案是x 1=.【点拨】主要考查了对称点的特点和求抛物线的顶点坐标的方法. 13.y =12(x -4)2+1 【分析】先把抛物线化为顶点坐标式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.解:⊥y =12x 2-2x -2=12(x -2)2-4,把其图象向右平移2个单位长度,再向上平移5个单位长度, 得抛物线y =12(x -2-2)2-4+5, 即为y =12(x -4)2+1.故答案为:y =12(x -4)2+1.【点拨】此题考查了二次函数图象与几何变换,同时考查了学生将一般式转化顶点式的能力,要求熟练掌握平移的规律:左加右减,上加下减.14.0 【分析】根据对称性确定抛物线与x 轴的另一个交点为(2,0)Q -,代入解析式求解即可; 解:如解图,设抛物线与x 轴的另一个交点是Q ,⊥抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是(4,0)P , ⊥与x 轴的另一个交点(2,0)Q -,把(2-,0)代入解析式得:042a b c =-+, 420a b c ∴-+=.故答案为:0【点拨】本题主要考查了抛物线与坐标轴的交点,准确分析计算是解题的关键. 15.a b < 【分析】根据二次函数有最大值判断出a <0,并得到b 的值,然后比较大小即可. 解:⊥函数有最大值, ⊥a <0, ⊥函数的最值为12, ⊥b=12, 则a <b .【点拨】本题考查了二次函数的最值问题,属于基础题.当函数有最小值时则a >0;当函数有最大值时则a <0.16.﹣1≤x ≤2 【分析】根据图象可以直接回答,使得y 1≥y 2的自变量x 的取值范围就是直线y 1=kx+m 落在二次函数y 2=ax 2+bx+c 的图象上方的部分对应的自变量x 的取值范围.解:根据图象可得出:当y 1≥y 2时,x 的取值范围是:﹣1≤x ≤2. 故答案为:﹣1≤x ≤2.【点拨】本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.17.2111324y x x =-+ 【分析】先由题意得到5AC =,再设设OG PG x ==,由勾股定理得到22(4)4x x -=+,解得x 的值,最后将点C 、G 、A 坐标代入二次函数表达式,即可得到答案.解:点(0,3)C ,反比例函数12y x=经过点B ,则点(4,3)B , 则3OC =,4OA =, ⊥5AC =,设OG PG x ==,则4GA x =-,532PA AC CP AC OC =-=-=-=, 由勾股定理得:22(4)4x x -=+, 解得:32x =,故点3(,0)2G ,将点C 、G 、A 坐标代入二次函数表达式得:3930421640c a b c a b c =⎧⎪⎪++=⎨⎪++=⎪⎩,解得:1a 211b 4c 3⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,故答案为2111324y x x =-+. 【点拨】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法. 18.3 【分析】根据抛物线y =-12x 2-x +32,可以求得该抛物线与x 轴和y 轴的交点,从而可以得到点A 、B 、C的坐标,然后即可得到AB 和OC 的长,从而可以求得⊥ABC 的面积.解:⊥抛物线y =-12x 2-x +32,⊥当y =0时,x 1=-3,x 2=1,当x =0时,y =32,⊥点A 的坐标为(-3,0),点B 的坐标为(1,0),点C 的坐标为(0,32),⊥AB =1-(-3)=1+3=4,OC =32,⊥⊥ABC的面积为:12AB•OC=134322⨯⨯=.故答案为:3.【点拨】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是求出点A、B、C的坐标,利用数形结合的思想解答.19.x=3【分析】根据抛物线的对称性知,抛物线与x轴的两个交点关于直线x=-1对称,据此可以求得抛物线与x轴的另一个交点,即可得出一元二次方程ax2+bx+c=0的另一个解.解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=-1,与x轴的一个交点坐标为(-5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=-1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(-5,0)关于直线x=-1对称,⊥另一个交点的坐标为(3,0),⊥方程ax2+bx+c=0的另一个解是x=3;故答案是:x=3.【点拨】本题考查了抛物线与x轴的交点.解题的关键是掌握抛物线的对称性.20.1.51xy=-⎧⎨=⎩或34xy=⎧⎨=⎩.【分析】根据图像求解即可,方程组20ax bx cmx y n⎧++=⎨-+=⎩的解即为两个函数图像的交点坐标.解:⊥抛物线y=ax2+bx+c与直线y=mx+n交于点A(﹣1.5,1),B(3,4),⊥关于x、y的方程组20ax bx cmx y n⎧++=⎨-+=⎩的解为1.51xy=-⎧⎨=⎩或34xy=⎧⎨=⎩,故答案为1.51xy=-⎧⎨=⎩或34xy=⎧⎨=⎩.【点拨】本题考查了二次函数与一次函数解析式组成的方程组的解与两个函数图像交点的关系,两个解析式组成的方程组的解即为两函数图像交点的横纵坐标.21.5【分析】试题分析:根据羽毛球飞出的水平距离即为抛物线与x 轴正半轴交点到原点的距离求出即可. 解:当y=0时,22810x x 0999-++=,解得:x 1=﹣1(舍),x 2=5. ⊥羽毛球飞出的水平距离为5米. 22.⊥⊥⊥ 【分析】根据二次函数y =ax 2的图象与性质逐一判断即得答案解:由函数的解析式y =-x 2,可知a =﹣1<0,得到函数的开口向下,有最大值y =0,故⊥正确;由函数的解析式y =2x 2,可知其对称轴为y 轴,对称轴的左边(x <0),y 随x 增大而减小,对称轴的右边(x >0),y 随x 增大而增大,故⊥正确;根据二次函数的性质,系数a 决定抛物线的开口方向和开口大小,且a 越大开口越小,可知抛物线y =2x 2的开口最小,抛物线y =-x 2的开口第二小,而y 212x =-开口最大,故⊥不正确;不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点,故⊥正确. 综上,正确的结论是:⊥⊥⊥. 故答案为:⊥⊥⊥.【点拨】此题主要考查了二次函数的图象与性质,熟练掌握二次函数y =ax 2的与性质是解题的关键.23.(1)4m =-,M (1,-2);(2)24y x =- 【分析】(1)将A (2,0)代入抛物线的解析式,可求得m 的值,再配成顶点式即可求解; (2)利用待定系数法即可求得直线AM 的解析式.解:(1)⊥抛物线22y x mx =+过点A (2,0),22220m ∴⨯+=,解得4m =-, 224y x x ∴=-, 22(1)2x =--,⊥顶点M 的坐标是(1,-2);(2)设直线AM 的解析式为()0y kx b k =+≠,⊥图象过A (2,0),M (1,-2),202k b k b +=⎧∴⎨+=-⎩,解得24k b =⎧⎨=-⎩, ⊥直线AM 的解析式为24y x =-.【点拨】本题考查了待定系数法求函数解析式,二次函数的图象和性质,解题的关键是灵活运用所学知识解决问题.24.(1)y=14x 2;(2),y=14x 2【分析】(1)根据题意可直接设y =ax 2把点(1,﹣3)代入得a =﹣3,所以y =﹣3x 2;(2)设平移后y 14=x 2+d (d >0),则MN =d ,根据题意得出S 12=⨯2×d =,即可求得d的值,从而求得平移后的解析式.解:(1)∵抛物线顶点是原点,可设y =ax 2,把点A (1,14)代入,得:a =14,所以这个二次函数的关系式为y 14=x 2;(2)设平移后y 14=x 2+d (d >0),⊥MN =d ,S 12=⨯2×d =⊥d =⊥y 14=x 2+3.【点拨】本题考查了用待定系数法求函数解析式以及二次函数的图象与几何变换,熟练掌握待定系数法和平移的规律是解题的关键.25.(1)223y x x =--;(2)(1,2)P -(3)1(1Q - , 2(1Q + ,3(1,4)Q - 【分析】(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++即可求出b,c 即可求解; (2)根据A,B 关于对称轴对称,连接BC 交对称轴于P 点,即为所求,再求出坐标及PAC △的周长; (3)根据⊥QAB 的底边为4,故三角形的高为4,令y =4,求出对应的x 即可求解.解:(1)把(10)A -,、(30)B ,代入抛物线2y x bx c =++得01093b cb c =-+⎧⎨=++⎩解得23b c =-⎧⎨=-⎩⊥抛物线的解析式为:223y x x =--; (2)如图,连接BC 交对称轴于P 点,即为所求, ⊥223y x x =-- ⊥C(0,-3),对称轴x=1 设直线BC 为y=kx+b,把(30)B ,, C(0,-3)代入y=kx+b 求得k=1,b=-3, ⊥直线BC 为y=x -3 令x=1,得y=-2, ⊥P (1,-2),⊥PAC △的周长(3)⊥⊥QAB 的底边为AB=4, 182QABS AB H =⨯= ⊥三角形的高为4,令y =4,即2234x x --=±解得x 1=1-2=1+3=1故点Q 的坐标为1(1Q - , 2(1Q + ,3(1,4)Q -.【点拨】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法与一次函数的求解.26.(1)抛物线顶点坐标为()4,2;()2 抛物线与x 轴的交点坐标为()()2,06,0,;()3当2x 6<<时,y 0>.【分析】(1)求抛物线的顶点坐标既可以利用公式,也可以利用配方法求解;(2)求抛物线与x 轴的交点坐标就是求函数值等于0时对应的x 的值即可解决问题;(3)y >0就是抛物线在x 轴上方的部分,所以利用抛物线的开口方向和与x 轴的交点坐标即可求解.解:(1)21y x 4x 62=-+- 21(x 4)22=--+, ⊥抛物线顶点坐标为()4,2;()2当y 0=时,即21y x 4x 602=-+-=, ⊥x 2=或x 6=, ⊥抛物线与x 轴的交点坐标为()()2,06,0;()3⊥抛物线的开口方向向下,且抛物线与x 轴的交点坐标为()()2,06,0,⊥当2x 6<<时,y 0>.【点拨】二次函数的性质,抛物线与x 轴的交点,二次函数与不等式(组).27.(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【分析】(1)由图象易得()50,100和()80,40,然后设y 关于x 的函数解析式为y kx b =+,进而代入求解即可;(2)设该电商每天所获利润为w 元,由(1)及题意易得222808000w x x =-+-,然后根据二次函数的性质可进行求解.解:(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得:501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩, ⊥y 关于x 的函数解析式为2200y x =-+;(2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,⊥-2<0,开口向下,对称轴为702b x a=-=, ⊥5080x ≤≤, ⊥当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=; 答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【点拨】本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.。

九年级数学 二次函数(巩固篇)(专项练习)Word版含解析

九年级数学 二次函数(巩固篇)(专项练习)Word版含解析

专题2.3 二次函数(巩固篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.3 二次函数(巩固篇)(专项练习) 一、单选题知识点一、二次函数的判断1.下列函数:①2y x =-,①3y x=,①2y x ,①234y x x =++,y 是x 的反比例函数的个数有( ). A .1个B .2个C .3个D .4个2.下列函数中,二次函数是( ) A .y =﹣4x +5B .y =x (2x ﹣3)C .y =ax 2+bx +cD .21y x =3.设y =y 1﹣y 2,y 1与x 成正比例,y 2与x 2成正比例,则y 与x 的函数关系是( ) A .正比例函数 B .一次函数 C .二次函数D .以上均不正确4.若用(1)、(2)、(3)、(4)四幅图分别表示变量之间的关系,将下面的(a )、(b )、(c )、(d )对应的图象排序( )(1) (2) (3) (4) (a )面积为定值的矩形(矩形的相邻两边长的关系) (b )运动员推出去的铅球(铅球的高度与时间的关系)(c )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)(d )某人从A 地到B 地后,停留一段时间,然后按原速返回(离开A 地的距离与时间的关系)A .(3)(4)(1)(2)B .(3)(2)(1)(4)C .(4)(3)(1)(2)D .(3)(4)(2)(1)知识点二、根据二次函数定义求参数5.若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数,则( ) A .a ≠1B .a ≠﹣1C .a =1D .a =±16.已知函数y =ax 2+bx +c ,其中a ,b ,c 可在0,1,2,3,4五个数中取值,则不同的二次函数的个数共有( ) A .125个B .100个C .48个D .10个7.如果函数22(2)27m y m x x -=-+-是二次函数,则m 的取值范围是( ) A .2m =±B .2m =C .m =﹣2D .m 为全体实数8.若y=(m +1)265m m x --是二次函数,则m= ( )A .-1B .7C .-1或7D .以上都不对知识点三、列二次函数解析式9.下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );①圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =13πr 2h (h 为定值);①物体自由下落时,下落高度h 与下落时间t 之间的关系为h =12gt 2(g 为定值); ①导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值). A .1个B .2个C .3个D .4个10.用一根长60cm 的铁丝围成一个矩形,那么矩形的面积2()y cm 与它的一边长()x cm 之间的函数关系式为( ) A .230(030)y x x x =-<< B .230(030)y x x x =-+< C .230(030)y x x x =-+<<D .230(030)y x x x =-+<11.二次函数2y ax c =+的图象与22y x =的图象形状相同,开口方向相反,且经过点()1,1,则该二次函数的解析式为( ) A .221y x =-B .223y x =+C .221y x =--D .223y x =-+12.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那么商品所赚钱y 元与售价x 元的函数关系为( )A .2105607350y x x =--+B .2105607350y x x =-+-C .210350y x x =-+D .2103507350y x x =-+-二、填空题知识点一、二次函数的判断 13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有________(只填序号)15.下列函数中属于一次函数的是_____,属于反比例函数的是______,属于二次函数的是______A. y =x(x +1)B. xy =1C. y =2x 2-2(x +1)2D. y =16.二次函数y =3x 2+5的二次项系数是_____,一次项系数是_____. 知识点二、根据二次函数定义求参数17.已知函数y =(2﹣k )x 2+kx +1是二次函数,则k 满足__. 18.若y =(m +1)x 2+mx ﹣1是关于x 的二次函数,则m 满足_____. 19.函数()21m y m x =++是关于x 的二次函数,则m=___ 20.若函数()2262mm y m x --=+是二次函数,则m =________.知识点三、列二次函数解析式21.矩形周长等于40,设矩形的一边长为x ,那么矩形面积S 与边长x 之间的函数关系式为____.22.在①ABC 中,已知BC 边长为x(x>0),BC 边上的高比它的2倍多1,则三角形的面积y 与x 之间的关系为__________.23.正方形边长为2,若边长增加x ,那么面积增加y ,则y 与x 的函数关系式是______. 24.用一根长为10m 的木条,做一个长方形的窗框,若长为xm ,则该窗户的面积y (m 2)与x (m )之间的函数表达式为_____. 三、解答题25.已知函数y=-(m+2)2-2m x (m 为常数),求当m 为何值时:(1)y 是x 的一次函数?(2)y 是x 的二次函数?并求出此时纵坐标为-8的点的坐标.26.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一条矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带BC 边长为xm ,绿化带的面积为ym2 , 求y 与x 之间的函数关系式,并写出自变量x的取值范围.27.如图2 - 4所示,长方形ABCD的长为5 cm,宽为4 cm,如果将它的长和宽都减去x(cm),那么它剩下的小长方形AB′C′D′的面积为y(cm2).(1)写出y与x的函数关系式;(2)上述函数是什么函数?(3)自变量x的取值范围是什么?28.某商场销售一批名牌衬衫,每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经市场调查发现,如果每件衬衫每降价1元,商场每天可多售出2件.()1如果每件衬衫降价5元,商场每天赢利多少元?()2如果商场每天要赢利1200元,且尽可能让顾客得到实惠,每件衬衫应降价多少元?()3用配方法说明,每件衬衫降价多少元时,商场每天赢利最多,最多是多少元?参考答案:1.A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】2y x =-是一次函数,故选项①不符合题意;3y x=是反比例函数,故选项①符合题意; 2y x 是二次函数,故选项①不符合题意;234y x x =++是二次函数,故选项①不符合题意;①y 是x 的反比例函数的个数有:1个 故选:A .【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解. 2.B【分析】根据二次函数的定义判断即可.【详解】A 、y =﹣4x+5是一次函数,故选项A 不合题意; B 、y =x (2x ﹣3)是二次函数,故选项B 符合题意;C 、当a =0时,y =ax 2+bx+c 不是二次函数,故选项C 不合题意;D 、21y x =不是二次函数,故选项D 不合题意. 故选:B .【点睛】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键. 3.C【分析】设y 1=k 1x ,y 2=k 2x 2,根据y =y 1﹣y 2得到y =k 1x ﹣k 2x 2,由此得到答案. 【详解】解:设y 1=k 1x ,y 2=k 2x 2, 则y =k 1x ﹣k 2x 2,所以y 是关于x 的二次函数, 故选:C .【点睛】此题考查列函数关系式,正确理解正比例函数的定义是解题的关键. 4.A【分析】根据每个类别的数量关系,判断函数图象的变化规律,选择正确结论.【详解】解:根据题意分析可得:(a )面积为定值的矩形,其相邻两边长的关系为反比例关系,对应图象为(3); (b )运动员推出去的铅球,铅球的高度随时间先增大再减小,对应图象为(4); (c )一个弹簧不挂重物到逐渐挂重物,弹簧长度随所挂重物质量增大而增大;对应图象为(1);(d )某人从A 地到B 地后,停留一段时间,然后按原速返回,对应图象为(2). 故选:A .【点睛】本题考查了函数图象,主要利用了反比例函数图象,抛物线,一次函数图象,分析得到各小题中的函数关系是解题的关键. 5.A【分析】利用二次函数定义进行解答即可. 【详解】解:由题意得:a ﹣1≠0, 解得:a ≠1, 故选:A .【点睛】本题主要考查了二次函数的定义,准确计算是解题的关键. 6.B【分析】根据二次函数的定义得到0a ≠,依据a 、b 、c 的选法通过计算即可得到答案 【详解】由题意0a ≠, ①a 有四种选法:1、2、3、4,①b 和c 都有五种选法:0、1、2、3、4, ①共有455⨯⨯=100种, 故选:B【点睛】此题考查二次函数的定义2(0)y ax bx c a =++≠,有理数的乘法运算,根据题意得到a 、b 、c 的选法是解题的关键. 7.C【分析】根据二次函数定义可得m -2≠0,222m -=,再解即可. 【详解】解:由题意得:m -2≠0,222m -=, 解得:m=-2, 故选:C .【点睛】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.8.B【分析】令x的指数为2,系数不为0,列出方程与不等式解答即可.【详解】由题意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,①m=7,故选:B.【点睛】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0.9.C【详解】形如y=ax2+bx+c(a、b、c是常数且a≠0)的函数是二次函数,由二次函数的定义可得①①①是二次函数,故选C.10.C【分析】由矩形另一边长为周长的一半减去已知边长求得另一边的长,进一步根据矩形的面积等于相邻两边长的积列出关系式即可.【详解】由题意得:矩形的另一边长=60÷2-x=30-x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30-x)=-x2+30x(0<x<30).故选:C.【点睛】此题考查根据实际问题列二次函数关系式,掌握矩形的边长与所给周长与另一边长的关系是解题的关键.11.D【分析】根据二次函数y=ax2+c的图象与y=2x2的图象形状相同,开口方向相反,得到a=−2,然后把点(1,1)代入y=−2x2+c求出对应的c的值,从而可得到抛物线解析式.【详解】①二次函数y=ax2+c的图象与y=2x2的图象形状相同,开口方向相反,①a=−2,①二次函数是y=−2x2+c,①二次函数y=ax2+c经过点(1,1),①1=−2+c,①c=3,①抛该二次函数的解析式为y=−2x 2+3; 故选D.【点睛】此题考查二次函数的性质,解题关键在于利用待定系数法求解. 12.B【分析】商品所赚钱=每件的利润×卖出件数,把相关数值代入即可求解. 【详解】解:每件的利润为(x -21), ①y =(x -21)(350-10x ) =-10x 2+560x -7350. 故选B .【点睛】本题考查了根据实际问题列二次函数关系式,解决本题的关键是找到总利润的等量关系,注意先求出每件商品的利润. 13.12-2x , 1【分析】函数化简为一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 【详解】①y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项 ①21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1.故答案是:12; -2x;1.【点睛】考查了二次函数的定义,二次函数的一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 14.①①①【分析】根据二次函数的定义与一般形式即可求解. 【详解】解:y 是x 的二次函数的有①,①,①. 故答案是:①,①,①.【点睛】本题考查了二次函数的定义,一般形式是y=ax 2+bx+c (a≠0,且a ,b ,c 是常数,x 是未知数). 15. C B A【详解】根据题意可知y=x (x+1)=x 2+x ,可由二次函数的定义,可知是二次函数;根据xy=1是反比例关系,所以是反比例函数;而y =2x 2-2(x +1)2= y =2x 2-2(x 2+2x+1)=-4x -2,是一次函数;函数y . 故答案为C 、B 、A. 16. 3 0【分析】根据二次函数的定义解答即可.【详解】二次函数y =3x 2+5的二次项系数是3,一次项系数是0. 故答案是:3;0.【点睛】考查二次函数的定义,是基础题,熟记概念是解题的关键,要注意没有一次项,所以一次项系数看做是0. 17.k ≠2【分析】利用二次函数定义可得2﹣k ≠0,再解不等式即可. 【详解】解:由题意得:2﹣k ≠0, 解得:k ≠2, 故答案为:k ≠2.【点睛】本题主要考查了二次函数的定义,准确分析计算是解题的关键. 18.m ≠﹣1【分析】利用二次函数定义可知m+1≠0,再解不等式即可; 【详解】解:由题意得:m+1≠0, 解得:m≠﹣1, 故答案为:m≠﹣1.【点睛】本题考查了二次函数的定义,正确掌握二次函数的定义是解题的关键; 19.2【分析】根据二次函数的定义可得220m m ⎧=⎪⎨+≠⎪⎩,求解即可.【详解】解:①函数()21my m x =++是关于x 的二次函数,①220m m ⎧=⎪⎨+≠⎪⎩,解得2m =,故答案为:2.【点睛】本题考查二次函数的定义,注意二次项系数不能为0. 20.4【分析】直接利用二次函数的定义进而分析得出答案. 【详解】由题意得:2262m m --=,且20m +≠, 解得:4m =. 故答案为:4.【点睛】本题考查了二次函数的定义,解决问题的关键是明确最高次项的次数为2,且最高次项系数不为0. 21.220S x x =-+【分析】根据矩形的周长、一边长,可得另一边长,根据矩形的面积公式,可得答案. 【详解】解:设矩形的一边长为x 米,另一边长为(20-x )米, ①由矩形的面积公式,得 2(20)20S x x x x =-=-+【点睛】本题考查了函数解析式,利用了矩形的面积公式. 22.y=x 2+12x【分析】根据已知得出三角形的高,进而利用三角形面积公式求出即可. 【详解】①BC 边长为x(x>0),BC 边上的高比它的2倍多1, ①这条边上的高为:2x+1, 根据题意得出:y=12x (2x+1)=x 2+12x . 故答案为y=x 2+12x .【点睛】此题主要考查了根据实际问题列二次函数关系式,根据三角形面积公式得出是解题关键. 23.y=x 2+4x【分析】增加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可. 【详解】新正方形的边长为2x +,原正方形的边长为2. ∴新正方形的面积为2(2)x +,原正方形的面积为4, 22(2)44y x x x ∴=+-=+,故答案为24y x x =+.【点睛】考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.24.y =﹣x 2+5x【分析】直接利用根据实际问题列二次函数解析式关系式,正确表示出长方形的宽是解题关键.【详解】设长为xm ,则宽为(5﹣x )m ,根据题意可得:y =x (5﹣x )=﹣x 2+5x .故答案是:y =﹣x 2+5x .【点睛】考查了根据实际问题列二次函数解析式,正确表示出长方形的宽是解题关键.25.(1)(2) m =2,纵坐标为-8的点的坐标是,-8),(,-8)【分析】(1)根据一次函数的定义求m 的值即可;(2)根据二次函数的定义求得m 的值,从而求得二次函数的解析式,把y =-8代入解析式,求得x 的值,即可得纵坐标为-8的点的坐标.【详解】(1)由y=-(m+2)22m x -(m 为常数),y 是x 的一次函数,得221,20,m m ⎧-=⎨+≠⎩解得 ①当y 是x 的一次函数;(2)由y=-(m+2)22m x -(m 为常数),y 是x 的二次函数,得222,20,m m ⎧-=⎨+≠⎩解得m=2,m=-2(不符合题意的要舍去),当m=2时,y 是x 的二次函数,当y=-8时,-8=-4x 2,解得故纵坐标为-8的点的坐标是-8)和(,-8).【点睛】本题考查了一次函数的定义、二次函数的定义,解题关键是掌握一次函数与二次函数的定义.26.y=﹣12x2+20x ,自变量x 的取值范围是0<x≤25.【详解】试题分析:由矩形的性质结合BC 的长度可得出AB 的长度,再根据矩形的面积公式即可找出y 与x 之间的函数关系式.试题解析:①四边形ABCD 为矩形,BC=x①AB=40-2x . 根据题意得:24012022x y BC AB x x x -⎛⎫=⨯==-+ ⎪⎝⎭,因为墙长25米,所以025x <≤. 27.(1) y =x2-9x +20;(2) 二次函数;(3) 0<x <4.【详解】试题分析:(1)根据长方形的面积公式,根据图示求解即可得到函数关系式;(2)通过二次函数的定义可判断;(3)根据x 取值不能大于原方程的长方形的宽进行分析.试题解析:(1)根据长方形的面积公式,得y =(5-x)·(4-x)=x 2-9x +20,所以y 与x 的函数关系式为y =x 2-9x +20.(2)上述函数是二次函数.(3)自变量x 的取值范围是0<x <4.点睛:此题主要考查了根据题意列函数的解析式,熟悉掌握根据题意列函数关系式是解决此题的关键.28.(1)如果每件衬衫降价5元,商场每天赢利1050元;()2每件衬衫应降价20元.()3每件衬衫降价15元时,商场平均每天盈利最多.【分析】总利润=每件利润×销售量.设每天利润为w 元,每件衬衫应降价x 元,据题意可得利润表达式,(1)把x =5代入求得相应的w 的值即可;(2)再求当w =1200时x 的值;(3)根据函数关系式,运用函数的性质求最值.【详解】(1)设每天利润为w 元,每件衬衫降价x 元,根据题意得w =(40−x )(20+2x )=−2x 2+60x +800=−2(x−15)2+1250当x =5时,w =−2(5−15)2+1250=1050(元)答:如果每件衬衫降价5元,商场每天赢利1050元;;()2当w 1200=时,22x 60x 8001200-++=,解之得1x 10=,2x 20=.根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.()3商场每天盈利()()40x 202x -+22(x 15)1250=--+.所以当每件衬衫应降价15元时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.【点睛】本题考查了配方法的应用,一元二次方程的应用.根据题意写出利润的表达式是此题的关键.。

九年级数学 二次函数(基础篇)(专项练习)Word版含解析

九年级数学 二次函数(基础篇)(专项练习)Word版含解析

专题2.2 二次函数(基础篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.2 二次函数(基础篇)(专项练习)一、单选题知识点一、二次函数的判断1.下列函数中是二次函数的是( )A .y =3x +1B .y =3x 2﹣6C .21y x x =+D .y =﹣2x 3+x ﹣12.下列是二次函数的是( )A .21y x x =+B .213y x =+C .1y x =+D .221x -3.下列函数中,是二次函数的是( )A .y =6x 2+1B .y =6x +1C .y =8xD .y =﹣28x +1 4.以x 为自变量的函数:①(2)(2)y x x =+-;①2(2)y x =+;①2123y x x =+-;①()21y x x x =--.是二次函数的有( )A .①①B .①①①C .①①①D .①①①① 知识点二、根据二次函数定义求参数5.若函数()2my m x =+是二次函数,那么m 的值是( ) A .2 B .-2或2C .-2D .0或2 6.若函数()2211mm y m x --=+是关于x 的二次函数,则m 的值是( )A .2B .1-或3C .3D .1-7.若()2234y a x x =--+是二次函数,则a 的取值范围是( )A .2a ≠B .0a >C .2a >D .0a ≠ 8.若函数()27321m y m x x -=--+是二次函数,则m 的值为( )A .3B .3-C .3±D .9 知识点三、列二次函数解析式9.一个边长为2厘米的正方形,如果它的边长增加()0x x >厘米,则面积随之增加y 平方厘米,那么y 与x 之间满足的函数关系是( )10.下列问题中的两个变量成反比例关系的是( )A .汽车以80千米/时的速度行驶s 千米,用时t 时B .正方形的周长C 与它的面积SC .有一水池的容量为100立方米,每小时的灌水量q (立方米)与灌满水池所需要的时间t (小时)D .圆的面积S 与它的半径r11.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x ππ=-+B .24y x π=-C .2(2)y x π=-D .2(4)y x =-+12.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为( )A .y=36(1﹣x )B .y=36(1+x )C .y=18(1﹣x)2D .y=18(1+x 2)二、填空题知识点一、二次函数的判断13.像y =-5x ²+100x +60000,26y x =,220S x x =-+,函数都是用自变量的_____次式表示的.一般地,若两个自变量x ,y 之间的对应关系可以表示成2y ax bx c =++ (a ,b ,c 是常数,a ≠0)的形式,则称y 是x 的______函数.其中,x 是______,a 为_______,2ax 叫做________;b 为_______,bx 叫做________;c 为_______.14.观察:①26y x =;①235y x =-+;①2200400200y x x =++;①22y x x =-;①21132y x x =-+;①()221y x x =+-.这六个式子中二次函数有___________________.(只填序号)15.关于x 的二次函数()()211y m x m x m =++-+,当0m =时,它是______函数;当1m =-时,它是______函数.16.给出下列函数:①y ①()21y x x x =-+;①21y x x=+;①()1y x x =-.其中是二次函数的有______,若把它写成2y ax bx c =++的形式,则=a ______,b =______,c =______.知识点二、根据二次函数定义求参数27m -18.已知y =()22m m m x --+3是x 的二次函数,则m =_____. 19.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.20.已知二次函数()2211y a x x a =-++-的图像经过原点,则a 的值是_______.知识点三、列二次函数解析式21.将长为20cm 的铁丝首尾相连围成扇形(忽略铁丝的粗细),扇形面积为()2cm y 、扇形半径为()cm x 且010x <<,则y 与x 之间的函数关系式为__________.22.已知()21f x x =+,则()1f -=___________23.在实数范围内定义一种运算“①”,其运算法则为a ①b =22a ab -,根据这个法则,若(3)y x =+①2,则y =________(写成一般式).24.在一幅长60cm,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm 2,设金色纸边的宽度为xcm,那么y 关于x 的函数是 ___________.三、解答题25.如果函数y =(m ﹣3)232mm x -++mx +1是二次函数,求m 的值. 26.已知()()24236--=++--m m y m x m x 是y 关于x 的二次函数,试确定m 的值.27.当m 为何值时,函数()221181m m y m x x --=++-是二次函数.28.如图2所示,有一根长60cm 的铁丝,用它围成一个矩形,写出矩形面积S(cm 2)与它的一边长x(cm)之间的函数关系式.29.某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量y (台)与售价x (万元/台)之间存在函数关系:24y x =-+.(1)设这种摘果机一期销售的利润为1W (万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?30.如图,在△ABC中,①ACB=90°,①A=30°,AB=4,点P是AB边上一个动点,过点P作AB的垂线交AC边与点D,以PD为边作①DPE=60°,PE交BC边与点E.(1)当点D为AC边的中点时,求BE的长;(2)当PD=PE时,求AP的长;(3)设AP 的长为x,四边形CDPE的面积为y,请直接写出y与x的函数解析式及自变量x的取值范围.参考答案:1.B【分析】根据二次函数的定义:形如()20y ax bx c a =++≠的函数,判断即可.【详解】解:A 、该函数是一次函数,故本选项不符合题意;B 、该函数二次函数,故本选项符合题意;C 、该函数不是二次函数,故本选项不符合题意;D 、该函数不是二次函数,故本选项不符合题意.故选B .【点睛】本题考查了二次函数的定义,熟练掌握定义是解题的关键.2.B【分析】根据二次函数的定义,形如2(0y ax bx c a =++≠,其中,,a b c 是常数)的函数是二次函数,据此分析即可.【详解】A. 21y x x=+,不是二次函数,故该选项不符合题意; B.213y x =+,是二次函数,故该选项符合题意;C.1y x =+,是一次函数,故该选项不符合题意;D.221x -,不是函数,故该选项不符合题意.故选B .【点睛】本题考查了二次函数的定义,掌握二次函数的定义是解题的关键.3.A【分析】根据二次函数的定义求解.【详解】解:A .是二次函数,故本选项符合题意;B .是一次函数,不是二次函数,故本选项不符合题意;C .是反比例函数,不是二次函数,故本选项不符合题意;D .等式的右边是分式,不是整式,不是二次函数,故本选项不符合题意;故选:A .【点睛】本题考查二次函数的基础知识,熟练掌握二次函数的意义是解题关键.4.C【分析】根据二次函数的定义进行判断.【详解】解:①2(2)(2)=4y x x x =+--,符合二次函数的定义,故①是二次函数; ①2(2)y x =+,符合二次函数的定义,故①是二次函数;①2123y x x =+-,符合二次函数的定义,故①是二次函数;①()2221=y x x x x x x x =----=-,不符合二次函数的定义,故①不是二次函数.所以,是二次函数的有①①①,故选:C .【点睛】本题考查了二次二次函数的定义,熟记概念是解题的关键.5.A【分析】根据二次函数的定义得出20m +≠且2m =,继而即可求解.【详解】①函数()2my m x =+是二次函数, ①20m +≠且2m =,①2m =故选:A .【点睛】本题考查二次函数的定义,解题的关键是根据二次函数的定义得出:20m +≠且2m =.6.C【分析】根据二次函数的定义条件列出方程与不等式即可得解.【详解】①函数()2211m m y m x --=+是关于x 的二次函数,①2212m m --=,且10m +≠,由2212m m --=得,3m =或1m =-,由10m +≠得,1m ≠-,①m 的值是3,故选:C .【点睛】本题考查了二次函数的定义、解一元一次不等式、解一元二次方程等知识,解答本题的关键是根据二次函数的定义列出方程与不等式.7.A【分析】根据二次函数的二次项系数不为0可得关于a 的不等式,解不等式即得答案.【详解】解:由题意得: a -2 ≠0,则a ≠2.故选择:A .【点睛】本题考查了二次函数的定义,属于基础题型,掌握二次函数的概念是关键.8.C【分析】根据二次函数的定义即可得.【详解】由题意得:272320m m ⎧-=⎨-≠⎩, 解得3m =±,故选:C .【点睛】本题考查了二次函数的定义,熟记定义是解题关键.9.D【分析】根据题意列出增加的面积与原面积的关系式,即可解题.【详解】解:由题意得,222(2)24y x x x =+-=+y ∴与x 之间满足的函数关系是二次函数,故选:D .【点睛】本题考查列二次函数的表达式,是重要考点,难度较易,掌握相关知识是解题关键.10.C【分析】根据题意逐一写出两个变量之间的函数关系,逐一分析即可得到答案.【详解】解:A 、汽车以80千米/时的速度行驶s 千米,用时t 时,则80s t =,s 是t 的正比例函数,故本选项错误;B 、正方形的面积22,416C C S ⎛⎫== ⎪⎝⎭S 是C 的二次函数,故本选项错误; C 、有一水池的容量为100立方米,每小时的灌水量q (立方米)与灌满水池所需要的时间t (小时)的函数关系为:100q t =,所以q 是t 的反比例函数,故本选项正确; D 、圆的面积S 与它的半径r 的函数关系为:2,S r π= 所以S 是r 的二次函数,故本选项错误.故选:C .【点睛】本题考查的是列函数关系式,同时考查正比例函数,反比例函数,二次函数的含义,掌握反比例函数的含义是解题的关键.11.A【分析】先求出原来的圆的面积,再用x 表示挖去的圆的面积,相减得到圆环的面积.【详解】解:圆的面积公式是2S r π=,原来的圆的面积=2416ππ⋅=,挖去的圆的面积=2x π,①圆环面积216y x ππ=-.故选:A .【点睛】本题考查二次函数的列式,解题的关键是根据题意用x 表示各个量,然后列出函数关系式.12.C【分析】原价为18,第一次降价后的价格是18×(1-x ),第二次降价是在第一次降价后的价格的基础上降价的为:18×(1-x )×(1-x )=18(1-x )2,则函数解析式即可求得.【详解】解:原价为18,第一次降价后的价格是18×(1-x );第二次降价是第一次降价后的价格的基础上降价:18×(1-x )×(1-x )=18(1-x )2, 则函数解析式是:y=18(1-x )2,故选C .【点睛】本题需注意第二次降价是在第一次降价后的价格的基础上降价的.13. 二 二次 自变量 二次项系数 二次项 一次项系数 一次项 常数项【解析】略14.①①①①【分析】根据二次函数的定义可得答案.【详解】解:这六个式子中,二次函数有:①y=6x 2;①y=-3x 2+5;①y=200x 2+400x+200;①22y x x =-.故答案为:①①①①.【点睛】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键.15. 二次 一次【分析】将0m =和1m =-代入到()()211y m x m x m =++-+中即可.当0m =时,2y x x ,是二次函数;当1m =-时,21y x =--,是一次函数.【详解】当0m =时,2yx x ,是二次函数;当1m =-时,21y x =--,是一次函数.故答案为二次 一次 【点睛】本题主要考查二次函数与一次函数的定义,掌握一次函数与二次函数的定义是解题的关键.16. ① 1- 1 0【分析】根据二次函数的概念:2(0)y ax bx c a =++≠逐一进行判断即可.①①①都不满足二次函数的形式,①是二次函数【详解】①不满足二次函数的形式,所以不是二次函数;①()21y x x x x =-+=-,是一次函数,也不满足要求;①不满足二次函数的形式,所以不是二次函数;①()21y x x x x =-=-+是二次函数所以二次函数只有①其中1,1,0a b c =-==故答案为 ① 1- 1 0【点睛】本题主要考查二次函数的概念,掌握二次函数的概念是解题的关键.17.3-【分析】根据二次函数的定义得出30m -≠且272m -=,求出即可. 【详解】解:函数27(3)m y m x -=-是二次函数, 30m ∴-≠且272m -=,解得:3m =-.故答案为:3-.【点睛】本题考查了二次函数的定义,解题的关键是能熟记二次函数的定义即:表示形式为2(0)y ax bx c a =++≠.18.-1【分析】根据二次函数定义可得m 2﹣m =2,且m ﹣2≠0,再解出m 的值即可.【详解】解:由题意得:m 2﹣m =2,且m ﹣2≠0,解得:m =﹣1,故答案为:﹣1.【点睛】此题主要考查了二次函数定义,解题的关键是掌握一般地,形如2y ax bx c =++(a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.y ═ax 2+bx +c (a 、b 、c 是常数,a ≠0)也叫做二次函数的一般形式.19.3【分析】根据二次函数图象过原点,把()0,0代入解析式,求出m 的值,还需要考虑二次项系数不能为零.【详解】解:根据二次函数图象过原点,把()0,0代入解析式,得209m =-,整理得29m =,解得3m =±,①30m +≠,①3m ≠-,①3m =.故答案为:3.【点睛】本题考查二次函数图象的性质,需要注意解出的解要满足二次项系数不能为零的隐藏条件.20.1-【分析】根据二次函数图象经过原点、并结合二次项系数不为零进行解答即可.【详解】解:①二次函数()2211y a x x a =-++-的图像经过原点()0,0①21010a a -≠⎧⎨-=⎩①1a =-.故答案是:1-【点睛】本题考查了根据二次函数的定义求参数、解一元一次不等式、解一元二次方程等,熟练掌握相关知识点是解题的关键.21.210y x x =-+【分析】根据扇形的面积公式即可得. 【详解】扇形的面积公式:12S lr =扇,其中l 为扇形的弧长,r 为扇形半径, 由题意得:扇形的弧长为()202cm x -,则()12022y x x =-, 即210y x x =-+,故答案为:210y x x =-+.【点睛】本题考查了扇形的面积公式、列二次函数关系式,熟记公式是解题关键. 22.2.【分析】求()1f -的值,即是求当=1x -时,21x +的值,从而进行计算即可得到答案.【详解】解:①()21f x x =+①()()21112f -=-+=故答案为:2.【点睛】本题主要考查了函数在某一点的函数值,解题的关键是把该点的x 值代入函数解析数进行运算求解.23.223y x x =+-【分析】先根据新定义列出关系式,然后改写成一般式即可.【详解】解:由题意可得:2(3)22(3)y x x =+-⨯+整理,得:226941223y x x x x x =++--=+-故答案为:223y x x =+-【点睛】本题考查新定义问题,正确理解题意列出关系式并准确计算是解题关键.24.y =(60+2x )(40+2x )【详解】试题分析:整个挂图仍是矩形,长是:60+2x ,宽是:40+2x ,由矩形的面积公式得y =(60+2x )(40+2x ).故答案为y =(60+2x )(40+2x ).点睛:本题考查了根据实际题意列函数解析式,根据题意,找到所求量的等量关系是解决问题的关键.本题需注意长和宽的求法.25.0【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数是二次函数,即可答题.【详解】解:根据二次函数的定义:m 2﹣3m +2=2,且m ﹣3≠0,解得:m =0.【点睛】本题考查二次函数的定义,解题的关键是熟练掌握二次函数的定义.26.3m =【分析】根据二次函数的定义:最高次数是2,二次项系数不能是0,求出m 的值.【详解】解:根据题意得242m m ,260m m --=,解得12m =-,23m =, ①20m +≠,即2m ≠-,①3m =.【点睛】本题考查二次函数的定义,解题的关键是二次函数的定义.27.m=3【分析】根据二次函数的定义即可求出结论.【详解】解:①函数()221181mm y m x x --=++-是二次函数①210212m m m +≠⎧⎨--=⎩ 解得:m=3即当m=3时,函数()221181m m y m x x --=++-是二次函数.【点睛】此题考查的是根据二次函数的定义,求参数,掌握二次函数的定义是解题关键.28.S =- x 2+30x (0<x <30)【分析】由铁丝的长是60cm ,一边长xcm ,可知另一边长是(30-x )cm ,然后根据长方形的面积公式即可求出矩形面积S (cm 2)与它的一边长x (cm)之间的函数关系式.【详解】①铁丝的长是60cm ,一边长x cm ,①另一边长是(30-x )cm ,①S =x (30-x )=- x 2+30x (0<x <30).【点睛】本题考查了列二次函数解析式,解决本题的关键得到所求矩形的等量关系,易错点是得到另一边的长度;注意求自变量的取值应从线段的长为正数入手考虑.29.(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润达到63万元,销售价应该为10万元/台.【分析】(1)先根据等量关系式:总利润=(售价-成本)⨯销售量,列出函数关系式,再将132W =代入函数关系式得出方程求解即得;(2)先根据等量关系式:总利润=(售价-新成本)⨯销售量-7,列出函数关系式,再将263W =代入函数关系式得出方程求解即得.【详解】(1)根据题意列出函数关系式如下:21(6)(6)(24)(15)81W x y x x x =-⋅=--+=--+当132W =时,2(15)8132x --+=,解得18x =,222x =.①要抢占市场份额①8x =.答:在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台.(2)降低成本之后,每台的成本为5万元,每台利润为(5)x -万元,销售量24y x =-+.依据题意得22(5)(24)729127W x x x x =--+-=-+-,当263W =时,22912763x x -+-=,解得110x =,219x =.①要继续保持扩大销售量的战略①10x =答:要使二期利润达到63万元,销售价应该为10万元/台.【点睛】本题考查函数解析式及解一元二次方程,解题关键是正确找出等量关系式:总利润=(售价-成本)⨯销售量.30.(1)54;(2)125;(3)2(03)y x x =<< 【分析】(1)根据含有30°角的直角三角形的性质和勾股定理求出AP 的长,从而求出BP 的长,然后求出BE 的长;(2)设AP= x ,则BP=4—x ,根据含有30°角的直角三角形的性质和勾股定理求出PD 和PE 的长,再根据PD=PE 列出方程即可.(3)分别用AP 表示PD 、PE 、BE,再根据ABC APD BPE y S S S ∆∆∆=--即可求出.【详解】(1)在△ABC 中,①ACB=90°,①A=30°,AB=4,12,2BC AB AC ∴==∴= ①点D 为AC 边的中点3522AD DP AP BP AB AP ∴====∴=-=, ①①DPE=60°,过点P 作AB 的垂线交AC 边与点D ,①①EPB=30°,①EB 15=24BP = (2)设AP= x ,则BP=4—x ,在两个含有30°的,Rt APD Rt BPE ∆∆中得出:AD=2DP ,BP=2BE,由勾股定理解得:),4PD PE x ==-, ①PD=PE ,)4x x =-解得125x = 即有AP= 125 (3)由(2)知:AP= x,)()1,4,42PD x PE x BE x ==-=-)()211112?4?42222(03)ABC APD BPE y S S S x x x x x ∆∆∆∴=--=⨯⨯---=<< 【点睛】本题主要考查了含有30°角的直角三角形的性质和勾股定理,以及二次函数,熟练掌握相关知识是解题的关键.。

华东师大初中数学九年级下册398975《二次函数》全章复习与巩固—知识讲解(提高)

华东师大初中数学九年级下册398975《二次函数》全章复习与巩固—知识讲解(提高)

《二次函数》全章复习与巩固—知识讲解(提高)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:当(轴) (轴)(,)2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1. 已知抛物线的顶点是(3,-2),且在x 轴上截得的线段长为6,求抛物线的解析式. 【思路点拨】已知抛物线的顶点是(3,-2),可设抛物线解析式为顶点式,即2(3)2y a x =--,也就是2692y ax ax a =-+-,再由在x 轴上截得的线段长为6建立方程求出a .也可根据抛物线的对称轴是直线x =3,在x 轴上截得的线段长为6,则与x 轴的交点为(0,0)和(6,0),因此可设y =a(x-0)·(x-6).【答案与解析】解法一:∵ 抛物线的顶点是(3,-2),且与x 轴有交点,∴ 设解析式为y =a(x-3)2-2(a >0),即2692y ax ax a =-+-,设抛物线与x 轴两交点分别为(x 1,0),(x 2,0).则12||6x x -==,解得29a =.∴ 抛物线的解析式为22(3)29y x =--,即22493y x x =-. 解法二:∵ 抛物线的顶点为(3,-2), ∴ 设抛物线解析式为2(3)2y a x =--.∵ 对称轴为直线x =3,在x 轴上截得的线段长为6,∴ 抛物线与x 轴的交点为(0,0),(6,0).把(0,0)代入关系式,得0=a(0-3)2-2,解得29a =,∴ 抛物线的解析式为22(3)29y x =--, 即22493y x x =-.解法三:求出抛物线与x 轴的两个交点的坐标(0,0),(6,0)设抛物线解析式为y =a(x-0)(x-6),把(3,-2)代入得3(36)2a ⨯⨯-=-,解得29a =. ∴ 抛物线的解析式为2(6)9y x x =-,即22493y x x =-.【点评】求抛物线解析式时,根据题目条件,恰当选择关系式,可使问题变得简单. 举一反三:【课程名称:二次函数复习357019 练习题精讲】【变式】已知抛物线2442y mx mx m =-+-(m 是常数).(1)求抛物线的顶点坐标; (2)若155m <<,且抛物线与x 轴交于整数点,求此抛物线的解析式.【答案】(1)依题意,得0≠m ,∴2242=--=-=mma b x ,m m m m a b ac y 442444422)()(---=-=241681622-=--=m m m m∴抛物线的顶点坐标为)2,2(-. (2)∵抛物线与x 轴交于整数点,∴02442=-+-m mx mx 的根是整数.∴22x m==±.∵0m >,∴2x =±2m是完全平方数.∵155m <<, ∴22105m <<,∴2m取1,4,9,22x m==±. 当21m =时,2=m ;当24m =时,21=m ;当29m =时,29m =. ∴m 的值为2或21或29.∴抛物线的解析式为6822+-=x x y 或x x y 2212-=或22810999y x x =--.类型二、根据二次函数图象及性质判断代数式的符号2. (2016•鄂州)如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣ 其中正确的结论个数有( )A.1个B.2个C.3个D.4个【思路点拨】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y<0,可判断②;由OA=OC,且OA<1,可判断③;把﹣代入方程整理可得ac2﹣bc+c=0,结合③可判断④;从而可得出答案.【答案】C;【解析】解:由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以﹣>0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>,故②错误;由图象可知OA<1,∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac﹣b+1=0,两边同时乘c可得ac2﹣bc+c=0,即方程有一个根为x=﹣c,由②可知﹣c=OA,而当x=OA是方程的根,∴x=﹣c是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C.【点评】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.类型三、数形结合3.(2015•黔东南州)如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1<y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.【答案与解析】解:(1)将A点坐标代入y1,得﹣16+13+c=0.解得c=3,二次函数y1的解析式为y=﹣x2+x+3,B点坐标为(0,3);(2)由图象得直线在抛物线上方的部分,是x<0或x>4,∴x<0或x>4时,y1<y2;(3)直线AB的解析式为y=﹣x+3,AB的中点为(2,)AB的垂直平分线为y=x﹣当x=0时,y=﹣,P1(0,﹣),当y=0时,x=,P2(,0),综上所述:P1(0,﹣),P2(,0),使得△ABP是以AB为底边的等腰三角形.【点评】本题考察了二次函数综合题,(1)利用待定系数法求函数解析式;(2)利用函数与不等式的关系求不等式的解集;(3)利用线段垂直平分线的性质,利用直线AB得出AB的垂直平分线是解题关键.类型四、函数与方程4.(2015•本溪模拟)某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≧60)元,销售量为y套.(1)求出y与x的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?【答案与解析】解:(1)销售单价为x元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得x1=70,x2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元;(3)设一个月内获得的利润为w元,根据题意得:w=(x﹣40)(﹣4x+480)=﹣4x2+640x﹣19200=﹣4(x﹣80)2+6400.当x=80时,w的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.【点评】本题考查了函数模型的选择与应用,考查了数学建模思想方法,关键是对题意要正确理解. 举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.【答案】由题意得把②代入①得.∵抛物线与直线只有一个公共点,∴方程必有两个相等的实数根,∴,∴.【变式2】二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)写出不等式的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程有两个不相等的实数根,求k的取值范围.【答案】(1)(2). (3).(4)方法1:方程的解,即为方程组中x 的解也就是抛物线与直线的交点的横坐标,由图象可看出,当时,直线与抛物线有两个交点,∴ .方法2:∵ 二次函数的图象过(1,0),(3,0),(2,2)三点,∴ ∴∴ ,即,∴.∵ 方程有两个不相等的实数根,∴ ,∴.类型五、分类讨论5.若函数22(2)2(2)x x y xx ⎧+≤=⎨>⎩,则当函数值y =8时,自变量x 的值是( ).A .B .4C .或4D .4或【思路点拨】此题函数是以分段函数的形式给出的,当y =8时,求x 的值时,注意分类讨论. 【答案】D ; 【解析】由题意知,当228x +=时,x =2>,∴ x =x =舍去).当2x =8时,x =4.综合上知,选D .【点评】正确的分类必须是周全的,既不重复、也不遗漏.类型六、与二次函数有关的动点问题6.如图所示,在直角坐标系中,点A ,B ,C 的坐标分别为(-1,0),(3,0),(0,3),过A ,B ,C 三点的抛物线的对称轴为直线l ,D 为对称轴l 上一动点.(1)求抛物线的解析式;(2)求当AD+CD 最小时点D 的坐标; (3)以点A 为圆心,以AD 为半径作⊙A . ①证明:当AD+CD 最小时,直线BD 与⊙A 相切; ②写出直线BD 与⊙A 相切时,D 点的另一个坐标. 【思路点拨】根据A 、B 两点在x 轴上,可设交点式求解析式.要AD+CD 最小,根据两点之间线段最短,可判定D 点位置,从而求出点D 坐标.要让BD 与⊙A 相切,只需证AD ⊥BD ,由圆的对称性, 可直接写出D 点另一个坐标.【答案与解析】(1)设抛物线的解析式为y =a(x+1)(x-3). 将(0,3)代入上式,得3=a(0+1)(0-3). 解得a =-1.∴ 抛物线的解析式为y =-(x+1)(x-3), 即223y x x =-++.(2)连接BC ,交直线l 于点D ′.∵ 点B 与点A 关于直线l 对称,∴ AD ′=BD ′. ∴ AD ′+CD ′=BD ′+CD ′=BC .由“两点之间,线段最短”的原理可知:此时AD ′+CD ′最小,点D ′的位置即为所求. 设直线BC 的解析式为y =kx+b , 由直线BC 过点(3,0),(0,3),得03,3.k b b =+⎧⎨=⎩解这个方程组,得1,3.k b =-⎧⎨=⎩∴ 直线BC 的解析式为y =-x+3. ∵ 对称轴l 为x =1.将x =1代入y =-x+3,得y =-1+3=2. ∴ 点D 的坐标为(1,2).精品文档 用心整理资料来源于网络 仅供免费交流使用(3)①连接AD .设直线l 与x 轴的交点为点E .由(2)知:当AD+CD 最小时,点D 的坐标为(1,2).∵ DE =AE =BE =2,∴ ∠DAB =∠DBA =45°,∴ ∠ADB =90°. ∴ AD ⊥BD .∴ BD 与⊙A 相切.②(1,-2).【点评】动点问题分单点运动和双点运动,是中考的热点问题,在运动变化中发展空间想象能力和提高综合分析问题的能力,解决此类题要“以静制动”,即把动态问题变为静态的问题去解决,解题时用运动的眼光去观察研究问题,挖掘运动变化过程中的不变量、不变关系.。

初三数学中考专项练习 《二次函数》全章复习与巩固—知识讲解(提高)

初三数学中考专项练习 《二次函数》全章复习与巩固—知识讲解(提高)

《二次函数》全章复习与巩固—知识讲解(提高)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:当(轴) (轴)(,)2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a ≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1. 已知抛物线的顶点是(3,-2),且在x 轴上截得的线段长为6,求抛物线的解析式. 【思路点拨】已知抛物线的顶点是(3,-2),可设抛物线解析式为顶点式,即2(3)2y a x =--,也就是2692y ax ax a =-+-,再由在x 轴上截得的线段长为6建立方程求出a .也可根据抛物线的对称轴是直线x =3,在x 轴上截得的线段长为6,则与x 轴的交点为(0,0)和(6,0),因此可设y =a(x-0)·(x-6).【答案与解析】解法一:∵ 抛物线的顶点是(3,-2),且与x 轴有交点,∴ 设解析式为y =a(x-3)2-2(a >0),即2692y ax ax a =-+-,设抛物线与x 轴两交点分别为(x 1,0),(x 2,0).则12||6x x -==,解得29a =.∴ 抛物线的解析式为22(3)29y x =--,即22493y x x =-. 解法二:∵ 抛物线的顶点为(3,-2), ∴ 设抛物线解析式为2(3)2y a x =--.∵ 对称轴为直线x =3,在x 轴上截得的线段长为6,∴ 抛物线与x 轴的交点为(0,0),(6,0).把(0,0)代入关系式,得0=a(0-3)2-2,解得29a =,∴ 抛物线的解析式为22(3)29y x =--, 即22493y x x =-.解法三:求出抛物线与x 轴的两个交点的坐标(0,0),(6,0)设抛物线解析式为y =a(x-0)(x-6),把(3,-2)代入得3(36)2a ⨯⨯-=-,解得29a =. ∴ 抛物线的解析式为2(6)9y x x =-,即22493y x x =-.【点评】求抛物线解析式时,根据题目条件,恰当选择关系式,可使问题变得简单. 举一反三:【变式】已知抛物线2442y mx mx m =-+-(m 是常数).(1)求抛物线的顶点坐标; (2)若155m <<,且抛物线与x 轴交于整数点,求此抛物线的解析式.【答案】(1)依题意,得0≠m ,∴2242=--=-=mma b x ,m m m m a b ac y 442444422)()(---=-=241681622-=--=m m m m∴抛物线的顶点坐标为)2,2(-. (2)∵抛物线与x 轴交于整数点,∴02442=-+-m mx mx 的根是整数.∴2x ==.∵0m >,∴2x =±2m是完全平方数.∵155m <<, ∴22105m <<,∴2m取1,4,9,2x ==. 当21m =时,2=m ;当24m =时,21=m ;当29m =时,29m =. ∴m 的值为2或21或29.∴抛物线的解析式为6822+-=x x y 或x x y 2212-=或22810999y x x =--.类型二、根据二次函数图象及性质判断代数式的符号2. (2016•鄂州)如图,二次函数y=ax 2+bx +c=0(a ≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;②9a +3b +c <0;③c >﹣1;④关于x 的方程ax 2+bx +c=0(a ≠0)有一个根为﹣ 其中正确的结论个数有( )A.1个B.2个C.3个D.4个【思路点拨】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由图象可知当x=3时,y<0,可判断②;由OA=OC,且OA<1,可判断③;把﹣代入方程整理可得ac2﹣bc+c=0,结合③可判断④;从而可得出答案.【答案】C;【解析】解:由图象开口向下,可知a<0,与y轴的交点在x轴的下方,可知c<0,又对称轴方程为x=2,所以﹣>0,所以b>0,∴abc>0,故①正确;由图象可知当x=3时,y>0,∴9a+3b+c>,故②错误;由图象可知OA<1,∵OA=OC,∴OC<1,即﹣c<1,∴c>﹣1,故③正确;假设方程的一个根为x=﹣,把x=﹣代入方程可得﹣+c=0,整理可得ac﹣b+1=0,两边同时乘c可得ac2﹣bc+c=0,即方程有一个根为x=﹣c,由②可知﹣c=OA,而当x=OA是方程的根,∴x=﹣c是方程的根,即假设成立,故④正确;综上可知正确的结论有三个,故选C.【点评】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.类型三、数形结合3. 已知平面直角坐标系xOy(如图所示),一次函数334y x=+的图象与y轴交于点A,点M在正比例函数32y x=的图象上,且MO=MA,二次函数2y x bx c=++的图象经过点A、M.(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数334y x =+ 的图象上,且四边形ABCD 是菱形,求点C 的坐标. 【答案与解析】(1)一次函数334y x =+,当x =0时,y =3,所以点A 的坐标为(0,3), 又∵ MO =MA ,∴ M 在OA 的中垂线上,即M 的纵坐标为32,又M 在32y x =上,当32y =时,x =1,∴ 点M 的坐标为31,2⎛⎫⎪⎝⎭.如图所示,2AM ==.(2)将点A(0,3),31,2M ⎛⎫ ⎪⎝⎭代入2y x bx c =++中,得3,31.2c b c =⎧⎪⎨++=⎪⎩ ∴ 5,23.b c ⎧=-⎪⎨⎪=⎩ 即这个二次函数的解析式为:2532y x x =-+. (3)如图所示,设B(0,m)(m <3),25(,3)2C n n n -+,3,34D n n ⎛⎫+ ⎪⎝⎭.则|AB|=3-m ,213||4D C DC y y n n =-=-,5||4AD n =. 因为四边形ABCD 是菱形,所以||||||AB DC AD ==.所以2133,453.4m n n m n ⎧-=-⎪⎪⎨⎪-=⎪⎩ 解得113,0;m n =⎧⎨=⎩(舍去)221,22.m n ⎧=⎪⎨⎪=⎩将n =2代入2532y x x =-+,得2C y =,所以点C 的坐标为(2,2). 【点评】结合题意画出图形,再根据图形的特殊性求线段长或点的坐标,达到以“形”助“数”的目的.类型四、函数与方程4.(2015•本溪模拟)某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x ≧60)元,销售量为y 套. (1)求出y 与x 的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少? 【答案与解析】解:(1)销售单价为x 元,则销售量减少×20,故销售量为y=240﹣×20=﹣4x+480(x ≥60);(2)根据题意可得,x (﹣4x+480)=14000, 解得x 1=70,x 2=50(不合题意舍去),故当销售价为70元时,月销售额为14000元; (3)设一个月内获得的利润为w 元,根据题意得: w=(x ﹣40)(﹣4x+480) =﹣4x2+640x ﹣19200 =﹣4(x ﹣80)2+6400.当x=80时,w 的最大值为6400.故当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.【点评】本题考查了函数模型的选择与应用,考查了数学建模思想方法,关键是对题意要正确理解. 举一反三:【变式1】抛物线与直线只有一个公共点,则b=________.【答案】由题意得把②代入①得.∵抛物线与直线只有一个公共点,∴方程必有两个相等的实数根,∴,∴.【变式2】二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)写出不等式的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程有两个不相等的实数根,求k的取值范围.【答案】(1)(2).(3).(4)方法1:方程的解,即为方程组中x的解也就是抛物线与直线的交点的横坐标,由图象可看出,当时,直线与抛物线有两个交点,∴.方法2:∵ 二次函数的图象过(1,0),(3,0),(2,2)三点,∴ ∴∴ ,即,∴.∵ 方程有两个不相等的实数根,∴ ,∴.类型五、分类讨论5.若函数22(2)2(2)x x y xx ⎧+≤=⎨>⎩,则当函数值y =8时,自变量x 的值是( ).A .B .4C .或4D .4或【思路点拨】此题函数是以分段函数的形式给出的,当y =8时,求x 的值时,注意分类讨论. 【答案】D ; 【解析】由题意知,当228x +=时,x =2>,∴ x =x =舍去).当2x =8时,x =4.综合上知,选D .【点评】正确的分类必须是周全的,既不重复、也不遗漏.类型六、与二次函数有关的动点问题6.在平面直角坐标系xOy 中,二次函数y=mx 2-(m+n )x+n (m <0)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若∠ABO=45°,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (p ,q )为二次函数图象上的一个动点,当-3<p <0时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.【思路点拨】(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B,A点坐标,进而求出直线AB的解析式,再利用平移规律得出答案;(3)根据当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,即可得出m的取值范围.【答案与解析】(3)由(2)得二次函数的解析式为:y=mx2-(m+1)x+1∵M(p,q)为二次函数图象上的一个动点,∴q=mp2-(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,-q).∴M′点在二次函数y=-m2+(m+1)x-1上.∵当-3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=-3时,q=12m+4;结合图象可知:-(12m+4)≤2,【点评】此题主要考查了二次函数综合以及根的判别式和一次函数图象的平移等知识,利用数形结合得出是解题关键.。

《二次函数》全章复习与巩固—知识讲解(基础)精选经典常考例题解析

《二次函数》全章复习与巩固—知识讲解(基础)精选经典常考例题解析

《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a=++≠中,,,a b c的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为________.【答案】21133y x x =-+或2y x x =+.【解析】正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0).因此所求抛物线的解析式有两种.设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+.【点评]此题容易出错漏解的错误.举一反三:【高清课程名称:二次函数复习【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标.【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4∴M(1,-4)∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4,∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.(2020•盘锦)如图是二次函数y=ax 2+bx+c=0(a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c <0;④b ﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4,其中正确的结论有()A .①③④B .②④⑤C .①②⑤D .②③⑤【答案】B;【解析】解:∵抛物线开口向下,∴a <0,∵﹣=﹣2,∴b=4a ,ab >0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4,∴②⑤正确,∵当a=﹣3时y >0,即9a ﹣3b+c >0,∴③错误,故正确的有②④⑤.故选:B .【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.类型三、数形结合3.如图所示是二次函数2y ax bx c =++图象的一部分,其对称轴为直线x=1,若其与x 轴一交点为(3,0),则由图象可知,不等式20ax bx c ++>的解集是________.【思路点拨】根据抛物线的对称性和抛物线与x 轴的交点A 的坐标可知,抛物线与x 轴的另一个交点的坐标,观察图象可得不等式20ax bx c ++>的解集.【答案】x>3或x<-1;【解析】根据抛物线的对称性和抛物线与x 轴的交点A(3,0)知,抛物线与x 轴的另一个交点为(-1,0),观察图象可知,不等式20ax bx c ++>的解集就是2y ax bx c =++函数值,y>0时,x 的取值范围.当x>3或x<-1时,y>0,因此不等式20ax bx c ++>的解集为x>3或x<-1.【点评】弄清20ax bx c ++>与2y ax bx c =++的关系,利用数形结合在图象上找出不等式20ax bx c ++>的解集.类型四、函数与方程4.(2019•台湾)如图,坐标平面上,二次函数y=﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?()A .1B .C .D .【思路点拨】求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可.【答案】D .【解析】解:∵y=﹣x 2+4x ﹣k=﹣(x ﹣2)2+4﹣k ,∴顶点D (2,4﹣k ),C (0,﹣k ),∴OC=k ,∵△ABC 的面积=AB •OC=AB •k ,△ABD 的面积=AB (4﹣k ),△ABC 与△ABD 的面积比为1:4,∴k=(4﹣k ),解得:k=.【点评】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.举一反三:【变式1】无论x 为何实数,二次函数的图象永远在x 轴的下方的条件是()A.B.C.D.【答案】二次函数的图象与x 轴无交点,则说明y=0时,方程无解,即.又图象永远在x 轴下方,则.答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x 叫做这个函数的零点,则二次函数(m 为实数)的零点的个数是()A.1B.2C.0D.不能确定【答案】当y=0时,,,即二次函数的零点个数是2.故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标.【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac=0求出a.【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b,所以b=2a.(2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=,解得a=0或a=2.当a=0时,y=x 2,这个二次函数的图象的顶点坐标是(0,0).当a=2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2020•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元(x 为正整数),每星期的利润为y 元.(1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由.(3)直接写出售价为多少时,每星期的利润不低于5000元?【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x,销售量=500+100x,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x 的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润;(3)设当y=5000时x 有两个解,可推出0≤x≤5时,y≥5000.【答案与解析】解:(1)依题意,得y=(50﹣40﹣x)•(500+100x)=﹣100x 2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x 2+500x+5000=﹣100(x﹣)2+5625,∵x 取正整数,当x=2或3时,y=5600.∴5600元是最大利润.(3)当y=5000时,y=﹣100x2+500x+5000=5000,解得x1=0,x2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。

新人教版九年级上册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

新人教版九年级上册数学[《二次函数》全章复习与巩固—知识点整理及重点题型梳理](基础)

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习《二次函数》全章复习与巩固—知识讲解(基础)【学习目标】1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.【知识网络】【要点梳理】要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴 顶点坐标 当时开口向上 当时开口向下(轴) (0,0) (轴)(0,) (,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线20()y ax bx c a =++≠中,,,a b c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.4.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:).要点诠释:求抛物线2y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点三、二次函数与一元二次方程的关系 函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x 轴的交点的个数由的值来确定.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义. 利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1.已知二次函数的图象经过原点及点11,24⎛⎫-- ⎪⎝⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为____ ____. 【答案】 21133y x x =-+或2y x x =+. 【解析】 正确找出图象与x 轴的另一交点坐标是解题关键.由题意知另一交点为(1,0)或(-1,0). 因此所求抛物线的解析式有两种. 设二次函数解析式为2y ax bx c =++.则有0,1114420c a b c a b c =⎧⎪⎪-=-+⎨⎪++=⎪⎩,或0,111,4420,c a b c a b c =⎧⎪⎪-=-+⎨⎪-+=⎪⎩解之13130a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,或1,1,0.a b c =⎧⎪=⎨⎪=⎩因此所求二次函数解析式为21133y x x =-+或2y x x =+. 【点评] 此题容易出错漏解的错误.举一反三:【课程名称:二次函数复习357019 :(1)-(2)问精讲】【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标. 【答案】∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 ∴M(1,-4) ∵对称轴x=1,且AB=4∴抛物线与x 轴的交点为:A(-1,0),B(3,0)bb=-212c=-31b c 0⎧-=⎧⎪∴∴⎨⎨⎩⎪-+=⎩∴y=x 2-2x-3为所求,∵x=1时y=-4 , ∴M(1,-4).类型二、根据二次函数图象及性质判断代数式的符号2.(2015•盘锦)如图是二次函数y=ax 2+bx+c=0(a ≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b+c <0;④b ﹣4a=0;⑤方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B . ②④⑤C . ①②⑤D .②③⑤【答案】B ;【解析】解:∵抛物线开口向下, ∴a <0, ∵﹣=﹣2,∴b=4a ,ab >0,∴①错误,④正确,∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx=0的两个根为x 1=0,x 2=﹣4, ∴②⑤正确,∵当a=﹣3时y >0,即9a ﹣3b+c >0, ∴③错误,故正确的有②④⑤. 故选:B .【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式以及特殊值的熟练运用.类型三、数形结合3.如图所示是二次函数2y ax bx c =++图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为(3,0),则由图象可知,不等式20ax bx c ++>的解集是________.【思路点拨】根据抛物线的对称性和抛物线与x 轴的交点A 的坐标可知,抛物线与x 轴的另一个交点的坐标,观察图象可得不等式20ax bx c ++>的解集.【答案】x >3或x <-1;【解析】根据抛物线的对称性和抛物线与x 轴的交点A(3,0)知,抛物线与x 轴的另一个交点为(-1,0),观察图象可知,不等式20ax bx c ++>的解集就是2y ax bx c =++函数值,y >0时,x 的取值范围.当x >3或x <-1时,y >0,因此不等式20ax bx c ++>的解集为x >3或x <-1.【点评】弄清20ax bx c ++>与2y ax bx c =++的关系,利用数形结合在图象上找出不等式20ax bx c ++>的解集.类型四、函数与方程4.(2016•台湾)如图,坐标平面上,二次函数y=﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A.1 B.C.D.【思路点拨】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【答案】D.【解析】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.【点评】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.举一反三:【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( ) A.B.C.D.【答案】二次函数的图象与x轴无交点,则说明y=0时,方程无解,即.又图象永远在x轴下方,则.答案:B【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定【答案】当y=0时,,,即二次函数的零点个数是2.故选B.类型五、分类讨论5.已知点A(1,1)在二次函数22y x ax b =-+的图象上.(1)用含a 的代数式表示b ;(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标. 【思路点拨】(1)将A(1,1)代入函数解析式.(2)由△=b 2-4ac =0求出a . 【答案与解析】(1)因为点A(1,1)在二次函数22y x ax b =-+的图象上,所以1=1-2a+b ,所以b =2a . (2)根据题意,方程220x ax b -+=有两个相等的实数根,所以2244480a b a a -=-=, 解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0). 当a =2时,2244(2)y x x x =-+=-,这个二次函数的图象的顶点坐标为(2,0).所以,这个二次函数的图象的顶点坐标为(0,0)或(2,0).【点评】二次函数2y ax b c =++(0)a ≠的图象与x 轴只有一个交点时,方程20ax bx c ++=有两个相等的实数根,所以240b ac =-=△.类型六、二次函数与实际问题6.(2015•黄陂区校级模拟)进价为每件40元的某商品,售价为每件50元时,每星期可卖出500件,市场调查反映:如果每件的售价每降价1元,每星期可多卖出100件,但售价不能低于每件42元,且每星期至少要销售800件.设每件降价x 元 (x 为正整数),每星期的利润为y 元. (1)求y 与x 的函数关系式并写出自变量x 的取值范围;(2)若某星期的利润为5600元,此利润是否是该星期的最大利润?说明理由. (3)直接写出售价为多少时,每星期的利润不低于5000元? 【思路点拨】(1)根据利润y=每件利润×销售量,每件利润=50﹣40﹣x ,销售量=500+100x ,而售价50﹣x≥42,销售量=500+100x≥800,列不等式组求x 的取值范围;(2)根据(1)的关系式配方后确定最大利润,与5600比较后即可发现是否为最大利润; (3)设当y=5000时x 有两个解,可推出0≤x≤5时,y≥5000. 【答案与解析】解:(1)依题意,得y=(50﹣40﹣x )•(500+100x )=﹣100x 2+500x+5000,∵,∴3≤x≤8;(2)y=﹣100x2+500x+5000=﹣100(x﹣)2+5625,∵x取正整数,当x=2或3时,y=5600.∴5600元是最大利润.(3)当y=5000时,y=﹣100x2+500x+5000=5000,解得x1=0,x2=5,故当0≤x≤5时,y≥5000,即当售价在不小于45元且不大于50元时,月利润不低于5000元.【点评】本题考查二次函数的实际应用.一般求最值问题,大多是建立二次函数关系,从而借助二次函数解决实际问题.。

初中数学中考复习 二次函数 专题讲义(含解析)

初中数学中考复习 二次函数  专题讲义(含解析)

二次函数 专题讲义考点回顾一、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

3、二次函数图像的画法 五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

二、二次函数的解析式二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

如果没有交点,则不能这样表示。

三、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,ab ac y 442-=最值。

如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。

中考复习专题二次函数分类讲解复习以及练习题含答案

中考复习专题二次函数分类讲解复习以及练习题含答案

1、二次函数的定义定义: y=ax2 + bx + c a 、 b 、 c 是常数, a ≠ 0 定义要点:①a ≠ 0 ②最高次数为2 ③代数式一定是整式练习:1、y=-x2,y=2x2-2/x,y=100-5 x2,y=3 x2-2x3+5,其中是二次函数的有____个;2.当m_______时,函数y=m+1χ - 2χ+1 是二次函数2、二次函数的图像及性质例2:已知二次函数1求抛物线开口方向,对称轴和顶点M 的坐标;2设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C,A,B 的坐标;抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值y=ax2+bx+ca>0y=ax 2+bx+ca<0由a,b 和c 的符号确定由a,b 和c 的符号确定 a>0,开口向上a<0,开口向下在对称轴的左侧,y 随着x 的增大而在对称轴的左侧,y 随着x 的增大而⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=直线abx 2-=直线23212-+=x x y3x为何值时,y随的增大而减少,x为何值时,y有最大小值,这个最大小值是多少4x为何值时,y<0x为何值时,y>03、求抛物线解析式的三种方法1、一般式:已知抛物线上的三点,通常设解析式为________________y=ax2+bx+ca≠02,顶点式:已知抛物线顶点坐标h, k,通常设抛物线解析式为_______________求出表达式后化为一般形式.y=ax-h2+ka≠03,交点式:已知抛物线与x 轴的两个交点x1,0、x2,0,通常设解析式为_____________求出表达式后化为一般形式.y=ax-x1x-x2 a≠0练习:根据下列条件,求二次函数的解析式;1、图象经过0,0, 1,-2 , 2,3 三点;2、图象的顶点2,3, 且经过点3,1 ;3、图象经过0,0, 12,0 ,且最高点的纵坐标是3 ;例1已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点3,-6;求a、b、c;解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为 1 , 2∴设二次函数的解析式为y=ax-12+2又∵图象经过点3,-6∴-6=a 3-12+2 ∴a=-2∴二次函数的解析式为y=-2x-12+2即: y=-2x2+4x4、a,b,c符号的确定抛物线y=ax2+bx+c的符号问题:1a的符号:由抛物线的开口方向确定2C的符号:由抛物线与y轴的交点位置确定.3b的符号:由对称轴的位置确定4b2-4ac的符号:由抛物线与x轴的交点个数确定5a+b+c的符号:因为x=1时,y=a+b+c,所以a+b+c的符号由x=1时,对应的y值决定;当x=1时,y>0,则a+b+c>0当x=1时,y<0,则a+b+c<0当x=1时,y=0,则a+b+c=06a-b+c的符号:因为x=-1时,y=a-b+c,所以a-b+c的符号由x=-1时,对应的y值决定;当x=-1,y>0,则a-b+c>0当x=-1,y<0,则a-b+c<0当x=-1,y=0,则a-b+c=0练习1、二次函数y=ax2+bx+ca≠0的图象如图所示,则a、b、c的符号为A、a<0,b>0,c>0B、a<0,b>0,c<0C、a<0,b<0,c>0D、a<0,b<0,c<02、二次函数y=ax2+bx+ca≠0的图象如图所示,则a、b、c的符号为A、a>0,b>0,c=0B、a<0,b>0,c=0C、a<0,b<0,c<0D、a>0,b<0,c=03、二次函数y=ax2+bx+ca≠0的图象如图所示,则a、b、c 、△的符号为A、a>0,b=0,c>0,△>0B、a<0,b>0,c<0,△=0C、a>0,b=0,c<0,△>0D、a<0,b=0,c<0,△<0熟练掌握a,b, c,△与抛物线图象的关系上正、下负左同、右异4.抛物线y=ax2+bx+ca≠0的图象经过原点和二、三、四象限,判断a、b、c的符号情况:a 0,b 0,c 0.5.抛物线y=ax2+bx+ca≠0的图象经过原点,且它的顶点在第三象限,则a、b、c满足的条件是:a 0,b 0,c 0.6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,那么这个二次函数图象的顶点必在第象限先根据题目的要求画出函数的草图,再根据图象以及性质确定结果数形结合的思想7.已知二次函数的图像如图所示,下列结论;⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷b=2a其中正确的结论的个数是A 1个B 2个C 3个D 4个要点:寻求思路时,要着重观察抛物线的开口方向,对称轴,顶点的位置,抛物线与x轴、y轴的交点的位置,注意运用数形结合的思想;5、抛物线的平移左加右减,上加下减 练习⑴二次函数y=2x2的图象向 平移 个单位可得到y=2x2-3的图象; 二次函数y=2x2的图象向 平移 个单位可得到y=2x-32的图象; ⑵二次函数y=2x2的图象先向 平移 个单位,再向 平移 个单位可得到函数y=2x+12+2的图象;引申:3由二次函数y=x2的图象经过如何平移可以得到函数y=x2-5x+6的图象.y=x2-5x+66二次函数与一元二次方程的关系一元二次方程根的情况与b2-4ac 的关系我们知道:代数式b2-4ac 对于方程的根起着关键的作用.二次函数y=ax2+bx +c 的图象和x 轴交点的横坐标,便是对应的一元二次方程ax2+bx +c=0的解;二次函数y=ax2+bx+c 的图象和x 轴交点有三种情况: 1有两个交点b2 – 4ac > 0 2有一个交点b2 – 4ac= 0 3没有交点 b2 – 4ac< 0若抛物线y=ax2+bx+c 与x 轴有交点,则b2 – 4ac ≥0例1如果关于x 的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=____,此时抛物线 y=x2-2x+m 与x 轴有____个交点.2已知抛物线 y=x2 – 8x +c 的顶点在 x 轴上,则c=____.y=x 24125(2--=x y .2422,1aacb b x -±-=∴3一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x轴的交点坐标是____.7二次函数的综合运用1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的解析式.解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同a=1或-1又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为1,5或1,-5所以其解析式为:1 y=x-12+52 y=x-12-53 y=-x-12+54 y=-x-12-5 展开成一般式即可.2.若a+b+c=0,a0,把抛物线y=ax2+bx+c 向下平移 4个单位,再向左平移5个单位所到的新抛物线的顶点是-2,0,求原抛物线的解析式. 分析:1由a+b+c=0可知,原抛物线的图象经过1,0 2 新抛物线向右平移5个单位, 再向上平移4个单位即得原抛物线练习题1.直线y =3 x -1与y =x -k 的交点在第四象限,则k 的范围是………………A k <31 B 31<k <1 C k >1 D k >1或k <1 提示由⎩⎨⎧-=-=k x y x y 13,解得⎪⎪⎩⎪⎪⎨⎧-=-=.23121k y k x 因点在第四象限,故21k ->0,231k -<0.∴ 31<k <1.答案B .点评本题应用了两函数图象交点坐标的求法,结合了不等式组的解法、象限内点的坐标符号特征等.2.二次函数y =ax 2+bx +c 的图象如图,则下列各式中成立的个数是…………1abc <0; 2a +b +c <0; 3a +c >b ; 4a <-2b . A1 B2 C3 D4 提示由图象知a <0,-ab2>0,故b >0,而c >0,则abc <0.当x =1时,y >0,即a +c -b >0;当x =-1时,y <0,即a +c -b <0. 答案B .点评本题要综合运用抛物线性质与解析式系数间的关系.因a <0,把4a <-2b 两边同除以a ,得1>-ab 2,即-a b 2<1,所以4是正确的;也可以根据对称轴在x =1的左侧,判断出-a b 2<1,两边同时乘a ,得a <-2b ,知4是正确的.3.若一元二次方程x 2-2 x -m =0无实数根,则一次函数y =m +1x +m -1的图象不经过………………………………………………………………………………… A 第一象限 B 第二象限 C 第三象限 D 第四象限提示由=4+4 m <0,得m +1<0,则m -1<0,直线过第二、三、四象限. 答案A .点评本题综合运用了一元二次方程根的判别式及一次函数图象的性质.注意,题中问的是一次函数图象不经过的象限.4.如图,已知A ,B 是反比例函数y =x2的图象上两点,设矩形APOQ 与矩形MONB 的面积为S 1,S 2,则……………………………………………………………… A S 1=S 2 B S 1>S 2 C S 1<S 2 D 上述A 、B 、C 都可能 提示因为S APOQ =|k |=2,S MONB =2,故S 1=S 2. 答案A .点评本题可以推广为:从双曲线上任意一点向两坐标轴引垂线,由这点及两个垂足和原点构成的矩形的面积都等于|k |.5.若点A 1,y 1,B 2,y 2,C ,y 3在反比例函数y =-xk 12+的图象上,则A y 1=y 2=y 3B y 1<y 2<y 3C y 1>y 2>y 3D y 1>y 3>y 2提示因-k 2+1<0,且-k 2+1=y 1=2 y 2=y 3,故y 1<y 2<y 3.或用图象法求解,因-k 2+1<0,且x 都大于0,取第四象限的一个分支,找到在y 轴负半轴上y 1,y 2,y 3 的相应位置即可判定. 答案B .点评本题是反比例函数图象的性质的应用,图象法是最常用的方法.在分析时应注意本题中的-k 2+1<0.6.直线y =ax +c 与抛物线y =ax 2+bx +c 在同一坐标系内大致的图象是……A B C D提示两个解析式的常数项都为c ,表明图象交于y 轴上的同一点,排除A,B .再从a 的大小去判断. 答案D .点评本题综合运用了一次函数、二次函数的性质.B 错误的原因是由抛物线开口向上,知a >0,此时直线必过第一、三象限.7.已知函数y =x 2-1840 x +1997与x 轴的交点是m ,0n ,0,则m 2-1841 m +1997n 2-1841 n +1997的值是…………………………………………… A1997 B1840 C1984 D1897提示抛物线与x 轴交于m ,0n ,0,则m ,n 是一元二次方程x 2-1840 x +1997=0的两个根.所以m 2-1840 m +1997=0,n 2-1840 n +1997=0,mn =1997.原式=m 2-1840 m +1997-mn 2-1840 n +1997-n =mn =1997. 答案A .点评本题揭示了二次函数与一元二次方程间的联系,应用了方程的根的定义、根与系数的关系等知识点,并要灵活地把所求代数式进行适当的变形. 8.某乡的粮食总产量为aa 为常数吨,设这个乡平均每人占有粮食为y 吨,人口数为x ,则y 与x 之间的函数关系为……………………………………………A B C D 提示粮食总产量一定,则人均占有粮食与人口数成反比,即y =xa.又因为人口数不为负数,故图象只能是第一象限内的一个分支. 答案D .点评本题考查反比例函数图象在实际问题中的应用.A 错在画出了x <0时的图象,而本题中x 不可能小于0. 二填空题每小题4分,共32分9.函数y =12-x +11-x 的自变量x 的取值范围是____________. 提示由2 x -1≥0,得x ≥21;又x -1≠0,x ≠1.综合可确定x 的取值范围.答案x ≥21,且x ≠1.10.若点Pa -b ,a 位于第二象限,那么点Qa +3,ab 位于第_______象限. 提示由题意得a >0,a -b <0,则b >0.故a +3>0,ab >0. 答案一.11.正比例函数y =kk +112--k k x 的图象过第________象限.提示由题意得k 2-k -1=1,解得k 1=2,k 2=-1舍去,则函数为y =6 x . 答案一、三.点评注意求出的k =-1使比例系数为0,应舍去.12.已知函数y =x 2-2m +4x +m 2-10与x 轴的两个交点间的距离为22,则m =___________.提示抛物线与x 轴两交点间距离可应用公式||a ∆来求.本题有∆=)10(4)42(22--+m m =5616+m =22,故m =-3. 答案-3.点评抛物线与x 轴两交点间距离的公式为||a ∆,它有着广泛的应用.13.反比例函数y =xk的图象过点Pm ,n ,其中m ,n 是一元二次方程x 2+kx +4=0的两个根,那么P 点坐标是_____________.提示Pm ,n 在双曲线上,则k =xy =mn ,又mn =4,故k =4. 答案-2,-2.点评本题是反比例函数、一元二次方程知识的综合应用.由题意得出k =mn =4是关键.14.若一次函数y =kx +b 的自变量x 的取值范围是-2≤x ≤6,相应函数值y 的范围是-11≤y ≤9,则函数解析式是___________.提示当k >0时,有⎩⎨⎧+=+-=-b k b k 69211,解得⎪⎩⎪⎨⎧-==.625b k当k <0时,有⎩⎨⎧+-=+=-b k b k 29611,解得⎪⎩⎪⎨⎧=-=.425b k答案y =25x -6或y =-25x +4.点评因k 是待定字母,而k 的不同取值,导致线段分布象限不一样,自变量的取值与函数取值的对应关系也就不同.故本例要分k >0时自变量最大值对应函数最大值,与k <0时自变量最大值对应函数最小值两种情形讨论. 15.公民的月收入超过800元时,超过部分须依法缴纳个人收入调节税,当超过部分不足500元时,税率即所纳税款占超过部分的百分数相同.某人本月收入1260元,纳税23元,由此可得所纳税款y 元与此人月收入x 元(800<x <1300)间的函数关系为____________. 提示因1260-800=460,46023=5%,故在800<x <1300时的税率为5%. 答案y =5%x -800.点评本题是与实际问题相关的函数关系式,解题时应注意并不是每个人月收入的全部都必须纳税,而是超过800元的部分才纳税,故列函数式时月收入x 须减去800. 16.某种火箭的飞机高度h 米与发射后飞行的时间t 秒之间的函数关系式是h =-10 t 2+20 t ,经过_________秒,火箭发射后又回到地面.提示火箭返回地面,即指飞行高度为0,则-10 t 2+20 t =0,故t =0或t =20. 答案20.点评注意:t =0应舍去的原因是此时火箭虽在地面,但未发射,而不是返回地面. 三解答题17.6分已知y =y 1+y 2,y 1 与x 成正比例,y 2 与x 成反比例,并且x =1时y =4,x =2时y =5,求当x =4时y 的值.解设y 1=k 1x ,y 2=xk 2,则y =k 1x +xk 2.把x =1时y =4,x =2时y =5分别代入上式,得⎪⎩⎪⎨⎧+=+=22542121k k k k ,解得∴ 函数解析式为y =2 x +x 2. 当x =4时,y =2×4+42=217.∴ 所求的y 值为217.点评本题考查用待定系数法求函数解析式.关键在于正确设出y 1,y 2 与x 的函数解析式.注意两个比例系数应分别用k 1,k 2 表示出来,而不能仅用一个k 值表示.18.6分若函数y =kx 2+2k +1x +k -1与x 轴只有一个交点,求k 的值. 提示本题要分k =0,k ≠0两种情况讨论.解当k =0时,y =2 x -1,是一次函数,此时,直线与x 轴必有一个交点.当k ≠0时,函数为二次函数,此时,=4k +12-4 kk -1=12 k +4=0.∴ k =-31. ∴ 所求的k 值为0或-31. 点评注意,当问题中未指明函数形式,而最高次项系数含字母时,要注意这个系数是否为0.函数图象与x 轴有一个交点包括两种情形:当函数是一次函数时,直线与x 轴必只有一个交点;当函数是二次函数时,在=0的条件下,图象与x 轴只有一个交点.19.8分已知正比例函数y =4 x ,反比例函数y =xk.1当k 为何值时,这两个函数的图象有两个交点k 为何值时,这两个函数的图象没有交点2这两个函数的图象能否只有一个交点若有,求出这个交点坐标;若没有,请说明理由. 解由y =4 x 和y =xk ,得 4 x 2-k =0,=16 k .1当>0,即k >0时,两函数图象有两个交点;当<0,即k <0时,两函数图象没有交点;2∵ 比例系数k ≠0,故≠0.∴ 两函数图象不可能只有一个交点.20.8分如图是某市一处十字路口立交桥的横断面在平面直角坐标系中的一个示意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的D ′GD 部分为一段抛物线,顶点G 的高度为8米,AD 和AD ′是两侧高为米的立柱,OA 和OA ′为两个方向的汽车通行区,宽都为15米,线段CD 和CD ′为两段对称的上桥斜坡,其坡度为1∶4.1求桥拱DGD ′所在抛物线的解析式及CC ′的长.2BE 和B ′E ′为支撑斜坡的立柱,其高都为4米,相应的AB 和A ′B ′为两个方向的行人及非机动车通行区,试求AB 和A ′B ′的宽.3按规定,汽车通过桥下时,载货最高处和桥拱之间的距离不可小于米,今有一大型运货汽车,装载上大型设备后,其宽为4米,车载大型设备的顶部与地面的距离为7米,它能否从OAOA ′安全通过请说明理由.分析欲求函数的解析式,关键是求出三个独立的点的坐标,然后由待定系数法求之.所以关键是由题中线段的长度计算出D 、G 、D ′的坐标,当然也可由对称轴x =0解之.至于求CC ′、AB 、A ′B ′的数值,则关键是由坡度的定义求解之;到底能否安全通过,则只需在抛物线的解析式中令x =4,求出相应的y 值,即可作出明确的判断.解1由题意和抛物线的对称轴是x =0,可设抛物线的解析式为y =ax 2+c .由题意得G 0,8,D 15,∴ ⎩⎨⎧=+=.5.52258c a c∴ ⎪⎩⎪⎨⎧=-=.8901c a∴ y =2901x -+8.又 AC AD =41且AD =, ∴ AC =×4=22米.∴ CC ′=2C =2×OA +AC =2×15+22=74米.∴ CC ′的长是74米.2∵ BC EB =41,BE =4, ∴ BC =16.∴ AB =AC -BC =22-16=6米.A ′B ′=AB =6米.3此大型货车可以从OAOA ′区域安全通过.在y =2901x -+8中,当x =4时,y =-901×16+8=45377,而 45377-7+=4519>0, ∴ 可以从OA 区域安全通过. 21.8分已知二次函数y =ax 2+bx +c 的图象抛物线G 经过-5,0,0,25,1,6三点,直线l 的解析式为y =2 x -3.1求抛物线G 的函数解析式;2求证抛物线G 与直线l 无公共点;3若与l 平行的直线y =2 x +m 与抛物线G 只有一个公共点P ,求P 点的坐标.分析1略;2要证抛物线G 与直线l 无公共点,就是要证G 与l 的解析式组成的方程无实数解;3直线y =2 x +m 与抛物线G 只有一个公共点,就是由它们的解析式组成的二元二次方程组有一个解,求出这组解,就得P 点的坐标.解1∵ 抛物线G 通过-5,0,0,25,1,6三点, ∴ ⎪⎪⎩⎪⎪⎨⎧++==--=cb ac c b a 6255250,解得 ⎪⎪⎩⎪⎪⎨⎧===.25321c b a∴ 抛物线G 的解析式为y =21x 2+3 x +25. 2由⎪⎩⎪⎨⎧++=-=25321322x x y x y , 消去y ,得21x 2+x +211=0, ∵ =12-4×21×211=-10<0, ∴ 方程无实根,即抛物线G 与直线l 无公共点.3由⎪⎩⎪⎨⎧++=+=2532122x x y m x y ,消去y ,得21x 2+x +25-m =0. ① ∵ 抛物线G 与直线y =2 x +m 只有一个公共点P ,∴ =12-4×21×25-m =0. 解得m =2. 把m =2代入方程①,解得x =-1. 把x =-1代入y =21x 2+3 x +25,得y =0. ∴ P -1,0.点评本题综合运用了二次函数解析式的求法.抛物线与直线的交点等知识,其关键是把函数问题灵活转化为方程知识求解.。

(华东师大版)数学初三下册 《二次函数》全章复习与巩固—巩固练习(基础)

(华东师大版)数学初三下册 《二次函数》全章复习与巩固—巩固练习(基础)

《二次函数》全章复习与巩固—巩固练习(基础)【巩固练习】一、选择题1.将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ). A. B. C. D.2.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为().3.(•永州)抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣24. 抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是()A. B. C. D.5.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.﹣3a+c<0C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c6.已知点(,),(,)(两点不重合)均在抛物线上,则下列说法正确的是( ). A.若,则 B.若,则C.若,则 D.若,则7.在反比例函数中,当时,y随x的增大而减小,则二次函数的图象大致是图中的( ).2y x=2(1)2y x=-+2(1)2y x=++2(1)2y x=--2(1)2y x=+-2y ax bx c=++24y bx b ac=+-a b cyx++= 22y x x=--211122y x x=-++211122y x x=--+22y x x=-++ 1x1y2x2y21y x=-12y y=12x x=12x x=-12y y=-120x x<<12y y>12x x<<12y y>ayx=0x>2y ax ax=-8.已知二次函数(其中,,),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的有( ).A .0个B .1个C .2个D .3个二、填空题9.如图,已知抛物线y=﹣x 2+bx+c 的对称轴为直线x=1,且与x 轴的一个交点为(3,0),那么它对应的函数解析式是 .10.抛物线的图象如图所示,则此抛物线的解析式为___ _____.11.抛物线的顶点为C ,已知y =-kx+3的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为________.12.已知二次函数的部分图象如图所示,则关于x 的一元二次方程的解为___ _____.第10题 第12题 第13题13.如图所示的抛物线是二次函数的图象,那么a 的值是________.14.烟花厂为扬州“4·18”烟花三月经贸旅游节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为________.15.已知抛物线经过点A(-1,4),B(5,4),C(3,-6),则该抛物线上纵坐标为-6的另一个点的坐标是________.2y ax bx c =++0a >0b >0c<2y x bx c =-++22(2)6y x =--22y x x m =-++220x x m -++=2231y ax x a =-+-252012h t t =-++2y ax bx c =++16.若二次函数的图象过A(-1,y 1)、B(2,y 2)、C(,y 3)三点,则y 1、y 2、y 3大小关系是 .三、解答题 17.(•河南)某班“数学兴趣小组”对函数y=x 2﹣2|x |的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下: x … ﹣3 ﹣ ﹣2 ﹣1 0 1 2 3 … y…3m﹣1﹣13…其中,m= .(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质. (4)进一步探究函数图象发现:①函数图象与x 轴有 个交点,所以对应的方程x 2﹣2|x |=0有 个实数根; ②方程x 2﹣2|x |=2有 个实数根;③关于x 的方程x 2﹣2|x |=a 有4个实数根时,a 的取值范围是 .18. 如图所示,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上、下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上、下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.(1)用含x 的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?26y x x c =-+319.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元. (1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?20. 王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用了30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量)y 的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益量y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求王亮解题的学习收益量y 与用于解题的时间x 之间的函数关系式,并写出自变量x 的取值范围; (2)求王亮回顾反思的学习收益量y 与用于回顾反思的时间x 之间的函数关系式; (3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大? (注:学习收益总量=解题的学习收益量+回顾反思的学习收益量)【答案与解析】 一、选择题 1.【答案】A ;【解析】向右平移1个单位后,顶点为(1,0),再向上平移2个单位后,顶点为(1,2),开口方向及大小不变,所以,即.2.【答案】D ;【解析】由上图可知,,,∴ .., ∴ 反比例函数图象在第二、四象限内,一次函数图象经过第一、二、四象限,因此选D .3.【答案】A.【解析】∵抛物线y=x 2+2x +m ﹣1与x 轴有两个交点, ∴△=b 2﹣4ac >0, 即4﹣4m +4>0, 解得m <2, 故选A .4.【答案】D ;【解析】由图象知,抛物线与x 轴两交点是(-1,0),(2,0),又开口方向向下,所以,抛物线与y 轴交点纵坐标大于1.显然A 、B 、C 不合题意,故选D . 5.【答案】B ;2y x =1a =2(1)2y x =-=0a >0c <02ba->0b <0a b c ++<240b ac ->0a <【解析】A .由开口向下,可得a <0;又由抛物线与y 轴交于负半轴,可得c <0,然后由对称轴在y 轴右侧,得到b 与a 异号,则可得b >0,故得abc >0,故本选项错误; B .根据图知对称轴为直线x=2,即=2,得b=﹣4a ,再根据图象知当x=1时,y=a+b+c=a ﹣4a+c=﹣3a+c <0,故本选项正确;C .由抛物线与x 轴有两个交点,可得b 2﹣4ac >0,故本选项错误;D .y=ax 2+bx+c=,∵=2,∴原式=,∴向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B . 6.【答案】D ;【解析】画出的图象,对称轴为,若,则;若,则;若,则;若,则.7.【答案】A ; 【解析】因为,当时,y 随x 增大而减小,所以a >0,因此抛物线 开口向上,且与x 轴相交于(0,0)和(1,0).8.【答案】C ; 【解析】∵ ,,∴ 抛物线开口向上,,因此抛物线顶点在y 轴的左侧, 不可能在第四象限;又, ,抛物线与x 轴交于原点的两侧, 因此①③是正确的.二、填空题 9.【答案】y=﹣x 2+2x+3;【解析】∵抛物线y=﹣x 2+bx+c 的对称轴为直线x=1,∴=1,解得b=2,∵与x 轴的一个交点为(3,0), ∴0=﹣9+6+c , 解得c=3,故函数解析式为y=﹣x 2+2x+3. 10.【答案】;【解析】由题意和图象知抛物线与x 轴两交点为(3,0)、(-1,0),∴ 抛物线解析式为,即.21y x =-0x =12y y =12x x =-12x x =-12y y =120x x <<21y y >120x x <<12y y >a y x=0x >2(1)y ax ax a x x =-=-0a >0b >02bx a=-<0c <120cx x a=<·223y x x =-++(3)(1)y x x =--+223y x x =-++11.【答案】1; 【解析】,,与坐标轴交点为(0,3),. 12.【答案】 x 1=3或x 2=-1 ;【解析】由二次函数部分图象知,与x 轴的一个交点为(3,0).代入方程得m =3,解方程得x 1=3或x 2=-1.13.【答案】-1;【解析】因为抛物线过原点,所以,即,又抛物线开口向下,所以a =-1. 14.【答案】4s ; 【解析】.15.【答案】(1,-6);【解析】常规解法是先求出关系式,然后再求点的坐标,但此方法繁琐耗时易出错,仔细分析就会注意到:A 、B 两点纵坐标相同,它们关于抛物线对称轴对称,由A(-1,4),B(5,4)得,对称轴,而抛物线上纵坐标为-6的一点是(3,-6),所以它关于x =2的对称点是(1,-6).故抛物线上纵坐标为-6的另一点的坐标是(1,-6).16.【答案】y 1>y 3>y 2. 【解析】因为抛物线的对称轴为.而A 、B 在对称轴左侧,且y 随x 的增大而减小, ∵ -1<2,∴ y 1>y 2,又C 在对称轴右侧,且A 、B 、C 三点到对称轴的距离分别 为2,1,由对称性可知:y 1>y 3>y 2.三、解答题17.【答案与解析】解:(1)把x=﹣2代入y=x 2﹣2|x |得y=0, 即m=0,故答案为:0; (2)如图所示;(3)由函数图象知:①函数y=x 2﹣2|x |的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大; (4)①由函数图象知:函数图象与x 轴有3个交点,所以对应的方程x 2﹣2|x |=0有3个实数根; ②如图,∵y=x 2﹣2|x |的图象与直线y=2有两个交点, ∴x 2﹣2|x |=2有2个实数根;③由函数图象知:∵关于x 的方程x 2﹣2|x |=a 有4个实数根, ∴a 的取值范围是﹣1<a <0, 故答案为:3,3,2,﹣1<a <0.92k =932y x =-+2,03⎛⎫⎪⎝⎭22y x x m =-++210a -=1a =±204(s)522t =-=⎛⎫⨯- ⎪⎝⎭1522x -+==6323x -==⨯18.【答案与解析】 (1)横向甬道的面积为(m 2). (2)依题意:,整理得,解得x 1=5,x 2=150(不合题意,舍去).∴ 甬道的宽为5米.(3)设建花坛的总费用为y 万元,则. ∴ y =0.04x 2-0.5x+240. 当时,y 的值最小. ∵ 根据设计的要求,甬道的宽不能超过6 m .∴ 当x =6m 时,总费用最少,为0.04×62-0.5×6+240=238.44(万元).19.【答案与解析】(1)由题意可知,当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以,即100≤x ≤250时,购买一个需5000-10(x-100)元.故y 1=6000x-10x 2;当x >250时,购买一个需3500元. 故y 1=3500x .所以 y 2=5000×80%x =4000x .(2)当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x-10x 2=-10(x-300)2+900000<1400000; 所以,由3500x =1400000,得x =400. 由4000x =1400000,得x =350.故选择甲商家,最多能购买400个路灯.20.【答案与解析】1201801502x +=2112018028015028082x x x +⨯+-=⨯⨯21557500x x -+=21201800.0280(1601502) 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦0.56.25220.04b x a =-==⨯5000350010025010x -≤+=215000(0100),600010(100250),3500(250),x x y x xx x x ≤≤⎧⎪=-<≤⎨⎪>⎩(1)设y =kx ,把(2,4)代入,得k =2,所以y =2x ,自变量x 的取值范围是:0≤x ≤30.(2)当0≤x <5时,设y =a(x-5)2+25, 把(0,0)代入,得25a+25=0,a =-1, 所以. 当5≤x ≤15时,y =25.即(3)设王亮用于回顾反思的时间为x(0≤x <5)分钟,学习收益总量为Z ,则他用于解题的时间为(30-x)分钟.当0≤x <5时,. 所以当x =4时,.当5≤x ≤15时,Z =25+2(30-x)=-2x+85. 因为Z 随x 的增大而减小, 所以当x =5时,.综合所述,当x =4时,,此时30-x =26.即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时.学习收益总量最大.22(5)2510y x x x =--+=-+210(05),25(515).x x x y x ⎧-+≤<=⎨≤≤⎩222102(30)860(4)76Z x x x x x x =-++-=-++=--+76Z =最大75Z =最大76Z =最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》全章复习与巩固—知识讲解(基础)
【学习目标】
1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;
2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;
3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际
问题;
4.会利用二次函数的图象求一元二次方程的近似解.
【知识网络】
【要点梳理】
要点一、二次函数的定义
一般地,如果是常数,,那么叫做的二次函数.
要点诠释:
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.
要点二、二次函数的图象与性质
1.二次函数由特殊到一般,可分为以下几种形式:
①;②;③;④,
其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:
函数解析式开口方向对称轴顶点坐标
当时
开口向上
当时
开口向下
(轴) (0,0)
(轴) (0,)
(,0)
(,)
() 2.抛物线的三要素:
开口方向、对称轴、顶点.
(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.
(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.
3.抛物线20
()
y ax bx c a
=++≠中,,,
a b c的作用:
(1)决定开口方向及开口大小,这与中的完全一样.
(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线

故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;
③(即、异号)时,对称轴在轴右侧.
(3)的大小决定抛物线与轴交点的位置.
当时,,∴抛物线
与轴有且只有一个交点(0,):
①,抛物线经过原点;②,与
轴交于正半轴;③
,与
轴交于负
半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.
4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.
(可以看成
的图象平移后所对应的函数.)
(3)“交点式”:已知图象与轴的交点坐标

,通常选用交点式:
(a≠0).(由此得根与系数的关系:
).
要点诠释:
求抛物线2
y ax bx c =++(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.
要点三、二次函数与一元二次方程的关系 函数
,当
时,得到一元二次方程
,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐
标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况. (1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实
根;
(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;
(3)当二次函数的图象与x 轴没有交点,这时
,则方程没有实根.
通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:
的图象
的解方程有两个不等实数解
方程有两个相等实数解
方程没有实数解
要点诠释:
二次函数图象与x轴的交点的个数由的值来确定.
(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;
(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;
(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.
要点四、利用二次函数解决实际问题
利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.
利用二次函数解决实际问题的一般步骤是:
(1)建立适当的平面直角坐标系;
(2)把实际问题中的一些数据与点的坐标联系起来;
(3)用待定系数法求出抛物线的关系式;
(4)利用二次函数的图象及其性质去分析问题、解决问题.
要点诠释:
常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.
【典型例题】
类型一、求二次函数的解析式
1.已知二次函数的图象经过原点及点11,24⎛⎫
-
- ⎪⎝
⎭,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为________.
【变式】已知:抛物线y=x 2+bx+c 的对称轴为x=1,交x 轴于点A 、B(A 在B 的左侧),且AB=4,交y 轴于点C.求此抛物线的函数解析式及其顶点M 的坐标.
类型二、根据二次函数图象及性质判断代数式的符号
2.二次函数2
y ax bx c =++的图象如图1所示,反比例函数a
y x
=
与正比例函数y =(b+c)x 在同一坐标系中的大致图象可能是( ).
.
3.如图所示是二次函数2
y ax bx c =++图象的一部分,其对称轴为直线x =1,
若其与x 轴一交点为(3,0),则由图象可知,不等式2
0ax bx c ++>的解集是________.

类型四、函数与方程
4.已知抛物线c x x y ++=
2
2
1与x 轴没有交点. ①求c 的取值范围;②试确定直线1+=cx y 经过的象限,并说明理由.
【变式1】无论x 为何实数,二次函数的图象永远在x 轴的下方的条件是
( ) A .B .
C .
D .
【变式2】对于二次函数
,我们把使函数值等于0的实数x 叫做这个函数的零点,则二次函数
(m 为实数)的零点的个数是( )
A .1
B .2
C .0
D .不能确定
5.已知点A(1,1)在二次函数2
2y x ax b =-+的图象上. (1)用含a 的代数式表示b ;
(2)如果该二次函数的图象与x 轴只有一个交点,求这个二次函数的图象的顶点坐标.
类型六、二次函数与实际问题
6.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足图1所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增大,但每台彩电的收益z(元)会相应降低且z 与x 之间也大致满足图2所示的一次函数关系.
(1)在政府出台补贴措施前,该商场销售彩电的总收益额为多少元?
(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益z 与政
府补贴款额x 之间的函数关系式;
(3)要使该商场销售彩电的总收益ω(元)最大,政府应将每台补贴款额x 定为多少?并求
出总收益ω的最大值.。

相关文档
最新文档